固体物理复习整理
固体物理总复习.
![固体物理总复习.](https://img.taocdn.com/s3/m/18baed6d2e3f5727a5e962ab.png)
所对应的晶面族的法线。
结晶学的倒格子
简单立方-倒格子为简单立方 体心立方-倒格子为面心立方 六角密排-倒格子为六角密排 根据公式能求出倒 格子基矢
a3
六角
90 , 120
晶格结构
对称性
§1 晶体特征与晶格的实例
1. 固体类型: 晶体,非晶体,准晶 (各有何特点) 2.晶体种类 单晶体,多晶体,液晶。 3. 单晶体的宏观特征
1) 对称性,外型规则 2) 有确定的熔点 3) 物理性质各向异性
4) 解理性. 5) 晶面角守恒.
晶格实例
1. 简单立方 2. 体心立方 3. 密堆积晶格 (a) 六角密排 (b) 面心立方 立方密排 以上各种晶格的配位 数及属于简单或复式 晶格?? 4 金刚石结构 5. 简单化合物晶体 1)NaCl 结构 2)闪锌矿结构 3)CsCl结构
§ 2.3 金属性结合
1、金属晶体的平衡
斥力与库仑引力的平衡.
斥力来源: (i) 体积减小,电子密度增大,电子的动能 将增加, 电子动能正比于(电子云密度)2/3. (ii) 电子云发生重叠,将产生强烈的排斥作用. 2、金属性结合特点 a. 电子公有化。 b. 对原子具体排列没有特殊要求; c. 范性很大。
§3 晶向,晶面和它们的标志
1.晶列 2.晶向 3.晶向的表示法 简单立方晶格的晶向标志 棱方向,面对角线方向, 体对角线方向 各有多少几个等价方向? 4.晶 面 密勒指数,如何确定米勒指数 简单立方晶格有多少等效晶面?
§ 4 倒格子
倒格子基矢的定义
a2 a3 b1 2 a1 (a2 a3 ) a a b2 2 3 1 a1 (a2 a3 ) a1 a2 b3 2 a1 (a2 a3 )
固体物理学整理要点
![固体物理学整理要点](https://img.taocdn.com/s3/m/fa597311fad6195f312ba6b9.png)
固体物理复习要点第一章 1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。
3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
4、试述固体物理学原胞和结晶学原胞的相似点和区别。
答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。
答:7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。
第二层:占据1,3,5空位中心。
第三层:在第一层球的正上方形成ABABAB······排列方式。
固体物理复习要点
![固体物理复习要点](https://img.taocdn.com/s3/m/0f002ce1102de2bd96058847.png)
固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。
2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。
7、晶体中传播的格波和普通连续媒质中传播的机械波如声波、水波等有何不同?导致这种不同的根源又是什么?8、晶格热容的爱因斯坦模型和德拜模型各自的假设是什么?两个模型各自的优缺点分别是什么?10、能带理论中的近自由电子近似和紧束缚近似的基本假设各是什么?两种近似方法分别适合何种对象?11、以一维简单晶格和三维简单立方晶格为例,给出它们的第一布里渊区。
12、以简单立方晶格为例,给出它的晶向标志和晶面标志(密勒指数)。
13、试证明任何晶体都不存在宏观的5次对称轴。
14、在运用近自由电子模型计算晶体中电子能级(能带)时为什么同时用到简并微扰和非简并微扰?。
15、给出导体,半导体和绝缘体的能带填充图,并以此为基础说明三类晶体的导电性。
k=)波函数在点群操16、给出简单立方晶格中Γ点(其波矢(0,0,0)作下的变换规律。
17、简要叙述能带的近自由电子近似法和紧束缚近似法的区别。
18、给出Bloch能带理论的基本假设。
24、引入伯恩-卡门条件的理由是什么?25、在布里渊区边界上电子的能带有什么特点?26、原子结合成固体有哪几种基本形式?其本质是什么?27、画出二维正方晶格的第一和第二布里渊区。
计算回答题1、 求六角密排结构的堆积比(刚球所占体积与总体积之比)。
2、 求体心立方结构中具有最大面密度的晶面族,并求出这个最大面密度的表达式。
固体物理_复习
![固体物理_复习](https://img.taocdn.com/s3/m/40d578337375a417876f8f07.png)
2、共价结合:依靠共用电子对结合,强键;饱和性和方向性 3、金属结合:共有化电子与正离子实库仑作用,强键 4、范德瓦尔斯结合 :瞬时电偶极矩之间的有效吸引作用,弱键
三、基本概念:
平衡间距、结合能、马德隆常数、雷纳德 - 琼斯( LennardJones )势、 sp3杂化、共价键饱和性和方向性、原子的负电 性 四、基本计算 1 、两个粒子之间的相互作用势能,如果分别用吸引势能 和排斥势能来表示,可用幂函数表示 2、平衡间距 3、离子晶体的结合能 4、分子晶体的结合能
