PCB设计基本概述(doc 18页)
pcb基本知识介绍
pcb基本知识介绍
PCB(Printed Circuit Board)即印刷电路板,是一种将电子元器件进行布局和连接的基础材料。
PCB通常由一层或多层的电导铜箔、介质层和外层表面涂覆的保护层组成。
PCB的主要作用是提供电子元器件之间的连接和支持,使得电子元器件能够正常工作。
它具有以下特点和优势:
1. 布局灵活:通过设计不同的电路板布局,可以满足不同的电路需求,提高电路设计的灵活性。
2. 电路稳定性好: PCB采用标准化的工艺制造,可以确保电路稳定性和可靠性,提高电路的工作效果。
3. 布线紧密: PCB采用印刷技术,可以实现高密度的布线,减少线路长度,提高电路传输速度和抗干扰能力。
4. 维护方便: PCB的板面结构清晰明了,易于维护和故障排查。
5. 尺寸小巧: PCB板的尺寸可以按照电子产品设计需求进行调整,使得整个电子设备更加紧凑。
在PCB设计中,需要考虑以下几个方面:
1. 布线规则:根据电路设计需求,制定合理的布线规则,确保信号传输的可靠性和稳定性。
2. 材料选择:根据电路板的特性和应用环境,选择适合的材料,如玻璃纤维、聚酰亚胺等。
3. 层次设计:根据电路复杂度,确定需要设计的PCB层数,
一般有单面板、双面板和多层板等。
4. 脚位布局:根据元器件的安装需求,进行脚位的布局,确保电路连接的正确性。
5. 安全性设计:考虑电路板的安全性和防火性能,采取相应的防护措施。
总之,PCB是现代电子设备的核心部分,它的设计和制造直
接影响着电子产品的性能和质量。
通过合理的布局和连接,可以实现电子元器件的高效工作和稳定性。
PCB各层含义简介浅显易懂图文展示
PCB各层含义简介浅显易懂图文展示写在前面•一,各层整体简介•二,二层板常用的层实例(绘制阶段)o 1.上下两层(T/B Layer)o 2.多层(Multi Layer)o 3.丝印层(T/B Overlay)o 4.Mechanical 1与Keep out层•三,例子板子下载链接•四,实际板子举例(成板阶段)•五,结束语:以上内容如有错误或不妥欢迎指出,谢谢!写在前面希望帮助初学AD(PCB画图)的同学对PCB实物有辅助认识的作用PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,说简单点就是块电路板一,各层整体简介English 中文作用Top Layer 顶层信号层主要用来放置走线和元器件Bottom Layer 底层信号层同上,就是一个在上面一个在背面Keep out Layer 禁止布线层所选区域外禁止布线,也有人用于设计板框Mechanical 1 机械层1 用于界定元件位置(可当Keep-out用,具体看制板厂要求)Mechanical 13、机械层13、元件本体尺寸,包括三维English 中文作用14 14Mechanical 15、16 机械层15、16用于在设计极早期估算线路板尺寸Top Overlay 顶层丝印层用来标注各种标识,元件号,商标等Bottom Overlay 底层丝印层底层丝印,同上,就是在底层Top Paste 顶层锡膏防护层定义不被盖油的层,用于焊接或SMT加工Bottom Past 底层锡膏防护层同上Top Solder 顶层阻焊层定义不可焊接的区域保护铜箔不被氧化等作用Top Solder 底层阻焊层同上,即板子上绿(其他)色的外面这一层Drill Guide 钻孔定位层焊盘及过孔的钻孔的中心定位坐标层(注意是中心)Drill Drawing 钻孔描述层焊盘及过孔的钻孔尺寸孔径尺寸描述层Multi-Layer 多层过孔穿透此层二,二层板常用的层实例(绘制阶段)1.上下两层(T/B Layer)上下两层主要用于布线和放置元器件,红色线是顶层的走线(即导线),蓝色线是底层的二维图例:三维图例:2.多层(Multi Layer)用于绘制过孔,比如需要直插元件或者固定螺丝在封装库独立封装设计时(红色标记):多层过孔用于固定螺丝的效果(绿色标记):二维:三维:3.丝印层(T/B Overlay)这个层就很有意思了,甚至可以图案上去,常规用法就是表元器件标号、说明、商标:二维(绿色):三维(红色):加图案:二维:三维:4.Mechanical 1与Keep out层这两个层都可以用来做板框和限制走线,但是严格划分的话,Mechanical 1层是用来制定板框的,而Keep out 层是用来设置禁止布线区域的,严格上讲Mechanical 1 的面积要大于Keep out一点才符合设计初衷。
