高中数学必修2-15
新编【人教A版】高中数学:必修2课本例题习题改编(含答案)
新编人教版精品教学资料2015版人教A 版必修2课本例题习题改编湖北省安陆市第一高级中学 伍海军 ****************1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积;(Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ.解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱.由于底面ABC ∆的高为1,所以AB ==. 故所求全面积22ABC BB C C ABB A S S S S ''''∆=++1221322382=⨯⨯⨯+⨯+⨯=+2(cm ).这个几何体的体积121332ABC V S BB ∆'=⋅=⨯⨯⨯=3(cm )(Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠.O OO 'O '22OO在Rt BB C''∆中,BC '==cos BB BC θ'===' 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为).所以所求表面积21212127S ππππ=⨯+⨯⨯+⨯⨯=2(cm ),所求体积22112123V πππ=⨯⨯+⨯⨯=3(cm ).3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。
高中数学必修二课件:概率的基本性质
一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
人教高中数学必修二A版《章末复习提升课》统计研讨复习说课教学课件
s2乙=18[(83-85)2+(75-85)2+…+(95-85)2]=41.
栏目 导引
第九章 统 计
①从平均数看,甲、乙均为 85 分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲; ③从方差来看,因为-x 甲=-x 乙,s2甲<s2乙,所以甲的成绩较稳定; ④从数据特点看,获得 85 分以上(含 85 分)的次数,甲有 3 次, 而乙有 4 次,故乙的成绩好些; ⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升 趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好 成绩的次数及发展势头等方面分析,乙具有明显优势,所以应 派乙参赛更有望取得好成绩.
栏目 导引
第九章 统 计
【解】
(1)
-x
甲
=
1 8
(95
+
82
+
88
+
81
+
93
+
79
+
84
+
78)
=
85(分),
-x 乙=18(83+75+80+80+90+85+92+95)=85(分).
甲、乙两组数据的中位数分别为 83 分、84 分.
(2)由(1)知-x 甲=-x 乙=85 分,所以
s2甲=18[(95-85)2+(82-85)2+…+(78-85)2]=35.5,
界限
人数
20
11
6
5
栏目 导引
第九章 统 计
(1)列出样本的频率分布表(频率保留两位小数); (2)画出频率分布直方图; (3)估计身高低于 134 cm 的人数占总人数的百分比.
栏目 导引
【解】
(1)列出样本频率分布表: 分组
推荐-高中数学人教B版必修2课件1.1.5 三视图(1)
1.了解空间图形的不同表示形式,理解正投影的概念和性质. 2.能画出简单空间图形的三视图,并能识别三视图所表示的立体模 型. 3.会画某些建筑物或零件的三视图.
(1)定义. 在物体的平行投影中,如果投射线与投射面垂直,则称这样的平 行投影为正投影. (2)性质. 正投影除具有平行投影的性质外,还具有下列性质: ①垂直于投射面的直线或线段的正投影是点; ②垂直于投射面的平面图形的正投影是直线或直线的一部分.
1.下列说法中正确的是( ) A.任何物体的三视图都与物体的摆放位置有关 B.任何物体的三视图都与物体的摆放位置无关 C.有的物体的三视图与物体的摆放位置无关 D.正方体的三视图一定是三个全等的正方形 解析:球的三视图与它的摆放位置无关,从任何方向看都是圆. 答案:C
2.图(1)是一个组合体,在①②③④四个图形中,是这个组合体的俯视 图的是( )
通过剖析可知,一个空间几何体摆放的位置不同,可 能会得到不同的三视图,有相同的三视图的空间几何体不一定相同.
2.教材中的“思考与讨论” 在平面上表示立体图形有哪些方法? 剖析:在平面上表示立体图形有斜二测画法直观图、三视图等, 其画法规则各自不同.
3.教材中的“探索与研究” 问题:旋转体放置在怎样的位置时,它的三视图比较简单?这时 它的三视图有什么特征? 过程:实践并观察圆柱、圆锥和圆台的生成,研究这三种简单旋 转体的三视图,并回答以下问题: (1)旋转体的三视图有哪些特征? (2)检验一下球的三视图是否符合你发现的特征. 剖析:(1)当旋转体底面水平放置即轴线为铅垂线时,其三视图比 较简单,此时主视图与左视图相同(圆柱、圆锥、圆台分别为矩形、 等腰三角形、等腰梯形),圆柱的俯视图为圆,圆锥的俯视图为带圆心 的圆,圆台的俯视图为两个同心圆,有时为了方便一般只画出它们的 主视图和俯视图(二视图). (2)球的三视图也符合上述特征.
人教A版高中数学必修二-章节练习题
第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。
高中数学(人教B版)必修第二册:增长速度的比较【精品课件】
(3)
1
1 2 1 4 1 2
, 2 , 4 可分别视为函数()
4
1
2
= ,() =
1
,ℎ()
2
在同一坐标系内分别作出这三个函数的图象,由图象易知
1
4
1
= 2,当 = 4时的函数值,
>
1
4
>ℎ
1
4
1
,即
1 4
2
1
>
1 2
4
>
1 2
.
4
反思
感悟
反思感悟
1.比较函数值大小的关键在于构造恰当的函数,若指数相同而底数不同,则考虑幂函数;若指数不同而底数
4
81
64
1.261
5
243
125
1.465
其中符合指数函数变化的函数是
6
729
216
1.630
1
7
2 187
343
1.771
8
6 561
512
1.892
…Hale Waihona Puke ……….
解析 (1)在一次函数、幂函数、对数函数和指数函数中,增长最快的是指数函数 = 5 ,故选D.
(2)通过观察、猜想、归纳,函数1符合指数函数的变化.
4.55 < 5,所以它符合奖金总数不超过5万元的要求.
再计算按模型 = 7 + 1奖励时,奖金是否超过利润的25%,即当∈[10,1 000]时,利用计算器或
计算机作() = 7 + 1 − 0.25的图象(图略),由图象可知()在[10,1 000]上是减少的,因此
解析 由于指数函数增长迅速,而对数型函数增长缓慢,因此满足先上升后下降再上升的是() =
2020年人教B版高中数学必修2课后练习(15)(有答案解析)
2020年人教B版必修2课后练习(15)一、解答题(本大题共11小题,共132.0分)1.已知下列直线方程,求直线的斜率及其在y轴上的截距:(1)2x−3y−6=0;(2)3x−y−7=0;(3)2x−5y=0;(4)x+y=3.2.求下列直线与两条坐标轴围成的三角形的面积:(1)3x−y+1=0;(2)5x−3y+2=0;(3)x+y−1=0;(4)x+3y−6=0.3.已知▱ABCD,其中三个顶点坐标为A(0,0),B(3,0),C(5,3),求它的对角线AC,BD所在直线的方程.4.在直线方程Ax+By+C=0中,A,B,C满足什么条件时,直线有如下性质?(1)过坐标原点;(2)与两条坐标轴都相交;(3)只与x轴相交;(4)只与y轴相交;(5)与x轴平行或重合;(6)与y轴平行或重合.5.已知点A(−3,2),B(1,−4),求AB线段的垂直平分线的方程.6.已知点A(−1,2),B(2,1),C(0,4),求△ABC三条边所在直线的斜率.7.求下列两条直线的交点,并作图:(1)3x−4y+8=0,5x+3y−15=0;(2)x−y=1,3x−4y−12=0.8.判断下列各组中两直线的位置关系:(1)l1:3x+4y−5=0,l2:4x−2y−1=0;(2)l1:3x+4y=5,l2:6x+8y=10;(3)l1:2y−3=0,l2:3y+5=0;(4)l1:y=13x+3,l2:y=13x+4;(5)l1:y=2x−3,l2:y=4x−3.9.求过点P且平行于直线l的直线的方程:(1)P(2,3),l:2x+y−5=0;(2)P(5,0),l:2x−3y−7=0.10.判断下列各组中两直线的位置关系:(1)l1:y=3x+4,l2:2x−6y+1=0;(2)l1:2x−6y+4=0,l2:y=x3+23;(3)l1:(√2−1)x+y=3,l2:x+(√2+1)y=2.11.对于直线方程2x+y+a=0,当a取不同的数值时,它们表示的直线有什么关系?在平面直角坐标系中,分别作出a=0,1,2时方程表示的直线.-------- 答案与解析 --------1.答案:解:(1)直线2x −3y −6=0化为斜截式为:y =x +2,故它的斜率为1,在y 轴上的截距为2.(2)3x −y −7=0化为斜截式为y =3x −7,故它的斜率为3,在y 轴上的截距为−7.(3)2x −5y =0化为斜截式为y =25x ,故它的斜率为25,在y 轴上的截距为0.(4)x +y =3化为斜截式为y =−x +3,故它的斜率为−1,在y 轴上的截距为3.解析:把直线的方程化为斜截式,从而得出结论.本题主要考查直线的斜截式方程,求直线的斜率和截距,属于基础题. 2.