第二章 混凝土结构材料的物理力学性能

合集下载

第2章混凝土结构材料的物理力学性能

第2章混凝土结构材料的物理力学性能
学习目的:
➢ 理解单轴和复合受力状态下混凝土的强度和混凝土 的变形性能;
➢混凝土结构对钢筋性能的要求; ➢了解钢筋的强度和变形、级别、品种; ➢熟悉掌握钢筋与混凝土共同工作的原理。
第2页/共107页
学习要求:
➢了解单轴受力状态下混凝土强度的标准检验方法,混凝土强 度和强度等级; ➢掌握混凝土在一次短期加载时的变形性能,混凝土处于三向 受压的变形特点;(难) ➢理解混凝土在重复荷载作用下的变形性能; ➢理解混凝土的弹性模量、徐变和收缩性能;(难) ➢了解钢筋的强度和变形、钢筋的成分、级别和品种,混凝土 结构对钢筋性能的要求; ➢掌握钢筋的应力-应变关系曲线的特点和数学模型,分清双直 线和三折线模型所代表的钢筋类型;(难) ➢掌握钢筋和混凝土的粘结性能。
fcu
,f
' c
——混凝土的
立方体和圆柱体抗压
强度。
•考虑到构件和试件的区别,尺寸效应,加荷速度等的影响,取
Comite Euro-International du Beton.
ft=0.23fcu 2/3
试件尺寸小者,实测抗拉强度 偏高;尺寸较大者强度偏低。
第9页/共107页
2、劈裂试验fts
对于同一混凝土,轴拉试验和劈拉试验 测得的抗拉强度并不相同。
我国根据100mm立方体的劈裂与抗压 试验结果有:fts=0.19fcu ¾
由于混凝土内部的不均匀性和安装试件的偏差等原因,采用直接 轴心受拉试验测定抗拉强度很困难。国内外常采用圆柱体或立方体 的劈裂试验间接测试混凝土的轴心抗拉强度。
F
F
根据弹性理论,轴
心抗拉强度的试验值:
d
d
fts
2F
dl
F
F

2混凝土结构材料的物理力学性能

2混凝土结构材料的物理力学性能

2混凝土结构材料的物理力学性能本章提要钢筋和混凝土的物理力学性能以及共同工作的性能直接影响混凝土结构和构件的性能,也是混凝土结构计算理论和设计方法的基础。

本章介绍了钢筋和混凝土在不同受力条件下强度和变形的特点,以及这两种材料结合在一起共同工作的受力性能。

2.1钢筋2.1.1钢筋的品种和级别混凝土结构中使用的钢筋按化学成分可分为碳素钢和普通低合金钢两大类。

碳素钢除含有铁元素外,还含有少量的碳、硅、锰、硫、磷等元素。

根据含碳量的多少,碳素钢又可分为低碳钢(含碳量小于0.25%)、中碳钢(含碳量为0.25%~0.6%)和高碳钢(含碳量为0.6%~1.4%),含碳量越高,钢筋的强度越高,但塑性和可焊性越低。

普通低合金钢除含有碳素钢已有的成分外,再加入一定量的硅、锰、钒、钛、铬等合金元素,这样既可以有效地提高钢筋的强度,又可以使钢筋保持较好的塑性。

由于我国钢材的产量和用量巨大,为了节约低合金资源,冶金行业近年来研制开发出细晶粒钢筋,这种钢筋不需要添加或只需添加很少的合金元素,通过控制轧钢的温度形成细晶粒的金相组织,就可以达到与添加合金元素相同的效果,其强度和延性完全满足混凝土结构对钢筋性能的要求。

按照钢筋的生产加工工艺和力学性能的不同,《混凝土结构设计规范》(GB50010—2010)规定用于钢筋混凝土结构和预应力混凝土结构中的钢筋或钢丝可分为热轧钢筋、中强度预应力钢丝、消除应力钢丝、钢绞线和预应力螺纹钢筋等,见附表4和附表5。

热轧钢筋是由低碳钢、普通低合金钢或细晶粒钢在温度状态下轧制而成,有明显的屈服点和流幅,断裂时有“颈缩”现象,伸长率较大。

热轧钢筋根据其强度的高低可分为HPB300级(符号 )、HRB335级(符号)、HRBF335级(符号)、HRB400级(符号)、HRBF400级(符号)、RRB400级(符号)、HRB500级(符号)、HRBF500级(符号)。

其中HPB300级为光面钢筋,HRB335级、HRB400级和HRB500级为普通低合金热轧月牙纹变形钢筋,HRBF335级、HRBF400级、HRBF500级为细晶粒热轧月牙纹变形钢筋,RRB400级为余热处理月牙纹变形钢筋,余热处理钢筋是由轧制的钢筋经高温淬水、余热回温处理后得到的,其强度提高,价格相对较低,但可焊性、机械连接性能及施工适应性稍差,可在对延性及加工性要求不高的构件中使用,如基础、大体积混凝土以及跨度及荷载不大的楼板、墙体。

