13-2直接证明与间接证明

合集下载

第二节直接证明与间接证明

第二节直接证明与间接证明

第二节直接证明与间接证明直接证明与间接证明是数学推理中常用的两种证明方法。

直接证明是通过逻辑推理直接得出结论,而间接证明是通过反证法或归谬法得出结论。

以下将详细介绍这两种证明方法,并进行比较。

直接证明是最常见的证明方法之一、它的基本思路是根据已知条件和数学定义,逐步演绎出所要证明的结论。

直接证明需要使用与所要证明的结论相关的定理、性质、定义等来推导,使之成立。

这种方法是一个逐步推进的过程,每一步都必须经过严格的逻辑推理,从已知到结论的推导链条必须清晰、合理。

直接证明通常比较直观,逻辑性较为明显,容易理解。

例如,我们可以通过直接证明来证明“两个相等的数相加,结果仍然相等”。

间接证明是与直接证明相对的一种证明方式。

它的基本思路是假设所要证明的结论不成立,通过逻辑推理得出矛盾或不合理的结论,从而排除了假设的情况,证明了原来的结论是成立的。

间接证明常常采用反证法或归谬法。

反证法是一种最常用的间接证明方法,其基本思路是通过假设结论不成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。

归谬法是一种较少使用的间接证明方法,它的基本思路是假设结论成立,并推导出与已知条件或定义矛盾的结论,从而得出结论的真实性。

例如,我们可以通过反证法来证明“根号2是无理数”。

直接证明与间接证明各有其优点和适用范围。

直接证明较为直观和直接,逻辑性更明显,适用于证明一些简单且直接的结论,或是一些简单的数学性质和定理。

间接证明更具有一般性和普遍性,适用于证明复杂的结论,或是一些需要反证或归谬的情况。

通过间接证明,我们可以深入分析和推理,挖掘结论的内在逻辑关系。

间接证明常常需要对结论进行反向思考,找到对立面、矛盾面,通过推导和推理得到最终的结论。

总的来说,直接证明和间接证明是数学推理中常用的两种证明方法。

直接证明通过逻辑推理直接得出结论,适用于一些简单直接的结论。

间接证明通过反证或归谬得出结论,适用于一些复杂或需要反向思考的结论。

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明

数学是一门严谨的学科,其核心在于推理与证明。

在进行数学证明时,有直接证明和间接证明两种方法。

直接证明是通过逻辑推理直接得出结论,而间接证明则是通过反证法或者归谬法,通过推翻事实的否定来得出结论。

本文将分别介绍直接证明和间接证明,并分析它们在数学证明中的应用。

首先,我们来讨论直接证明。

直接证明是最常见、最直接的证明方法。

其核心思想是根据已知条件和数学定理,一步一步地推导出结论。

直接证明通常包括假设、推理和结论三个步骤。

首先,我们根据题目给出的条件假设一些前提条件,然后利用已知的定理和公理进行推理,最后根据这些推理得出结论。

直接证明的优点是逻辑性强、直观明了,容易让读者明白推理的过程。

此外,对于一些简单的数学问题,直接证明能够很快得出结论,省去了许多繁琐的步骤。

然而,直接证明的弊端是有时难以找到合适的定理进行推理,或者推导过程中的中间步骤比较复杂。

在遇到这种情况时,我们就需要采用间接证明的方法。

其次,我们来讨论间接证明。

间接证明有两种形式,一种是反证法,另一种是归谬法。

反证法的基本思想是通过假设反命题的真假进行推导,如果得出一个恒真的结论,则原命题成立。

归谬法则是通过假设原命题为真进行推导,最后得出一个恒假的结论,从而推翻了原命题。

间接证明的优点是可以处理一些复杂的数学问题,特别是那些直接证明困难的问题。

间接证明可以通过假设反命题的真假或者假设原命题的真假,利用反证法或归谬法的推导过程将问题的复杂性降低,从而得出结论。

然而,间接证明的过程通常较为繁琐,需要较高的抽象思维能力和逻辑推理能力。

在实际的数学证明中,常常需要根据题目的要求和限制条件选择合适的证明方法。

有时,我们可以通过观察和归纳总结出一些数量关系或性质,然后用直接证明进行推导。

而对于一些性质复杂的数学问题,我们可能需要采用间接证明的方法。

因此,掌握直接证明和间接证明的技巧对于解决数学问题至关重要。

总之,数学证明中的直接证明和间接证明是两种常用的推理方法。

2019届高考数学(浙江版)一轮配套讲义:13直接证明与间接证明

2019届高考数学(浙江版)一轮配套讲义:13直接证明与间接证明

第十三章直接证明与间接证明考纲解读考点考纲内容要求浙江省五年高考统计2013 2014 2015 2016 2017 19(2),417(1),71. 认识直接证明的两种基分分20,15 分22(2),(3 1. 直接证明本方法 : 剖析法和综合法 . 20(1),6 20(1),7认识18(1),7 20( 文 ),1 ),与间接证明 2. 认识间接证明的一种基分分分 5 分约 10分本方法 : 反证法 . 21(2),820,15 分分2. 数学概括认识数学概括法的原理 , 能22(1), 用数学概括法证明一些简认识法约 5 分单的数学命题 .剖析解读 1. 直接证明与间接证明、数学概括法是高考的考察内容, 综合法是“由因导果” , 而剖析法例是“执果索因” , 它们是截然相反的两种证明方法. 剖析法便于我们去找寻思路 , 而综合法便于过程的表达 , 两种方法各有千秋 , 在解决详细的问题中, 综合运用 , 成效会更好 .2. 数学概括法常与数列、不等式等知识综合在一同, 常常综合性比较强, 对学生的思想要求比较高 .3. 综合法与剖析法因其在解决问题中的巨大作用而获得命题者的喜爱, 估计 2019 年高考试题中 , 直接证明、间接证明与导数综合出题的可能性较大.五年高考考点一直接证明与间接证明1.(2017课标全国Ⅱ理,7,5分)甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩四人中有 2 位优异 ,2 位优异 , 我此刻给甲看乙、丙的成绩 , 给乙看丙的成绩, 给丁看甲的成绩说 : 我仍是不知道我的成绩. 依据以上信息, 则 () .老师说:你们 . 看后甲对大家A.乙能够知道四人的成绩B.丁能够知道四人的成绩C.乙、丁能够知道对方的成绩D.乙、丁能够知道自己的成绩答案 D2.(2016 北京 ,8,5 分) 袋中装有偶数个球 , 此中红球、黑球各占一半 . 甲、乙、丙是三个空盒 . 每次从袋中随意拿出两个球 , 将此中一个球放入甲盒 , 假如这个球是红球 , 就将另一个球放入乙盒 , 不然就放入丙盒 . 重复上述过程 , 直到袋中全部球都被放入盒中, 则 ()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球同样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球同样多答案 B3.(2017北京文,14,5分)某学习小组由学生和教师构成, 人员构成同时知足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数 ;(iii)教师人数的两倍多于男学生人数 .①若教师人数为4, 则女学生人数的最大值为;②该小组人数的最小值为.答案①6②124.(2017北京理,20,13分)设{a n}和{b n}是两个等差数列, 记c n=max{b1-a 1n,b 2-a 2n,,b n-a n n}(n=1,2,3, ),此中 max{x 1,x 2, ,x s} 表示 x1,x 2, ,x s这 s 个数中最大的数.(1) 若 a n =n,b n =2n-1, 求 c 1,c 2,c 3 的值 , 并证明 {c n } 是等差数列 ;(2) 证明 : 或许对随意正数 M,存在正整数 m,当 n ≥m 时, >M;或许存在正整数 m,使得 c m ,c m+1,c m+2, 是等差数 列 .分析 此题考察等差数列 , 不等式 , 合情推理等知识 , 考察综合剖析 , 概括抽象 , 推理论证能力 . (1)c 1=b 1-a 1=1-1=0,c 2 =max{b 1-2a 1,b 2-2a 2}=max{1-2 × 1,3-2 × 2}=-1,c 3 =max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3 × 1,3-3 × 2,5-3 × 3}=-2.当 n ≥ 3 时 ,(b k+1 -na k+1 )-(b k-na )=(b -b )-n(a k+1-a )=2-n<0,kk+1kk所以 b k -na k 对于 k ∈ N * 单一递减 .-a n}=b -a n=1-n.所以 c =max{b -a n,b -an, ,bn1122 n n11所以对随意 n ≥ 1,c n =1-n, 于是 c n+1-c n =-1,所以 {c} 是等差数列 .n(2) 设数列 {a n } 和 {b n } 的公差分别为 d 1,d 2, 则 b k -na k =b 1+(k-1)d 2-[a 1+(k-1)d 1 ]n=b 1-a 1n+(d 2-nd 1)(k-1).所以 c =n①当 d 1>0 时,取正整数 m> , 则当 n ≥ m 时,nd 1 >d , 所以 c =b -a n.2n 11此时 ,c m ,c m+1,c m+2, 是等差数列 .②当 d =0 时, 对随意 n ≥ 1,1c n =b 1-a 1n+(n-1)max{d 2,0}=b 1-a 1+(n-1)(max{d2,0}-a 1).此时 ,c,c ,c , ,c, 是等差数列 .1 23n③当 d 1<0 时,当 n> 时, 有 nd 1<d 2.所以 ==n(-d 1)+d 1-a 1+d 2+≥ n(-d 1)+d 1-a 1+d 2-|b 1-d 2|.对随意正数 M,取正整数 m>max,故当n ≥ m 时 ,>M.5.(2016江苏 ,20,16 分 )记 U={1,2,,100}.对数列 {a n }(n ∈N *)和U 的子集T,若 T=? ,定义S T =0;若T={t1,t2,,tk },定义S T =+ + +. 比如 :T={1,3,66}时 ,S T =a 1+a 3+a 66. 现设 {a n }(n∈ N *)是公比为3 的等比数列 , 且当 T={2,4} 时 ,S T =30.(1) 求数列 {a n } 的通项公式 ;(2) 对随意正整数 k(1 ≤ k ≤ 100), 若 T? {1,2,,k}, 求证 :S T <a k+1 ; (3) 设 C? U,D? U,S C ≥ S D , 求证 :S C +S C ∩ D ≥ 2S D .分析 (1) 由已知得 a n =a 1· 3n-1 ,n ∈ N * . 于是当 T={2,4} 时 ,S T =a 2+a 4=3a 1+27a 1=30a 1.又 S =30, 故 30a1 =30, 即 a =1.T1所以数列 {a n } 的通项公式为 n-1,n *a n =3 ∈ N .(2) 因为 T? {1,2, ,k},a n =3n-1 >0,n ∈N * ,k-1kk所以 S ≤ a +a + +a =1+3+ +3 = (3 -1)<3 .T 12k所以 ,S T <a k+1.(3) 下边分三种状况证明.