正比例函数的图象与性质ppt课件
合集下载
2021秋北师大版八年级数学上册课件:4.3 正比例函数的图象与性质(共27张PPT)
变式 2 若正比例函数的图象经过点(-1,2),则这
个图象必经过点( A )
A.(1,-2)
B.(-1,-2)
C.(2,-1)
D.(1,2)
知识点 3 正比例函数的性质 ☞ 例 3 (教材 P85 习题 4.3 第 3 题)下列正比例函数中, y 的值随着 x 值的增大而减小的有__(2_)(_4)____. (1)y=8x;(2)y=-0.6x;(3)y= 5x;(4)y=( 2- 3)x.
9.正比例函数 y=4x,y=-7x,y=-3x 的共同特 征是( D )
A.图象位于同样的象限 B.y 随 x 的增大而减小 C.y 随 x 的增大而增大 D.图象都过原点
10.若 P1(x1,y1),P2(x2,y2)是正比例函数 y=-x 图象上的两点,则下列判断正确的是( C )
A.y1>y2 B.y1<y2 C.当 x1<x2 时,y1>y2 D.当 x1<x2 时,y1<y2
解析:因为 y=mxm2-8 是正比例函数,所以 m2-8= 1,解得 m=±3.因为其图象在第二、四象限,所以 m< 0.所以 m=-3.
8.已知关于 x 的正比例函数 y=(k-1)xk2-3,当 k 为何值时,y 的值随 x 值的增大而减小?
解:因为函数 y=(k-1)xk2-3 是正比例函数, 所以 k2-3=1,k-1≠0,解得 k=2 或 k=-2. 因为 y 的值随 x 值的增大而减小, 所以 k-1<0,解得 k<1.所以 k=-2. 故当 k 为-2 时,y 的值随 x 值的增大而减小.
变式 3 若函数 y=(a-1)中的 y 值随着 x 值的增大
而增大,则 a 的取值范围是( A )
A.a>1
B.a<1
1正比例函数的图象和性质ppt
一般地,正比例函数y=kx(k是常数,k≠0)的图象 是一条经过原点的直线; 我们称它为直线y=kx.
当k >0时,直线y=kx经过第一、三象限, 图像从左向右上升, 即y随x的增大而增大;
当k <0时,直线y=kx经过第二、四象限,
从左向右下降, 即y随x的增大而减小.
画正比例函数的图象时,怎样画最简便?为什么? 两点法:过点(0,0)和(1,k)画一条直线 , 即得y=kx (k≠0)的图像
x
-1
-2
寻找上面两个函数图象的相
同点和不同点,考虑两个函数的 变化规律.
-3
-4 y= -2x
x … -2 -1 0 1 2 …
y y=2x
y=2x … -4 -2 0 2 4 …
5 4
y=-2x … 4 2 0 -2 -4 …
3
2
1
观察两个图象
共同点:都是经过原点的直线
-3 -2 -1 0 1 2 3 x
画一画
用你认为最简单的方法画出 下列函数的图象:
(1)y= 3x (2)y =
3 2
x
1、过点(0 , 0) , (1 , 3)画直线,得
y= 3x的图象
2、过点(0 , 0) , (1 , 3 )画直线,
得y=
3 2
x的图象
2
y
5 4 3 2
1
-3 -2 -1 0 -
12 -3
4
y=3x
x
1 23
已知正比例函数的图象经过点- 3,2 3 , (1)若点A a, 2 , B 3,b 在图象上,求
a和b的值
(2)过图象上一点P做y轴的垂线,垂足
Q 0,- 15 ,求S△OPQ.
当k >0时,直线y=kx经过第一、三象限, 图像从左向右上升, 即y随x的增大而增大;
当k <0时,直线y=kx经过第二、四象限,
从左向右下降, 即y随x的增大而减小.
画正比例函数的图象时,怎样画最简便?为什么? 两点法:过点(0,0)和(1,k)画一条直线 , 即得y=kx (k≠0)的图像
x
-1
-2
寻找上面两个函数图象的相
同点和不同点,考虑两个函数的 变化规律.