混凝土结构材料的物理力学性能

混凝土结构材料的物理力学性能

第二章混凝土结构材料的物理力学性能2.1砼的物理力学性能材料的力学性能指标包括:强度指标和变形性能指标。

本节内容一、混凝土的组成结构二、单向受力状态下的混凝土强度(重点)三、复合受力状态下的混凝土强度四、混凝土的变形性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂子和石子三种材料及水按一定配合比拌合,经过凝固硬化后做成的人工石材。

1、混凝土结构分为三种基本类型:微观结构:即水泥石结构,由水泥凝胶、晶体骨架、未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学—矿物成分、粉磨细度、水灰比和硬化条件亚微观结构:即混凝土中的水泥砂浆结构;可看作以水泥石为基相、砂子为分散相的二组分体系,砂子和水泥石的结合面是薄弱面。

对于水泥砂浆结构,除上述决定水泥石结构的因素外,砂浆配合比、砂的颗粒级配与矿物组成、砂粒形状、颗粒表面特性及砂中的杂质含量是重要控制因素宏观结构:即砂浆和粗骨料两组分体系。

与亚微观结构有许多共同点,因为这时可以把水泥砂浆看作基相,粗骨料分布在砂浆中,砂浆与粗骨料的结合面也是薄弱面。

2、混凝土的内部结构特点a)混凝土是一种复杂的多相复合材料。

其组份中的砂、石、水泥胶块中的晶体、未水化的水泥颗粒组成了混凝土中错综复杂的弹性骨架,主要用它来承受外力,并使混凝土具有弹性变形的特点;b)水泥胶块中的凝胶、孔隙和结合界面初始微裂缝等,在外荷载作用下则使混凝土产生塑性变形。

c)混凝土结构中的孔隙、界面微裂缝等先天缺陷,往往是混凝土受力破坏的起源,而微裂缝在受荷时的发展对混凝土的力学性能起着极为重要的影响。

2.1.2、单向受力状态下的混凝土强度用途:是进行钢筋混凝土结构构件强度分析、建立强度理论公式的重要依据。

1、立方体抗压强度 混凝土强度等级立方体抗压强度是最主要和最基本的指标。

混凝土的强度等级是依据混凝土立方体抗压强度标准制f cuk 确定的。

(1)测定方法:以边长150mm 立方体标准试件,在标准条件下(20±3℃,≥90%湿度)养护28天,用标准试验方法(加载速度0.15~0.3N/mm 2/s ,两端不涂润滑剂)测得的具有95%保证率的抗压强度值,用符号C 表示,C30表示f cu,k =30N/mm 2现《规范》根据强度范围,从C15~C60共划分为14个强度等级,级差为5N/mm2。

混凝土结构材料的物理力学性能.

混凝土结构材料的物理力学性能.

第二章混凝土结构材料的物理力学性能教学重点:掌握各种材料性能的特性,钢筋及混凝土各自的应力应变关系,影响材料强度及变形大小的因素,从而为以后学习本课程或使用材料时打下基础。