五、晶向指数和晶面指数
1.晶向指数[m,n,p] 2.晶面指数(密勒指数)(hkl)
六、倒格子与布里渊区
1. 倒格子: (1)定义(倒易点阵基矢 ) (2)倒格子的重要性质(正倒格子间的关系) 2. 布里渊区(B.Z)
(1)定义
(2)画图
七、三维7大晶系和14种布拉伐格子,二维4大晶系和5种布拉
伐格子
二、点缺陷:在一个或几个晶格常数的线度范围内,使晶体周 期性结构受到破坏或影响的晶体缺陷。
分类:空位(肖特基缺陷 )、间隙原子、弗仑克尔缺陷、杂 质原子 等。 三、线缺陷:位错 1、分类:刃位错、螺位错 2、特征及形成原因 四、面缺陷:堆垛层错
2
m sin( qa qa ) m sin( ) 2 2
二、一维双原子链的晶格振动 1.模型 2.色散关系 3.关于声学波和光学波的讨论
2
mM 4mM 2 [1 1 sin (qa)] 2 mM (m M )
长波极限 声学格波描写元胞内原子的同相运动, 光学格波描写元胞内原子的反相运动。 两支格波最重要的差别:分别描述了原子不同的运动状态 4.q 的取值(第一布里渊区内),在第一布里渊区边界上, 存在格波频率“间隙”。
固体物理学复习总结
![固体物理学复习总结](https://img.taocdn.com/s3/m/ae862e9527fff705cc1755270722192e453658b9.png)
第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。
晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。
非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。
3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。
固体物理期末复习提纲终极版
![固体物理期末复习提纲终极版](https://img.taocdn.com/s3/m/7ba89c0af6ec4afe04a1b0717fd5360cba1a8de2.png)
固体物理期末复习提纲终极版一、晶体的结构与晶胞1.晶体的定义和特点2.晶体的结构指数和晶系3.晶胞的定义和特点4.基元和晶格的概念二、晶体的对称性1.对称元素和操作2.空间群和点群3.空间群的表示方法4.特殊对称性的晶体结构三、晶体的晶格1.晶格的定义和特点2.布拉维格子和布里渊区3.第一布里渊区和倒格子4.倒格子和衍射四、晶体的X射线衍射1.X射线的特点和衍射现象2. Laue方程和Bragg法则3.X射线的衍射仪器4.逆格子和晶体结构的解析五、晶体的晶体缺陷1.点缺陷和芯片2.面缺陷和晶界3.体缺陷和空位4.缺陷的影响和应用六、晶体的晶格振动1.晶格振动的分类和特点2.声子和性质3.声子的产生和吸收4.热导率和声学性质七、电子与能带论1.自由电子气模型2.原子间作用和周期性势能3.能带的形成和分类4.能带的导电性八、半导体与绝缘体1.化学键与共价键2.半导体与绝缘体的能带结构3. pn结的形成和性质4.磁半导体和自旋电子学九、金属与超导体1.金属的电子气模型2.金属的导电性和热传导性3.超导体的发现和性质4.超导体的理论和应用十、晶体的光学性质1.基本光学现象和方程2.介质和折射率3.光在晶体中的传播和偏振4.光学谱和材料应用十一、纳米材料与表面物理1.纳米材料的特点和制备方法2.纳米材料的性质和应用3.表面物理和表面改性4.加工技术和纳米器件这是一个固体物理期末复习的终极版提纲,涵盖了晶体的结构与晶胞、晶体的对称性、晶体的晶格、晶体的X射线衍射、晶体的晶体缺陷、晶体的晶格振动、电子与能带论、半导体与绝缘体、金属与超导体、晶体的光学性质、纳米材料与表面物理等重要内容。
通过按照这个提纲进行复习,可以全面而系统地理解和掌握固体物理学的基本概念和相关知识,为期末考试做好充分的准备。
固体物理复习材料
![固体物理复习材料](https://img.taocdn.com/s3/m/dcd395380b1c59eef9c7b45f.png)
第一章 晶体结构 名词解释:1. 晶体:原子按一定的周期排列规则的固体(长程有序)。
例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。
2. 晶体结构:晶体中原子的具体排列形式称为晶体结构。
晶体结构=基元+布拉菲点阵。
3. 平移周期性:4. 元胞:一个晶格中的最小重复单元(体积最小)。
5. 晶胞(单胞?):为了反应晶格的对称性,常取最小重复单元的几倍作为重复单元。
6. 基元:由不等价分人原子组成的最小重复单元。
7. 布拉菲点阵:为了简单明确地描述晶体内部结构的周期性,常把基元抽象成一点,这个基元的代表点称为格点。
格点在空间的周期性排列就构成布拉菲点阵(格子)。
8. 倒易点阵:倒点阵是正点阵的傅里叶变换,它是与坐标空间联系的傅里叶空间中的周期性阵列。
9. 倒易格矢: 10. 基矢:倒格子基矢与原胞基矢有如下关系:原胞体积:11. 晶格常数:晶格常数指的就是晶胞的边长,也就是每一个立方格子的边长。
12. 复式格子:基元(格点)含有2种或2种以上的原子。
13. 简单格子(布拉菲格子):基元(格点)只有一个原子的晶格。