答案:解:(1)∵3x −y +1=0在x 轴上的截距为−13,在y 轴上的截距为1,故它与两条坐标轴围成的三角形的面积为12×13×1=16.(2)5x −3y +2=0在x 轴上的截距为−25,在y 轴上的截距为23,故它与两条坐标轴围成的三角形的面积为12×25×23=215.(3)x +y −1=0在x 轴上的截距为1,在y 轴上的截距为1,故它与两条坐标轴围成的三角形的面积为12×1×1=12.(4)x +3y −6=0在x 轴上的截距为6,在y 轴上的截距为2,故它与两条坐标轴围成的三角形的面积为12×6×2=6.解析:由题意先求出直线在在x 轴、y 轴上的截距,可得该直线和坐标轴围成的三角形的面积. 本题主要考查直线的截距,求直线与坐标轴围成的三角形的面积,属于基础题.3.答案:解:已知▱ABCD ,其中三个顶点坐标为A(0,0),B(3,0),C(5,3),设D(x,y), 由AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,可得(3,0)=(5−x,3−y),∴5−x =3,3−y =0, 求得x =2,y =3,∴D(2,3).故它的对角线AC 所在的直线方程为y−03−0=x−05−0,即3x −5y =0.BD 所在直线的方程为y−03−0=x−32−3,即3x +y −9=0.解析:根据题意可得AB⃗⃗⃗⃗⃗ ,求出点D 的坐标,再用两点式求出对角线AC 、BD 的方程. 本题主要考查求点的坐标,用两点式求直线的方程,属于基础题.4.答案:解:(1)当C =0,A 2+B 2≠0,直线过坐标原点;(2)当A ,B ,C 都不为0时,与两条坐标轴都相交,(3)当B =0,AC ≠0时,只与x 轴相交;(4)当A =0,BC ≠0时,只与x 轴相交;(5)A =0时,与x 轴平行或重合;(6)当B =0时,与y 轴平行或重合.解析:结合直线方程的系数特点及直线位置关系分别讨论可求.本题主要考查了直线方程的一般式的简单应用,属于基础试题.5.答案:解:设点P 为线段AB 的垂直平分线上的任意一点,则|PA|=|PB|, ∴√(x +3)2+(y −2)2=√(x −1)2+(y +4)2,化为2x −3y −1=0.即为AB 线段的垂直平分线的方程.解析:设点P 为线段AB 的垂直平分线上的任意一点,则|PA|=|PB|,利用线段垂直平分线的性质、两点之间的距离公式即可得出.本题考查了线段垂直平分线的性质、两点之间的距离公式,属于基础题.6.答案:解:由题意可得,直线AB 的斜率为1−22+1=−13,直线AC 的斜率4−20+1=2,直线BC 的斜率为4−10−2=−32解析:由题意结合直线的斜率公式即可直接求解.本题主要考查了直线的斜率公式的简单应用,属于基础试题.7.答案:解:(1)解方程组{3x −4y +8=05x +3y −15=0,得{x =887y =8529, ∴3x −4y +8=0,5x +3y −15=0的交点坐标为:(887,8529).(2)解方程组{x −y =13x −4y −12=0,得{x =−8y =−9, ∴x −y =1,3x −4y −12=0的交点坐标为(−8,−9).解析:(1)联立方程组,能求出两直线交点,利用描点法能作出图象.(2)联立方程组,能求出两直线交点,利用描点法能作出图象.本题考查两直线交点的求法,考查函数图象的作法,考查线面角的正弦值的求法,考查直线方程的性质等基础知识,考查运算求解能力,是基础题.8.答案:解:(1)两直线相交,但不垂直;(2)两直线的斜率都为−34,且不重合,故直线平行;(3)两直线平行;(4)两直线平行;(5)两直线相交,但不垂直;解析:结合直线的位置关系与斜率的关系即可直接判断.本题主要考查了两直线的位置关系的判断,属于基础试题.9.答案:解:(1)设过点P(2,3),且平行于直线l :2x +y −5=0的方程为2x +y +b =0, 把点P 代入可得4+3+b =0,求的b =−7,故要求的直线的方程为2x +y −7=0.(2)设过点P(5,0),且平行于直线l :2x −3y −7=0的方程为2x −3y +c =0,把点P 代入可得10−0+c =0,求的c =−10,故要求的直线的方程为2x −3y −10=0.解析:由题意利用两条直线平行的性质,用待定系数法求出直线的方程.本题主要考查两条直线平行的性质,用待定系数法求直线的方程,属于基础题. 10.答案:解:(1)∵l 1:y =3x +4的斜率为3,而l 2:2x −6y +1=0的斜率为13,不满足斜率相等或斜率之积为−1,故两直线不平行、也不垂直,两直线相交.(2)∵l 1:2x −6y +4=0的斜率为13,截距为23;而直线l 2:y =x 3+23的斜率为13,截距为23,故两直线有相同的斜率和截距,故两直线重合.(3)l1:(√2−1)x+y=3的斜率为1−√2,在y轴上的截距为3;=1−√2,在y轴上的截距为2−√2,而l2:x+(√2+1)y=2的斜率为√2+1故两直线斜率相等、在y轴上的截距不相等,故两直线平行.解析:先求出各个直线的斜率和在y轴上的截距,再根据斜率间的关系以及它们的在y轴上的截距,得出结论.本题主要考查由直线的一般式方程判断两个条直线的位置关系,属于基础题.11.答案:解:当a取不同的数值时,它们表示的直线平行,解析:结合直线的位置关系与直线斜率及纵截距的关系即可判断.本题主要考查了直线位置关系的判断,属于基础试题.。
推荐-高中数学人教B版必修2课件2.4 空间直角坐标系(1)
题型一 空间点的坐标
【例 1】已知一个长方体的长、宽、高分别为 5,3,4,试建立适当的空 间直角坐标系,写出长方体的各个顶点的坐标. 分析:可以以长方体的一个顶点为原点,建立空间直角坐标系,也可以 以长方体的中心作为原点.
解:如图所示,以 A 为坐标原点,AB=3 所在的直线为 x 轴,AD=5 所在 的直线为 y 轴,AA1=4 所在的直线为 z 轴,建立空间直角坐标系 Oxyz.
(2)d(C,D)= (-3-0)2 + [1-(-2)]2 + (5-3)2= 22.
求空间一点 A(x,y,z)关于坐标轴、坐标原点、坐标平面的对称 点的坐标.
剖析:对称点坐标问题,无非就是中点与垂直问题.空间点关于点 的对称点,与平面内点关于点的对称点定义一样,连接已知点与其对 称点的线段的中点即为对称中心;空间点关于直线的对称点,与平面 内点关于直线的对称点的定义一样,已知点与其对称点连接所得的 线段被对称轴垂直平分;空间点与其关于已知平面的对称点连接所 得的线段垂直于已知平面,且中点在已知平面内.
则 A(0,0,0),B(3,0,0),D(0,5,0),A1(0,0,4),C(3,5,0),D1(0,5,4), B1(3,0,4),C1(3,5,4).
建立坐标系的原则是让更多的点落在坐标轴上,进而使得点的 坐标表示比较简单.
题型二 空间点的对称问题
【例 2】在空间直角坐标系中,给定点 M(1,-2,3),求它分别关于坐标 平面、坐标轴和原点的对称点的坐标. 分析:此题要类比平面直角坐标系中点的对称问题,要掌握对称点的 变化规律,才能准确求解.
2.点在空间直角坐标系中的坐标 取定了空间直角坐标系后,就可以建立空间内的任意一点与三 个实数的有序数组(x,y,z)之间的一一对应关系. 点 M 为空间一已知点,在空间直角坐标系中,过这点作两条轴所 确定平面的平行平面,交另一条轴于一点,交点在这条轴上的坐标就 是点 M 相应的一个坐标.设点 M 在 x 轴,y 轴,z 轴的坐标依次为 x,y,z. 于是空间的点 M 就唯一确定了一个有序数组 x,y,z.这组数 x,y,z 就叫 做点 M 的坐标,记为(x,y,z),并依次称 x,y 和 z 为点 M 的 x 坐标、y 坐标和 z 坐标.反之,设(x,y,z)为一个三元有序数组,过 x 轴上坐标为 x 的点,y 轴上坐标为 y 的点,z 轴上坐标为 z 的点,分别作 x 轴,y 轴,z 轴 的垂直平面,这三个平面的交点 M 便是三元有序数组(x,y,z)唯一确 定的点.所以,通过空间直角坐标系,我们就建立了空间的点 M 和有 序数组(x,y,z)之间的一一对应关系.
高中数学必修2第三章知识点+习题+答案
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
新人教版新高考高中数学必修第二册全套导学案课后练习题
平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。
新教材2023版高中数学北师大版选择性必修第二册:数列在日常经济生活中的应用课件
新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
[教材要点] 要点一 三种常见的应用模型 (1)零存整取:每月定时收入一笔相同数目的现金,这是零存;到约 定日期,可以取出全部__本__利_和___,这是整取,规定每次存入的钱不计 复利(暂不考虑利息税). (2)定期自动转存:银行有另一种储蓄业务为定期存款自动转存.例 如,储户某日存入一笔1年期定期存款,1年后,如果储户不取出本利 和,则银行按存款到期时的1年定期存款利率自动办理转存业务,第2 年的本金就是第1年的_本__利__和___. (3)分期付款:分期付款是购物的一种付款方式.即将所购物的款数
[基础自测] 1.判断正误(正确的画“√”,错误的画“×”) (1)银行储蓄中,本金与月利率均相同,存期1年,则使用复利计算 应大于使用单利计算所得的本利和.( √ ) (2)某工厂生产总值连续两年的年平均增长率依次为p%,q%,则这
两年的平均增长率是 1 + p% 1 + q% -1.( √ )
3.某产品计划每年成本降低q%,若三年后成本为a元,则现在的成
本是( )
A.a(1+q%)3
B.a(1-q%)3
C.
a 1−q%
3
D.
a 1+q%
3
答案:C
解析:设现在的成本为x元,则有x(1-q%)3=a.