教学内容:1.钢筋:钢筋的成份、种类和级别,钢筋的应力应变曲线,钢筋的塑性性能,钢筋的冷加工。

2.混凝土:立方体抗压强度,影响混凝土强度的因素,轴心抗压强度,轴心抗拉强度。

混凝土的变形:混凝土在一次短期加载时的应力应变性能,混凝土的变形模量。

混凝土的徐变。

混凝土的收缩。

3.钢筋与混凝土之间的粘结力。

2.1 混凝土的物理力学性能2.1.1 混凝土的组成结构普通混凝土是由水泥、砂、石材料用水拌合硬化后形成的人工石材,是多相复合材料。

混凝土组成结构是一个广泛的综合概念,包括从组成混凝土组分的原子、分子结构到混凝土宏观结构在内的不同层次的材料结构。

通常把混凝土的结构分为三种基本结构类型:微观结构即水泥石结构;亚微观结构即混凝土中的水泥砂浆结构;宏观结构即砂浆和粗骨料两组分体系。

微观结构(水泥石结构)由水泥凝胶、晶体骨架,未水化完的水泥颗粒和凝胶孔组成,其物理力学性能取决于水泥的化学矿物成分、粉磨细度、水灰比和凝结硬化条件等。

混凝上的宏观结构与亚微观结构有许多共同点,可以把水泥砂浆看作基相.粗骨料分布在砂浆中,砂浆与粗骨料的界面是结台的薄弱面。

骨料的分布以及骨料与基相之间在界面的结合强度也是重要的影响因素。

浇注混凝上时的泌水作用会引起沉缩,硬化过程中由于水泥浆水化造成的化学收缩和干缩受到骨料的限制,会在不同层次的界面引起结合破坏,形成随机分布的界面裂缝。

混凝土中的砂、石、水泥胶体中的晶体、未水化的水泥颗粒组成了错综复杂的弹性骨架,主要承受外力,并使混凝土具有弹性变形的特点。

而水泥胶体中的凝胶、?L隙和界面初始微裂缝等,在外力作用下使混凝土产生塑性变形。

另一方面,混凝土中的孔隙、界面微裂缝等缺陷又往往是混凝土受力破坏的起源。

在荷载作用下,微裂缝的扩展对混凝土的力学性能有着极为重要的影响。

混凝土结构材料的物理和力学性能2

混凝土结构材料的物理和力学性能2
图216所示为中华人民共和国铁道部科学研究院的试验结果由图可见某一组棱柱体试件当加荷应力达到05fc时其加荷瞬间产生的应变为瞬时应变若荷载保持不变随着加荷时间的增长应变也将继续增长这就是混凝土的徐变应变通常徐变开始时增长较快以后逐渐减慢经过一定时间后徐变趋于稳定徐变应变值约为瞬时弹性应变的14倍
第2章 混凝土结构材料的物理和力学性能
1.3
第2章 混凝土结构材料的物理和力学性能 本章内容
● ● ● ● ● ● 2.1 2.2 2.3 2.4 2.5 2.6 混 凝 土 钢 筋 钢筋与混凝土之间的黏结 钢筋锚固与接头构造 思 考 题 习 题
1.4
第2章 混凝土结构材料的物理和力学性能 2.1 混 凝 土
普通混凝土是由水泥、石子和砂3种材料用水拌和经凝固硬化后形成的 人造石材,是一种多相复合材料。混凝土中的砂、石子、水泥胶体中的晶 体、未水化的水泥颗粒组成了错综复杂的弹性骨架,主要承受外力,并使 混凝土具有弹性变形的特点。水泥胶体中的凝胶、孔隙和界面初始微裂缝 等,在外力作用下使混凝土产生塑性变形。而且混凝土中的孔隙、界面微 裂缝等缺陷又往往是混凝土受力破坏的起源,在荷载作用下,微裂缝的扩 展对混凝土的力学性能有着极为重要的影响。由于水泥胶体的硬化过程需 要多年才能完成,所以混凝土的强度和变形也随时间逐渐增长。
第2章
混凝土结构材料的物理和力学性能
返回总目录
1.1
第2章 混凝土结构材料的物理和力学性能
教学提示:钢筋与混凝土材料的物理和力学性能是混凝土结构的计算理 论、计算公式建立的基础。本章主要介绍混凝土在各种受力状态下的强度 与变形性能;建筑工程中所用钢筋的品种、级别及其性能;钢筋与混凝土 的黏结机理、钢筋的锚固与连接构造。 教学要求:本章要求学生熟悉混凝土在各种受力状态下的强度与变形性 能;掌握混凝土的选用原则;熟悉建筑工程中所用钢筋的品种、级别及其 性能;掌握建筑工程对钢筋性能的要求及选用原则;了解钢筋与混凝土共 同工作的原理,熟悉保证钢筋结构材料的物理和力学性能

混凝土课后答案解析

混凝土课后答案解析

混凝⼟课后答案解析第⼆章混凝⼟结构材料的物理⼒学性能2.1 我国⽤于钢筋混凝⼟结构和预应⼒混凝⼟结构中的钢筋或钢丝有哪些种类?有明显屈服点钢筋和没有明显屈服点钢筋的应⼒—应变关系有什么不同?为什么将屈服强度作为强度设计指标?提⽰:我国混凝⼟结构⽤钢筋可分为热轧钢筋、冷加⼯钢筋、热处理钢筋及⾼强钢丝和钢绞线等。

有明显屈服点钢筋的应⼒—应变曲线有明显的屈服台阶,延伸率⼤,塑性好,破坏前有明显预兆;没有明显屈服点钢筋的应⼒—应变曲线⽆屈服台阶,延伸率⼩,塑性差,破坏前⽆明显预兆。

2.2 钢筋的⼒学性能指标有哪些?混凝⼟结构对钢筋性能有哪些基本要求?提⽰:钢筋的⼒学性能指标有强度和变形。

对有明显屈服点钢筋,以屈服强度作为钢筋设计强度的取值依据。

对⽆屈服点钢筋,通常取其条件屈服强度作为设计强度的依据。

钢筋除了要有⾜够的强度外,还应具有⼀定的塑性变形能⼒,反映钢筋塑性性能的⼀个指标是伸长率。

钢筋的冷弯性能是检验钢筋韧性、内部质量和加⼯可适性的有效⽅法。

混凝⼟结构对钢筋性能的要求:①强度⾼:强度越⾼,⽤量越少;⽤⾼强钢筋作预应⼒钢筋,预应⼒效果⽐低强钢筋好。

②塑性好:钢筋塑性性能好,破坏前构件就有明显的预兆。

③可焊性好:要求在⼀定的⼯艺条件下,钢筋焊接后不产⽣裂纹及过⼤的变形,保证焊接后的接头性能良好。

④为了保证钢筋与混凝⼟共同⼯作,要求钢筋与混凝⼟之间必须有⾜够的粘结⼒。

2.3 混凝⼟的⽴⽅体抗压强度是如何确定的?与试件尺⼨、试验⽅法和养护条件有什么关系?提⽰:我国规范采⽤⽴⽅体抗压强度作为评定混凝⼟强度等级的标准,规定按标准⽅法制作、养护的边长为150mm的⽴⽅体试件,在28d或规定期龄⽤标准试验⽅法测得的具有95%保证率的抗压强度值(以N/mm2计)作为混凝⼟的强度等级。