①若 D 是 C的子集 , 则 S C+S C∩D=S C+S D≥ S D+S D=2S D.②若 C 是 D的子集 , 则 S C+S C∩D=S C+S C=2S C≥ 2S D.③若 D不是 C的子集 , 且 C不是 D的子集 .令 E=C∩ ?U D,F=D∩ ?U C, 则 E≠ ? ,F ≠ ? ,E ∩F=? . 于是 S C=S E+S C∩D,S D=S F+S C∩D, 从而由 S C≥ S D得 S E≥ S F .设 k 为 E 中的最大数 ,l 为 F 中的最大数 , 则 k≥1,l ≥ 1,k ≠ l.由 (2)Ek+1.于是 3l-1 l F E k+1 k, 所以 l-1<k, 即 l ≤ k. 又 k≠ l, 故 l ≤ k-1. 知 ,S <a =a ≤ S ≤ S <a =3从而F12 l l-1= ≤= ≤, S ≤ a +a + +a =1+3+ +3故 S E≥ 2S F+1, 所以 S C-S C∩D≥ 2(S D-SC∩D)+1, 即 S C+S C∩D≥2S D+1.综合①②③得 ,S C+S C∩D≥ 2S D.6.(2015 北京 ,20,13 分 ) 已知数列 {a } 知足 :a ∈ N ,a ≤ 36, 且 a = (n=1,2,). 记会合 M={a |nn 1 *1 n+1 n ∈N*}.(1)若 a1=6, 写出会合 M的全部元素 ;(2)若会合 M存在一个元素是 3 的倍数 , 证明 :M 的全部元素都是 3 的倍数 ;(3)求会合 M的元素个数的最大值 .分析(1)6,12,24.(2)证明 : 因为会合 M存在一个元素是 3 的倍数 , 所以不如设 a k是 3 的倍数 .由 a n+1= 可概括证明对随意 n≥ k,a n是 3 的倍数 .假如 k=1, 则 M的全部元素都是3的倍数.假如 k>1, 因为 a k=2a k-1或 a k=2a k-1 -36,所以 2a k-1是 3 的倍数 , 于是 a k-1 是3的倍数.近似可得 ,a k-2 , ,a 1都是 3 的倍数 .从而对随意 n≥ 1,a n是 3 的倍数 , 所以 M的全部元素都是 3 的倍数 .综上 , 若会合 M存在一个元素是 3 的倍数 , 则 M的全部元素都是3的倍数.(3) 由 a1≤ 36,a n= 可概括证明 a n≤36(n=2,3,).因为 a 是正整数 ,a = 所以 a 是2的倍数,1 2 2从而当 n≥3 时 ,a n是 4 的倍数 .假如 a1是 3 的倍数 , 由 (2) 知对全部正整数n,a n是 3 的倍数 ,所以当 n≥3 时 ,a n∈ {12,24,36},这时 M的元素个数不超出 5.假如 a1不是 3 的倍数 , 由 (2) 知对全部正整数n,a n不是 3 的倍数 ,所以当 n≥3 时 ,a n∈ {4,8,16,20,28,32},这时 M的元素个数不超出 8.当 a =1 时 ,M={1,2,4,8,16,20,28,32} 有8个元素.1综上可知 , 会合 M的元素个数的最大值为 8.7.(2014 江苏 ,23,10 分 ) 已知函数 f 0(x)= (x>0), 设 f n(x) 为 f n-1 (x) 的导数 ,n ∈ N* .(1) 求 2f 1 + f 2 的值 ;(2) 证明 : 对随意的n∈ N* , 等式= 都建立 .分析(1) 由已知 , 得 f 1(x)=f' 0(x)= '= - , 于是f (x)=f' (x)= '- '=- - + , 所以 f1 =- ,f2=-+.2 1故 2f 1 + f 2 =-1.(2) 证明 : 由已知 , 得 xf 0(x)=sinx, 等式两边分别对x 求导 , 得 f 0(x)+xf' 0(x)=cosx, 即 f 0(x)+xf 1(x)=cosx=sin , 近似可得2f (x)+xf (x)=-sinx=sin(x+ π ),1 23f (x)+xf (x)=-cosx=sin ,2 34f (x)+xf (x)=sinx=sin(x+2 π ).3 4下边用数学概括法证明等式nf n-1(x)+xfn对全部的*都建立 .(x)=sin n∈ N(i)当 n=1 时 , 由上可知等式建立 .(ii) 假定当 n=k 时等式建立 , 即 kf k-1 (x)+xf k(x)=sin. 因为[kfk-1 (x)+xfk(x)]'=kf'k-1(x)+fk(x)+xf'k(x)=(k+1) · f (x)+xf (x), '=cos ·'=sik k+1n ,所以(k+1)f k (x)+xf k+1 .(x)=sin所以当 n=k+1 时 , 等式也建立 .综合 (i)(ii) 可知等式 nf n-1 (x)+xf n (x)=sin*对全部的 n∈ N 都建立 .令 x= , 可得 nf n-1 + f n =sin (n ∈ N* ). 所以= (n ∈ N* ).教师用书专用 (8)8.(2013 江苏 ,19,16na, 公差为 d 的等差数列(d ≠0),Sn n,n ∈分 ) 设{a } 是首项为是其前 n 项的和 . 记 b =(1)若 c=0, 且 b1,b 2,b 4成等比数列 , 证明 :S nk=n2S k(k,n ∈ N* );(2)若 {b n} 是等差数列 , 证明 :c=0.nd.证明由题意得 ,S =na+(1) 由 c=0, 得 b n= =a+ d.又因为 b ,b ,b 成等比数列 , 所以=b b , 即=a 2 4 , 化简得 d -2ad=0.1 2 1 4因为 d≠ 0, 所以 d=2a.所以 , 对于全部的* m2m∈ N , 有 S =ma.从而对于全部的k,n ∈ N* , 有 S nk=(nk) 2a=n2k2a=n2S k.(2) 设数列 {b } 的公差是 d , 则 b =b +(n-1)d, 即=b +(n-1)d*的表达式 , 整理得 , 对于全部,n ∈ N , 代入 Sn1n1111n* 3 2 111的 n ∈ N , 有n + n +cd n=c(d -b ).令 A=d 1- d,B=b 1-d 1-a+ d,D=c(d 1-b 1), 则对于全部的 n ∈ N * , 有32An +Bn +cd 1n=D.(*)在 (*) 式中分别取 n=1,2,3,4, 得A+B+cd 1=8A+4B+2cd 1=27A+9B+3cd 1=64A+16B+4cd 1,从而有由②③得 A=0,cd 1=-5B, 代入方程① , 得 B=0, 从而 cd 1=0.即 d 1- d=0,b 1-d 1-a+ d=0,cd 1=0.若 d 1=0, 则由 d 1- d=0, 得 d=0,与题设矛盾 , 所以 d 1≠ 0. 又因为 cd 1=0, 所以 c=0.考点二 数学概括法1.(2017 浙江 ,22,15 分 ) 已知数列 {x } 知足 :x =1,x =x +ln(1+x*)(n ∈ N ).n1nn+1n+1证明 : 当 n ∈ N * 时 ,(1)0<x<x ;n+1n(2)2x-x ≤;n+1n(3) ≤x n ≤.分析 此题主要考察数列的观点、递推关系与单一性基础知识, 不等式及其应用 , 同时考察推理论证能力、 剖析问题和解决问题的能力 . (1) 用数学概括法证明 :x n >0. 当 n=1 时 ,x 1=1>0. ≤ 0, 则 0<x =x +ln(1+x ) ≤ 0, 矛盾 , 故 x>0. 假定 n=k 时,x k >0, 那么 n=k+1 时, 若 xk k+1k+1k+1 k+1所以 x n >0(n ∈ N * ). 所以 x n =x n+1+ln(1+xn+1)>x n+1.所以 0<x n+1<x n (n ∈ N * ). (2) 由 x n =x n+1+ln(1+x n+1) 得 ,x x -4x+2x =-2xn+1 +(x n+1 +2)ln(1+x).n n+1n+1nn+1记函数 f(x)=x 2-2x+(x+2)ln(1+x)(x ≥ 0),f'(x)=+ln(1+x)>0(x>0).函数 f(x) 在 [0,+ ∞ ) 上单一递加 , 所以 f(x) ≥ f(0)=0, 所以-2x n+1+(x n+1+2)ln(1+xn+1)=f(xn+1)≥ 0,故 2x n+1-x n ≤(n ∈ N * ).(3) 因为 x n =x n+1+ln(1+x n+1) ≤ x n+1+x n+1=2x n+1, 所以 x n ≥ .由≥ 2x n+1-x n得- ≥ 2 >0,所以 - ≥ 2 ≥ ≥ 2n-1 =2n-2 ,故 x n≤.综上, ≤ x n≤(n ∈ N* ).2.(2015 江苏 ,23,10 分 ) 已知会合 X={1,2,3},Y n={1,2,3,,n}(n ∈ N* ), 设 S n={(a,b)|a 整除 b 或 b 整除 a,a ∈X,b ∈ Y n}. 令 f(n) 表示会合 S n所含元素的个数 .(1) 写出 f(6) 的值 ;(2) 当 n≥ 6 时 , 写出 f(n)的表达式,并用数学概括法证明.分析(1)f(6)=13.(2)当 n≥ 6 时 ,f(n)=(t ∈ N* ).下边用数学概括法证明:①当 n=6 时,f(6)=6+2++ =13, 结论建立 ;②假定 n=k(k ≥ 6) 时结论建立 , 那么 n=k+1 时 ,S k+1在 S k的基础上新增添的元素在(1,k+1),(2,k+1),(3,k+1)中产生 , 分以下情况议论:1) 若 k+1=6t, 则 k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论建立 ;2) 若 k+1=6t+1, 则 k=6t, 此时有f(k+1)=f(k)+1=k+2+ + +1=(k+1)+2++,结论建立 ;3)若 k+1=6t+2, 则 k=6t+1, 此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论建立 ;4)若 k+1=6t+3, 则 k=6t+2, 此时有f(k+1)=f(k)+2=k+2+ ++2=(k+1)+2++,结论建立 ;5) 若 k+1=6t+4, 则 k=6t+3, 此时有 f(k+1)=f(k)+2=k+2+ + +2=(k+1)+2++,结论建立 ;6) 若 k+1=6t+5, 则 k=6t+4, 此时有 f(k+1)=f(k)+1 =k+2+ + +1=(k+1)+2++ ,结论建立 .综上所述 , 结论对知足 n ≥ 6 的自然数 n 均建立 .3.(2014 安徽 ,21,13 分 ) 设实数 c>0, 整数 p>1,n ∈ N * . (1) 证明 : 当 x>-1 且 x ≠ 0 时 ,(1+x) p>1+px;(2) 数列 {a n } 知足 a 1> ,a n+1= a n +. 证明 :a n >a n+1> .证明 (1) 用数学概括法证明 :①当 p=2 时,(1+x) 2=1+2x+x 2>1+2x, 原不等式建立 .②假定 p=k(k ≥ 2,k ∈ N * ) 时 , 不等式 (1+x) k >1+kx 建立 .当 p=k+1 时,(1+x) k+1=(1+x)(1+x) k >(1+x)(1+kx)=1+(k+1)x+kx 2>1+(k+1)x.