14. 维格纳-塞茨原胞:由某一个格点为中心,做出最近各点和次近各点连线的中垂面,这些所包围的空间为维格纳-塞茨原胞。
15. 晶面指数:以基矢a 1、a 2、a 3为坐标系,从原点算起第一个晶面的截距的倒数h 1、h 2、h 3去标记这一簇晶面,记为(h 1h 2h 3),称为晶面指数。
16. 米勒指数:以单胞的三条棱a 、b 、c 为坐标系,决定的指数,称为米勒指数,记为(hkl )。
17. 晶向指数:如果从一个结点沿某晶列方向到最近邻结点的平移矢量为R l =l 1a 1+l 2a 2+l 3a 3,则用l 1、l 2、l 3来标志该晶列所对应的晶向,记为[l 1,l 2,l 3],称为晶向指数。
18. 金刚石结构: 19. 六角密排结构: 20. 立方密排结构: 21. NaCl 结构:22. 几种对称操作及相应对称元素:对称操作所凭借的几何元素—对称元素。
固体物理学整理复习资料
![固体物理学整理复习资料](https://img.taocdn.com/s3/m/1d9f79ed6bd97f192379e988.png)
固体物理学整理复习资料固体物理复习要点第一章 1、晶体有哪些宏观特性?答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。
3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,那么这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
4、试述固体物理学原胞和结晶学原胞的相似点和区别。
答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
(2)结晶学原胞〔简称晶胞〕构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
6.晶体的对称性与对称操作由于晶体原子在三维空间的周期排列,因此晶体在外型上具有一定的对称性质。
这种宏观上的对称性,是晶体内在结构规律性的表达。
由于晶体周期性的限制,晶体仅具有为数不多的对称元素和对称操作。
对称元素:对称面〔镜面〕、对称中心〔反演中心〕、旋转轴和旋转反演轴。
相应的对称操作分别是:1对对称面的反映2晶体各点通过中心的反演3绕轴的一次或屡次旋转4一次或屡次旋转之后再次经过中心的反演。
(完整版)固体物理复习
![(完整版)固体物理复习](https://img.taocdn.com/s3/m/5e0ecdc3caaedd3382c4d32f.png)
非晶体——原子的排列没有明确的周期性(短程有序)晶体——原子按一定的周期排列规则的固体(长程有序)准晶体——介于晶体和非晶体之间的新的状态晶体结构最常见的三种立方格子简单立方晶格、面心立方晶格、体心立方晶格,其配位数分别为6、12、8;六角密堆的配位数为12,金钢石结构的配位数为4。
原胞是最小的晶格重复单元。
对于简单晶格,原胞包含1个原子。
若321,,aaa表示某布拉伐格子的基矢(又称正格子基矢),321,,bbb表示该布拉伐格子的倒格子基矢,那么正格子基矢与倒格子基矢之间满足的关系为:。
(教材:p17)画出体心立方、面心立方和六角密堆的原胞,如果各自晶胞的体积为v,则原胞的体积分别为v/2,v/4,v/3晶向晶面画出简单立方晶格的晶向,立方边共有6个不同的晶向由于立方晶格的对称性,以上6个晶向是等效的可以表示为<100>]100[],001[],10[]010[],001[],100[100110111<><><>按结构划分,晶体可以分为7 大晶系,共有 14 布拉伐格子。
若321,,a a a表示某布拉伐格子的基矢(又称正格子基矢),321,,b b b 表示该布拉伐格子的倒格子基矢,那么矢量332211a n a n a n R++=的全部端点的集合构成)100(面等效的晶面数分别为:3个 }100{表示)110(面等效的晶面数分别为:6个 }110{表示)111(面等效的晶面数分别为:4个 }111{表示231123312123123123222a a b a a a a a b a a a a a b a a a πππ⨯=⋅⨯⨯=⋅⨯⨯=⋅⨯2()20()i j ij i j a b i j ππδ==⎧⋅=⎨=≠⎩布拉伐格子,矢量332211b h b h b h G h++=的全部端点的集合构成 倒格子 。
对晶格常数为a 的SC 晶体,与正格矢k a j a i a R22++=正交的倒格子晶面族的面指数为 (122) , 其面间距为 a32π。
固体物理复习
![固体物理复习](https://img.taocdn.com/s3/m/b7a03f31dd3383c4ba4cd267.png)
321a a a ,,⎪⎭⎫ ⎝⎛414141第一章1.固体按其结构的有序程度可分为晶体和非晶体。
晶体:长程有序(分为单晶体和多晶体(微晶))。
非晶体:不具有长程序的特点。
具有短程序。
准晶体:有长程有序性,没有平移对称性。
2. 基元:构成晶体的基本单元。
它可以包含一个或几个原子、离子或分子。
格点:空间抽象出来的代表基元的点。
它可以是基元重心的位置,也可以是基元中任意的点。