试件尺⼨:考虑尺⼨效应影响,试件截⾯尺⼨越⼩,承压⾯对其约束越强,测得的承载⼒越⾼,因此,采⽤边长为200mm的⽴⽅体试件的换算系数为 1.05,采⽤边长为100mm的⽴⽅体试件的换算系数为0.95。

《混凝土结构基本原理》习题解答

《混凝土结构基本原理》习题解答

第2章混凝土结构材料的物理力学性能§2.1 混凝土的物理力学性能习题1题型:填空题题目:立方体抗压强度(f cu,f c u,k):以边长为的立方体在的温度和相对湿度以上的潮湿空气中养护天,依照标准试验方法测得的强度作为混凝土的立方体抗压强度,单位为。

分析与提示:本题主要考察学生对立方体抗压强度概念中关键因素是否掌握,通过此题的评讲可加深学生对混凝土强度影响因素的理解.答案:以边长为150mm的立方体在(20+3)°C的温度和相对湿度90%以上的潮湿空气中养护28天,依照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为N/mm2.习题2题型:绘图简述题题目:绘制混凝土棱柱体受压应力-应变全曲线,标注曲线上的特征点,并简要分段叙述曲线的特征及意义.分析与提示:通过本题帮助学生理解混凝土受压的强度和变形性能。

答案:混凝土棱柱体实测受压应力-应变全曲线见下图。

由图可见,曲线分为上升段和下降段,其中OA段为线弹性变形阶段,应力-应变关系接近直线;AB段为裂缝稳定扩展阶段, 应变的增长速度较弹性阶段略有增加,应力-应变关系呈略为弯曲的曲线;BC段为裂缝不稳定扩展阶段,应变快速增长,应力-应变呈明显的曲线关系;CD段为初始下降段,应变增长不太大的情况下应力迅速下降,曲线呈下凹形状,试件平均应力强度下降显著;DE段,当应力下降到一定程度,应变增长率明显增大,曲线呈下凹形状,试件应变增长显著;EF段,试件残余平均应力强度较低,应变较大,已无结构意义。

§2。

2 钢筋的物理力学性能习题1题型:绘图简述题题目:绘制有明显流幅钢材的受拉应力-应变全曲线,标注曲线上的特征点,并简要叙述曲线的特征及意义。

分析与提示:通过本题帮助学生理解有明显流幅钢材受拉的强度和变形性能.答案:钢筋受拉应力-应变全曲线见下图。

由图可见,曲线分为上升段、平台段、强化段和颈缩段.其中OA段(原点→比例极限点)为线性阶段,AB'段(比例极限点→屈服上限)应变较应力增长稍快,应变中包含少量塑性成分;B'(B)C段(屈服上(下)限→屈服台阶终点)应力基本不变,应变急速增长;CD段(屈服台阶终点→极限应力点)应变增长较快,应力有一定幅度的增长;DE段(极限应力点→材料强度破坏)即使应力下降,钢材的应变仍然增长,试件出现明显的“颈缩”现象。

第2章混凝土结构材料的物理力学性能

第2章混凝土结构材料的物理力学性能
钢筋的断后伸长率(伸长率)是指钢筋拉断后的伸长 值与原长的比称为钢筋的断后伸长率(习惯上称为伸 长率)
第 二 章
目录 上一章
下一章
HELP
l l0 100% l0
混凝土结构设计原理
伸长率
l l
1

5 10 : 100 :
l1 l 100% l : l 5d l 10d l 100mm
第 二 章
目录 上一章
低 碳:C<0.25%
含碳万分数 中 碳:C=0.25 ~ 0.6% 高 碳:C>0.6%
下一章
HELP
含锰、硅、钒的百分数,取整。
混凝土结构设计原理
本章重点 了解并掌握土木工程用钢筋的品种、级别、 性能、强度指标及其选用原则; 掌握钢筋混凝土结构中混凝土的强度指标, 重点掌握混凝土的立方体抗压强度指标; 掌握钢筋混凝土结构中钢筋和混凝土的应力 -应变曲线关系; 掌握混凝土在长期荷载作用下随时间增长而 增长的变形—徐变; 掌握混凝土的变形模量,混凝土的收缩变形 以及钢筋和混凝土之间粘结应力的组成。
为了使钢筋冷拉时效后, 既能显著提高强度,又使 钢材具有一定的塑形,应 合理选择张拉控制点K’,K’ 点相对应的应力称为冷拉 控制应力,K点相对应的应 变称为冷拉率。冷拉工艺 分为控制应力和控制应变 (冷拉率)两种方法。
下一章
HELP
混凝土结构设计原理
钢筋的冷弯性能
钢筋的冷弯性能是检验钢筋韧性、内部质量和加工可 适性的有效方法。冷弯性能也是评价钢筋塑性的指标, 弯芯的直径 越小,弯折角 越大,说明钢筋的塑性越好。 冷弯是检验钢筋局部变形能力的指标。 钢筋塑性愈好,构件破坏前预兆愈明显。
下一章