∴x=
a 1−q%
3.故选C.
4.李明存入5万元定期存款,存期1年,年利率为2.25%,那么10年 后共得本息和为__6_._2_46___万元.(精确到0.001)
解析:10年后的本息:a10=5×(1+0.022 5)10≈6.246(万元).
题型探究·课堂解透
2021年高中苏教版数学必修二名师导学:第2章 第15课时 直线和圆的位置关系
第15课时直线和圆的位置关系教学过程一、问题情境在课桌中心放置一张白纸,用圆规在白纸上画一个圆,将一把直尺从桌子的一边平行于课桌边缘平移到桌子的另一边.假如将直尺一条边看成一条直线,在这条直线移动过程中你看到了什么现象?(这是一个开放问题,没有精确答案,同学回答时可能都是“白话”,同学可能会回答“直线先靠近圆,再远离圆”、“直线先相离,再相切,然后相交,再相切,最终又远离”等.只要意思对,就应当赐予确定.让同学充分表达,为后面一系列问题做预备)二、数学建构问题1学校学过的平面几何中,直线和圆有哪几种位置关系?(该问题可能同学一开头已经回答了,在这里再次毁灭的目的是明确在数学中直线和圆位置关系的精确表述,只能是“相离”、“相切”、“相交”,不能用其他意思相近的词语代替)问题2在刚才的操作中,你能用数学符号来表示直线靠近(远离)圆吗?你会推断直线和圆的位置关系吗?(这实际上是直线和圆的位置关系的判定,同学在学校已经有确定的基础.在本节课中,再次毁灭这个判定,目的在于说明这个判定揭示的是直线和圆位置关系的几何特征)设圆心到直线的距离为d,圆的半径为r,则d>r时,直线和圆相离;d=r时,直线和圆相切;d<r时,直线和圆相交.问题3当直线和圆分别“相离”、“相切”、“相交”时所表现出来的几何特征分别是什么?(启发同学由图形猎取推断直线与圆的位置关系的直观认知,即他们看到的直线和圆相离时没有公共点,相切时只有一个公共点,相交时有两个公共点)问题4你能用数学语言来解释直线和圆没有公共点、只有一个公共点、有两个公共点的含义吗?(引导同学用直线与圆的方程推断它们之间的位置关系,即图象交点个数就是它们所构成方程组的解的个数)设直线l和圆C的方程分别为:Ax+By+C=0 (A,B不全为0),x2+y2+Dx+Ey+F=0 (D2+E2-4F>0).由直线l和圆C的方程联立方程组则方程组无解时,直线和圆相离;方程组仅有一组解时,直线和圆相切;方程组有两组不同的解时,直线和圆相交.问题5请总结一下到目前为止,推断直线和圆的位置关系有哪几种方法?它们有什么不同?(引导对学过的内容总结,由学校学过的平面几何过渡到解析几何,从“形”过渡到“数”,了解学问之间的联系和进展)几何法是平面几何的方法,是直线和圆的几何特征;而利用联立方程组的方法是解析法,是直线和圆的代数特征.利用代数的方法解决几何问题就是解析的思想.三、数学应用【例1】(教材P113例1)求直线4x+3y=40和圆x2+y2=100的公共点的坐标,并推断它们的位置关系.[3] [处理建议]直线和圆的交点坐标就是它们联立的方程组的解,本题让同学板演.[规范板书]解直线4x+3y=40和圆x2+y2=100的公共点的坐标就是方程组的解.解这个方程组,得所以公共点坐标为(10, 0),.直线4x+3y=40和圆x2+y2=100有两个公共点,所以直线和圆相交.[题后反思]求两曲线的交点坐标或交点的个数可以用联立方程组的方法,用方程组的解反映图形的状况,这是一般的方法,是通解.变式已知直线y=3x+m和圆x2+y2=2相交于点(1, 1),求直线和圆的另一个交点的坐标.[处理建议]让同学比较和例1的区分,直线的方程未知,先依据条件求出直线的方程,再联立方程组求解.在解方程时,实际上已经知道方程的一个根了,可以利用根与系数关系来解决,在上课时要引导同学留意这一点,这也是近几年高考中有所体现的题型.解由于线y=3x+m过点(1, 1),所以1=3+m,所以m=-2,将直线和圆的方程联立方程组消去y,得10x2-12x+2=0,由题意方程一个根为1,设另一个根为x2,则1×x2=,得x2=.将x2=代入直线的方程得y2=-,所以直线和圆的另一个交点的坐标为.【例2】(教材P113例2)自点A(-1, 4)作圆(x-2)2+(y-3)2=1的切线l,求切线l的方程.[4][处理建议]要求直线的方程还需要知道什么?先引导同学找准解决问题的方向,即还需要知道直线的斜率.再依据直线和圆相切的条件,列出关于斜率的方程,求出斜率.让同学在下面书写,老师可以找出用不同方式解题的同学上黑板板演.[规范板书]解方法一:当直线l垂直于x轴时,直线l:x=-1与圆相离,不满足条件.当直线l不垂直于x轴时,可设直线l的方程为y-4=k(x+1),即kx-y+(k+4)=0,由于直线和圆相切,所以圆心(2, 3)到直线l的距离等于圆的半径,故=1.解得k=0或k=-,因此,所求直线l的方程为y=4或3x+4y-13=0方法二:当直线l垂直于x轴时,直线l:x=-1与圆相离,不满足条件.当直线l不垂直于x轴时,可设直线l的方程为y-4=k(x+1),由于直线和圆相切,所以方程组仅有一解.由方程组消去y,得关于x的一元二次方程(1+k2)x2+(2k2+2k-4)x+k2+2k+4=0.依题意,这个一元二次方程有两个相等实根,所以判别式Δ=(2k2+2k-4)2-4(1+k2)(k2+2k+4)=0.解得k=0或k=-.因此,所求直线l的方程为y=4或3x+4y-13=0.[题后反思]处理直线和圆相切时,一般有两种方法,一是用几何法,即d=r;另一个是代数法,即通过方程组的解来分析.特殊要留意在设直线方程时,要关注直线方程适用的条件,往往要分状况争辩,这一点格外简洁遗漏.变式(2010年山东枣庄模拟改编)将圆x2+y2=1沿x轴正方向平移1个单位后得圆C,若过点(3, 0)的直线l 和圆C相切,求直线l的方程.[处理建议]本题照旧强调在设直线方程时,要分状况争辩.解将圆x2+y2=1向右平移1个单位后得圆的方程为(x-1)2+y2=1.过点(3, 0)的直线l方程分为两种状况:当斜率不存在时x=3,与圆不相切;当斜率存在时,设直线方程为y=k(x-3),即kx-y-3k=0,由于直线和圆相切,所以圆心(1, 0)到直线l的距离等于圆的半径,故=1.解得k=±.因此,所求直线l的方程为y=±(x-3).【例3】(教材P114例3)求直线x-y+2=0被圆x2+y2=4截得的弦长.[5][处理建议]本题同样有两种方法,让同学先思考,再找用不同方式解题的同学上黑板板演.假犹如学不能用两种方法解决,老师可以引导,如用“弦长就是一条线段长,即两点之间的距离.”引导同学用代数法;用“在我们学校平面几何中还学过关于弦长的问题吗?”引导同学用几何法,即用垂径定理来解决.[规范板书]解法一直线x-y+2=0和圆x2+y2=4的公共点坐标就是方程组的解.解这个方程组,得所以公共点坐标为(, 1),(0, 2),直线x-y+2=0被圆x2+y2=4截得的弦长为=2.(图2)解法二如图2,设直线x-y+2=0和圆x2+y2=4交于A,B两点,弦AB的中点为M,则OM⊥AB(O为坐标原点),所以AB=2AM=2=2=2.[题后反思]弦的相关问题不外乎用代数法或几何法解决,几何法侧重于图形特征,代数法侧重于运算,当条件具备几何图形的某些特征时,用几何法解答会更便利快捷.圆的弦长的求法:①几何法:设圆的半径为r,弦心距为d,弦长为L,则=r2-d2;②代数法:设直线与圆相交于A(x1,y1),B(x2,y2)两点,解方程组由方程组消去y,得关于x的一元二次方程,求出A,B的坐标,再用两点之间的距离公式求出弦长AB.变式1已知点A(1, 1),求过点A的圆x2+y2-4y=0的最长与最短的弦长.[处理建议]结合图象分析,找出过圆内一点作最长弦和最短弦的条件.[规范板书]解圆x2+y2-4y=0圆心为C(0, 2),r=2,由于点A(1, 1)在该圆内,所以过A最长的弦就是过A及圆心的直径,长为4;最短的弦就是与AC垂直的弦,由于AC==,所以弦长为2=2.变式2已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为8,求直线l的方程.[处理建议]把圆的方程化为标准式,求出圆心坐标和半径,求出弦心距的值.设出直线l的方程,由弦心距的值求出直线的斜率,即得直线l的方程.[规范板书]解圆x2+y2+4y-21=0的圆心坐标为(0,-2),半径r=5.由于直线l被圆所截得的弦长是8,所以弦心距为=3.由于直线l过点M(-3,-3),所以,当斜率不存在时,直线方程为x=-3,满足题意;当斜率存在时,可设所求直线l的方程为y+3=k(x+3),即kx-y+3k-3=0.则由圆心到直线的距离等于弦心距,得=3,解得k=-,此时直线方程为4x+3y+21=0.故所求直线有两条,它们分别为x=-3, 4x+3y+21=0.*【例4】已知点P(0, 5)及圆:C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程;(2)求圆C内过点P的弦的中点的轨迹方程.[6][处理建议]对于(1),要求直线的方程只需要求出直线的斜率,利用垂径定理求出圆心到直线的距离,从而得出关于斜率的等量关系,求出斜率;对于(2)只需要列出关于弦中点D(x,y)的等式即可.解(1)如图,AB=4,D是AB的中点,则AD=2,AC=4,(图3)在Rt△ADC中,可得CD=2.设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.