布拉维格子(布喇菲格子):格点形成的晶格;晶格(点阵)+基元=晶体结构;晶格是晶体结构周期性的数学抽象,它忽略了晶体结构的具体内容,保留了晶体结构的周期性。
3.晶格平移矢量: ,基矢: 4.原胞(固体物理学原胞):由基矢为棱边,组成的平行六面体形成的晶格结构的最小重复单元。
特点:a. 基矢和原胞选取选取具有多样性。
b. 只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
C.原胞反映了晶体晶格的周期性。
体积: 5.维格纳-塞茨原胞(简写为WS 原胞),也称为对称原胞: 构造:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即为W--S 原胞。
特点:它是晶体体积的最小重复单元,每个原胞只包含1个格点。
既反映了晶体的周期性,又反映了晶体的一切对称性 。
6.晶胞(结晶学原胞):能直观反映晶体对称性的晶格的重复单元。
基矢选取原则:使三个基矢的方向尽可能地沿着空间对称轴的方向。
模a, b, c 为各轴上的周期,称为晶格常数。
特点:(a )具有明显的对称性和周期性。
(b )晶胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
其体积是固体物理学原胞体积的整数倍。
体积: 立方晶系晶胞的体积: 。
(a)简立方SC:晶胞和原胞都包含包含1个格点。
固体物理学原胞的体积(b)体心立方(bcc):平均每个晶胞包含 2个格点。
固体物理学原胞的体积:(c)面心立方(fcc):每个面心立方晶胞包含4个有效格点。
固体物理考试 复习
![固体物理考试 复习](https://img.taocdn.com/s3/m/20188679bd64783e08122b0f.png)
1、简立方原胞基矢 体心立方原胞基矢 面心立方原胞基矢kj i a a a a a a321)(2/)(2/)(2/321k j i a a k j i a a k j i a a)(2/)(2/)(2/a 321j i a a i k a a k j a2、试证面心立方的倒格子是体心立方证:设与晶轴a 、b 、c 平行的单位矢量分别为i 、j 、k 。
面心立方正格子的原胞基矢可取为)(2),(2),(2321j i a a i k a a k j a a由倒格子公式得][2,][2,][2213132321a a b a a b a a b 可得倒格基矢为: ),(2),(2),(2321k j i ab k j i a b k j i a b3、考虑晶格中的一个晶面(hkl ),证明:(a ) 倒格矢123h G hb kb lb u r r r r 垂直于这个晶面;(b ) 晶格中相邻两个平行晶面的间距为2hkl hd Gu r;(c ) 对于简单立方晶格有22222a d h k l 。
证明:(a )晶面(hkl )在基矢321a a a 、 、 上的截距为la k a h a 321、 、 。
作矢量: k a h a m 211,l a k a m 322 ,ha l a m 133 显然这三个矢量互不平行,均落在(hkl )晶面上(如右图),且022232132132121321211a a a a a la a a a a k a a a a a h k a h ab l b k b h k a h a G m h同理,有02 h G m ,03 h G m 所以,倒格矢 hkl G h 晶面。
(b )晶面族(hkl )的面间距为:hkl h a h a d 11(c )对于简单立方晶格:212222lk h a22222l k h a d4、一维简单格子,按德拜模型,求出晶格热熔,并讨论高低温极限。
固体物理知识点总结
![固体物理知识点总结](https://img.taocdn.com/s3/m/9906ccfa69dc5022abea0043.png)
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
固体物理复习
![固体物理复习](https://img.taocdn.com/s3/m/d8d0d3d73186bceb19e8bb12.png)
原胞,单胞 晶格周期性的描述-原胞和基矢 布拉伐格子—— 晶体可以看作是在布拉伐格子(Lattice)的每一个格点上放上一组原子(Basis 基元)构成的 2、倒格子根据原胞基矢定义三个新的矢量—— 倒格子基矢量2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a ab a a aπ⨯=⋅⨯以 321,,b b b 为基矢构成一个倒格子倒格子每个格点的位置 332211321b n b n b n G n n n++= —— 倒格子矢量倒格子基矢的性质2()20()ij ij i j a b i j ππδ==⎧⋅=⎨=≠⎩ 晶面间距1232/h h h d G π= 1122332d h b h b h b π=++3、对称性对称素 —— 一个物体的旋转轴、旋转-反演轴物体绕某一个转轴转动2/n π,以及其倍数不变时—— 该轴为n 重旋转轴,计为n物体绕某一个转轴转动2/n π加上中心反演的联合操作以及其联合操作的倍数不变时 —— 该轴为n 重旋转-反演轴,计为n任何晶体的宏观对称性只能有以下十种对称素1,2,3,4,61,2,3,4,6点群 —— 以10种对称素为基础组成的对称操作群晶体的宏观对称只有32个点群 晶格的对称性有7大晶系,14种布拉伐格子 4、晶体的X 射线衍射晶体X 射线衍射的几种方法:劳厄法、转动单晶法、粉末法原子的散射因子 原子内所有电子的散射波的振幅的几何和与一个电子的散射波的振幅之比几何结构因子 原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。