2-混凝土结构材料的物理力学性能

2-混凝土结构材料的物理力学性能

2.1 混凝土
第二章 钢筋和混凝土的材料性能
采用等应变速度加载, 采用等应变速度加载,在试件旁附设高弹性元件 等应变速度加载 与试件一同受压,以吸收试验机内集聚的应变能, 与试件一同受压,以吸收试验机内集聚的应变能,可 以测得曲线的下降段 下降段。 以测得曲线的下降段。 (2)测定混凝土应力-应变全曲线的试验装置 测定混凝土应力-
fck = 0.88αc1αc2 fcu,k
结构混凝土强度 与试块混凝土强 度的比值 棱柱体强度 与立方体强 度之比值 脆性影响 系数
2.1 混凝土
第二章 钢筋和混凝土的材料性能
的取值 αc1 和 αc2 的取值
混凝土 ≤ C45 强度 C40 等级 αc1 αc2 0.76 0.76 C50 0.76 C55 0.77 C60 0.78 C65 0.79 C70 0.80 C75 0.81 C80 0.82
混凝土抗拉强度
100× 100× × × 500
2.1 混凝土
第二章 钢筋和混凝土的材料性能
2.1 混凝土 一、混凝土的强度
1、立方体抗压强度fcu,立方体抗压强度标准值fcu,k 立方体抗压强度f 立方体抗压强度标准值f
(混凝土结构中,主要是利用它的抗压强度。因此抗压强 混凝土结构中,主要是利用它的抗压强度。 抗压强度 度是混凝土力学性能中最主要 最基本的指标) 最主要和 度是混凝土力学性能中最主要和最基本的指标)
(1)立方体抗压强度标准值:边长 立方体抗压强度标准值:边长150mm立方体标准 立方体标准 试件,在标准条件下( ± ℃ 湿度) 试件,在标准条件下(20±3℃,≥90%湿度)养护 湿度 养护28 用标准试验方法(加载速度0.15~0.3N/mm2/sec, 天,用标准试验方法(加载速度 , 两端不涂润滑剂)测得的具有 具有95%保证率的立方体抗 保证率的立方体抗 两端不涂润滑剂)测得的具有 保证率 压强度。 。 压强度。 fcu,k= fcu,m(1-1.645δ)。

第2章混凝土结构材料的物理力学性能习题答案.

第2章混凝土结构材料的物理力学性能习题答案.

第2章混凝土结构材料的物理力学性能2.1选择题1.混凝土若处于三向应力作用下,当( D )。

A. 横向受拉,纵向受压,可提高抗压强度;B. 横向受压,纵向受拉,可提高抗压强度;C. 三向受压会降低抗压强度;D. 三向受压能提高抗压强度;2.混凝土的弹性模量是指( A )。

A. 原点弹性模量;B. 切线模量;C. 割线模量;D. 变形模量;3.混凝土强度等级由150mm 立方体抗压试验,按( B )确定。

A. 平均值μfcu ;B.C.D. μfcu -1. 645σ ;μfcu -2σ ;μfcu -σ;4.规范规定的受拉钢筋锚固长度l a 为( C )。

A .随混凝土强度等级的提高而增大;B .随钢筋等级提高而降低;C .随混凝土等级提高而减少,随钢筋等级提高而增大;D .随混凝土及钢筋等级提高而减小;5.属于有明显屈服点的钢筋有( A )。

A .冷拉钢筋;B .钢丝;C .热处理钢筋;D .钢绞线;6.钢材的含碳量越低,则( B )。

A .屈服台阶越短,伸长率也越短,塑性越差;B .屈服台阶越长,伸长率越大,塑性越好;C .强度越高,塑性越好;D .强度越低,塑性越差;7.钢筋的屈服强度是指( D )。

A. 比例极限;B. 弹性极限;C. 屈服上限;D. 屈服下限;8.能同时提高钢筋的抗拉和抗压强度的冷加工方法是( B )。

A. 冷拉;B. 冷拔;9.规范确定f cu , k 所用试块的边长是( A )。

A .150 mm;B .200 mm;C .100mm ;D .250 mm;10.混凝土强度等级是由( A )确定的。

A .f cu , k ;B .f ck ;C .f cm ;D .f tk ;11.边长为100mm 的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数( C )。

A .1.05 ;B .1.0 ;C .0.95 ;D .0.90 ;12.E c =A.B.C.D. ' σc 指的是混凝土的( B )。

混凝土简答题

混凝土简答题

第二章混凝土结构材料的物理力学性能1.混凝土的强度等级是根据什么确定的?我国新《规范》规定的混凝土强度等级有哪些? 答:混凝土的强度等级应按立方体抗压强度标准值确定。

立方体抗压强度标准值系指按照标准方法制作养护的边长为150mm的立方体试件(温度为20±3℃,湿度≥90%),在28d龄期用标准试验方法(加载速度0.15~0.3N/mm2/s,两端不涂润滑剂)测得的具有95%保证率的抗压强度。