由点C 到直线的距离公式=2,得k=,此时直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时的方程为x=0.所以所求直线为x=0或3x-4y+20=0.(2)方法一:设圆C上过点P的弦的中点为D(x,y),由于CD⊥PD,所以·=0,即(x+2,y-6)·(x,y-5)=0,化简得轨迹方程x2+y2+2x-11y+30=0.方法二:设弦的两个端点分别为A(x1,y1),B(x2,y2),弦的中点为D(x,y),则x1+x2=2x,y1+y2=2y.将A(x1,y1),B(x2,y2)代入圆的方程得①-②得(x1-x2)(x1+x2)+(y1-y2)(y1+y2)+4(x1-x2)-12(y1-y2)=0,同除以(x1-x2),得x+k AB y+2-6k AB=0,由于k AB=k PD =,所以x++2-=0,整理得轨迹方程x2+y2+2x-11y+30=0.[题后反思]在争辩与弦的中点有关问题时,留意运用“平方差法”,即设弦AB两端点的坐标分别为A(x1,y1), B(x2,y2),中点为(x0,y0),由得k==-=-.该法常用来解决与弦的中点、直线的斜率有关的问题.四、课堂练习1.对任意实数k,圆C:x2+y2-6x-8y+12=0与直线l:kx-y-4k+3=0的位置关系是相交.提示由于动直线kx-y-4k+3=0过定点(4, 3),而该点恰好在圆内部.所以直线和圆相交.2.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系是在圆外.解由于直线ax+by=1与圆x2+y2=1相交,所以圆心到直线的距离小于半径,则<1,即>1,所以点在圆外.3.(1)求过圆x2+y2=4上一点的圆的切线方程.(2)求过原点且与圆(x-3)2+(y-1)2=1相切的直线方程.答案(1)-x+y-4=0.(2)y=x和y=0.4.求过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长.提示本题有多种方法,用几何法,代数法都可以,都比较简洁.答案2.五、课堂小结1.在直线与圆的位置关系中,“直线与圆相切时求切线”和“相交时争辩与弦长有关的问题”是两个重点内容;求切线时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但留意有两条.2.解决与弦长有关的问题时,留意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式,就是通常所说的“几何法”和“代数法”.3.解决直线与圆的位置关系问题,一般有两种方法,即几何法或代数法,从运算的合理、简明的要求选择,通常接受几何法,但代数法具有一般性.4.数形结合法(如几何法)是解决直线与圆的位置关系的重要方法.。
新版高中数学北师大版必修2课件1.4.2等角定理与异面直线所成的角
-7-
第2课时 等角定理与异面直线所成的角
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
一题多解
探究一等角定理的应用
【例1】 如图所示,在正方体ABCD-A1B1C1D1中,M,M1分别是棱 AD和A1D1的中点.求证:
-12-
第2课时 等角定理与异面直线所成的角
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
一题多解
解:(1)所在直线与BC'是异面直线的棱
有:AA',DD',A'B',DC,AD,A'D'.
(2)因为AD'∥BC',所以AD'与B'C所成的角就是BC'与B'C所成的角.
探究一
探究二
一题多解
解法1(直接平移法)如图所示.
连接A1C1,B1D1交于点O,取DD1的中点G, 连接GA1,GC1,OG,则OG∥B1D,EF∥A1C1,故∠GOA1或其补角就是 异面直线DB1与EF所成的角. ∵GA1=GC1,O为A1C1的中点,∴GO⊥A1C1. ∴异面直线DB1与EF所成的角为90°.
D当堂检测 ANGTANG JIANCE
2.异面直线所成的角
如图所示,过空间任意一点P分别引两条异面直线a,b的平行线 l1,l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是异面直线 a,b所成的角.如果两条异面直线所成的角是直角,我们称这两条直 线互相垂直.记作:a⊥b.
人教版高中数学选择性必修2《数列的概念》PPT课件
间不能交换位置.
所以,①是具有确定顺序的一列数.
2.在两河流域发掘的一块泥版(编号K90,约产生于公元前7世纪)上,有一列
依次表示一个月中从第1天到第15天每天月亮可见部分的数:
5,10,20,40,80,96,112,128,
∗
(1)数列的通项公式实际上是一个以正整数集 或它的有限子集{1,2, … ,}为
定义域的函数的解析式.
(2)利用一个数列的通项公式能解决以下问题:
①求出该数列的各项;
②判断某个数是否为该数列中的项;
③判断该数列的增减性;
④求该数列的最大项和最小项等.
(3)同“所有函数不一定都有解析式”类似,并不是所有数列都有通项公式,如
1
2
反映了− 的次幂按1次幂、2次幂、3次幂、4次幂……的顺序排列时的确定位置,
1
1
1
即1= − 2是排在第1位的数,2= 4是排在第2位的数,3= − 8是排在第3位的
数,…,它们之间不能交换位置. 所以③是具有确定顺序的一列数.
归纳: 上述例子的共同特征是什么?
新知讲解
一、数列的定义
+1 − =0 ⇔ { }为常数列.
四、数列的通项公式
如果数列{ }的第项与它的序号之间的对应关系可以用一个式子来表示,那么
这个式子叫做这个数列的通项公式.
例如,数列③的通项公式为=
1
− 2 .显然,通项公式就是数列的函数解析式,根
据通项公式可以写出数列的各项.
对通项公式的五点说明:
例2 根据下列数列的前4项,写出数列的一个通项公式:
1
高一数学必修2各章知识点总结
高一数学必修2各章知识点总结高一数学必修2各章知识点总结高一数学必修2各章知识点总结1、圆柱是由()旋转得到,圆锥是由()旋转得到,圆台是由()旋转得到,球是由()旋转得到.2、中心投影的投影线相交于()点,平行投影的二维线互相().3、圆柱的正视图和侧视图都是(),俯视图是();圆锥的正视图和侧视图都是(),俯视图是圆和圆心;圆台的正视图和侧视图都是(),俯视图是两个();球的三视图都是()4、空间几何体的表面积:(1)直棱柱的尾部侧面展开图是矩形;设棱柱的高为h,底面多边形的周长为c,则直棱柱的侧面积();(2)正棱锥的侧面侧面展开图是四边形的等腰三角形;设正棱锥底面正多边形的底面为a,底面周长为c,斜高为h,则正n棱锥的侧面积();(3)亟需棱台的侧面展开图是全等的等腰梯形;设正n棱台的上底面、下才底面边长分别为a、a,对应的周长分别为c、c,斜高为h,则正n棱台的侧面积();(4)圆柱的侧面展开图是矩形;设圆柱的底面半径为r,母线长为l,则圆柱的底面面积为(),侧面积为(),圆柱的表面积();(5)圆锥的侧面展开图是扇形;设圆锥的底面半径为r,母线长为l,则锥形的侧面积为rl,表面积();(6)圆台的侧面陷入僵局图是扇环;设圆台分设的两正方形半径分别为r、r,母线长为l,则棱台的侧面积为(),表面积();(7)设球的半径为R,则球的表面积().5、空间二维的体积:(1)设柱体(棱柱、圆柱)的底面积为S,高为h,则柱体的体积();(2)设锥体(棱锥、圆锥)的底面积为S,高为h,则锥体的体积();(3)设台体(棱台、圆台)的上、下底面积分别为S、S,高为h,则台体的体积();(4)设圆柱的底面半径为r,高为h,则圆柱的体积();(5)设圆锥的底面半径为r,高为h,则圆锥的体积();(6)设圆台的上、下让底面半径分别为r、r,高为h,则圆台的体积();(7)设球的半径为R,则球的体积()6、平面的特征:平的,无厚度,可以无限延展.7、平面的基本性质:公理1、数学符号表示:公理2、.数学符号表示:公理3、数学符号表示:推论1、点儿经过一条直线和直线外的一点,有且只有一个投影.推论2、经过两条连通直线,有且只有一个投影.推论3、经过两条路线平行直线,有且只有一个投影.公理4、数学符号表示:()8、等角定理:推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.9、直线与平面平行的判定定理:()数学符号表示:()直线与平面平行的性质定理:()数学符号表示:()10、平面与平面平行的相连接确认方法(1)判断定理:一个平面内的投影两条相交直线与另一个平面平行,则这两个平面平行.数学符号表示:()(2)垂直于同一条平面直线的二个平面平行.数学符号表示:()(3)平行于任一平面的两个平面平行.数学符号表示:()平面与平面平行的性质:(1)性质定理:如果两个对角线平行,那么其中一个平面内的任意直线均平行于另一个平面.数学符号表示:()(2)如果两个平行平面相交处同时和第三个平面相交,那么它们的交线平行.数学符号表示:()11、直线与平面垂直的判定方法:(1)判定定理:这条与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.数学符号表示:()(2)如果两条平行线平行直线中一条垂直于一个平面,两条那么另数条也垂直于这个平面.数学符号表示:()(3)如果一条直线垂直于两个平行中一个,那么该直线也垂直于另一个平面.