-3
-4 y= -2x
x … -2 -1 0 1 2 …
y y=2x
y=2x … -4 -2 0 2 4 …
5 4
y=-2x … 4 2 0 -2 -4 …
3
2
1
观察两个图象
共同点:都是经过原点的直线
-3 -2 -1 0 1 2 3 x
画一画
用你认为最简单的方法画出 下列函数的图象:
(1)y= 3x (2)y =
3 2
x
1、过点(0 , 0) , (1 , 3)画直线,得
y= 3x的图象
2、过点(0 , 0) , (1 , 3 )画直线,
得y=
3 2
x的图象
2
y
5 4 3 2
1
-3 -2 -1 0 -
12 -3
4
y=3x
x
1 23
已知正比例函数的图象经过点- 3,2 3 , (1)若点A a, 2 , B 3,b 在图象上,求
a和b的值
(2)过图象上一点P做y轴的垂线,垂足
Q 0,- 15 ,求S△OPQ.
12.2.1正比例函数的图像与性质课件
解:函数y=2x 的自变量的取值范围是任意实数,列表表示 几对对应值: x … -3 -2 -1 0 1 2 3 …
y …
5 4 3 2 1 -5 -4 -3 -2 -1 0 12345
-6 y
-4
-2
0
2
4
6
…
y=2x
1 2
3
4
5
x
练习:画出正比例函数y=-2x的图象?
解:列表
y=-2x
y
5 4 3 2 1 1 2 3 4 5
x
x
0
1
y
0
-3
-3 -2 -1 0 12 -3 -
(四)巩固练习:
0 1.正比例 函数 y=-4x的图像是经过( 0,)和
( 1,-4 )两点的一条直线, y随x的————
增大而减小。
2. 正比例函数y=(m-1)x的图象经过一、三象限,则
m的取值范围是 ( B)
A.m=1
B.m>1
C.m<1
D.m≥1
x …
-3 6
-2 4
-1 2
0 0
1 -2
2 -4
3 -6
… …
Y …
-5 -4 -3 -2 -1 0 12345
发现你 画出的 图象与 x y=2x的 图象相 同吗? ?…
比较刚才两个函数的图象的相同点和 观察 不同点,考虑两个函数的变化规律.
思考:经过原点和 5 4 (1,k)的直线是哪个 3 函数的图象?画正比 2 例函数的图象时 ,怎 1 样画最简单 ? 为什么 ? -5 -4 -3 -2 -1 1 2 3
1 1 y x y x 的图象。 在同一坐标系中画出 2 与 2
初中数学北师大版八年级上册《第4章:正比例函数的图象与性质》课件
8.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)
和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范
围是( D )
A.m<0
B.m>0
C.m< 1
2
D.m>1
2
9.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不
正确的是( )
A.是一条直线
B.过点
1 k
,
k
2.【202X·呼和浩特】二十四节气是中国古代劳动人民 长期经验积累的结晶,它与白昼时长密切相关.当 春分、秋分时,昼夜时长大致相等;当夏至时,白 昼时长最长,根据上图,在下列选项中指出白昼时 长低于11小时的节气是( D ) A.惊蛰 B.小满 C.立秋 D.大寒
3.【202X·长沙】小明家、食堂、图书馆在同一条直线上,小 明从家去食堂吃早餐,接着去图书馆读报,然后回家,如 图反应了这个过程中小明离家的距离y(km)与时间x(min) 之间的对应关系.根据图象,下列说法正确的是( B ) A.小明吃早餐用了25 min B.小明读报用了30 min C.食堂到图书馆的距离为0.8 km D.小明从图书馆回家的速度为0.8 km/min
解:画图略.这两个函数图象关于x轴(或y轴)对称. (2)这两个函数中x每取一个值时,其对应的函 数值y有什么关系?
解:画图略.这两个函数中x每取一个值时,其对应的 函数值y互为相反数.
11.已知y与x成正比例,且当x=3时,y=-9.
(1)求y与x的函数关系式;
解:设y与x的函数关系式为y=kx,则-9=3k,
第1课时
正比例函数的 图象与性质
数学北师大版 八年级上
1A 2D 3B 4A 5C
沪科版八年级数学上册第12章教学课件:12.2 第1课时 正比例函数的图象和性质(共31张PPT)
4.已知正比例函数y=(2m+4)x. (1)当m >-2 ,函数图象经过第一、三象限; (2)当m <-2 ,y 随x 的增大而减小; (3)当m =0.5 ,函数图象经过点(2,10).