所以 p=k+1 时 , 原不等式也建立 . p综合①②可得 , 当 x>-1,x ≠ 0 时, 对全部整数 p>1, 不等式 (1+x)均建立 .>1+px (2) 证法一 : 先用数学概括法证明 a n > .①当 n=1 时, 由题设 a >知 a > 建立 .1n②假定 n=k(k ≥ 1,k ∈ N * ) 时 , 不等式 a k > 建立 .由 a n+1= nn*a + 易知 a >0,n ∈ N .当 n=k+1 时, = + =1+ .由 a k > >0 得 -1<- <<0.由 (1) 中的结论得=>1+p ·= .所以>c, 即 a k+1 > .所以 n=k+1 时 , 不等式 a n >也建立 .综合①②可得 , 对全部正整数 n, 不等式 a n > 均建立 .再由=1+可得<1, 即 a n+1<a n .综上所述 ,a >a>*n+1 ,n ∈ N.n证法二 : 设 f(x)=x+ x 1-p ,x ≥ , 则 x p ≥c, 而且f'(x)= + (1-p)x-p= >0,x> .由此可得 ,f(x) 在 [ ,+ ∞ ) 上单一递加 .因此 , 当 x> 时 ,f(x)>f()= ,①当 n=1 时, 由 a 1>>0, 即 >c 可知a 2 = a 1+ =a 1 <a 1, 而且 a 2=f(a 1)>, 从而 a 1>a 2> .故当 n=1 时, 不等式 a n >a n+1>建立 .*不等式 a k >a k+1> 建立, 则 当 n=k+1 时,f(ak )>f(ak+1)>f( ), 即有 a>a > .k+1k+2所以 n=k+1 时 , 原不等式也建立 .综合①②可得 , 对全部正整数 n, 不等式 a >a > 均建立 .nn+14.(2014 陕西 ,21,14 分 ) 设函数 f(x)=ln(1+x),g(x)=xf'(x),x≥ 0, 此中 f'(x)是 f(x) 的导函数 .(1) 令 g (x)=g(x),g(x)=g(gn (x)),n ∈N , 求 g (x) 的表达式 ;1n+1+n(2) 若 f(x) ≥ ag(x) 恒建立 , 务实数 a 的取值范围 ; (3) 设 n ∈ N +, 比较 g(1)+g(2)+ +g(n) 与 n-f(n)的大小 , 并加以证明 .分析由题设得 ,g(x)=(x ≥ 0).(1) 由已知得 ,g 1(x)= ,g 2(x)=g(g 1(x))= = ,g 3 (x)=, , 可得 g n (x)=.下边用数学概括法证明 .①当 n=1 时,g 1(x)=, 结论建立 .②假定 n=k 时结论建立 , 即 g k (x)=.那么 , 当 n=k+1 时 ,g k+1 (x)=g(g k (x))== = ,即结论建立 .由①②可知 , 结论对 n ∈ N +建立 . (2) 已知 f(x) ≥ ag(x) 恒建立 , 即 ln(1+x) ≥ 恒建立 .设 φ (x)=ln(1+x)-(x ≥ 0),即φ '(x)=-=,当 a≤ 1 时 , φ '(x) ≥0( 仅当 x=0,a=1 时等号建立 ), ∴φ (x) 在 [0,+ ∞ ) 上单一递加 , 又φ (0)=0,∴ φ (x) ≥0 在 [0,+ ∞ ) 上恒建立 ,∴ a≤ 1 时 ,ln(1+x)≥恒建立(仅当x=0时等号建立).当 a>1 时 , 对 x∈ (0,a-1] 有φ '(x)<0,∴ φ (x) 在 (0,a-1]上单一递减,∴ φ (a-1)<φ (0)=0.即 a>1 时 , 存在 x>0, 使φ (x)<0, 故知 ln(1+x)≥不恒建立, 综上可知 ,a 的取值范围是(- ∞ ,1].(3) 由题设知g(1)+g(2)++g(n)= + + +,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)++g(n)>n-ln(n+1).证明以下 :证法一 : 上述不等式等价于+ + +<ln(n+1),在 (2) 中取 a=1, 可得 ln(1+x)>,x>0.令 x= ,n ∈ N+,则<ln.下边用数学概括法证明.①当 n=1 时, <ln2, 结论建立 .②假定当n=k 时结论建立 , 即 + + +<ln(k+1).那么 , 当 n=k+1 时 ,+ + ++<ln(k+1)+<ln(k+1)+ln=ln(k+2),即结论建立 .由①②可知 , 结论对 n∈ N+建立 .证法二 : 上述不等式等价于+ + +<ln(n+1),在 (2) 中取 a=1, 可得 ln(1+x)>,x>0.令 x= ,n ∈ N+, 则 ln>.故有 ln2-ln1>,ln3-ln2>,ln(n+1)-lnn>,上述各式相加可得ln(n+1)> + + + .结论得证 .教师用书专用 (5)5.(2014 重庆 ,22,12 分 ) 设 a =1,an+1 =+b(n ∈ N ).1*(1) 若 b=1, 求 a 2,a 3 及数列 {a n } 的通项公式 ;*(2) 若 b=-1, 问 : 能否存在实数c 使得 a <c<a建立 ?证明你的结论 .对全部 n ∈ N2n2n+1分析 (1) 解法一 :a 2=2,a 3= +1.由题设条件知 n+1 2 =(a n -1) 2 +1,(a -1)从而 {(a n -1) 2} 是首项为 0, 公差为 1 的等差数列 ,n2n*故 (a -1)=n-1, 即 a =+1(n ∈ N ).解法二 :a 2=2,a 3= +1,可写为 a 1=+1,a 2=+1,a 3=+1.所以猜想 n+1.a =下用数学概括法证明上式 : 当 n=1 时结论明显建立 .假定 n=k 时结论建立 , 即 a k = +1, 则 a k+1 =+1=+1=+1.这就是说 , 当 n=k+1 时结论建立 . 所以 a n = +1(n ∈ N * ).(2) 解法一 : 设 f(x)=-1, 则 a n+1=f(a n ).令 c=f(c), 即 c=-1, 解得 c= . 下边用数学概括法证明命题a 2n <c<a 2n+1<1.当 n=1 时 ,a 2=f(1)=0,a 3=f(0)= -1, 所以 a 2< <a 3<1,结论建立 .假定 n=k 时结论建立 , 即 a 2k <c<a 2k+1<1. 易知 f(x) 在 (- ∞,1] 上为减函数 , 从而 c=f(c)>f(a 2k+1)>f(1)=a 2, 即 1>c>a 2k+2>a 2.再由 f(x) 在 (- ∞,1] 上为减函数得 c=f(c)<f(a 2k+223<1. 2k+3所以 a 2(k+1)2(k+1)+1)<f(a )=a故 c<a <1,<c<a<1.这就是说 , 当 n=k+1 时结论建立 .综上 , 切合条件的 c 存在 , 此中一个值为 c= .解法二 : 设 f(x)=-1, 则 a n+1=f(a n ).*先证 :0 ≤ a ≤1(n ∈ N ). ①n当 n=1 时 , 结论明显建立 .假定 n=k 时结论建立 , 即 0≤a k ≤1. 易知 f(x) 在 (- ∞ ,1] 上为减函数 , 从而 0=f(1) ≤ f(a k ) ≤ f(0)=-1<1.即 0≤ a k+1≤ 1. 这就是说 , 当 n=k+1 时结论建立 . 故①建立 .再证 :a2n <a(n ∈ N ).②2n+1*当 n=1 时 ,a 2=f(1)=0,a3=f(a 2)=f(0)=-1, 有 a 2<a 3, 即 n=1 时②建立 .假定 n=k 时, 结论建立 , 即 a<a .2k2k+1由①及 f(x) 在 (- ∞ ,1] 上为减函数 , 得a =f(a2k )>f(a2k+1 )=a 2k+2,2k+1a =f(a 2k+1 )<f(a2k+2 )=a2(k+1)+1 .2(k+1)这就是说 , 当 n=k+1 时②建立 . 所以②对全部 n ∈N * 建立 .由②得 a 2n <-1,即 (a 2n +1) 2< -2a 2n +2,所以 a 2n < . ③又由①②及 f(x) 在 (- ∞ ,1] 上为减函数得 f(a 2n )>f(a 2n+1 ), 即 a 2n+1>a 2n+2,所以 a 2n+1>-1, 解得 a 2n+1> . ④综上 , 由②③④知存在 c= 2n2n+1*使 a <c<a对全部 n ∈ N 建立 .三年模拟A 组 2016— 2018 年模拟·基础题组考点一 直接证明与间接证明1.(2016 广东惠州第一次调研 ,12) 定义映照 f:A → B, 此中 A={(m,n)|m,n ∈R},B=R, 已知对全部的有序正整数对 (m,n) 知足以下条件 : ① f(m,1)=1; ②若 n>m,则 f(m,n)=0; ③ f(m+1,n)=n[f(m,n)+f(m,n-1)], 则 f(2,2)= . 答案 2 2.(2018 浙江萧山九中 12 月月考 ,20) 设函数 f(x)=lnx+a-1, 曲线 y=f(x) 在点 (1,f(1))处的切线与直线y= x+1 平行 . (1) 求 a 的值 ;(2) 证明 : 当 x>1 时 ,f(x)< (x-1).分析 (1) ∵ f'(x)= +, ∴ f'(1)=1+= ,(5 分)∴ a=1.(6 分 )(2) 证明 : 设 g(x)=lnx+ -1- (x-1)=lnx+- x+ ,(8 分)则 g'(x)=+-==,(12分)当 x>1 时 , 有 g'(x)<0, 所以 g(x) 在区间 (1,+ ∞ ) 上是减函数 ,∴ g(x)<g(1)=0, 即 f(x)< (x-1).(15 分 )3.(2017 浙江测试卷 ,20) 设函数 f(x)=x2+,x ∈[0,1].证明 :(1)f(x) ≥ x 2- x+1;(2)<f(x) ≤.证明 (1) 记 g(x)=f(x)-x2+ -1= + -1,则 g'(x)=- + >0,x ∈(0,1),∴g(x) 在区间 (0,1) 上单一递加 ,又 g(0)=0, ∴ g(x)=f(x)-x 2-1+ ≥0,2∴ f(x) ≥ x - x+1.(2)f'(x)=2x- , 记h(x)=2x- ,由h(0)=- <0,h(1)=2- >0, 知存在x0∈(0,1), 使得h(x 0)=0, ∵h(x) 在 [0,1] 上是增函数 ,∴f(x) 在区间 (0,x 0) 上单一递减 , 在区间 (x 0,1) 上单一递加 ,又 f(0)=1,f(1)= , 所以 f(x) ≤,另一方面 , 由 (1) 适当 x≠时 ,f(x)2+1= + > , 且 f > , ≥ x -故<f(x) ≤.考点二数学概括法4.(2016 黑龙江哈尔滨三中模拟,10) 用数学概括法证明不等式“1+ + + +<n(n ∈ N* ,n ≥ 2) ”建即刻 , 由 n=k(k ≥2) 时不等式建立 , 推证 n=k+1 时 , 左侧应增添的项的个数是 ( )A.2 k-1B.2 k-1C.2 kD.2 k+1答案 C5.(2018 浙江 9+1 高中结盟期中 ,22) 已知数列 {a n} 知足 :a 1= ,p>1,a n+1=.(1) 证明 :a >a >1;nn+1(2) 证明 : <a < ;n+1(3) 证明 : ×<ln(a 1 a2a n)< ×.证明(1) 先用数学概括法证明a n>1.①当 n=1 时, ∵ p>1, ∴ a1= >1;②假定当 n=k 时 ,a k>1, 此时易证得lna k -a k +1<0 恒建立 , 即 lna k<a k-1 恒建立 , 则当 n=k+1 时 ,a k+1=>=1. 