5、非晶体、准晶体的结构特点非晶:材料原子排列长程无序而短程有序,其衍射图样是弥散的环准晶:介于晶体和非晶之间1.具有长程的取向序而没有长程的平移对称序(周期性)2.取向序具有周期性所不容许的点群对称性3.沿取向序对称轴的方向具有准周期性,有两个或以上不可公度的特征长度按着特定的序列方式排列 1.3 证明:体心立方晶格的倒格子是面心立方 面心立方晶格的倒格子是体心立方负电性=常数(电离能+亲和能)电离能:让原子失去电子所必需消耗的能量 亲和能:处于基态的中性气态原子获得一个电子所放出的能量 负电性大的原子,易于获得电子 负电性小的原子,易于失去电子2、 原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
固体物理复习资料情况总结
![固体物理复习资料情况总结](https://img.taocdn.com/s3/m/10b0084d84254b35effd345f.png)
第一章 晶体结构1、试说明空间点阵和晶体结构的区别。
答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。
晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩rr r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r213422()()4a b i j k i j k a aππ∴=⨯⨯-++=-++r r rr r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2aa i j kaa i j kaa i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩rr rrrr rrrr rr由倒格子基矢的定义:1232()b a aπ=⨯Ωr r r3123,,222(),,2222,,222a a aa a a aa a aa a a-Ω=⋅⨯=-=-r r rQ,223,,,,()2222,,222i j ka a a aa a j ka a a⨯=-=+-rr rrrr r213222()()2ab j k j ka aππ∴=⨯⨯+=+r r rr r同理可得:232()2()b i kab i jaππ=+=+r rrr r r即体心立方的倒格子基矢与面心立方的正格基矢相同。
固体物理知识点总结
![固体物理知识点总结](https://img.taocdn.com/s3/m/5c51b4bf2af90242a895e5f7.png)
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念与基本理论与知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体与非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞就是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不就是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
固体物理学复习
![固体物理学复习](https://img.taocdn.com/s3/m/f9b0fbeb998fcc22bcd10d96.png)
G h1h2 h3 CA 0 G h1h2 h3 CB 0
G = h1 b1 + h2 b 2 + h3 b 3与晶面系 (h1h2h3 ) 正交
第二章要求
(1)熟练掌握固体结合的类型及特点; (2)基本掌握惰性气体晶体的范德瓦尔斯 —伦敦相互作用和雷纳德—琼斯势; (3)基本掌握离子晶体:马德隆常数,相 互作用能,离子半径; (4)基本掌握共价晶体:共价结合的特点 ,轨道杂化,电离度和原子的负电性; (5)了解晶体的弹性模量。
是固体物理学原胞体积。
与 K n h1b1 h2 b2 h3 b3 ( h1 , h2 , h3为整数)
所联系的各点的列阵即为倒格。
1. a i b j 2π ij 3.
2π ( i j )
2π3 Ω*
Ω
0
i j
2. Rl K h 2π μ
得: 于是有:
12 6 4 12 13 6 7 0 r0 r0
r0 = 21 6 s = 1.12s
12 6 u ( r0 ) 4 r0 r0 1 1 4 4 2
0.96
( Eb ) f > ( Eb ) b
Ne取面心立方结构比取体心立方结构更稳定。
例题3:两原子间互作用势为: a b u (r ) = - 2 + 8 4eV r r