5. 比较大小:
(1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接.
的大小关系是(A ) A. k1>k2 B. k1=k2
y y=k1x y=k2x
C. k1<k2 D. 不能确定
ox
例4: 已知正比例函数y=mx的图象经过点(m,4), 且y的值随着x值的增大而减小,求m的值.
解:因为正比例函数y=mx的图象经过点(m,4), 所以4=m·m,解得m=±2. 又y的值随着x值的增大而减小, 所以m<0,故m=-2.
③连线
y=-3x
y 4
y=2x
3
这两个函数图象有
2
什么共同特征?
1
-5 -4 -3 -2 -1 O 1 2 3 4 5 x -1
-2
-3
-4
归纳总结
y=kx (k是常数,k≠0)的图象是一条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
两点 作图法
由于两怎点样确画定正一比条例直函线数,的画图正象比例函数 图象时最我简们单只?需为描什点么(0?,0)和点 (1,k) ,连线即可.
当堂练习
1.下列图象哪个可能是函数y=-x的图象( B )
y
y
y
y
ox ox
o x ox
2.对于正比例函数y =(k-2)x,当x 增大时,y 随
5. 比较大小:
(1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接.
的大小关系是(A ) A. k1>k2 B. k1=k2
y y=k1x y=k2x
C. k1<k2 D. 不能确定
ox
例4: 已知正比例函数y=mx的图象经过点(m,4), 且y的值随着x值的增大而减小,求m的值.
解:因为正比例函数y=mx的图象经过点(m,4), 所以4=m·m,解得m=±2. 又y的值随着x值的增大而减小, 所以m<0,故m=-2.
③连线
y=-3x
y 4
y=2x
3
这两个函数图象有
2
什么共同特征?
1
-5 -4 -3 -2 -1 O 1 2 3 4 5 x -1
-2
-3
-4
归纳总结
y=kx (k是常数,k≠0)的图象是一条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
两点 作图法
由于两怎点样确画定正一比条例直函线数,的画图正象比例函数 图象时最我简们单只?需为描什点么(0?,0)和点 (1,k) ,连线即可.
当堂练习
1.下列图象哪个可能是函数y=-x的图象( B )
y
y
y
y
ox ox
o x ox
2.对于正比例函数y =(k-2)x,当x 增大时,y 随
正比例函数的图象和性质课件
们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义
4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册
列表、描点、连线。
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),
人教八下数学课件-19.2.1正比例函数
巩固练习 2.已知正比例函数y=(k+5)x. (1)若函数图象经过第二、四象限,则k的取值范围是_k_<_-_5___. 解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5. (2)若函数图象经过点(3,-9),则k__=_-8__.
解析:将坐标(3,-9)带入函数解析式中,得-9=(k+5)·3, 解得k=-8.
y=-4x y=-1.5x 看图发现:这两个函数图象都是经过原点和第 二、四 象限 的直线.
探究新知
y=kx (k是常数,k≠0)的图象是一 条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
提示:函数y=kx 的图象我们也称作直线y=kx
巩固练习
1.用你认为最简单的方法画出下列函数的图象:
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下: x … -2 -1 0 1 2 … y … -4 -2 0 2 4 …
探究新知
②描点; ③连线.
同样可以画出
函数
的图
象.
y=2x
y1x 3
看图发现:这两个图象都是经过原点的 直线 . 而且都经过第 一、三 象限;
探究新知 解:(2)函数y=-1.5x,y=-4x的图象如下:
(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米 的南京南站?
探究新知
(1)乘京沪高速列车,从始发站北京南站到终点 站海虹桥站,约需要多少小时(结果保留小数
探究新知
(2)京沪高铁列车的行程y(单位:千米)与 运解行:时y间=30t0(t(单0≤位t≤4:.4)时)之间有何数量关系?