由①②可知a n>1.再证 a n>a n+1.a n+1-a n= -a n = ,令 f(x)=x-1-xlnx,x>1, 则 f'(x)=-lnx<0, 所以f(x) 在 (1,+ ∞ ) 上单一递减 , 所以f(x)<f(1)=0,所以<0, 即 a >a .n n+1所以 a n>a n+1>1.(5 分 )(2) 要证<a n+1< , 只要证< <, 只要证此中 a n>1,先证 2a n lna n- +1<0,令 f(x)=2xlnx-x 2+1,x>1, 只要证 f(x)<0.因为 f'(x)=2lnx+2-2x<2(x-1)+2-2x=0,所以 f(x) 在 (1,+ ∞ ) 上单一递减 , 所以 f(x)<f(1)=0. 再证 (a n+1)lna n-2a n+2>0,令 g(x)=(x+1)lnx-2x+2,x>1, 只要证 g(x)>0,g'(x)=lnx+ -2=lnx+ -1,令 h(x)=lnx+ -1,x>1, 则 h'(x)= - = >0,所以 h(x) 在 (1,+ ∞ ) 上单一递加 , 所以 h(x)>h(1)=0, 从而 g'(x)>0,所以g(x)在(1,+∞ )上单一递加,所以 g(x)>g(1)=0,综上可得<a n+1< .(10 分 )(3) 由 (2) 知, 一方面 ,a -1< (n ≥ 2), 则 a -1<(a1 -1) = ·(n ≥ 2),n=1 时 ,a -1=·,n n 1 因为 lnx<x-1(x>1), 所以 lna <a -1 ≤ ·,n n所以 ln(a 1a2a n)=lna 1+lna 2 + +lna n<= ×= ×;另一方面 , > ,则> ×= ·(n ≥ 2),n=1 时 , ==·.因为 lnx>1- (x>1), 所以 lna n>1- ≥·,所以 ln(a a a )=lna +lna + +lna > + + +1 2 n 1 2 n= ×.综上 , ×<ln(a a a )< ×.(15 分 )1 2 nB 组2016— 2018 年模拟·提高题组一、选择题1.(2016 福建厦门一中期中 ,12) 若数列 {a n } 知足 : 存在正整数 T, 对于随意正整数 n 都有 a n+T =a n 建立 , 则称数列 {a n } 为周期数列 , 周期为 T. 已知数列 {a n } 知足 a 1=m(m>0),a n+1= 则以下结论中错误的选项是 ()A. 若 a 3=4, 则 m 能够取 3 个不一样的值B. 若 m= , 则数列 {a } 是周期为 3 的数列nC. 随意的 T ∈ N * 且 T ≥2, 存在 m>1,使得 {a n } 是周期为 T 的数列D. 存在 m ∈Q 且 m ≥ 2, 使得数列 {a } 是周期数列n答案 D二、解答题n+1-a n )+a n +nln2=0(n ∈ N * ).2.(2018 浙江要点中学 12 月联考 ,22) 已知数列 {a n } 知足 :a 1=0,ln(a(1) 求 a ;3(2) 证明 :ln(2-2 1-n ) ≤ a n ≤ 1-2 1-n ; (3) 能否存在正实数 c, 使得对随意的 n ∈N * , 都有 a n ≤1-c? 并说明原因 . 分析(1) 由已知得 a n+1=a n +,又 a 1=0, 所以 a 2= ,a 3= +.(2 分 )(2) 证明 : 因为 a n+1>a n ,a 1=0, 所以 a n ≥ 0, 则 a n+1=a n +≤ a n +e -nln2 =a n +2-n ,所以 a n ≤ a n-1 +2-(n-1) ≤a n-2 +2-(n-2) +2-(n-1) ≤ ≤ a 1+2-1 + +2-(n-2) +2-(n-1) =1-2 1-n .(5 分 )令 f(n)=+21-n -2,则f(n+1)-f(n)=(-n-(n-1)-2]=- -2 -n--n= [-n+2 -2)-[+2=-2-1]-2 >-2 -n=0,所以 {f(n)} 是递加数列 , 所以 f(n) ≥ f(1)=0, 即+21-n -2 ≥ 0, 所以 a n ≥ ln(2-2 1-n ). 综上 ,ln(2-21-n) ≤ a n ≤1-2 1-n .(8 分 )(3) 由 (2) 得 a n+1=a n +≤ a n +=a n + ,(10 分 )所以 a ≤ an-1 +≤an-2 ++≤ ≤ a ++ ++=+ ++.(12 分)n1因为 =≤(n ≥ 3),所以当 n ≥4 时 ,a n ≤ + + + += + +< .由 (1) 知 : 当 n=1,2,3 时 ,a n < ,综上 : 对随意的 n ∈ N * , 都有 a n < , 所以存在 c= .(15 分 )3.(2017 浙江镇海中学模拟 (5 月 ),22) 已知在数列 {a } 中 ,a = ,a= -2a n +2,n ∈N , 其前 n 项和为 S .n1n+1*n(1) 求证 :1<a n+1 n<a <2;(2) 求证 : ≤ a n≤;(3) n求证 :n<S <n+2.证明(1) 先用数学概括法证明1<a n<2.①当 n=1 时,1<a 1= <2,②假定当n=k 时 ,1<a k<2.则当 n=k+1 时 ,a k+1= -2a k+2=(a k-1) 2+1, 又 a k∈ (1,2),所以a k+1∈ (1,2).由①②知1<a n<2,n ∈ N*恒建立 .a n+1-a n= -3a n+2=(a n-1)(a n-2)<0.所以 1<a n+1<a n<2 建立 .(2)a 1= = ,a 2= > , 当 n≥ 3 时 , <1, 又 1<a n<2, 所以 a n≥. 由 a n+1= -2a n+2 得 2-a n+1=2a n- ,即= < ,所以-1< ,所以-1< = ,所以 a < *(n ≥ 2,n ∈ N ),n1 = n≤*当 n=1 时 ,a , 所以 a (n ∈ N ).所以≤ a n≤.(3) 由 1<a n<2 得 S n>n.由 a n≤=1+ <1+ ,得S n< + + + =n+ =n+2 <n+2, 故n<S n<n+2.4.(2017 浙江温州三模(4 月 ),20) 设函数f(x)=4x 3+ ,x ∈ [0,1], 证明 : (1)f(x) ≥ 1-2x+3x 2;(2) <f(x) ≤.证明(1) 令函数 g(x)=(1+x) 2 (1-2x+3x2-4x 3),x∈ [0,1],(23则 g'(x)=-20(1+x)x≤0(等号建立当且仅当x=0),(4分)分 )故 g(x) 在 [0,1] 上单一递减 , 于是 g(x) ≤g(0)=1,即当 x∈ [0,1]时,(1+x)2(1-2x+3x2-4x3)≤ 1,2亦即 f(x) ≥ 1-2x+3x ;(6分)(2) 一方面 , 由 (1) 知 , 当 x∈ [0,1]时,f(x)≥ 1-2x+3x2=3+ ≥ , 但上述两处的等号不可以同时建立,故 f(x)> .(10 分 )另一方面 ,f'(x)=12x 2- = ,(12 分 )明显函数 h(x)=6x 2(1+x) 3-1 在 [0,1] 上单一递加 , 而 h(0)=-1<0,h(1)=47>0, 故 h(x) 在 (0,1) 内存在独一的零0点 x ,即 f'(x0)=0,且当x∈(0,x0)时,f'(x)<0;当x∈ (x0,1)时,f'(x)>0,故 f(x) 在 (0,x 0) 内单一递减 , 在 (x 0,1) 内单一递加 ,(14 分 )所以在 [0,1]上,f(x)≤ max{f(0),f(1)}=max=.综上 , <f(x)≤.(15分)5.(2017 浙江台州期末质量评估,22) 已知数列 {a } 知足 :a = ,a = *+a (n ∈ N ).n 1 n+1 n(1)求证 :a n+1>a n;(2)求证 :a 2017<1;(3)若 a n>1, 求正整数 n 的最小值 .分析(1) 证明:由a n+1-a n= ≥0, 得a n+1≥ a n.因为a1= , 所以a n≥, 所以a n+1-a n= >0,所以a n+1>a n.(2) 证明 : 由已知得= = - ,所以= - .则= - ,= -,*=- (n ≥ 2,n ∈N),累加可得- =++ +(n ≥ 2,n ∈ N* ).由 (1) 得 =a1<a2<a3< <a2016 ,所以- = + + + <2016×=1.所以 a2017<1.(3) 由 (2) 得 =a1<a2<a3< <a2017<1,所以- = + + + >2017×=1.所以 a 2017 2018 n+1 n<1<a , 又因为 a >a ,所以 n 的最小值为2018.C 组2016— 2018 年模拟·方法题组方法 1反证法的解题策略1. 等差数列 {a n} 的前 n 项和为 S n,a 1=1+ ,S 3=9+3.(1)求数列 {a n} 的通项 a n与前 n 项和 S n;(2) 设 b n= (n ∈ N* ), 求证 : 数列 {b n} 中随意不一样的三项都不行能成为等比数列.分析(1) 因为∴ d=2,故 a n=2n-1+,S n=n(n+).(2) 证明 : 由(1) 得 b n= =n+.假定数列 {b n} 中存在三项b p、 b q、b r (p 、 q、 r 互不相等 ) 成等比数列 , 则=b p b r , 即 (q+ ) 2=(p+ )(r+), ∴ (q 2-pr)+(2q-p-r)=0.∵p、 q、 r ∈ N* , ∴∴=pr, 即 (p-r)2=0,∴p=r,与p≠r矛盾.∴数列 {b n} 中随意不一样的三项都不行能成为等比数列.方法 2数学概括法的解题策略2. 设数列 {a n} 的前 n 项和为 S n, 且方程 x2-a n x-a n=0 有一根为S n-1,n ∈ N* .(1)求 a1,a 2;(2)求数列 {a n} 的通项 .分析 (1) 当 n=1 时 ,x 2-a 1x-a 1=0 有一根为 S1 -1=a 1-1,于是 (a -1) 2 =0, 解得 a = .-a (a -1)-a1 1 1 1 1当 n=2 时 ,x 2-a 2x-a 2=0 有一根为 S2-1=a 2- ,于是-a 2-a 2=0, 解得 a2= .(2) 由题意得 (S n-1) 2-a n(S n-1)-a n=0,即 -2S n+1-a n S n=0.当 n≥ 2 时 ,a n=S n-S n-1 , 代入上式得S n-1 S n-2S n+1=0, ①由 (1) 知 S1=a1= ,S 2=a1+a2= + = .由①可得S3= . 由此猜想S n=,n=1,2,3,.下边用数学概括法证明这个结论.(i)当 n=1 时结论建立 .(ii) 假定 n=k(k ≥ 1) 时结论建立 , 即 S k=,当 n=k+1 时, 由①得 S k+1 =, 即 S k+1=,故 n=k+1 时结论也建立 .由 (i)(ii) 可知 S n= 对全部正整数n 都建立 .于是当 n≥2 时 ,a n=S n-S n-1 =- = ,又 n=1 时 ,a = = 知足上式 , 所以 {a } 的通项公式为 a = ,n=1,2,3,.1 n n。