pcb设计基本概念
PCB(Printed Circuit Board,印制电路板)设计的基本概念主要包括以下几个方面:
电路原理图设计:这是PCB设计的基础,需要将电子设备中的元件和电路按照一定的规则进行布局和连接,以达到预期的功能和性能要求。
元件布局:根据电路原理图,将元件放置在PCB上,并按照电路连接关系进行合理的布局。
布线:根据电路原理图和元件布局,使用导线将元件连接起来,形成电路。
布线需要考虑导线的长度、宽度、走向、弯曲半径等因素,以满足电路性能和电磁兼容性的要求。
焊盘和过孔设计:焊盘是用于连接元件引脚和导线的金属化孔,过孔则是连接不同层之间导线的通道。
焊盘和过孔设计需要根据元件引脚和连接要求进行合理的设计,以保证焊接质量和电路性能。
层设计:多层PCB可以提供更多的布线空间和电气连接,但也增加了设计的复杂度。
层设计需要考虑元件布局、布线需求、信号完整性等因素,合理规划不同层的用途和布线要求。
电磁兼容性设计:PCB设计需要考虑电磁兼容性,包括减小干扰、提高信号完整性等方面。
电磁兼容性设计可以通过合理的元件布局、布线、接地设计等措施来实现。
可靠性设计:可靠性设计是保证PCB在各种工作环境下都能稳定工作的关键。
可靠性设计需要考虑元件的耐温、抗震、抗腐蚀等因素,同时保证电路的稳定性和可靠性。
以上是PCB设计的基本概念,实际设计过程中还需要考虑生产工艺、制造成本等因素,以达到最优的设计效果。
印制电路板(pcb)设计技术与实践 第3版
印制电路板(pcb)设计技术与实践第3版摘要:一、印制电路板(PCB)设计技术的基本概念1.PCB的定义和作用2.PCB的设计流程与基本原则二、PCB设计软件与实践1.主流PCB设计软件介绍2.软件操作实践教程三、PCB设计的关键技术1.电磁兼容性(EMC)设计2.信号完整性(SI)设计3.电源完整性(PI)设计四、PCB制造与装配工艺1.PCB制造流程简介2.常见PCB材料与层数选择3.PCB装配工艺介绍五、PCB测试与优化1.PCB测试方法与设备2.测试结果分析与优化策略六、实际案例解析1.基于AT89C51单片机的电子日历与时钟设计2.基于1602LCD的电话拨号键盘按键实列正文:一、印制电路板(PCB)设计技术的基本概念1.PCB的定义和作用印制电路板(Printed Circuit Board,简称PCB)是一种用于电子设备中承载电子元器件和连接电路的基板。
它具有导电性、绝缘性和机械强度,是电子设备的重要组成部分。
2.PCB的设计流程与基本原则(1)设计需求分析:明确设计目标、功能、性能等要求。
(2)原理图设计:绘制电路原理图,包括元器件选型、布局和连线。
(3)PCB布局:根据原理图进行PCB布局,考虑电磁兼容性、信号完整性、电源完整性等因素。
(4)PCB布线:在布局的基础上进行布线,遵循布线规则,如最小线宽、最小间距、交叉线处理等。
(5)设计规则检查:检查设计是否符合规范,如阻抗匹配、信号延迟等。
(6)文件输出:生成生产所需的文件,如Gerber文件、钻孔文件等。
二、PCB设计软件与实践1.主流PCB设计软件介绍(1)Altium Designer:一款集电路原理图、PCB布局布线、仿真及制作于一体的软件。
(2)Cadence OrCAD:一款广泛应用于电子设计自动化(EDA)领域的软件。
(3)Mentor Graphics:一款提供完整电子设计自动化解决方案的软件。
2.软件操作实践教程(1)Altium Designer:安装软件、创建项目、绘制原理图、布局布线、生成Gerber文件等。
《PCB设计基础知识概述》
本节重点:
1 印刷电路板的概念与分类 2 元件封装 3 焊盘、过孔与铜膜导线 4 PCB文件中关于工作层的概念与使用