4.3.1正比例函数的图象和性质
y=3x;
【教材P85 习题4.3 第5题】
6. 小明是这样理解“函数y=x的图象是一条经过原点的直线”
的:如图,当x=0时,y=0,所以原点(0,0)在函数y=x的图
象上;当x=t时,y=t,即 MN=ON,∠MON=45°,而这个结论
对任意的 t 值都正确,所以函数 y = x 的图象是一条经过原点、与
以表中各组对应值作为点的坐标,在直角坐标
系中描出相应的各点
按照横坐标由小到大的顺序把这些点顺次
连接起来
知识点2
正比例函数的图象
正比例函数的图象:正比例函数 y=kx(k≠0)的图象是一条经过原点(0,0)
的直线,我们称它为直线 y=kx.
y=2x
例1 画出正比例函数 y=2x 的图象.
在所画的图象上任意取几个点,找出它们的横坐标
y=2x
第二象限
第一象限
第三象限
第四象限
正比例函数y=kx(k≠0)的图
原点(0,0)
象是一条经过_____________
直线
的______.
知道了正比例函数图象的特点,有没有更简
便的正比例函数图象的绘制方法?
两点作图法
正比例函数 y=kx(k≠0)的图象是一条经过原
点(0,0)的直线,只要再确定一个点即可确定函数
观察比较,两个函数的图象
有什么相同点,有什么不同点?
不同点
相同点
y=﹣3x
y=2x
第二象限
第一象限
①函数图象都经过原点(0,0) 第三象限
第四象限
① y =2x 经过一、三象限,
② y =﹣3x 经过二、四象限.
②函数图象都是一条直线.
y=﹣3x
第1课时正比例函数的图象和性质课件(湘教版)
表达式; (2)画出该函数的图象; (3)当x=3,4,5时,y是多少?
解:(1)矩形的面积y(cm2)随宽x(cm)而变化的 函数表达式是:y=6x.
(2)函数的图象略. (3)当x=3时,y=18;当x=4时,y=24;当x=5时,
y=30.
• 连线:视察描出的这些点的散布,我们可以猜测y=2x的图 象是经过原点的一条直线,数学上可以证明这个猜测是正 确的.因此,用一条直线将平面直角坐标系中的各点连接, 即可得到y=2x的图象,如图4-7所示.
结论 类似地,数学上已经证明:正比例函数
y=kx(k为常数,k≠0)的图象是一条直线. 由于两点确定一条直线,因此画正比例函数 的图象,只要描出图象上的两个点,然后过 这两点作一条直线即可.我们常常把这条直线 叫作“直线y=kx”.
4.3 一次函数的图象
第1课时 正比例函数的图象和性质
探究
画出正比例函数y=2x的图象.
• 列表:先取自变量x的一些值,计算出相应的函数值,列 成表格如下:
x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 2 4 6 …
• 描点:建立平面直角坐标系,以自变量值为横坐标,相应 的函数值为纵坐标,描出这些点,如图4-6.
做匀速运动(即速度保持不变)的物体,走过的 路程与时间的函数关系的图象一般是一条线段.
练习
1.画出正比例函数y=- 1 x,y=3x图象略. 第一个函数的图象经过第二、四象限; 第二个函数的图象经过第一、三象限.
练习
2.已知矩形的长为6cm,宽为xcm. (1)求矩形的面积y(cm2)随宽x(cm)而变化的函数
一般地,直线y=kx(k为常数,k≠0)是一 条经过原点的直线.
当k>0时,直线y=kx经过第三、一象限从左 向右上升,y随x的增大而增大;
解:(1)矩形的面积y(cm2)随宽x(cm)而变化的 函数表达式是:y=6x.
(2)函数的图象略. (3)当x=3时,y=18;当x=4时,y=24;当x=5时,
y=30.
• 连线:视察描出的这些点的散布,我们可以猜测y=2x的图 象是经过原点的一条直线,数学上可以证明这个猜测是正 确的.因此,用一条直线将平面直角坐标系中的各点连接, 即可得到y=2x的图象,如图4-7所示.
结论 类似地,数学上已经证明:正比例函数
y=kx(k为常数,k≠0)的图象是一条直线. 由于两点确定一条直线,因此画正比例函数 的图象,只要描出图象上的两个点,然后过 这两点作一条直线即可.我们常常把这条直线 叫作“直线y=kx”.