《混凝土结构设计规范》根据强度范围,从C15~C80共划分为14个强度等级,级差为5N/mm2。

2.单向受力状态下,混凝土的强度与哪些因素有关?混凝土轴心受压应力--应变曲线有何特点?常用的表示应力--应变关系的数学模型有哪几种?答:影响混凝土强度的因素有:水泥强度等级、水灰比、骨料的性质、混凝土的级配、混凝土成型方法、硬化时的环境条件、混凝土的龄期,以及试件的大小和形状、试验方法、加载速率等。

混凝土轴心受压应力--应变曲线的特点:曲线包括上升段和下降段两个部分。

上升段可分为三段,在第一阶段,由于应力较小,混凝土的变形主要是骨料和水泥结晶体产生的弹性变形,而水泥胶体的粘性流动以及初始微裂缝变化的影响一般很小,曲线接近为直线;在第二阶段,裂缝稳定扩展并达到极限应力,此后,试件中所积蓄的弹性应变能保持大于裂缝发展所需要的能量从而形成裂缝快速发展的不稳定状态并达到峰值应力,这一阶段为第三阶段。

下降段是混凝土到达峰值应力后裂缝继续扩展、贯通,从而使应力--应变关系发生变化。

在峰值应力以后,裂缝继续发展,内部结构的整体受到破坏,试件的平均应力强度下降,应力--应变曲线向下弯曲,曲线出现拐点,此后,曲线逐渐凸向水平轴方向发展。

常用的应力--应变曲线的数学模型有两种:美国E.Hognestad建议的模型和德国Rüsch建议的模型。

3.什么是混凝土的疲劳破坏?疲劳破坏时应力--应变曲线有何特点?答:混凝土在荷载重复作用下引起的破坏。

混凝土结构设计原理第2章混凝土结构材料的物理力学性能2

混凝土结构设计原理第2章混凝土结构材料的物理力学性能2

第二章 钢筋和混凝土的材料性能
1)混凝土的双向(法向)受力强度
第一象限:双拉 第三象限:双压 第二、四象限:拉压 结论: 结论: 强度接近于单拉强度; 双拉强度接近于单拉强度 双拉强度接近于单拉强度; 双压强度比单压强度有很大 双压强度比单压强度有很大 提高(最多可提高27 27% 提高(最多可提高27%); 双向拉压异号应力使强度 双向拉压异号应力使强度 拉压 降低。 降低。
2.1 混凝土的物理力学性能
第二章 钢筋和混凝土的材料性能
2)混凝土在剪应力和正应力共同作用下的复合强度 )
混凝土的抗剪强度: 混凝土的抗剪强度:随拉应力增大而减小,随压应力增大而增 应力增大而减小, 当压应力在0.6fc左右时,抗剪强度达到最大;压应力继续 左右时,抗剪强度达到最大; 大;当压应力在 增大,由于内裂缝发展明显, 增大,由于内裂缝发展明显,抗剪强度将随压应力增大而减小 结论: 结论:剪+压强度低于单压强度 剪应力使抗拉强度降低
A点以前,微裂缝没有明显发展,混凝土的变形主要是弹 点以前,微裂缝没有明显发展, 性变形,应力-应变关系近似直线 应变关系近似直线。 性变形,应力 应变关系近似直线。A点应力随混凝土强 度的提高而增加,对普通强度混凝土σ (0.3~ 度的提高而增加,对普通强度混凝土 A约为 (0.3~ 0.4)fc, 对高强混凝土σA可达(0.5~0.7)fc。 对高强混凝土 可达(0.5~ (0.5 A点以后,由于微裂缝处的应力集中,裂缝开始有所延伸 点以后,由于微裂缝处的应力集中, 发展,产生部分塑性变形,应变增长开始加快,应力发展,产生部分塑性变形,应变增长开始加快,应力-应 变曲线逐渐偏离直线。 变曲线逐渐偏离直线。微裂缝的发展导致混凝土的横向 变形增加。但该阶段微裂缝的发展是稳定扩展的。 变形增加。但该阶段微裂缝的发展是稳定扩展的。

第二章 混凝土结构材料的物理力学性能2

第二章 混凝土结构材料的物理力学性能2
土力学性能中最主要和最基本的指标。 混凝土的强度等级是用抗压强度来划分的。
混凝土强度等级:边长150mm立方体标准试件,在标准条件下(
20±3℃ , ≥ 95% 湿 度 ) 养 护 28 天 , 用 标 准 试 验 方 法 ( 加 载 速 度 0.15~0.3N/mm2/sec,两端不涂润滑剂)测得的具有95%保证率的立方体
双轴应力状态(Biaxial Stress State)
• 混凝土的双向
受力强度
双向受拉:强度接近 单向 受拉强度 双向受压:抗压强度和极 限压应变均有 所提高
一拉一压:强度降低
k=0.82,其间按线性插值。
f c k f cu
对于同一混凝土,棱柱体抗压强度小于立方体抗压强度。
轴心抗拉强度
16
150
500
也是混凝土的基本力学性能,用符 号 ft 表示。 混凝土构件开裂、裂缝、变形,以 及受剪、受扭、受冲切等的承载力 均与抗拉强度有关。
100
150
á Ä Ü ­ Ô é Ö Ð Ê À Ê Ñ
抗压强度,用符号C表示,C30表示 fcu,k=30N/mm2
f cc
F A
非标准试块强度换算系数: • 200mm×200mm×200mm:1.05; • 100mm×100mm×100mm:0.95。 • 6〞×12〞圆柱体:1.20 (1〞=2.54cm) • 6〞×12〞棱柱体:1.32 分级:C15,C20,C25,C30,C35,C40,C45,C50, C55, C60,C65,C70,C75,C80 (高强混凝土),共14个等级 • C—Concrete,单位:N/mm2或MPa 与原《规范GBJ10-89》相比,混凝土强度等级范围由C60 提高到C80,C50以上为高强混凝土。