10.8.1 印刷电路板基础
10.8.1.1 印刷电路板的结构 1. 单面板
指仅一面有导电图形的电路板,也称单层板。单面板
的特点是成本低,但仅适用于比较简单的电路设计,如收 音机、电视机。对于比较复杂的电路,采用单面板往往比 双面板或多层板要困难。 2. 双面板
10.8.1.3 焊盘(Pad)与过孔(Via) 焊盘(Pad)的作用是用来放置焊锡、连接导线和焊接元件
的管脚。根据元件封装的类型,焊盘也分为针脚式和表面粘贴式 两种,其中针脚式焊盘必须钻孔,而表面粘贴式无需钻孔。
圆形焊盘 方形焊盘 八角形焊盘 表面粘贴式焊盘
针脚式焊盘的尺寸
图10.8.2 常见焊盘的形状与尺寸
(5)采用上次显示比例显示 执行菜单命令View|Zoom Last,可使画面恢复至上一次的
显示效果。
(6)画面刷新 使用快捷键END键。
2. 窗口管理 (1)多窗口的管理
以同时打开2个设计数据库文件为例,在菜单栏的Windows 菜单中有6项命令。
① Title命令:窗口平铺显示。 ② Cascade命令:窗口层叠显示。 ③ Title Horizontally命令:使所有打开的文件窗口以水平
中,在相应路径下找到要打开的设计数据库文件名,单击 打开按钮。
② 展开设计导航树,双击Documents文件夹,找到扩展名为 “.PCB”的文件,单击该文件,就可启动PCB编辑器,同 时将该PCB图纸载入工作窗口中。
(2)通过新建一个设计数据库文件进入 ① 执行菜单命令File|New,弹出新建设计数据库对话框。在
PCB单面板设计
PCB单面板设计PCB(Printed Circuit Board),即印刷电路板,是电子元器件组装与连接的基础,广泛应用于电子产品设计及制造领域。
单面板是其中常见的一种电路板,指的是电路板仅有一面覆铜层。
PCB单面板设计是电子工程师工作中不可或缺的一项技能。
下面我们将从设计流程、理论知识、实际应用和注意事项四个方面来探讨单面板设计。
一、设计流程1. 确定电路板的尺寸。
首先根据电路板的实际应用场景,确定电路板的长宽,以及样板或原型的尺寸。
2. 编写电路图。
将电路分解成各个模块,然后利用电路设计软件编写电路图,实现模块的连接和功能。
3. 进行布线。
将电路图转化为PCB布局文件。
在布局文件中实现各模块的位置和布线,使得电路板的形状和布局达到最优化。
4. 适配外围元器件。
根据实际应用需求,调整和匹配电阻、贴片电容等外围元器件。
5. 生成规则检查文件。
使用电路设计软件自动检查PCB布局文件是否符合电路板布局规则和设计规范。
6. 进行调试和测试。
对电路的连接和信号的稳定性进行调试和测试,同时优化电路设计和布线方案。
7. 生成硬件设计文档。
根据布局文件和调试测试结果生成相关的文档和图纸,以便于制造电路板。
二、理论知识1. PCB厚度和材料PCB的厚度通常在0.8到1.6mm之间,主要取决于工作环境和应用场景。
电路板的材料有常见的FR-4玻璃纤维材料、铝基板、陶瓷基板和五氧化二钼PCB等。
2. PCB布线的原则正确布线是保证电路稳定性和信号质量的重要保障。
布线的原则主要包括:(1)按照信号处理顺序进行布线。
(2)考虑短路、开路、干扰和信号延迟等因素。
(3)实现模块之间的完整性和可维护性。
(4)合理安排电源和地线的位置和数量。
3. PCB生产工艺PCB生产过程中,主要包括印制、补铜、镀铜、钻孔、贴膜等环节。
在设计PCB时需要考虑生产工艺和成本因素,使电路板的设计能够高效生产和维护。
三、实际应用PCB单面板设计广泛应用于电子产品的制造和生产领域,主要用于数字电路、模拟电路、RF电路和微处理器等领域。
PCB设计规范DOC
PCB设计规范DOCPCB(Printed Circuit Board)是电子电路的基础,它用于支持和连接电子元器件,为电子设备的正常运行提供支持。
在PCB设计过程中,设计规范的制定对确保电路板的稳定性、可靠性和性能至关重要。
本文将介绍一些常见的PCB设计规范。
首先,PCB设计规范应确保电路板的尺寸和布局符合实际需求。