4.3 一次函数的图象
第1课时 正比例函数的图象和性质
探究
画出正比例函数y=2x的图象.
• 列表:先取自变量x的一些值,计算出相应的函数值,列 成表格如下:
x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 2 4 6 …
• 描点:建立平面直角坐标系,以自变量值为横坐标,相应 的函数值为纵坐标,描出这些点,如图4-6.
做匀速运动(即速度保持不变)的物体,走过的 路程与时间的函数关系的图象一般是一条线段.
练习
1.画出正比例函数y=- 1 x,y=3x图象略. 第一个函数的图象经过第二、四象限; 第二个函数的图象经过第一、三象限.
练习
2.已知矩形的长为6cm,宽为xcm. (1)求矩形的面积y(cm2)随宽x(cm)而变化的函数
一般地,直线y=kx(k为常数,k≠0)是一 条经过原点的直线.
当k>0时,直线y=kx经过第三、一象限从左 向右上升,y随x的增大而增大;
人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件
∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x
正比例函数的图象与性质课件
THANKS
感谢观看
函数值的变化规律
总结词
正比例函数值随自变量的变化而变化
详细描述
对于正比例函数$y=kx$,当自变量 $x$增大或减小时,函数值$y$也会等 比例地增大或减小。
函数的极限状态
总结词
正比例函数的极限状态取决于函数的斜率
详细描述
正比例函数的极限状态是指当自变量$x$趋于无穷大或无穷小时,函数值$y$的极限状态。当$k>0$时,$y$的极 限为无穷大;当$k<0$时,$y$的极限为无穷小。
05
实例分析
实际应用场景
物理学中的速度与时间关系
正比例函数可以描述物体在恒定加速度下速度与时间的关系,即$v = v_0 + at$,其中$v_0$ 是初速度,$a$是加速度,$t$是时间。
经济学中的收入与工作时间关系
在经济学中,正比例函数可以用来描述收入与工作时间的关系,即$y = kx$,其中$y$是收 入,$k$是每小时的工资率,$x$是工作时间。
伸缩变换
正比例函数的图象可以在x轴和y轴方向上进行伸缩,但伸缩 不改变函数的性质。
04
正比例函数的性质
函数的增减性
总结词
正比例函数在定义域内具有单调性
详细描述
正比例函数是指形如$y=kx$($k neq 0$)的函数,当$k>0$时,函数在定义域内 单调递增;当$k<0$时,函数在定义域内单调递减。
正比例函数的图象与性质 课件
• 引言 • 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 实例分析 • 练习与思考
01
引言
主题简介
01
正比例函数是数学中一种基本的 函数类型,它描述了当一个变量 增加时,另一个变量按固定比例 增加的关系。
正比例函数图象性质
19.2.1 正比例函数图象及性质
击此处添加副标题
演讲者:
复习巩固:
01 一般地,形如y=kx(k是常数,k≠0)的 函数,叫做正比例函数,其中k叫做比例系 数。
02 你能举出一些正比例函数的例子吗?
正比例函数的 图象
1
2
例1、画出下
画函数图步
1
列正比例函数
的图象
骤:
列表;
3
1. y=2x 2. y= x
强化 练习
4.点A(1,m)在函数y=2x的图象
上, 则2 m= ;
5.当a >1时,直线y=(1-a)x从
左向右下降
6.函数y=-5x的图像在第 二、象四限内, 经过点(0, )与0点(1, ), -5 y随x的增大而 减小。
练习
7.若y=(m-1)xm2是关于 x的正比例
函数,-则1m=
8.已知正比例函数的比例系数是-5,
则它的解析式为y:=-5x
9.正比例函数图象y=(m-1)x的图像经 过第一、三象限,则m的取值范围是m—>—1
——
10.若y=(m-2)xlml-1是正比例函数, 则m-2=————
练习
11.正比例函数 y=kx(k≠0) 的图象是 直线 它一定经过点(0 , 0) 和(1 , k)
12.如果函数 y= - kx 的图象在一,三象
Y随x的增 大而
增大 减小
讨论
怎样画正比例函数的 图象最简单?为什么?
两点 作图法
由于两点确定一条直线,画正 比例函数图象时我们只需描点 (0,0)和点 (1,k),连线即可.