直接证明与间接证明

直接证明与间接证明

用框图表示分析法
得到一个明显
Q P1
P1 P2
P2 P3

成立的结论
特点:执果索因.
文字语言: 要证…,只需证…,即证…
整理课件
3
【分析法格式】
要证: 只要证: 只需证: 显然成立 上述各步均可逆 所以 结论成立
要证:
所以 结论成立
整理课件
4
思想方法·感悟提高
1.分析法的特点:从未知看需知,逐步靠拢已知.
(2)假设命题结论不成立,即假设结论的反面成立; (3)由假设出发进行正确的推理,直到推出矛盾为止; (4)由矛盾判定假设不正确,从而肯定命题的结论正确
归缪矛盾:
(1)与已知条件矛盾;
(2)与已有公理、定理、定义矛盾;
(3)自相矛盾。
整理课件
8
常见否定用语
是---不是
有---没有
等---不等
成立--不成立
整理课件
10
整理课件
11
整理课件
12
【分析法格式】
整理课件
13
【综合法格式】
整理课件
14
整理课件
15
整理课件
6
反证法:
要证明某一结论Q是正确的,但不直接证 明,而是先去假设Q不成立(即Q的反面非 Q是正确的),经过正确的推理,最后得 出矛盾,因此说明假设非Q是错误的,从 而断定结论Q是正确的,这种方法叫做反 证法。
反证法的思维方法:
正难则反
整理课件
7
反证法的基本步骤: (1)分清命题的条件和结论
综合法用框图表示为:
P Q1
Q1 Q2
Q2 Q3
… Qn Q
特点:“由因导果”