在PCB设计之前,需要详细了解电子产品的功能和尺寸要求,合理分配电路板的大小和布局,确保各个元器件之间的连接和空间布置合理。
其次,PCB设计规范应确保电路板的布线与信号传输相适应。
在布线时,需要合理规划信号线和电源线的走向,使其尽量短且不交叉,以减少信号干扰和阻抗匹配问题。
同时,在高频电路设计中要注意差分信号的间距和路线长度匹配,以确保信号传输的稳定性。
第三,PCB设计规范应确保电路板的层次结构合理。
根据电路板的复杂程度,可以选择单层、双层或多层PCB设计。
单层PCB适用于简单的电路设计,而双层和多层PCB可以实现更复杂的布线和信号传输。
在设计过程中,需要根据电路的功能和需求进行结构设计,合理选择PCB的层次结构。
第四,PCB设计规范应确保电路板的地线和电源线设计规范。
地线和电源线在电路板中起到分布电流和提供电源的作用,其设计应符合一定的标准。
地线和电源线应尽可能粗,减小电阻和电感,提高电路的抗干扰能力。
同时,还应注意地线和电源线的布局,尽量避免与信号线交叉,以减少信号干扰。
第五,PCB设计规范应确保电路板的焊盘和引脚设计规范。
焊盘和引脚连接电子元器件和电路板,其设计应符合焊接工艺和元器件要求。
焊盘应设计为合适的大小和间距,以确保焊接的准确性和可靠性。
引脚设计应与元器件相匹配,确保正确插入和固定。
最后,PCB设计规范应确保电路板的规范文件和测试。
规范文件包括PCB布局图、层次结构图、尺寸图等,用于指导生产和装配过程。
测试应包括电路连通性测试、信号完整性测试等,以确保电路板的正常运行。
(完整word版)PCB设计规范
先进制造技术研究所智能车辆技术研究中心嵌入式硬件PCB设计规范(初稿)整理编制:王少平1、目的1.1 本规范规定车辆中心PCB设计规范, PCB设计人员必须遵循本规范。
1。
2 提高PCB设计质量和设计效率,提高PCB的可生产性、可测试、可维护性.2、设计任务2。
1 PCB设计申请流程硬件设计工程师按照本设计规范要求完成PCB设计,提交给嵌入式硬件开发组组长进行审核,审核通过后递交硬件评审小组评审,评审通过后才能进行PCB制作,并将设计图纸归档。
2.2 设计过程注意事项2。
2.1 创建PCB板,根据单板结构图或对应的标准板框,创建PCB设计文件;注意正确选定单板坐标原点的位置,原点的设置原则:(1)单板左边和下边的延长线交汇点;(2)单板左下角的第一个焊盘。
2.2。
2 布局(1) 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性. 按工艺设计规范的要求进行尺寸标注。
(2) 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区,如下图所示。
(3)综合考虑PCB性能和加工的效率选择加工流程加工工艺的优选顺序为:元件面单面贴装—〉元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)—>双面贴装—>元件面贴插混装、焊接面贴装。
(4)布局操作的基本原则a、遵照“先大后小,先难后易"的布置原则,即重要的单元电路、核心元器件应当优先布局;b、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件:c、连线尽可能短,关键信号线最短,高电压、大电流信号与小电流,低电压的弱信号完全分开,模数信号分开,高低频信号分开,高频元器件的间隔要足够;d、相同结构电路部分,尽可能采用“对称式”标准布局;e、按照均匀分布、重心平衡、版面美观的标准优化布局;f、器件布局栅格的设置,一般IC器件布局时,栅格应为50~100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;g、电路板推荐布局。
PCB设计基本概念