两点 作图法
3 2 由于两点确定一条直线,画正比例函数图象
时我们只需描点(0,0)和点 (1,k),连线即 可.
击此处添加副标题
演讲者:
复习巩固:
01 一般地,形如y=kx(k是常数,k≠0)的 函数,叫做正比例函数,其中k叫做比例系 数。
02 你能举出一些正比例函数的例子吗?
正比例函数的 图象
1
2
例1、画出下
画函数图步
1
列正比例函数
的图象
骤:
列表;
3
1. y=2x 2. y= x
强化 练习
4.点A(1,m)在函数y=2x的图象
上, 则2 m= ;
5.当a >1时,直线y=(1-a)x从
左向右下降
6.函数y=-5x的图像在第 二、象四限内, 经过点(0, )与0点(1, ), -5 y随x的增大而 减小。
练习
7.若y=(m-1)xm2是关于 x的正比例
函数,-则1m=
8.已知正比例函数的比例系数是-5,
则它的解析式为y:=-5x
9.正比例函数图象y=(m-1)x的图像经 过第一、三象限,则m的取值范围是m—>—1
——
10.若y=(m-2)xlml-1是正比例函数, 则m-2=————
练习
11.正比例函数 y=kx(k≠0) 的图象是 直线 它一定经过点(0 , 0) 和(1 , k)
12.如果函数 y= - kx 的图象在一,三象
Y随x的增 大而
增大 减小
讨论
怎样画正比例函数的 图象最简单?为什么?
两点 作图法
由于两点确定一条直线,画正 比例函数图象时我们只需描点 (0,0)和点 (1,k),连线即可.
两点 作图法
3 2 由于两点确定一条直线,画正比例函数图象
时我们只需描点(0,0)和点 (1,k),连线即 可.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
22
能力提高:
想一想:
点燃蜡烛,蜡烛长度按照与时间成正比变短,长 为21厘米的蜡烛,已知点燃6分钟后,蜡烛变短3.6 厘米,设蜡烛点燃x分钟后变短y厘米,求
(1)用x表示函y数的解析式; (2)自变量x的取值范围;
(3) 此蜡烛几分钟燃烧完?
.
23
1.如图是甲、乙两人的行程函数图,根据图像回答:
正比例函数的图象和性质
.
1
1.正比例函数的定义
一般地,形如 y=kx(k为常数,k≠0)的函 数,叫做正比例函数,其中k叫做比例系数
2.画函数图象的步骤
列表、描点、连线
.
2
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
动动
手
x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
它的图像除原点外在二、四 象限内,求m值.
2、已知正比例函数y=(1+2m)x, 若y随x的增大而减小,则m的取 值范围是什么?
.
26
3. 若正比例函数图像又y=(3k-6)x的图像经过点
A(x1,x2)和B(y1,y2),当x1<x2时,
y1>y2,则k的取值范围是 (B )
A.k>2
B.k<2
x
补充性质:
当 |k| 越大时,图像越靠近y轴 当 |k| 相等时,图像关于坐标轴对称
y
1
01
x
思考
y ③
如图,三个正比例函数的图 像分别对应的解析式是 ①
②
y=ax② y=bx ③ y=cx,
则a、b、c的大小关系是
①(C)
x
A.a>b>c
B.c>b>a
C.b>a>c
D.b>c>a
.
18
例1. 如果正比例函数y=(8-2a)x的图像 经过二、四象限,求a的取值范围。
(2) 当k<0时,直线y=kx的图像经过第二、四象限, 从左向右呈下降趋势, 自变量x逐渐增大时,y的值则 随着逐渐减小。
看谁反应快
填空 (1)正比例函数 y=kx(k≠0) 的图像是 一条直线 ,它一定经过点 (0,0) 和(1,k).
(2)函数 y=4x 经过 一、三 象限, yy 随 xx的的增减大小而而增减大小 .
y y= kx (k>0)
y
y= kx
k
(k<0)
01
x
.
Hale Waihona Puke 01xk8
在同一坐标系内画下列正比例函数的图像:
y3x yx y1x y
y3x
3
3
y x
当k>0
时,它的图 像 经过第
一、三象
1
o1
y1x 3
3x
限
.