直接证明与间接证明

直接证明与间接证明

第十二章
12.4
直接证明与间接证明
梳理自测 探究突破 巩固提升
考纲要求
-9-
4.命题“对于任意角 θ,cos4θ-sin4θ=cos 2θ”的证明:cos4θ-sin4θ=(cos2θsin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ 过程应用了( A.分析法 C.综合法、分析法综合应用 B.综合法 D.间接证明法 )
因为证明过程是“从左往右”,即由条件⇒结论 B
关闭 关闭
解析
答案
第十二章
12.4
直接证明与间接证明
梳理自测 探究突破 巩固提升
考纲要求
-10-
5.因为某种产品的两种原料相继提价,所以生产者决定对产品分两次提价, 现在有三种提价方案: 方案甲:第一次提价 p%,第二次提价 q%; 方案乙:第一次提价 q%,第二次提价 p%; 方案丙:第一次提价 A.甲
即证明 ( t an x1+t an x2) >t an 只需证明
1 2
������1 +������2 ������ +������ 1 sin������1 sin������2 ,只需证明 + >t an 1 2, 2 2 cos������1 cos������2 2
sin( ������1 +������2 ) sin( ������1 +������2 ) > . 2cos������1 cos������2 1+cos(������1 +������2 ) π 由于 x1,x2∈ 0, ,故 x1+x2∈( 0,π) . 2
梳理自测 探究突破 巩固提升
考纲要求

直接证明与间接证明_知识讲解

直接证明与间接证明_知识讲解

直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。

直接证明与间接证明

直接证明与间接证明
第2讲
到结果的证明方法,它是利用已知 (1)______ 条件和某些数学定义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立的证明方法. 分析法是从要证明的结论出发,逐步寻求使它成立的充 (2)______ 分条件,直到最后,把要证明的结论归结为判断一个明显成立 的条件(已知条件、定义、公理、定理等)为止的证明方法.
索因法.它常见的书面表达形式是:“要证…,只需证…”或
“…⇐…”.利用分析法证明“若 A 则 B”命题的分析法思考过 程可用框图表示为:
图 10-2-2 分析法的思考顺序执果索因的顺序,是从 B 上溯寻其论据, 如 C、C1、C2 等,再寻求 C、C1、C2 的论据,如 B、B1、B2、 B3、B4 等等,继而寻求 B、B1、B2、B3、B4 的依据,如果其中之 一 B 的论据恰为已知条件,于是命题已经得证.
2 比数列,则 bq =bpbr.
即(q+ 2)2=(p+ 2)(r+ 2). ∴(q2-pr)+(2q-p-r) ∵p、q、r∈N*,
2 q -pr=0 ∴ 2q-p-r=0
2=0.
p+r2 =pr,(p-r)2=0, .∴ 2
∴p=r.与 p≠r 矛盾. ∴数列{bn}中任意不同的三项都不可能成等比数列.
错源:犯循环论证的逻辑性错误
例 4:设 a、b、c、d 是正有理数, c、 d是无理数,求证: a c+b d是无理数.
误解分析:本题在推理证明过程中,容易犯循环论证的逻 辑性错误:因为 c为无理数,a 为正有理数,故 a c为无理数, 同理 b d也为无理数,两正无理数的和为无理数,故 a c+b d 为无理数.主要原因是对有关概念定理没有真正的理解掌握, 导致用任意的推广引申定理得出有利于论题成立的假判断.

直接证明与间接证明(教学设计)

直接证明与间接证明(教学设计)

2.2直接证明与间接证明(教学设计)(1)2. 2 .1 综合法和分析法(1)--综合法教学目标:知识与技能目标:(1)理解综合法证明的概念;(2)能熟练地运用综合法证明数学问题。

过程与方法目标:(1)通过实例引导学生分析综合法的思考过程与特点;(2)引导学生归纳出综合法证明的操作流程图。

情感、态度与价值观:(1) 通过综合法的学习,体会数学思维的严密性、抽象性、科学性。

(2)通过综合法的学习,养成审核思维的习惯。

教学重点:了解综合法的思考过程、特点教学难点:对综合法的思考过程、特点的概括教学过程:一、复习回顾,新课引入:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。

数学结论的正确性必须通过逻辑推理的方式加以证明。

本节我们将学习两类基本的证明方法:直接证明与间接证明。

二、师生互动,新课讲解:1. 综合法在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。

例1(课本P36例):已知a,b>0,求证2222()()4a b c b c a abc +++≥给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。

教师最后归结证明方法。

充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为222,0b c bc a +≥>,所以22()2a b c abc +≥。

因为222,0c a ac b +≥>,所以22()2b c a abc +≥。

因此 2222()()4a b c b c a abc +++≥。

一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法。

用P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论,则综合法可表示为: ()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案

22直接证明与间接证明教学设计教案第一章:直接证明与间接证明概述1.1 直接证明的概念与特点1.2 间接证明的概念与特点1.3 直接证明与间接证明的联系与区别第二章:直接证明方法2.1 综合法2.2 分析法2.3 穷举法2.4 构造法第三章:间接证明方法3.1 反证法3.2 归谬法3.3 举例法3.4 类比法第四章:直接证明与间接证明的应用4.1 数学定理的证明4.2 数学命题的证明4.3 实际问题的证明第五章:案例分析与练习5.1 案例分析:运用直接证明与间接证明解决实际问题5.2 练习题:选择题、填空题、解答题第六章:证明策略与证明方法的选择6.1 证明策略的选择6.2 直接证明与间接证明的转换6.3 证明方法的适用场景分析第七章:证明过程中的逻辑思维训练7.1 逻辑思维的基本概念7.2 证明过程中的逻辑推理7.3 逻辑思维在证明中的应用实例第八章:数学竞赛中的直接证明与间接证明8.1 数学竞赛证明题的特点8.2 数学竞赛中的直接证明策略8.3 数学竞赛中的间接证明技巧第九章:数学研究中的直接证明与间接证明9.1 数学研究中的证明方法9.2 直接证明与间接证明在数学研究中的应用9.3 数学研究中的证明策略案例分析10.1 直接证明与间接证明的核心概念回顾10.2 证明方法的综合运用10.3 证明策略在数学学习和研究中的应用10.4 拓展阅读材料与思考题重点和难点解析一、直接证明与间接证明概述补充说明:直接证明与间接证明是数学证明的两种基本方式,它们在证明过程中的应用场景和证明方法各有不同。

理解它们之间的联系与区别有助于学生更好地选择合适的证明方法。

二、直接证明方法补充说明:构造法是直接证明中的一种重要方法,通过构造特定的数学对象或模型来证明问题的正确性。

学生在学习构造法时,需要掌握构造的核心思想和方法。

三、间接证明方法补充说明:反证法是间接证明中的一种常用方法,通过假设命题的反面成立,进而得出矛盾,从而证明原命题的正确性。

13.2直接证明与间接证明

13.2直接证明与间接证明

1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)⇒P1⇒P2⇒P3⇒P4(结论)B(结论)⇐B1⇐B2…⇐B n⇐A(已知)2.间接证明(1)反证法的定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒tt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ ) (6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 对于A ,若c =0,则ac 2=bc 2,故不正确. 对于B ,∵a <b <0,∴a -b <0,∴a 2-ab =a (a -b )>0, ∴a 2>ab ,∴ab -b 2=b (a -b )>0,∴ab >b 2, ∴a 2>ab >b 2,故B 正确.对于C ,∵a <b <0,∴1a -1b =b -aab >0,∴1a >1b,故错; 对于D ,∵a <b <0,b a -a b =b 2-a 2ab <0,∴b a <ab,故错. 2.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 3.要证a 2+b 2-1-a 2b 2≤0只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足: ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1, ∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0, ∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②, ∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1. 任意的x 1,x 2∈[0,1],x 1+x 2≤1, f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2). ∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0, 即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1.题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由均值不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N +), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,且p ,q ,r ∈N +,所以r -q ,r -p ∈N +. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 (2015·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根; (ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根. (1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0; ②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ). 因为f (α)=α,f (β)=β,且α≠β, 所以f ′(c )=1.与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.24.1反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直. 规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确;②的假设错误 D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q . 5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A答案 A解析 ∵a +b 2≥ab ≥2ab a +b, 又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N +,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小,∴c n +1<c n .14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a , 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0, 故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。