当两原子构成一稳定分子时,核间距为 3 A ,解离能 为 4eV ,求 。 和
0
[解答]
当两原子构成一稳定分子即平衡时,其相互作用势能取 极小值,于是有:
固体物理复习总结
![固体物理复习总结](https://img.taocdn.com/s3/m/06f84d81b9f3f90f77c61b48.png)
第一章 晶体结构1、试说明空间点阵和晶体结构的区别。
答:空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,它是由几何点在三维空间理想的周期性规则排列而成,由于各阵点的周围环境相同,它只能有14种类型。
晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
2、证明体心立方格子和面心立方格子互为倒格子证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222a a a a a a a a a aa a a-Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+- 213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。
固体物理复习整理
![固体物理复习整理](https://img.taocdn.com/s3/m/aa76f6f55122aaea998fcc22bcd126fff7055dbe.png)
固体物理复习整理固体物理复习整理第12章1.什么是布拉菲格子?2.布拉菲格子与晶体结构之间的关系.3.什么是复式格子?复式格子是怎么构成的?4.原胞和晶胞是怎样选取的?它们各自有什么特点?5.如何在复式格子中找到布拉菲格子?复式格子是如何选取原胞和晶胞的?6.金刚石结构是怎样构成的?7.氯化钠、氯化铯的布拉菲格子是什么结构?8.密堆积有几种密积结构?它们是布拉菲格子还是复式格子?9.8种独立的基本对称操作是什么?10.7大晶系是什么?11.怎样确定晶列指数和晶面指数?12.晶面指数与晶面在三坐标轴上的截距之间的关系?13.通过原点的晶面如何求出其晶面指数?14.倒格子的定义?正倒格子之间的关系?内容正空间:晶体的结构以及特点正空间:晶体的结构参数的确定→晶向指数和晶面指数从正空间到倒空间→倒格子和布里渊区晶体所呈现的物理性质来源其特殊的空间结构,所以对其空间结构的了解以及描述很有必要;而对于涉及到波函数,比如格波→晶格振动(13章)和电子波→能带论(14章)的讨论都是在倒空间中完成的,所以本章还涉及到正空间和倒空间的相互转换,以及布里渊区概念的提出和构建。
概念格点和基元布拉菲格子(简单格子)和复式格子原胞和晶胞七大晶系和十四种布拉菲格子立方晶系的三种布拉菲格子:简单立方、面心立方、体心立方的结构特点——晶胞(立方晶系)和原胞基矢的建立立方晶系的几种复式格子:氯化钠结构、氯化铯结构、金刚石结构和闪锌矿结构——结构特点和代表物质最密堆积的两种基本方式:ABAB→六方密堆积(六方晶系的复式格子)和ABCABC→立方密堆积(立方晶系的布拉菲格子:面心立方)晶体的八种独立的宏观对称要素:C1、C2、C3、C4、C6、σ、i、S432点群和230空间群倒格矢和晶面以及晶面间距之间的关系?倒格矢和正格矢之间的关系?布里渊区物理性质的重复?方法一维、二维和三维晶体的原胞和晶胞的选取,以及其基矢的建立,格矢的确定?(包括简单格子和复式格子)晶向指数和晶面指数的确定?(从图到指数,依据指数画图)正格子到倒格子的转换——原胞基矢的互换:一维、二维和三维(立方晶系的正倒格子关系)?求正格子和倒格子的体积Ω和Ω*?布里渊区的几何画法?布里渊区边界方程应用?第13章1.一维单原子晶格的色散关系?色散关系周期性的物理意义?2.一维双原子晶格的色散关系?3.同一原胞内两种原子有什么振动特点?4.晶格振动的波矢数、格波支数及格波数是如何确定的?5.声子这个概念是怎样引出的?它是怎样描述晶格振动的?内容对晶格振动形态的描述:从运动方程到色散关系;(简单的一维无限长模型)周期边界条件以及对格波状态的讨论(多维有限长模型——原胞数有限)格波的能量——声子的引出晶格比热——声子能量的进一步讨论概念1、一维单原子和一维双原子的色散关系?2、声学波和光学波的运动特点?3、波恩卡门条件:格波支数、每支格波格波数、总格波数(n维有限——简单或者复式格子)4、声子的基本概念——格波能量量子化——公式?5、了解,晶格比热的历史沿革——经典下的矛盾,爱因斯坦和德拜模型的成功与不足?方法1、运动方程→试探解→色散方程?2、利用周期边界条件求格波波矢(状态)?第14章1. 驻波边界条件与行波边界条件下的状态密度分别怎么表示?2. 一维、二维、三维晶格的能级密度如何求出?3. 在什么情况下电子的费米统计可用玻尔兹曼分布来描述?4. 布洛赫定理的内容是什么?5. 布洛赫波函数的形式?6. 禁带出现的位置和禁带宽度与什么有关?7. 每个能带能容纳的电子数与什么有关?8. 如何运用紧束缚近似下得出的能量公式?9. 布洛赫电子的速度和有效质量公式?10. 有效质量为负值的含义?11. 绝缘体、半导体、导体的能带结构及电子填充情况有什么不同?12. 空穴的定义和性质?