数学符号表示:()直线与平面垂直的性质定理:垂直于每一平面的二个两条直线平行.数学符号表示:()12、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面径向.数学符号表示:()平面与平面垂直的属性定理:两个平面垂直,则一个平面内垂直于交线的直线与另相交处一个平面垂直.数学符号表示:()13、双曲线的倾斜角和斜率:直线的倾斜角:当直线l与x轴相交时,x轴()与直线l()的方向之间所成的角叫直线的倾斜角,范围是()(1)新设直线的倾斜角为,斜率为k,则.当2时,斜率不存在.(2)当090时,k0;当90180时,k0.(3)过P1(x1,y1),P2(x2,y2)的直线斜率.14、两对角线的位置关系:两条直线l1:yk1xb1,l2:yk2xb2斜率都存在,则:(1)l1∥l2()且b1b2或(2)l1l2k1k21(当l1的斜率存在l2的斜率不存在时l1l2)或(3)l1与l2重合()且()与直线l:xyC0垂直的直线方程为xyD022、圆的标准方程:(圆心Aa,b,半径长为r)圆心O0,0,半径长为r的圆的方程23、点与圆的位置父子关系:设圆的标准方程(xa)2(yb)2r2,点M(x0,y0),则:15、直线方程的形式:(1)点斜式:()(定点,斜率存在)(2)斜截式:()(斜率存在,在y轴上的截距)(3)两点式:()(两点)(4)截距式:()(在x轴上的截距,在y轴上的截距)(5)一般式:()16、直线的交点坐标:设l:Ac,则联立方程组A1xB1yC1011xB1y10,l2:A2xB2yc20A2xB2yC20(1)当方程组有惟一解时,两条直线相交,此解是交点的坐标;(2)当方程组无解时,两条直线平行;(3)当方程组有无数组解时,两条直线重合.设l1:A1xB1yc10,l2:A2xB2yc20,(系数不为零)则:(1)l1与l2相交;(2)l1∥l2;(3)l1与l2重合.17、两点P1(x1,y1),P2(x2,y2)间的距离公式()原点0,0与任一点x,y的距离()18、点P0(x0,y0)到直线l:xyC0的距离()19、两条平行直线xyC10与xyC20间的距离(d=20、过直线l1:A1xB1yc10与l2:A2xB2yc20交点的切线方程为(A1xB1yC1)(A2xB2yc2)0R21、与直线l:xyC0平行的直线方程为xyD0CD)(1)当点在圆上时,()(2)当点在圆外时,();(3)当点在圆内时,().24、圆的一般方程:x2y2DxEyF0D2E24F0(1)当D2E24F0时,表示以()为圆心,()为半径的圆;(2)当D2E24F0时,表示一个点();(3)当D2E24F0时,不表示任何图形.25、直线与圆的位置关系:设直线l:xyC0与圆C:(xa)2(yb)2r2,圆心到直线的距离(方程组AxByC0,为方程组消去一元后得到的方程的判别式,则:(xa)2(yb)2r2(1)相交dr0方程组有两组实数解;(2)相切dr0方程组有一组实数解;(3)相离dr0方程组无实数解.26、圆与圆的位置关系:设圆C1的半径为r1,圆C2的半径为r2,则:(1)C1与C2相离();(2)C1与C2相切((3)C1与C2相交();(4)C1与C2内切((5)C1与C2内含().27、点P1(x1,y1,z1),P2(x2,y2,z2)间的距离(),点P1(0,0,0),P2(x,y,z)间的距离().)););高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线倾斜角。
人教版高中数学必修2《余弦定理》PPT课件
[微思考] 勾股定理和余弦定理有什么关系? 提示:余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. 2.解三角形的定义:
一般地,三角形的三个角A,B,C和它们的对边a,b,c叫做三角形 的_元__素__.已知三角形的几个元素求其他元素的过程叫做_解__三__角__形__.
(二)基本知能小试
1.判断正误:
2×( 6+ 2)×2 3×cos 45°=8,
所以 b=2 2. 由 cos A=b2+2cb2c-a2,
得 cos A=2
22+ 6+ 2×2 2×
22-2 6+ 2
32=12.
因为 0°<A<180°,所以 A=60°.
(2)由余弦定理,得 a2=b2+c2-2bccos A =(b+c)2-2bc(1+cos A), 所以 49=64-2bc1-12,即 bc=15. 由bbc+=c1=58, 解得bc==53, 或cb==35.,
二、应用性——强调学以致用 2. 在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用
三角形的三边长求三角形的面积.若三角形的三边长分别为 a,b,c, 则其面积 S= pp-ap-bp-c,这里 p=a+2b+c.已知在△ABC 中, BC=6,AB=2AC,求当△ABC 的面积最大时,sin A 的值. [析题建模] 由海伦公式,结合基本不等式,求出△ABC 的面积最大时 边 AB 及 AC 的长.再由余弦定理求出 cos A,进而求出 sin A.
6.4.3 余弦定理、正弦定理
明确目标
发展素养
1.借助向量的运算,探索三角 1.通过对余弦定理、正弦定理的学习及运
形边长与角度的关系,掌握 用,提升直观想象、数学抽象和逻辑推
余弦定理、正弦定理.
人教版高中数学必修二教材课后习题答案及解析【精品】
•教材习题解答练习0M1.⑴(6“21 略,瓷⑴四梭柱(闍略打(引匮锥与半除俎成的向单组命怵(圏略X (3)13棱柱与珠组成的简单组台体(图略门(4>«个麗台组合而成的筒单姐台■体(图略】.x(i)Ea^(~視图略儿(幼四十黑柱组成的简单爼合怵(三视国略几4三楼耗.•敦材习也孵答⑴如图1-2 - 3 -门/13听小'yA.「门如1痢11 门2 3H t圈1 i所示’14图I 2 3 19点评木懸舟省工州图卅的二P见却询制法.2. <1)三懂拄H刀isfn〔希四fttt*⑴)四磧柱与恫柱组合血磴的简羊组合林.証略*札卷5用B组1:略:签咯*乳此題菩徐不唯一冷一种省秦擡樹15个4、止方体齟會閔施的他单址合怩+如RJ1 - 2 - 3 2L♦教材习题擀答练习(『)1,解:设圆锥的底面半径为严母线畏沟h別由JS意得乂岡讹的削山111科图为T-J.-1-K J. (1 S 皿即I A捋◎代入①式得Q=3JI F.畀。
如|划t 2 220F3 1 2 3 21SirJu哉園隼的底面(8直卷为彩鬲二点评柠畫俯面堰幵国右側锥的不变关泵辰公式的应用,2 .解*机器零件的表面机pf# fti 是圆柱的«面积加上桂柱的全面积.VHIS 的側商報 Si /-2ftXXX2G- 15O!E=sl71(mm )*棱柱的它而积 > 12X j <ft-2 X 6 X -i- X 12> 12 迖孕切 ms. 2 Him )*二一牛机器的金面S=St-h*-l 579.25(mm >.JN IQ 000个零杵的全而积为15 7t?2 500 nun 15.旳2 5 m\故需锌的重虽为】$, 792 5XO P U^l t 7l kfi,点评 本IB 哮査良余儿何的驶働税求孝和鮮实际问昭及埸算能力. ♦教材习题解答K 卩}1. 刑大到原来的8倍戈2, *¥:il :A 休的钊'fO 检为尽!*球的壯栓R 舟 *点评 以上三1»常直公貳的灵活运用能力+ 习题I 3(1\JA 组1 •解’傭而都星等禮梯形・R 上底为8 cm,下底为18 cm.Wft-fc U erm 可得斜高(由『号)‘ =12, S«=5xi^^X 12=780( cm 2h答:780 cm\点评本題夸曹棱台申的庖制梯形的应用和棱幷的1W 面面祝公式+乙鸠:恤台的M Efii ft! $ ―只“+孙・/•捌台底附积节一乩亠:S,.—煮厂+R X rtl 己知得就"R )/=(r-R g :・t 七圣.恵评木题有直对iifiitt 面积、底而和、表面积概急的理解•要将三者区别幵来* 男蚪考査了解方程的能力.3.解假止方休的楼辰协•刚V 命_T x T /r "T*剩.余儿何休的V-V,.lt V "二川―彳―土才”S=inR £ = 4n/(鬻)'皿 >/.^60 OOOjr^sl04(cw- 3.解八 *= -yrK —所权播惟怖休积与霖F的几何休的林积之比为1 1二点评辰题槽査三杭惟体积的求法和"割补注”求M何住的休枳的方迭.4,当三棱柱形客器的憶面AA.B.B水平枚置时,液面部分是四棱柱形*其商为原三棱柱障寻器的髙*憫陵A-1, 乳设十底面AEC水平放置时・液而高为乩由已卿条件知•四桂柱底面与原三桂柱诧酣啣积2比为工;4•由于两种状态下我体休枳相3X8=4XAM=6-Pljt AfJC*Tftt置时*菠面高为£点评展塵考査休砂变換能力,奥註总在几何徉转换过包"「+水旳休枳妁终干变+ 5•解*由J8意*需贴瓷砖的部分为网梅柱与网複台的啊倆积之和・民心十二1> U),■,»{)- 12St>)ii;rii )*四楼合的斜离"二JltV -(迪「=5再『<m)・吕叶” =I》即打曲吃"-1 55S(cni ),故捕翼■«*的面報數为13 800+1 55»=14酹9仪“」>点评辰矚毒查倚单组合护的傭面积求法和解决致:际问題的能力氐攝示*先求出竽嚴梯形的面祝•再乘以化京到上海的铁路険长0P可•请冋学们自已完城”H W1.