9
在同一坐标系内画下列正比例函数的图像:
y3x y
yx
y1x 3
o
y3x yx y1x 3
当k<0
时,它的
1
x
图像经过 第二、四
像限
.
10
口答:看谁反应快
1.由2.正由比函例数函解数解析析式式,(请根你据说k的出正下、列负函)数,
来的判变断化其情函况数图像分布在哪些象限
(1) y 2 x 3
y一随、x的三增象大而限增大
(2)y 2x y一随、x的三增象大而限增大
2
(3)y x y二随、x的四增象大而限减小
3
.
11
y 4
y 3x
3
yx
2 1
y
1 3
x
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3
-4
-4 -3 -2 -1 O 1
-1
-2
-3
-4
234
xy
1 3
x
yx
y 3x
正比例函 kx数 (0 ky)的性质:
(1) 当k>0时,直线 y=kx的图像经过一、三象限,从 左向右呈上升趋势,自变量x逐渐增大时,y的值也随着 逐渐增大。
根据正比例函数的性质,k>0可得
该图像经过一、三象限。
2.已知:正比例函数y= (2-k)x的图像 经过第二.四象限,则函数y=-kx的图 像经过哪些象限?
二、四象限
3.如果 y(1m)xm22是正比例函数,且y 随x的增大而减小,试求m的值
3
例3.在水管放水的过程中,放水的时 间x(分)与流出的水量y(立方米)是 两个变量,已知水管每分钟流出的水量 是0.2立方米,放水的过程持续10分钟, 写出y与x之间的函数解析式,并指出函 数的自变量取值范围,再画出函数的图 像
⑴谁走得快?
⑵求甲、乙两个函数解析式,并写出自变量的取值范围 ⑶当t= 4时,甲、乙两人行程相差多少?
s(千米) 15
10 甲 乙
5
0
j1 2
3
.
t(小时)
24
已知直线y=(a-2)x+a2-9经过 原点,且y随x的增大而增大, 求y与x的关系式.
经过原点
X=0且Y=0
.
25
1.已知正比例函数 y mxm2
.
13
(3)如果函数 y= - ax 的图像经过
一、三象限,那么y = ax 的图像经
过 二、四象限
.
(4)已知ab,0则函数
哪些象限?
y的图b 像x 经过
a
二、四象限
.
14
3.下列图像哪个可能是函数y=-8x
的图像( B)
AB C D
.
15
y
y 3x
yx
y 3x yx
y 1 x 3
1
01
y1x 3
y=2x
.
3
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
动动
手
x … -2 -1 0 1 2 …
y … 4 2 0 -2 -4 …
y 2x
.
4
y=2x
y 2x
相同点:两图象都是经过原点的一条直线
不同点: 函数y=2x的图象经过第 一、三 象限,从左向右 呈上升趋势 , 函数y=-2x的图象经过第 二、四 象限.从左向右 呈下降趋势 。
C.k=2 D.无法
确定
4.正比例函数y=(3m-1)x的图像经过点A(x1,x2) 和B(y1,y2),且该图像经过第二、四象限.
(1)求m的取值范围
(2)当x1>x2时,比较 y1与y2的大小,并说明理由.
.
27
4.已知:正比例函数 ym 2x m 2 1
那么它的图像经过哪个象限?
.
28
5.已知正比例函数图像经过点(2,-
思考
通过以上学习,画正比例函数图象 有无简便的办法?
y
y= 1 x 2
y= 1 x y
1
2
2
01
x
.
01
x
1
2
6
如何画正比例函数的图像?
因为正比例函数的图像是一条直线,而 两点确定一条直线
画正比例函数的图像时,只需描两 个点,然后过这两个点画一条直线
.
7
结论
正比例函数图象经过点(0,0)和点(1,k)
解:∵该函数图像经过二、四象限
∴比例系数k=8-2a<0
∴a>4 问: 如果正比例函数y=(8-2a)x,y的值随 x的值增大而减少,求a的取值范围。
a>4
.
19
例2.已知正比例函数y=(m+1)xm2 ,它的 图像经过第几象限?
解: ∵该函数是正比例函数
{ m10 m2=1
m1
m=±1,
m1
比例系数k=m+1=2>0