Great Human Technology, INC.PCB层 处 层 装 两 软 层 来沟 举个简单 这 缘 弯 库时 线 层 选 释 线 层 间还设 这 层 许 软 虚拟 线 为实现图设计层 实实 较 夹层铜 对较难 积 间 难 来时 没 层 连 层 盘 发现 绘 装 层数 务 设 电 产 现 办 来 线 软 线层设 连线 盘 关闭 终 没 义为 计 电 线层 谓 关 盘 层 层 实 过 软 线较为简单 铜 层 现 电 仅 线过 为连 艺 铜 过 过 边 动 动 过 决 线 实 层 间 圆 两 处 别 过 载 数 过 电 层 间 线 层 学 积 盘 状 则 视 尽 间 层 连 导线 镀 层 汇处钻 属 两 过 过 连 单 层 个 连 线 选 线 过 过 选择 层联 间 这 层 过 连 连 务 间 项来 处设计线 时对过丝 为 层 关内层 电 标号 时 挡 设计 将会给装 观 维 带来 装 标称 号 维 状 齐 区 观 两 标 产 实际 赊 还 丝 层 标号 则 标 图 学 设计丝 们设计 邻 号义见缝针1Report by Sammy LuGreat Human Technology, INC.Protel 单装库内 脚 这类 选 关装 这类 标装 义 随这类积 丢 脚点状 两 铜 强调 别 转 区 区 学区 样 设计过 电 当 积 区 络状 计 区区 积 区别 较强 区 电 频 电 线时 为 铜 处 区别 实质 时 对 积 线 状 区仅 图 区盘 盘 设计 动 盘 发热 变压 讲 状 圆 较 脚 盘 还 长 盘 电 较 设计 虑 时 间 则 虑连线宽 线时选 长 脚 盘 对称 细 别编辑 边长 盘 则 脚 径 过 热 况 圆 盘 盘 设计 这 泪 设计 圆 盘 选择 盘类 学 综 装库 时这还 状 够 却 虑该 给 编辑 电 编辑 盘时 视 选择 状 状 对 输类 这 处 层 为 讨论 难 应 层 单 类 这 锡 绿 仅 艺过 为 两类 盘 顾 浅 义 圆 盘处 见 铜 这两 项 设 锡 补关 况 盘 盘 装 条飞线飞线两义 类 该 络连线 络连线 过 络 状况 调 断调 这动 线时 观2Report by Sammy LuGreat Human Technology, INC.¤e¤AH 时间 络获 动 导线连 这 统 络动 线结 补偿 盘间线 还 实 补偿这 络 飞线 该电 电 来进 设计说 过该 层 动线 义 产误 来 将来 将这 飞线视为欧3Report by Sammy Lu印刷线路板设计指南本章及随后几章将讨论静电放电引起的系统问题的硬件解决措施。
PCB设计基础知识详细解析
PCB设计基础知识详细解析印制电路板的设计是以电路原理图为根据,实现电路设计者所需要的功能。
印刷电路板的设计主要指版图设计,需要考虑外部连接的布局。
内部电子元件的优化布局。
金属连线和通孔的优化布局。
电磁保护。
热耗散等各种因素。
优秀的版图设计可以节约生产成本,达到良好的电路性能和散热性能。
简单的版图设计可以用手工实现,复杂的版图设计需要借助计算机辅助设计(CAD)实现。
在高速设计中,可控阻抗板和线路的特性阻抗是最重要和最普遍的问题之一。
首先了解一下传输线的定义:传输线由两个具有一定长度的导体组成,一个导体用来发送信号,另一个用来接收信号(切记“回路”取代“地”的概念)。
在一个多层板中,每一条线路都是传输线的组成部分,邻近的参考平面可作为第二条线路或回路。
一条线路成为“性能良好”传输线的关键是使它的特性阻抗在整个线路中保持恒定。
线路板成为“可控阻抗板”的关键是使所有线路的特性阻抗满足一个规定值,通常在25欧姆和70欧姆之间。
在多层线路板中,传输线性能良好的关键是使它的特性阻抗在整条线路中保持恒定。
但是,究竟什么是特性阻抗?理解特性阻抗最简单的方法是看信号在传输中碰到了什么。
当沿着一条具有同样横截面传输线移动时,这类似图1所示的微波传输。
假定把1伏特的电压阶梯波加到这条传输线中,如把1伏特的电池连接到传输线的前端(它位于发送线路和回路之间),一旦连接,这个电压波信号沿着该线以光速传播,它的速度通常约为6英寸/纳秒。
当然,这个信号确实是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。
图2是该电压信号的传输示意图。
Zen的方法是先“产生信号”,然后沿着这条传输线以6英寸/纳秒的速度传播。