内容金属的索末菲自由电子模型;能带论:布洛赫定理(周期势场下电子波函数的基本形式)、近自由电子近似(弱周期场——近自由电子——外层电子)、紧束缚近似(紧束缚的原子内层电子)、电子的准经典运动(速度和有效质量的提出)能带论的应用:导、半、绝的区分概念1、费米能级的概念? 2、温度变化下,电子的统计分布将发生什么变化? 3、费米狄拉克统计分布和玻尔兹曼统计分布的公式以及区分? 4、布洛赫定理的两种描述(公式)以及物理意义? 5、三种能区图以及物理意义——近自由电子近似的结论? 6、布洛赫电子的速度公式以及有效质量公式?(一维二维三维)7、有关布洛赫电子速度和有效质量的讨论? 8、有效质量为负值时的讨论? 9、满带、未满带的导电机理? 10、金属未满带形成的两种情况? 11、导体、半导体、绝缘体的区分? 12、空穴的定义,以及和电子的各方面的比较?方法1、不同边界条件下的状态密度讨论?——3)L 2(-π?2、根据能量公式求得能态密度?——构建微元或者从等能面出发讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理复习整理第12章1.什么是布拉菲格子?2.布拉菲格子与晶体结构之间的关系.3.什么是复式格子?复式格子是怎么构成的?4.原胞和晶胞是怎样选取的?它们各自有什么特点?5.如何在复式格子中找到布拉菲格子?复式格子是如何选取原胞和晶胞的?6.金刚石结构是怎样构成的?7.氯化钠、氯化铯的布拉菲格子是什么结构?8.密堆积有几种密积结构?它们是布拉菲格子还是复式格子?9.8种独立的基本对称操作是什么?10.7大晶系是什么?11.怎样确定晶列指数和晶面指数?12.晶面指数与晶面在三坐标轴上的截距之间的关系?13.通过原点的晶面如何求出其晶面指数?14.倒格子的定义?正倒格子之间的关系?内容✧正空间:晶体的结构以及特点✧正空间:晶体的结构参数的确定→晶向指数和晶面指数✧从正空间到倒空间→倒格子和布里渊区晶体所呈现的物理性质来源其特殊的空间结构,所以对其空间结构的了解以及描述很有必要;而对于涉及到波函数,比如格波→晶格振动(13章)和电子波→能带论(14章)的讨论都是在倒空间中完成的,所以本章还涉及到正空间和倒空间的相互转换,以及布里渊区概念的提出和构建。
概念✧格点和基元✧布拉菲格子(简单格子)和复式格子✧原胞和晶胞✧七大晶系和十四种布拉菲格子✧立方晶系的三种布拉菲格子:简单立方、面心立方、体心立方的结构特点——晶胞(立方晶系)和原胞基矢的建立✧立方晶系的几种复式格子:氯化钠结构、氯化铯结构、金刚石结构和闪锌矿结构——结构特点和代表物质✧最密堆积的两种基本方式:ABAB→六方密堆积(六方晶系的复式格子)和ABCABC→立方密堆积(立方晶系的布拉菲格子:面心立方)✧晶体的八种独立的宏观对称要素:C1、C2、C3、C4、C6、σ、i、S4✧32点群和230空间群✧倒格矢和晶面以及晶面间距之间的关系?✧倒格矢和正格矢之间的关系?✧布里渊区物理性质的重复?方法✧一维、二维和三维晶体的原胞和晶胞的选取,以及其基矢的建立,格矢的确定?(包括简单格子和复式格子)✧晶向指数和晶面指数的确定?(从图到指数,依据指数画图)✧正格子到倒格子的转换——原胞基矢的互换:一维、二维和三维(立方晶系的正倒格子关系)?✧求正格子和倒格子的体积Ω和Ω*?✧布里渊区的几何画法?布里渊区边界方程应用?第13章1.一维单原子晶格的色散关系?色散关系周期性的物理意义?2.一维双原子晶格的色散关系?3.同一原胞内两种原子有什么振动特点?4.晶格振动的波矢数、格波支数及格波数是如何确定的?5.声子这个概念是怎样引出的?它是怎样描述晶格振动的?内容✧对晶格振动形态的描述:从运动方程到色散关系;(简单的一维无限长模型)✧周期边界条件以及对格波状态的讨论(多维有限长模型——原胞数有限)✧格波的能量——声子的引出✧晶格比热——声子能量的进一步讨论概念1、一维单原子和一维双原子的色散关系?2、声学波和光学波的运动特点?3、波恩卡门条件:格波支数、每支格波格波数、总格波数(n维有限——简单或者复式格子)4、声子的基本概念——格波能量量子化——公式?5、了解,晶格比热的历史沿革——经典下的矛盾,爱因斯坦和德拜模型的成功与不足?方法1、运动方程→试探解→色散方程?2、利用周期边界条件求格波波矢(状态)?第14章1. 驻波边界条件与行波边界条件下的状态密度分别怎么表示?2. 一维、二维、三维晶格的能级密度如何求出?3. 在什么情况下电子的费米统计可用玻尔兹曼分布来描述?4. 布洛赫定理的内容是什么?5. 布洛赫波函数的形式?6. 禁带出现的位置和禁带宽度与什么有关?7. 每个能带能容纳的电子数与什么有关?8. 如何运用紧束缚近似下得出的能量公式?9. 布洛赫电子的速度和有效质量公式?10. 有效质量为负值的含义?11. 绝缘体、半导体、导体的能带结构及电子填充情况有什么不同?12. 空穴的定义和性质?内容✧ 金属的索末菲自由电子模型;✧ 能带论:布洛赫定理(周期势场下电子波函数的基本形式)、近自由电子近似(弱周期场——近自由电子——外层电子)、紧束缚近似(紧束缚的原子内层电子)、电子的准经典运动(速度和有效质量的提出)✧ 能带论的应用:导、半、绝的区分概念1、费米能级的概念? 2、温度变化下,电子的统计分布将发生什么变化? 3、费米狄拉克统计分布和玻尔兹曼统计分布的公式以及区分? 4、布洛赫定理的两种描述(公式)以及物理意义? 5、三种能区图以及物理意义——近自由电子近似的结论? 6、布洛赫电子的速度公式以及有效质量公式?(一维二维三维) 7、有关布洛赫电子速度和有效质量的讨论? 8、有效质量为负值时的讨论? 9、满带、未满带的导电机理? 10、金属未满带形成的两种情况? 11、导体、半导体、绝缘体的区分? 12、 空穴的定义,以及和电子的各方面的比较?方法1、 不同边界条件下的状态密度讨论?——3)L 2(-π?2、 根据能量公式求得能态密度?——构建微元或者从等能面出发讨论。