直接证明、间接证明与数学归纳法

直接证明、间接证明与数学归纳法

2
2
2
由于三个不等式中的等号不能同时成立,故 a 1 + b 1 + c 1
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
<4.
ab
a2 b2
(法二)由( 2 )2≤ 2
⇒a+b≤
2(a2 b2 )
,
于是 a 1 + b 1≤ 2(a 1 b 1) ,同理: c 1 +1≤ 2(c 11) ,
a1 b1 a2 b2
an bn 12
【分析】(1)利用等差中项与等比中项得出an与bn的关系式,
求出a2,a3,a4及b2,b3,b4的值归纳出其通项公式,然后利用数学
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
归纳法给予证明;(2)利用裂项法证明.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
§12.2 直接证明、间接证明与数学归纳法
知识诠释 思维发散
一、直接证明与间接证明 1.两类基本的证明方法:直接证明与间接证明.综合法和分析 法是直接证明中最基本的两种证明方法,也是解决数学问题 时常用的思维方式.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
这与f(1)+f(3)-2f(2)=2矛盾.
故假设不成立,原命题成立.
高考第一轮复习用书·数学(理科) 第十二章 12.2 直接证明、间接证明与数学归纳法
题型3 分析法的运用
例3
已知a>0,求证:
a2

1 a2
-
2

直接证明与间接证明 知识点+例题+练习

直接证明与间接证明 知识点+例题+练习





1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。

第2讲直接证明与间接证明

第2讲直接证明与间接证明
并同类项,化成积式 证明 ∵m>0,∴1+m>0. 所以要证原不等式成立, 只需证明(a+mb)2≤(1+m)(a2+mb2), 即证m(a2-2ab+b2)≥0, 即证(a-b)2≥0,而(a-b)2≥0显然成立, 故原不等式得证. 【反思与悟】 逆向思考是用分析法证题的主要思想,通 过反推,逐步寻找使结论成立的充分条件,正确把握转化 方向是使问题顺利获解的关键.
【变式3-1】 已知a,b为非零向量,且a,b不平行, 求证:向量a+b与a-b不平行.
怎样用反证法证明问题 【问题研究】 反证法是主要的间接证明方法,其基本特点 是反设结论,导出矛盾,当问题从正面证明无法入手时, 就可以考虑使用反证法进行证明.在高考中,对反证法的考 查往往是在试题中某个重要的步骤进行.
2.间接证明
一般地,由证明p⇒q转向证明:假设q为假⇒r⇒…⇒t. t与假设矛盾,或与某个真命题矛盾.从而判定假设q为假, 推出q为真的方法,叫做反证法.
一个关系 综合法与分析法的关系 分析法与综合法相辅相成,对较复杂的问题,常常先从结 论进行分析,寻求结论与条件、基础知识之间的关系,找 到解决问题的思路,再运用综合法证明,或者在证明时将 两种方法交叉使用. 两个防范 (1)利用反证法证明数学问题时,要假设结论错误,并 用假设命题进行推理,没有用假设命题推理而推出矛盾 结果,其推理过程是错误的. (2)用分析法证明数学问题时,要注意书写格式的规范 性,常常用“要证(欲证)…”“即要证…”“就要证…”等 分析到一个明显成立的结论P,再说明所要证明的数学 问题成立.
考向三
反证法的应用
[审题视点]第(1)问用单调增函数的定义证明;第(2)问假设 存在x0<0后,应推导出x0的范围与x0<0矛盾即可.
【反思与悟】当一个命题的结论是以“至多”,“至少”、 “唯一”或以否定形式出现时,宜用反证法来证,反证法的关 键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛 盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛 盾等方面,反证法常常是解决某些“疑难”问题的有力工具, 是数学证明中的一件有力武器.

222直接证明与间接证明讲解

222直接证明与间接证明讲解

例4 已知a≠0, 证明:关于x的方程ax=b有且只有一个根。
证:假设方程ax + b = 0(a ≠ 0)至少存在两个根,
不妨设其中的两根分别为x1,x2且x1 ≠ x2 则ax1 = b,ax2 = b ∴ ax1 = ax2
∴ ax1 - ax2 = 0 ∴ a(x1 - x2)= 0 x1 x2 x1 x2 0 ∴a = 0 与已知a ≠ 0矛盾,
否定词 原词语
不等于 任意的
不是 至少有一个
不都是 至多有一个
不大于 至少有n个
不小于 至多有n个
存在某个x,对任何x,
不成立
不成立
否定词
某个
一个也没有 至少有两个 至多有(n-1)个 至少有(n+1)个 存在某个x, 成立
二、典例剖析---类型二:
例3.证明: 2, 3, 5 不可能成等差数列
证明: 假设 2, 3, 5 能成等差数列,则
2 3 2 5
两边平方得: (2 3)2 ( 2 5)2 化简得: 5 2 10
两边平方得: 25 40
此式显然不成立,所以假设错误
注:否定所型以 命题2(,命题3,的5结不论可是能“成不等可差数能列……”,
所以∠ A < 60°,∠B < 60°, ∠C < 60° ∴ ∠A+∠B+∠C<180°
这与 三角形内角和等于180° 相矛盾.
∴ 假设 不能成立,所求证的结论成立.
先假设结论的反面是正确的,然后通过逻辑推理, 推出与公理、已证的定理、定义或已知条件相矛盾, 说明假设不成立,从而得到原结论正确。
反证法的思维方法:正难则反
三、典例剖析---类型一: 例1. 证明:如果a b 0,则 a b

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明

数学证明中的直接证明与间接证明数学证明是数学领域中的重要内容,通过逻辑推理和严格的论证,以确保数学理论的正确性和可信度。

数学证明通常可以分为直接证明和间接证明两种形式。

本文将介绍直接证明和间接证明的含义、特点以及应用。

一、直接证明直接证明是一种常用的证明方法,它通过逻辑的推理和论证,直接从已知的命题出发,推导出所要证明的结论。

直接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 列出已知条件和前提条件。

3. 运用逻辑推理、定义和定理等数学原理,一步一步地推导出结论。

4. 分析并验证证明过程中的每一步是否严谨、正确。

5. 结束证明,得出所要证明的命题。

直接证明的特点是逻辑性强、推理过程直观,并且能够根据已知条件直接得出结论。

因此,直接证明在数学证明中广泛应用于各个领域。

例如,我们来证明一个简单的数学定理:两个偶数的和是偶数。

定理:若a和b为偶数,则a+b为偶数。

证明:设a=2m,b=2n,其中m和n为整数。

则a+b=2m+2n=2(m+n)。

由于m和n为整数,所以m+n也是整数。

因此,a+b=2(m+n)为偶数。

证毕。

二、间接证明间接证明是一种通过反证法推导出结论的证明方法。

它假设所要证明的结论为假,通过运用逻辑推理和推导,得出与已知条件或已知结论相矛盾的结论,从而推断出所要证明的结论为真。

间接证明通常遵循以下步骤:1. 确定所要证明的命题或结论。

2. 假设所要证明的命题为假。

3. 运用逻辑推理和推导,推出与已知条件或已知结论相矛盾的结论。

4. 推断出所要证明的命题为真。

5. 结束证明,得出所要证明的命题。

间接证明的特点是通过对反证假设进行逻辑推理,将所要证明的结论转化为与已知条件相矛盾的结论。

它常常用于证明一些与质数、无理数、等级等有关的命题。

例如,我们来证明一个著名的数学定理:根号2是一个无理数。

定理:根号2是一个无理数。

证明:假设根号2是一个有理数,可以表示为根号2=p/q,其中p 和q互质。

第三十六讲 直接证明与间接证明

第三十六讲  直接证明与间接证明

第3页 共 42 页
考点陪练 1.分析法是从要证明的结论出发,逐步寻求使结论成立的 ( ) A.充分条件 B.必要条件
C.充要条件
D.等价条件
解析:根据分析法的要求,只要能找到一个条件使结论成立即
可,并不需要是等价条件(充要条件),只需要是充分条件即
可. 答案:A
第4页 共 42 页
2.用P表示已知,Q表示要证的结论,则综合法的推理形式为( ) A.PQ1→Q1Q2→Q2Q3→„→QnQ B.PQ1→Q1Q2→Q2Q3→„→QnQ
am 证法八 : (求值域)令y , 将命题转化为函数的值域. bm a by m (y 1, 若y 1, 则a b不合题意). y 1 a by a m 0, 0, ( y 1) y 0, y 1 b a am a y 1, . b bm b
[剖析]本题错误的原因在于证明PD⊥BC时没有理论依据,完
全凭感觉,没有逻辑感.
第25页 共 42 页
[正解]连接BD,因为BD是 Rt△ABC斜边上的中线, 所以DA=DC=DB. 又PA=PB=PC,而PD是公共边, ∴△PAD≌△PBD≌△PCD, ∴∠PDA=∠PDC=∠PDB=90°,
∴PD⊥AC,PD⊥BD,
第17页 共 42 页
[反思感悟]在解决问题时,根据条件的结构特点去转化结论,得 到中间结论Q,根据结论的特点转化得到中间结论P,归结为 证明P、Q之间的关系,通常用分析法寻找思路,综合法完成 证明.
第18页 共 42 页
类型三
反证法
解题准备:1.反证法是间接证明的一种方法,在数学研究和考 试中有着重要的作用.一般地,假设原命题不成立,经过正 确的推理,最后得出矛盾,因此说明假设错误,从而证明了