解,由三视图逝出它的言观国如l¥l 1 - 3 - 2 16所娠..Fl A | H| —(| f J| —.A B —C D -'- H cut ♦A t D, ■ ('i /J - A r D'™C B' 4 cm*球的苴悴为彳EF= (Hl12 cm J XI) f;「16 rm<EJf 1^(i8 rm*A L A"=B0=「|广=1」|打CTU.伍求出料棱育AHEF而上的料髙和-JP宁亍了之疗cm.再求E四債舍UF(^ Ifll上的卅高h —買”?12;' - 2 ^/7LILI+则久=用幷=% *严TWmV)■几=+卫=亠・2 -芋和冋Sn ttlf-S n KH B=<8-4) X2 X20=^480 mv 卫側” =4 XH X2()=肌0 cm . 也汁—给时”匚亠九—2(匚严p 皿亠2(工^)卞2听亠豹X !fit 12X6 = (11275 ^416)cm?=-1( 12X 8^2OX lfi+/12XSX2OX16) X 2•>=十(更7^+ 1】们rm .•5代奖杯的表而探s+ snia(1-FS H44ifiir !曲-J 12^5 -F 4 16^-1 193( m T杯的体机卩一'j 9 夕_匕|+巧.耐+较“卄=yK+64D + y (32 阿+ 416)*1067 cm\答t豐杯ffl我血枳约为I 193 g •悴积约为 1 067 cm\点评転題考煮吧察国闿想線力,运尊能力據解综合|^ 139 17题的能力.2.证期’如图1 - 3 - 2 - 17所示•因为三棱柱的侧面制是矩形•則傭面积为底乘以高.而髙相等•所以要证任意啊个侧面的面积和去于第三个侧面的tfliffi-H要证明三Stt±.底面匕任意H边的和大f第三边即可<而这是显ffi的.点评本題痔査将空佃问應转化城平丽间趣的能力.3. 为釉的直观即如阳】3 2 1SC1 >所示”三规阳如图】3 2 3S(2)所示.图】3 2 19点评本题考査画直观图和三槻图的能力,2 18(2)以直帝边为轴雌縛而戚的儿何体的直现將如阳】如用1 3 219(2)所示+汕(1〉所示.三觇图(I >iF■枫♦教材习题解答塩习参考JRIJMAffi(幼三橈柱或是三陵育t(3川j丄*{」打』川■”;(5ht・石\玄如1 舲所示,朗I 32点评 号育市三视图还原咸丈抑悶和将实詢圏同成直氐團的能力* 4.略.5”解巾癒蔥得三梭柱的底面三角形外接圆足E1拄的底面三角瑶F 卜接的亶植 是碉柱的底面直栓或母縊,植岡桂的廣面羊栓为尺"则卩=竄曙*2R=2nR' •化疋=彩. 征中股边长为s 则轧・寻—氏即 心冲・5心—%」普R . X 钳—$ 一心* 21i •芈说 0 学/?-翠 € 乩解丸求出一乍接头需要的铁皮玄「热后再计阜恵量且r rs, =n(r t +n)^=it(25+L0) XS5=1 225^(^),Z* S - lOgDQOXSj = 1Z 250 ^>()K12 25OD0()X 3t iTO 1 3】-37 &75 000(cm ) =3 797t 5(m H 7»8<m 答 制作l 万个这惮的接1需屢3缺列的铁皮. 点评 启匮考査■台需面积前求法及单经换1T 7,表面积肉为◎匸怵稅约为176,H 视图略. 8用9*<1)64;(2)S ;(3)2^;(4)24I (5)S T 48 cm cm . 10.它ff J fi'J 董面积分别对36K cm *21 JT w *里巧;B&(P>n)匚(1)三视宙如国I - 33两就.直观圏如图1 -:甘所示. 点评 程题痔查空河担象能JJ 和呦阳能力. 怕)» =8> ^0X 30X^1)60 二! 800#<CTTI 几 V^SX-j-S^n, • A=2XyX30X30X 丿30;■尸=9 0007?(cjn ). 点评 术■■卜题喝資齐面休的衣而积和休稅求沈. 〔:1 略.圏1 - U乙解 V-f '. F J? 4 XX ].[ X2;/ -63 H7h!Df ),■J2水巾球的怵积为匕 V. ■— 13 6115 几 卩“呻=期 X60K55 = 264 OOOlcm^hA V 4 200 000 2fiJ 000 200 000 = 61 ODO>43 fill. 故水槽中水不会镒昭*rm ■ 12n rm + 144J3 r cm图1 34点评示題哮育训搔方法.点评本題哮責休枳公试的求法和解窘球问赳的能力.3, 解它是由闍1恥所賦的国形L绕线f艇转而成的•其屮匸与0不相乞点评布腿韦賈观察图形的能力和魁象能力.4. 如图1 鼬”由題意得*Hd mEFF g且四边形ABCD为正方带.AOF=y(cm)t OF= /EF -OP点评考査四撓惟的休积求法和平面图形•与立体图刑z何的关系.•教材习题解答练习(P-)1.1>解汝育线sf川間两樹交•交点分别ArAJ九匚如圈? 1 1 0・则A*區C三点不在一直践上*A Ae iNF »「匸s同理廿匚i机一仏A由^.A.i二疽线可1ft定一平面. 点评本题考査公理2,2. ⑴不并面的四点町御邃4个平面.(2)共点的三旃肯线可确定1个或吕个平而.点评本地占査公理2的应用,3, (1)X (2)V (3)^/ ( Hv/(DV平面”与平面B相兗』h与君有一条公其直线二•有无数爹个公其鼠(2)在已知亘线上耽不同两点.再加上直燼外一点构成不共线三原*由您理2知确定一平潮.⑶抚两备直线t分SM -点(T同于交点)・朝构虑不其线-点・rtl公理2可知砸定一令平面.H J•三个不共耀的点•可确定一个平面•化两平而範合.1/3II 爭 1 35£ yi()O~~(cm>,* yi 00 X'.图I 361^ 2 1 1 ?21^2 I 1 23♦教材习题解答练习2J因为“与平【帀厘金乎廿吐却则^与口的也逹先糸为相交+即4与住台一节公捷点.所W(A)UD)两选项排除*苦“内存在一餐线仃与4平行.则不妨设应与“ 交J柑点•住Q内‘过O盘作亶线c#緘则由公理4可知口〃一这与口与{交于”点矛盾,所以选答索(BX点评此魁考査直线与平面的位賈关泵•同时为将来判斷直线与平面平和罢宦了基础+♦教材习题解答阁 2 ! - 4 9 点评本壮舟宜空间平而的垃国关条歴空何悴阁能力+习题2-KP.J三个平而两两相交川;么它门的交线冇-荒或三金.如盟2 1 1 9人组匕如惘2】1 10b3•门2 (梯形的h,T底平帕由平厅线定文知共而)⑵X(肖附上两点恰好为直径两端点时冷过这三点不能确定平面)[加W (由平杼公理4可得结论)(!)X 导\胡卜吋*/也无公其点)(5)X (“鼻可能平忏•也可能相交)点评木題考資平面的tt痕+空阖两直线的位罢关盘4. 【1眉£由斥面苣线所成柏定又或等角定理)⑵* (由界面直錢所虜角取垂面内蛹纽垂直的郷定)<3)2 f由公理2可得结论)〔门平行戒在平面内【5)平行或护交(仍ftl交或痒潮点评車魁考查空间购直线的位掘关乘+5. 典而点评本圍考査參理2的应用.6. 证明’ *:AA f//bK W AA'= ”用・/.四边能盘且F削为平行四边形.7J f+ 同理Ii('£ Ii\'f.AZAfJ('=Z.VB'C\二△AM 宜△ATfL”点评本趙哮査公理4蜃其应用.m直线悶购平打且不共面,一共前建三个平面•妁果三条直域交于一点剧最参确定三卜平面.8.正方休餐而所在平面分空何成27部分.点评松考査孕生的空何怨象能力TB组1.(l)C ⑵D ⑶1:点评加题考背空间想喩能力•异面育线所成角的求法.2.证明t fcM 平面ABC.所以PE甲喲Ati(\pe^.所以卩在平面ABC:与晋面«的灾红上.同理可证,Q 和R均在这条直线I:.所以畀三点共线.点评先确定一輦宜期•再证羽具他点也在这条直域上.无址明:如图2 1 I 13,11接ACEF』;几TEF井别为AB .BC点*.Jj<;DU1“r= * e『--—=■-DC DA3:A\GJL丄一1「*图2 1」】3 ▼ 3AEF# HG H EF 护HG人四边磁EWH沟梯形.二梯闿関腰£H*Ff;相空.设处点为K,VFJ/C吓閒ABJ儿AK€ 平面ABD,FGU平ffi CBDt代K€平面CBD・血平而AIH)门平而CfU)-BPtr・K13UXEH.FQ.BD交于一点K,点评木起哮艸公理2和公刊:匚♦教材丁题解答练习|P“1, ⑴平面WrVD*平面A'MLry和却平面R卍「「*平面tV”门心、平面ECC®;平面 A % £01点评頁査肓线与平面平行的判定定理.2. ££^ B/J)//平面AEf'+证闍主如图2 2 1 id■连接H打交如m连接0艮在△ dBm中・OE为三用腦耳I位线,/.()E// BO,. Z V BD, C平而AEL\()?;c 平面AEGU#晋而AEC.♦教材习题解答练习(%)UI ■错谍.反长方怦为樸型+如劇222F 分别为ATT’Uir 的中点加7TU 平面A7J7?* D\EFC T 而A f lV('t I)\A t I),/f 平而 BCCE\ EF#平面BCC.但平面 EC与平面A%" LD 中交.(2」止确.点评本題考査平面与平面平存的定文和判定定理的务fF. Z 提示,餐昜证明-VIX /f EF. \A //EH.进而可证平面AMN..「平面EFDK3」A)不止确”白怏方肚为模型*如觀22 2p14则在平面A BCD 内与BC TJ T 的所有直拔都4 * <z2与平商JXL/T 平fr + (U 于面AHCD 与甲面 /Tl1;e ___________皿:足相交的./馆〕不疋蹴以长方体为模取.如陌222st14 • ATT# 平面 A BCD〃平圏 2 2211® ABCD 与面放:「少期空.f 「[不疋确*以长方怵为摸型*如圏2 • 2亠2 • 1鉄"0'〃平面BCrB^HC// 平面A^C'D K但平面BCXTB 1与"7H :P‘相交.(b 〉平面与平面平疔的定义.A(D).点评 星题迪过对两平面平行判定的分析J 音拒学生周密分析问题的能力./J"£li f7 ’一z1序Z \Z[圈 2 22 13♦教材习题解答(1) X 同时过疋』两自线的平面不符合蚤件.(2) X "与皿内直觀有平厅和异面的曲种位置癸JK. unX胡与h可能出现w种悅胃.黄系;平厅、相交,界耐(*26”‘过“作平齒P 交* 于一虎评事馳曹查线itii的平行真系的判定礙性喷.习题2.2(l\t) .X组h(A)以怅方休为模星*如阁2 2 4 —则平面AHCD与-F ^ABB 线 D平杼・S1 网f而和交-点许廉題曹靑两平而平h■的判定.(力(D)直甥口不与世平怡则心或4与a ffi*. 点评肚题E霆也线与平而前位邀关乐.(恥(「)*:0 $PGm翼由P和H线。