3、求T=0K 的费米能级0F E ? 4、通过布洛赫定理求状态波矢? 5、已知正格子晶体,求得紧束缚近似的能量公式? 6、 根据能量公式求得:电子运动速度、电子和空穴的有效质量、能带宽度ΔE 、禁带宽度等? 第15章1、半导体呈本征型的条件?2、什么是非简并半导体?什么是简并半导体?3、N 型和P 型半导体在平衡状态下的载流子浓度公式?4、非简并半导体的费米能级随温度和杂质浓度的变化?5、 半导体在室温全电离下的电中性条件?6、由于简并半导体形成杂质能带,能带结构有什么变化?内容✧半导体(硅、锗)的能带结构; ✧本征半导体和杂质半导体; ✧非简并半导体平衡状态下的讨论; ✧ 简并半导体概念1、导带、价带、导带底E C 、价带顶E V 、导带(底)电子、价带(顶)空穴? 2、硅、锗半导体的导带和价带结构; 3、直接带隙半导体和间接带隙半导体的区分,以及典型的物质? 4、有关“本征”的定义:本征半导体、本征费米能级、本征载流子浓度、本征激发、本征激发的电中性条件; 5、有关“杂质”的定义:杂质半导体、杂质(施主&受主)、杂质能级(施主能级E D &受主能级E A )、杂质电离能(施主电离能ΔE D &受主电离能ΔE A ); 6、杂质补偿的概念? 7、类氢模型的讨论; 8、平衡状态下,非简并半导体和简并半导体的载流子(电子和空穴)浓度公式,公式的物理解释以及与温度和能量之间的关系; 9、本征半导体:本征载流子的来源?本征载流子浓度随温度的变化?本征费米能级的位置? 10、平衡状态下,非简并半导体的费米能级变化——随温度、掺杂类型和掺杂浓度? 11、 关于非简并半导体和简并半导体的定性描述:电子占据、公式、统计分布、费米能级、掺杂、00p n 、室温电离程度等……12、简并化条件?弱简并条件? 13、杂质能级电子和空穴占据几率以及浓度公式? 14、 电中性条件的讨论?方法1、利用非简并能带公式完成一些推导和计算?(结合后续章节的物理概念) 2、利用杂质补偿完成一定的推导和计算? 3、利用电中性条件完成一些推导和计算? 4、 利用2i 00n p n 实现一些推导和计算?第16章1、散射的原因是什么?2、载流子的迁移率和电导率公式?内容✧ 载流子的散射;✧ 半导体的漂移运动以及迁移率、电导率和电阻率、漂移运动一起的电流密度的公式; 概念1、散射的原因,以及主要的散射机制? 2、 公式:迁移率、电导率、电阻率、漂移运动的电流密度方法可以利用以上公式实现一些推导和计算?(与半导体其他章节的物理概念相结合)第17章1、什么是准费米能级?2、多子的准费米能级偏离平衡费米能级与少子的偏离有什么不同?3、爱因斯坦关系式?内容✧非平衡载流子以及准费米能级的概念; ✧复合理论与非平衡载流子寿命的讨论; ✧载流子的扩散运动 ✧ 爱因斯坦关系式概念1、非平衡载流子的概念? 2、非平衡载流子寿命的概念——平均寿命——注入或者抽取的非平衡载流子浓度衰减到原先1/e 所需时间?公式17.1-6的物理含义? 3、准费米能级的概念,以及光学小注入下电子和空穴准费米能级的定性描述? 4、半导体偏离热平衡的程度:公式17.1-17? 5、平衡载流子复合的分类? 6、深能级是有效地复合中心? 7、 载流子扩散运动产生的原因?扩散系数的概念?8、扩散流密度和扩散电流密度的公式?9、稳态扩散的概念,以及对公式17.4-3,17.4-5的物理解释?10、扩散流电流密度公式?扩散运动和漂移运动共存下的电流密度?11、爱因斯坦关系式?物理意义?方法1、小注入小准费米能级的讨论:公式分析?作图比较?2、扩散和漂移运动电流密度的讨论?第18章1、什么是P-N结的空间电荷区?自建场是怎样建立起来的?2、平衡P-N结和非平衡P-N结的能带图?3、什么是功函数?什么是电子亲和能?4、金属-半导体接触的四种类型?5、金属-半导体整流接触特性的定性解释?6、在考虑表面态的情况下,怎样形成欧姆接触?内容✧P-n结✧半导体表面效应✧金半接触概念1、平衡状态下费米能级是统一的?2、P-n结:自建场?空间电荷区?接触电势差?势垒高度?3、平衡p-n结的三个部分以及非平衡p-n结的五个部分:名称?费米能级?载流子浓度分布?非平衡载流子分布?4、理想p-n结的概念?5、肖克莱方程?物理含义?6、P-n结击穿和电容的类型?7、表面施主态?表面受主态?8、半导体表面态的三种状态(n型p型)——能带弯曲:多子积累、多子耗尽、反型?9、功函数?电子亲和能?E n?肖特基势垒高度?费米能级的关系?10、肖特基势垒模型下的四种类型?11、金半整流接触正反偏压的连接:n型?p型?12、金半整流接触和半导体p-n结工作方式的异同?13、肖特基势垒二极管的电流密度方程以及物理意义?14、常用的半导体欧姆接触如何实现——隧道效应?方法1、p-n结平衡和非平衡能带图?2、接触电势差、势垒高度的一些讨论?3、金半整流接触的类型判定?。