2.2直接证明与间接证明(4课时)

2.2直接证明与间接证明(4课时)

2.2
直接证明与间接证明
2.2.2
反证法
问题提出
1.综合法和分析法的基本含义分别 是什么? 综合法:利用已知条件和某些数学定义、 公理、定理、性质、法则等,经过一系 列的推理论证,最后推导出所证结论成 立. 分析法:从所证结论出发,逐步寻求使 它成立的充分条件,直到归结为判定一 个显然成立的条件(已知条件、定义、 公理、定理、性质、法则等)为止.
2
2
2
9 4
例4 求证:面积为1的三角形不能被 面积小于2的平行四边形所覆盖.
D P
E N F B
C
K
M
A
流程:
P Þ Q1 Q1 Þ Q 2 Q 2 Þ Q 3

Qn Þ Q
2.分析的基本含义和思维流程分别 是什么?
含义:从所证结论出发,逐步寻求使它成 立的充分条件,直到归结为判定一个显 然成立的条件(已知条件、定义、公理、 定理、性质、法则等)为止. 流程: Q Ü P1 P1 Ü P2 P2 Ü P3 …
大前提:已知的一般原理; 小前提:所研究的特殊情况;
结 论:根据一般原理,对特殊情况做 出判断.
3.合情推理所得结论的正确性是需要 证明的,演绎推理的实施也需要具体的 操作方法,因此,从理论上获取证明数 学命题的基本方法,是我们需要进一步 学习的内容.
探究(一):综合法
思考1:对于不等式
a(b + c ) + b(c + a )
2.2
2.2.1
直接证明与间接证明
综合法和分析法
问题提出
1 5730 p 2
t
1.合情推理的主要作用和思维过程是 什么?
作用:提出猜想,发现结论; 过程:从具体问题出发→观察、分析、 比较、联想→归纳、类比→提出猜想.

高考绿色通道 直接证明与间接证明

高考绿色通道 直接证明与间接证明

实质
框图 表示
→→ …→ 因为…所以… 或由…得… 要证…只需证… 即证…
文字 语言
第九模块 算法初步、框图、推理与证明
数学
高考总复习人教A版 · (文)
综合法和分析法有什么区别与联系? 提示:分析法的特点是:从“未知”看“需知”,逐 步靠拢“已知”,其逐步推理,实际上是寻求它的充分条 件;综合法的特点是:从“已知”看“可知”,逐步推向 “未知”,其逐步推理,实际上是寻找它的必要条件.分 析法与综合法各有其特点,有些具体的待证命题,用分析 法或综合法均能证明出来,往往选择较简单的一种.
本题若用直接法证明,难以入手,用反证法证明,假 设数列{an}是等比数列,得出矛盾即可.题目中如果出现 “不是”“至少”“不可能”等词语时,通常采用反证法 证明.
第九模块 算法初步、框图、推理与证明
数学
高考总复习人教A版 · (文)
变式迁移 3
已知a、b、c是互不相等的非零实数.求
证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax +b=0至少有一个方程有两个相异实根.
第九模块 算法初步、框图、推理与证明
数学
高考总复习人教A版 · (文)
【例4】
已知常数a>0,n为正整数,fn(x)=xn-(x+
a)n(x>0)是关于x的函数. (1)判定函数fn(x)的单调性,并证明你的结论; (2)对任意n>a,证明f′n+1(n+1)<(n+1)f′n(n).
第九模块 算法初步、框图、推理与证明
(2)∵a>0,b>0,c>0, bc ac ∴ + ≥2 a b bc ab + ≥2 a c ac ab + ≥2 b c bc ac · =2c, a b bc ab · =2b, a c ac ab · =2a, b c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章 推理与证明、算法、复数
上式两边同时取常用对数,得
lga+2 b·b+2 c·c+2 a>lg abc,
∴lg
a+2 b+lg
b+2 c+lg
c+a 2 >lg
a+lg
b+lg
c.
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
题型二 分析法的应用
π
π
【例
2】已知函数
f(x)=tan
第十三章 推理与证明、算法、复数 【思维升华】 (1)综合法是“由因导果”的证明方法,它是一
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
跟踪训练 1 若 a,b,c 是不全相等的正数,求证:
lg
a+2 b+lg
b+2 c+lg
c+a 2 >lg
a+lg
b+lg
c.
高考总复习·数学理科(RJ)
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数 2.间接证明
间接证明是不同于直接证明的又一类证明方法,反证法是一种常 (1)反证法的定义:假设原命题_______ (即在原命题的条件下, (2)用反证法证明的一般步骤:①不反成设立——假设命题的结论不成
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
3.要证 a2+b2-1-a2b2≤0,只要证明( ) A.2ab-1-a2b2≤0 B.a2+b2-1-a4+2 b4≤0 C.(a+2 b)2-1-a2b2≤0 D.(a2-1)(b2-1)≥0
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数 【解析】 a2+b2-1-a2b2≤0⇔(a2-1)(b2-1)≥0. 【答案】 D
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数 4.如果 a a+b b>a b+b a,则 a、b 应满足的条件是
________.
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
【解析】 ∵a a+b b-(a b+b a) = a(a-b)+ b(b-a) =( a- b)(a-b) =( a- b)2( a+ b). ∴当 a≥0,b≥0 且 a≠b 时,( a- b)2( a+ b)>0. ∴a a+b b>a b+b a成立的条件是 a≥0,b≥0 且 a≠b. 【答案】 a≥0,b≥0 且 a≠b
+…+n(n+1 1)=1-12+21-13+…+n1-n+1 1=1-n+1 1= n
n+1.
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
方法二 S11+S12+…+S1n=112+212+…+n12>1, 又∵1>n+n 1, ∴S11+S12+…+S1n>n+n 1.
高考总复习·数学理科(RJ)
原命题成立
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要 (2)用反证法证明结论“a>b”时,应假设“a<b”.( )
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
第十三章 推理与证明、算法、复数
【证明】 ∵a,b,c∈(0,+∞), ∴a+2 b≥ ab>0,b+2 c≥ bc>0,a+2 c≥ ac>0. 由于 a,b,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a+2 b·b+2 c·c+2 a>abc>0 成立.
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数 接证明与间接证明
1.直接证明
内容
综合法
分析法
定义
利用已知条件和某些数学定义、 公理、定理等,经过一系列的推 理论证,最后推导出所要证明的 结论成立
从要证明的结论出发,逐步寻 求使它成立的_充__分_条件,直到 最后把要证明的结论归结为判 定一个明显成立的条件(已知条 件、定理、定义、公理等)为止
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
题型一 综合法的应用 【例 1】 数列{an}满足 an+1=2aan+n 1,a1=1. (1)证明:数列a1n是等差数列; (2)求数列a1n的前 n 项和 Sn,并证明S11+S12+…+S1n>n+n 1.
高考总复习·数学理科(RJ)
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
2.用反证法证明命题:“a,b∈N,若ab不能被5整除,则a与 A.a,b都能被5整除 B.a,b不都能被5整除 C.a,b至少有一个能被5整除 D.a,b至多有一个能被5整除 【解析】 “都不能”的否定为“至少有一个能”,故假设的内 【答案】 C
第十三章 推理与证明、算法、复数
【解析】 (1)证明 ∵an+1=2aan+n 1, ∴an1+1=2aan+n 1,化简得an1+1=2+a1n, 即an1+1-a1n=2,故数列a1n是以 1 为首项,2 为公差的等差数 列.
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数 (2)由(1)知a1n=2n-1, ∴Sn=n(1+22n-1)=n2. 证明 方法一 S11+S12+…+S1n=112+212+…+n12>1×1 2+2×1 3
1.若 a,b,c 为实数,且 a<b<0,则下列命题正确的是( )
A.ac2<bc2
B.a2>ab>b2
11 C.a<b
ba D.a>b
高考总复习·数学理科(RJ)
第十三章 推理与证明、算法、复数
【解析】 a2-ab=a(a-b), ∵a<b<0,∴a-b<0,∴a2-ab>0, ∴a2>ab.① 又ab-b2=b(a-b)>0,∴ab>b2,② 由①②得a2>ab>b2. 【答案】 B
x,x∈0,
2
,若
x1,x2∈0,
2

且 x1≠x2,求证:21[f(x1)+f(x2)]>fx1+2 x2.
(3)在解决问题时,常常用分析法寻找解题的思路与方法,再 用综合法展现解决问题的过程.( )
(4) 证 明 不 等 式 2 + 7 < 3 + 6 最 合 适 的 方 法 是 分 析 法.( )
【答案】 (1)× (2)× (3)√ (4)√
高考总复习·数学理科(RJ)
第十三章 推பைடு நூலகம்与证明、算法、复数
相关文档
最新文档