人教A版(新教材)高中数学第二册(必修2)课件:9.2.2 总体百分位数的估计
2.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是________. 解析 因为8×30%=2.4,故30%分位数是第三项数据8.4. 答案 8.4
3.一组样本数据的频率分布直方图如图所示,试估计此样本数据的第50百分位数为 ________.
解析 样本数据低于 10 的比例为(0.08+0.02)×4=0.40,样本数据低于 14 的比例为
规律方法 计算一组n个数据的第p百分位数的一般步骤: (1)排列:按照从小到大排列原始数据; (2)算i:计算i=n×p%; (3)定数:若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的平均数.
【训练1】 如图所示是某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折 线统计图,由图可知这10天最低气温的第80百分位数是( )
一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有__p_%____ 的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
2.计算一组n个数据的第p百分位数的步骤 第1步,按__从__小__到__大___排列原始数据. 第2步,计算i=n×p%. 第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整 数,则第p百分位数为第i项与第(i+1)项数据的___平__均__数___.
解 (1)将所有数据从小到大排列,得 7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9, 因为共有12个数据, 所以12×25%=3,12×50%=6,12×95%=11.4, 则第 25 百分位数是8.0+2 8.3=8.15, 第 50 百分位数是8.5+2 8.5=8.5, 第 95 百分位数是第 12 个数据为 9.9.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2指数函数(一)学习目标 1.理解指数函数的概念,了解对底数的限制条件的合理性.2.掌握指数函数图象和性质.3.会应用指数函数的性质求指数型函数的定义域、值域.知识点一指数函数思考细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与y=x2有什么不同?答案y=2x.它的底为常数,自变量为指数,而y=x2恰好相反.梳理一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.特别提醒:(1)规定y=a x中a>0,且a≠1的理由:①当a≤0时,a x可能无意义;②当a>0时,x可以取任何实数;③当a=1时,a x=1 (x∈R),无研究价值.因此规定y=a x中a>0,且a≠1.(2)要注意指数函数的解析式:①底数是大于0且不等于1的常数;②指数函数的自变量必须位于指数的位置上;③a x的系数必须为1.④指数函数等号右边不能是多项式,如y=2x+1不是指数函数.知识点二指数函数的图象和性质指数函数y=a x(a>0,且a≠1)的图象和性质1.y =x x (x >0)是指数函数.( × )2.y =a x +2(a >0且a ≠1)是指数函数.( × )3.因为a 0=1(a >0且a ≠1),所以y =a x 恒过点(0,1).( √ ) 4.y =a x (a >0且a ≠1)的最小值为0.( × )类型一 求指数函数的解析式例1 已知指数函数f (x )的图象过点(3,π),求函数f (x )的解析式. 解 设f (x )=a x ,将点(3,π)代入,得到f (3)=π, 即a 3=π,解得a =π13,于是f (x )=π3x .反思与感悟 根据指数函数的定义,a 是一个常数,a x 的系数为1,且a >0,a ≠1.指数位置是x ,其系数也为1,凡是不符合这些要求的都不是指数函数.要求指数函数f (x )=a x (a >0,且a ≠1)的解析式,只需要求出a 的值,要求a 的值,只需一个已知条件即可.跟踪训练1 已知指数函数y =(2b -3)a x 经过点(1,2),求a ,b 的值. 解 由指数函数定义可知2b -3=1,即b =2. 将点(1,2)代入y =a x ,得a =2.类型二 指数型函数的定义域、值域问题 命题角度1 y =f (a x )型例2 求下列函数的定义域、值域. (1)y =3x 1+3x ;(2)y =4x -2x+1. 解 (1)函数的定义域为R (∵对一切x ∈R,3x ≠-1). ∵y =(1+3x )-11+3x =1-11+3x,又∵3x >0,1+3x >1, ∴0<11+3x<1,∴-1<-11+3x <0,∴0<1-11+3x<1,∴值域为(0,1). (2)定义域为R ,y =(2x )2-2x +1=⎝⎛⎭⎫2x -122+34, ∵2x >0,∴当2x =12,即x =-1时,y 取最小值34,同时y 可以取一切大于34的实数,∴值域为⎣⎡⎭⎫34,+∞.反思与感悟 解此类题的要点是设a x =t ,利用指数函数的性质求出t 的范围.从而把问题转化为y =f (t )的问题.跟踪训练2 求下列函数的定义域与值域. (1)y =1-⎝⎛⎭⎫12x;(2)y =a x -1a x +1(a >0,且a ≠1).解 (1)∵1-⎝⎛⎭⎫12x≥0,∴⎝⎛⎭⎫12x ≤1,解得x ≥0, ∴原函数的定义域为[0,+∞).令t =1-⎝⎛⎭⎫12x(x ≥0),则0≤t <1,∴0≤t <1, ∴原函数的值域为[0,1). (2)原函数的定义域为R .方法一 设a x =t ,则t ∈(0,+∞). y =t -1t +1=t +1-2t +1=1-2t +1. ∵t >0,∴t +1>1,∴0<1t +1<1,∴-2<-2t +1<0, ∴-1<1-2t +1<1.即原函数的值域为(-1,1).方法二 由y =a x -1a x +1(a >0,且a ≠1),得a x =-y +1y -1.∵a x>0,∴-y +1y -1>0,∴-1<y <1.∴原函数的值域是(-1,1). 命题角度2 y =a f (x )型 例3 求函数y =32x -1-19的定义域、值域.解 要使函数有意义,则x 应满足32x -1-19≥0,即32x -1≥3-2.∵y =3x 在R 上是增函数, ∴2x -1≥-2,解得x ≥-12.故所求函数的定义域为⎣⎡⎭⎫-12,+∞. 当x ∈⎣⎡⎭⎫-12,+∞时,32x -1∈⎣⎡⎭⎫19,+∞. ∴32x -1-19∈[0,+∞).∴原函数的值域为[0,+∞).反思与感悟 y =a f (x )的定义域即f (x )的定义域,求y =a f (x )的值域可先求f (x )的值域,再利用y =a t 的单调性结合t =f (x )的范围求y =a t 的范围. 跟踪训练3 求下列函数的定义域、值域:(1)y =0.311x -;(2)y =解 (1)由x -1≠0,得x ≠1, 所以函数定义域为{x |x ≠1}. 由1x -1≠0,得y ≠1, 所以函数值域为{y |y >0且y ≠1}.(2)由5x -1≥0,得x ≥15,所以函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥15. 由5x -1≥0,得y ≥1,所以函数值域为{y |y ≥1}.类型三 指数函数图象的应用 命题角度1 指数函数整体图象例4 在如图所示的图象中,二次函数y =ax 2+bx +c 与函数y =⎝⎛⎭⎫b a x的图象可能是( )答案 A解析 根据图中二次函数图象可知c =0, ∴二次函数y =ax 2+bx ,∵ba >0,∴二次函数的对称轴为x =-b2a<0, 排除B 、D.对于A ,C ,都有0<b a <1,∴-12<-b2a <0,C 不符合.故选A.反思与感悟 函数y =a x 的图象主要取决于0<a <1还是a >1.但前提是a >0且a ≠1. 跟踪训练4 已知函数f (x )=4+a x +1的图象经过定点P ,则点P 的坐标是( ) A .(-1,5) B .(-1,4) C .(0,4) D .(4,0)答案 A解析 当x +1=0,即x =-1时,a x +1=a 0=1,为常数, 此时f (x )=4+1=5.