第2章混凝土结构材料的物理力学性能习题答案

第2章混凝土结构材料的物理力学性能习题答案

第2章 混凝土结构材料的物理力学性能2.1选择题1.混凝土若处于三向应力作用下,当( D )。

A. 横向受拉,纵向受压,可提高抗压强度;B. 横向受压,纵向受拉,可提高抗压强度;C. 三向受压会降低抗压强度;D. 三向受压能提高抗压强度;2.混凝土的弹性模量是指( A )。

A. 原点弹性模量;B. 切线模量;C. 割线模量;D. 变形模量;3.混凝土强度等级由150mm 立方体抗压试验,按( B )确定。

A. 平均值fcu μ;B. σμ645.1-fcu ;C. σμ2-fcu ;D. σμ-fcu ;4.规范规定的受拉钢筋锚固长度a l 为( C )。

A .随混凝土强度等级的提高而增大;B .随钢筋等级提高而降低;C .随混凝土等级提高而减少,随钢筋等级提高而增大;D .随混凝土及钢筋等级提高而减小;5.属于有明显屈服点的钢筋有( A )。

A .冷拉钢筋 ;B .钢丝;C .热处理钢筋;D .钢绞线;6.钢材的含碳量越低,则( B )。

A .屈服台阶越短,伸长率也越短,塑性越差;B .屈服台阶越长,伸长率越大,塑性越好;C .强度越高,塑性越好;D .强度越低,塑性越差;7.钢筋的屈服强度是指( D )。

A. 比例极限;B. 弹性极限;C. 屈服上限;D. 屈服下限;8.能同时提高钢筋的抗拉和抗压强度的冷加工方法是( B )。

A. 冷拉;B. 冷拔;9.规范确定k cu f ,所用试块的边长是( A )。

A .150 mm ;B .200 mm ;C .100mm ;D .250 mm ;10.混凝土强度等级是由( A )确定的。

A .k cu f ,;B .ck f ;C .cm f ;D .tk f ;11.边长为100mm 的非标准立方体试块的强度换算成标准试块的强度,则需乘以换算系数( C )。

A .1.05 ;B .1.0 ;C .0.95 ;D .0.90 ;12.c c c E εσ='指的是混凝土的( B )。

《混凝土结构设计原理》第二章_课堂笔记

《混凝土结构设计原理》第二章_课堂笔记

《混凝土结构设计原理》第二章 材料的物理力学性能 课堂笔记◆ 学习要点:钢筋砼的组成为非匀质的,又由于混凝土材料组成的非均匀性以及具有显著的非弹性性能,因此其力学性能与匀质弹性材料有很大的差异。

对钢筋和砼材料力学性能的了解,包括其强度和变形性能,以及对二者相互作用的了解是掌握钢筋砼构件受力特点,确立计算方法,制定构造措施的基础。

◆ 主要内容混凝土及其力学性能混凝土的组成、强度指标及其换算关系、变形性能、其它性能(疲劳、收缩、徐变)、钢筋及其力学性能。

钢筋品种、级别和型号、力学性能及性能要求。

钢筋与混凝土的粘结◆ 学习要求1、掌握混凝土的立方体抗压强度、轴心抗压强度和轴心抗拉强度的测定方法和换算关系。

2、了解影响硷强度的因素,掌握砼应力一应变曲线特点,理解复合应力下硷强度和变形特点。

3、了解混凝土收缩、徐变现象及其影响因素;理解收缩、徐变对钢筋混凝土结构的影响。

4、了解钢筋的品种级别和使用范围。

掌握钢筋的应力一应变曲线的特点和强度的取值标准:,◆ 重点难点混凝土的强度及其影响因素,复合应力状态下的强度。

混凝土受压应力一应变关系的特征值。

混 凝土的收缩与徐变及其影响因素,一、混凝土(一)混凝土的组成结构砼是由水泥石(水泥胶结料)和骨料(石料)组成的一种内部结构复杂的复合材料。

从微观看:砼是不均匀的多相材料,存在许多内部微裂缝,这与其物理力学性能有密切的关系。

从宏观看:混凝土是粗骨料均匀分散在连续的砂浆基材中的两相材料,可视为各向同性的。

(二)混凝土的强度混凝土的强度是混凝土力学.隆能中的主要指标。

在工程中常用的混凝土强度指标有: ·立方体抗压强度fcu ·轴心抗压强度fc ·轴心抗拉强度ft1、混凝土立方体抗压强度砼立方体抗压强度是其力学性能中最基本的指标,也是评定fc 强度等级的标准。

砼强度等级是指按照标准方法制作养护的边长为150mm ,的立方体试件,在28天龄期用标准试验方法测得的具有95%保证率的立方体抗压强度标准值 。

混泥土第2章

混泥土第2章
第2章混凝土结构材料的 物理力学性能
2.1 混凝土的物理力学性能
2.1.1 单轴向应力状态下的混凝土强度
虽然实际工程中的混凝土结构和构件一般处 于复合应力状态,但是单轴向受力状态下混凝土 的强度是复合应力状态下强度的基础和重要参数。 混凝土试件的大小和形状、试验方法和加载 速率都影响混凝土强度的试验结果,因此各国对 各种单轴向受力下的混凝土强度都规定了统一的 标准试验方法。
2)德国Rüsch建议的模型
图2-12 Rüsch建议的应力-应变曲线
2 0 , fc 2 0 0 0 cu , f c
(3)混凝土轴向受拉时的应力-应变关系
图2-13 不同强度的混凝土拉伸应力-应变全曲线
1 描述完全弹塑性的双直线模型
双直线模型适用于流幅较长的低强度钢材。
s y , s Es s
y s s ,h , s f y
fy Es y
2 描述完全弹塑性加硬化的三折线模型 三折线模型适用于流幅较短的软钢,要求它可以描述屈 服后立即发生应变硬化(应力强化),并能正确地估计高出屈服 应变后的应力。
图2-9 混凝土棱柱体受压应力-应变曲线
图2-10 不同强度的混凝土的应力-应变曲线比较 混凝土应力-应变曲线的形状和特征是混凝土内部结构发生变化的力学标志。 随着混凝土强度的提高,尽管上升段和峰值应变的变 化不很显著,但是下降段的形状有较大的差异,混凝土强 度越高,下降段的坡度越陡,即应力下降相同幅度时变形 越小,延性越差。
2.1.2 复合应力状态下混凝土的强度
1 双向应力状态
混凝土结构构件实际上大多处 于复合应力状态,例如框架梁要承 受弯矩和剪力的作用;框架柱除了 承受弯矩和剪力外还要承受轴向力; 框架节点区混凝土的受力状态就更 复杂。同时,研究复合应力状态下 混凝土的强度,对于认识混凝土的 强度理论也有重要的意义。

混凝土结构材料的物理性能

混凝土结构材料的物理性能
第2章混凝土结构材料的物理力学性能
§2.1混凝土的物理力学性能
一.混凝土的组成结构
1.组成:混凝土=水泥+细骨料(砂)+粗骨料 (碎石或鹅卵石)+水+外加剂
2.基本力学性质:
(1)弹塑性、各向异性
(2)水泥+细骨料+水 凝胶体(塑性)
(3)粗骨料(弹性)
完整版课件ppt
1
普通砼是由水泥、砂、石用水拌和硬化后形成的 人工石材。
6
8
s (MPa)
C
30
B
20
A
10
0
2
4
达到峰值C点, C点对 应的应力为fc,内部微裂 缝连通形成破坏面,应
变增长速度明显加快,
C点的纵向应变值称为
峰值应变 e 0,约为0.002。
e )
C
30
D
B
20
A
10
0
2
4
纵向应变发展达到D点,
内部裂缝在试件表面出
现第一条可见平行于受
C.其它:水泥用量、水灰比、骨料、温度以及湿度。
完整版课件ppt
31
◆影响因素
内在因素:混凝土的组成和配比。水泥用量越多,徐变 越大;骨料越坚硬,徐变就越小。水灰比越小,徐变也 越小。
环境影响:包括养护和使用条件。受荷前养护的温越高、 湿度越大,水泥水化作用越充分,徐变就越小。受荷后 构件所处的环境温度越高,相对湿度越低,徐变就越大。
图2-8
当压应力不太高时,其存在可提高混凝土的抗剪强度,拉应力的存在会降低 混凝土的抗剪强度。剪应力的存在降低混凝土的抗压和抗拉强度。 构件受剪或受扭时常遇到剪应力t 和正应力s 共同作用下的复合受力情况。 混凝土的抗剪强度:随拉应力增大而减小
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.什么是混凝土的疲劳破坏?疲劳破坏时 应力--应变曲线有何特点?
目录
4.什么是混凝土的徐变?徐变对混凝土 构件有何影响?通常认为影响徐变的主 要因素有哪些?如何减少徐变? 5.钢筋混凝土结构对钢筋的性能有哪些 要求? 6.影响钢筋和混凝土粘结强度的主要因 素有哪些?为保证钢筋和混凝土之间有 足够的粘结力要采取哪些措施?
答案 答案
答案
目录
第二章混凝土结构材料的 物理力学能 问答题目录
2.1 问答题 1.混凝土的强度等级是根据什么确定的? 我国新《规范》规定的混凝土强度等级有 哪些? 2.单向受力状态下,混凝土的强度与哪些 因素有关?混凝土轴心受压应力--应变曲 线有何特点?常用的表示应力--应变关系 的数学模型有哪几种?
答案
答案 答案
相关文档
最新文档