即点P 的坐标为(-1,5). 命题角度2 指数函数图象局部例5 若直线y =2a 与函数y =|2x -1|图象有两个公共点,求实数a 的取值范围.解 y =|2x -1|=⎩⎪⎨⎪⎧1-2x ,x <0,2x-1,x ≥0,图象如下:由图可知,要使直线y =2a 与函数y =|2x -1|图象有两个公共点, 需0<2a <1,即0<a <12.反思与感悟 指数函数是一种基本函数,与其他函数一道可以衍生出很多函数,体现了指数函数图象的“原料”作用.跟踪训练5 函数y =a |x |(a >1)的图象是( )答案 B解析 函数y =a |x |是偶函数,当x >0时,y =a x .由已知a >1,故选B.1.下列各函数中,是指数函数的是( ) A .y =(-3)x B .y =-3x C .y =3x -1D .y =⎝⎛⎭⎫13x答案 D2.若函数y =(2a -1)x (x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0,且a ≠1 B .a ≥0,且a ≠1 C .a >12,且a ≠1D .a ≥12答案 C3.函数y =23x -的值域是( ) A .(0,+∞) B .(-∞,0] C .(0,1] D .[-1,0)答案 C 4.函数f (x )=a x-b的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0答案 D5.函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]答案 A解析 由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.1.判断一个函数是不是指数函数,关键是看解析式是否符合y =a x (a >0,且a ≠1)这一结构形式,即a x 的系数是1,指数是x 且系数为1.2.指数函数y =a x (a >0,且a ≠1)的性质分底数a >1,0<a <1两种情况,但不论哪种情况,指数函数都是单调的.3.求函数y =a f (x )(a >0,且a ≠1)的值域的方法如下 (1)换元,令t =f (x ),并求出函数t =f (x )的定义域. (2)求t =f (x )的值域t ∈M .(3)利用y =a t 的单调性求y =a t 在t ∈M 上的值域.一、选择题1.若函数f (x )=(a 2-3a +3)a x 是指数函数,则( ) A .a =1或a =2 B .a =1 C .a =2 D .a >0且a ≠1答案 C解析 由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,解得a =2.2.函数y =a x -a (a >0且a ≠1)的大致图象可能是( )答案 C解析 如果函数的图象是A ,那么1-a =1⇒a =0,这与a >0且a ≠1相矛盾,故A 不可能;如果函数的图象是B ,那么a 1-a <0⇒0<0,这是不可能的,故B 不可能;如果函数的图象是C ,那么0<1-a <1⇒0<a <1,且a 1-a =0,故C 可能;如果函数的图象是D ,那么a 1-a <0⇒0<0,这是不可能的,故D 不可能.3.设指数函数f (x )=a x (a >0,且a ≠1),则下列等式中不正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (nx )=[f (x )]n (n ∈Q )D .[f (xy )]n =[f (x )]n [f (y )]n (n ∈N +) 答案 D解析 f (x +y )=a x +y =a x a y =f (x )f (y ),A 对; f (x -y )=ax -y=a x a -y=a x ay =f (x )f (y ),B对;f (nx )=a nx =(a x )n =[f (x )]n ,C 对;[f (xy )]n =(a xy )n ,[f (x )]n [f (y )]n =(a x )n (a y )n ≠(a xy )n ,D 错.4.设f (x )=⎩⎪⎨⎪⎧x 2,x <0,2x ,x ≥0,则f (f (-1))等于( )A .1B .2C .4D .8答案 B解析 f (-1)=(-1)2=1,f (f (-1))=f (1)=21=2.5.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设备的价值为( ) A .na (1-b %) B .a (1-nb %) C .a [1-(b %)n ] D .a (1-b %)n答案 D解析 一年后价值为a -ab %=a (1-b %),两年后价值为a (1-b %)-a (1-b %)b %=a (1-b %)2,…,n 年后价值为a (1-b %)n ,故选D.6.如图所示,面积为8的平行四边形OABC 的对角线AC ⊥CO ,AC 与BO 交于点E .若指数函数y =a x (a >0,且a ≠1)的图象经过点E ,B ,则a 等于()A. 2B. 3 C .2 D .3答案 A解析 设点C (0,m ),则由已知可得A ⎝⎛⎭⎫8m ,m ,E ⎝⎛⎭⎫4m ,m ,B ⎝⎛⎭⎫8m ,2m .又因为点E ,B 在指数函数的图象上,所以48,2,m m m a m a ⎧=⎪⎨⎪=⎩两式相除,得4ma =2,所以m =2,所以a = 2. 二、填空题7.函数y =32-2x 的定义域是________. 答案 (-∞,5]解析 要使函数式有意义,需32-2x ≥0,32≥2x,25≥2x ,解得x ≤5. 8.函数y =3x 与y =⎝⎛⎭⎫13x的图象关于________对称. 答案 y 轴解析 y =⎝⎛⎭⎫13x=3-x ,(x ,y )与(-x ,y )关于y 轴对称. 9.已知5a =0.3,0.7b =0.8,则ab 与0的大小关系是________. 答案 ab <0解析 由f (x )=5x 与g (x )=0.7x 的图象可知,5a =0.3<1时,a <0,同理b >0.所以ab <0.10.给出函数f (x )=⎩⎪⎨⎪⎧2x,x ≥3,f (x +1),x <3,则f (x )的值域为________.答案 [8,+∞)解析 当x ≥3时,2x ≥23=8;当x <3时,皆可通过有限次加1转化为第一类. 三、解答题11.求下列函数的定义域和值域:(1)y =(2)y =5-x -1.解 (1)令1-x ≥0,得x ≤1. ∴定义域为(-∞,1]. 设t =1-x ≥0.则3t ≥30=1. ∴值域为[1,+∞). (2)定义域为R , ∵5-x >0,∴5-x -1>-1. ∴值域为(-1,+∞).12.已知函数f (x )=a x -1 (x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )+1(x ≥0)的值域.解 (1)因为函数f (x )=a x -1 (x ≥0)的图象经过点⎝⎛⎭⎫2,12, 所以a 2-1=a =12. (2)由(1)得f (x )=⎝⎛⎭⎫12x -1(x ≥0),函数为减函数,当x =0时,函数取最大值2,故f (x )∈(0,2],所以函数y =f (x )+1=⎝⎛⎭⎫12x -1+1 (x ≥0)∈(1,3],故函数y =f (x )+1 (x ≥0)的值域为(1,3].13.已知x ∈[-3,2],求f (x )=14x -12x +1的最小值与最大值. 解 f (x )=14x -12x +1=4-x -2-x +1=2-2x -2-x +1=⎝⎛⎭⎫2-x -122+34,∵x ∈[-3,2],∴14≤2-x ≤8,则当2-x =12,即x =1时,f (x )有最小值34,当2-x =8,即x =-3时,f (x )有最大值57. 四、探究与拓展14.若函数f (x )=a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则一定有( )A .a >1,且b <1B .0<a <1,且b <0C .0<a <1,且b >0D .a >1,且b <0答案 D解析 已知函数f (x )=a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,画出草图如图所示.由图象可得⎩⎪⎨⎪⎧ a >1,f (0)<0,即⎩⎪⎨⎪⎧ a >1,f (0)=1+b -1<0,解得⎩⎪⎨⎪⎧a >1,b <0,故D 正确.15.已知函数f (x )=a x (a >0,且a ≠1),在区间[1,2]上的最大值为m ,最小值为n .(1)若m +n =6,求实数a 的值;(2)若m =2n ,求实数a 的值.解 (1)∵无论0<a <1还是a >1,函数f (x )的最大值都是a 和a 2的其中一个,最小值为另一个, ∴a 2+a =6,解得a =2或a =-3(舍),故a 的值为2.(2)当0<a <1时,函数f (x )在区间[1,2]上是减函数,其最小值为f (2)=a 2,最大值为f (1)=a .由a =2a 2,解得a =0(舍)或a =12,∴a =12. 当a >1时,函数f (x )在区间[1,2]上是增函数,其最小值为f (1)=a ,最大值为f (2)=a 2. 由a 2=2a ,解得a =0(舍)或a =2.∴a =2.综上知,实数a 的值为12或2.。