第一个0.01纳秒前进了0.06英寸,这时发送线路有多余的正电荷,而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1伏电压差,而这两个导体又组成了一个电容器。
在下一个0.01纳秒中,又要将一段0.06英寸传输线的电压从0调整到1伏特,这必须加一些正电荷到发送线路,而加一些负电荷到接收线路。
PCB设计基础及实训教案
⑵双面印制板 双面印制板指两面都有导电图形的印制板,板的厚度约为0.2~5.0mm,它是在两面敷有铜箔的绝缘基板上,通过印制和腐蚀的方法在基板上形成印制电路,两面的电气互连通过金属化孔实现。 它适用于要求较高的电子设备,如计算机、电子仪表等,由于双面印制板的布线密度较高,所以能减小设备的体积。
第7页/共31页
三、PCB设计中的基本组件
1.板层(Layer) 板层分为敷铜层和非敷铜层,平常所说的几层板是指敷铜层的层面数。一般在敷铜层上放置焊盘、线条等完成电气连接;在非敷铜层上放置元件描述字符或注释字符等;还有一些层面(如禁止布线层)用来放置一些特殊的图形来完成一些特殊的作用或指导生产。 敷铜层一般包括顶层(又称元件面)、底层(又称焊接面)、中间层、电源层、地线层等;非敷铜层包括印记层(又称丝网层、丝印层)、板面层、禁止布线层、阻焊层、助焊层、钻孔层等。
第13页/共31页
元件封装的命名一般与管脚间距和管脚数有关,如电阻的封装AXIAL-0.3中的0.3表示管脚间距为0.3英寸或300mil(1英寸=1000mil=2.54cm);双列直插式IC的封装DIP-8中的8表示集成块的管脚数为8。元件封装中数值的意义如图4-17所示。
第14页/共31页
一、印制电路板概述
第1页/共31页
⑴单面印制板 单面印制板指仅一面有导电图形的印制板,板的厚度约在0.2~5.0mm,它是在一面敷有铜箔的绝缘基板上,通过印制和腐蚀的方法在基板上形成印制电路。它适用于一般要求的电子设备,如收音机、电视机。
1.根据PCB导电板层划分
二、印制电路板的种类
第17页/共31页
四、Protel 2004 PCB编辑器使用
1.启动PCB编辑器 进入Protel 2004主窗口,执行菜单“文件”→ “创建”→“项目”→“PCB项目”建立PCB工程项目文件,执行菜单“文件”→ “创建” →“PCB文件”,系统自动产生默认文件名为PCB1.PcbDoc的PCB文件,并进入PCB编辑器状态。 PCB编辑器的主菜单与原理图编辑器的主菜单基本相似,操作方法也类似。 PCB编辑器的工具栏主要有PCB标准工具栏、配线工具栏和实用工具栏等。 执行菜单“查看”→ “工具栏”下的相关菜单,可以设置打开或关闭相应的工具栏。
PCB设计基本概念以及注意事项
PCB设计基本概念以及注意事项PCB(Printed Circuit Board)即印刷电路板,是一种将电子元器件进行布局与连接的基础材料。
在电子产品的开发与制造过程中,PCB设计是一个非常重要的环节。
下面将对PCB设计的基本概念和注意事项进行详细介绍。
1.布局:PCB设计的第一步是进行电子元器件的布局,即确定元器件在电路板上的位置。
在进行布局时,需要考虑电器元件的相互关系,以及尽可能的减少导线的长度和穿孔的数量。
合理的布局可以提高电路的稳定性和性能。
2.焊盘和引脚:每个电子元件都有与电路板连接的引脚,这些引脚通过焊盘与电路板进行连接。
焊盘的大小、形状和排列应根据元器件的尺寸和布局进行设计,以确保焊接的质量和连接的可靠性。
3.连接走线:在布局和焊盘设置完成后,需要进行走线设计,即将各个元器件之间的连接线路进行规划。
在进行走线时,需要考虑信号传输的长度、走线的宽度、走线的层数等因素,以保证信号传输的稳定性和性能。
4.电源和地线:电源线和地线是PCB设计中非常重要的部分。
电源线用于提供电力,而地线则用于接受多余的电流。
在进行电源和地线的走线设计时,需要保证电源线和地线的宽度足够,以减小电流的阻抗和电压下降。
5.层次结构:大型复杂的PCB可以采用多层设计,即将电路板划分为多个层次。
层次结构的设计可以提高布局的灵活性和信号的隔离性,同时减小电磁干扰和射频泄漏的风险。
1.尺寸限制:在进行PCB设计时,需要根据实际需求和设备尺寸的限制,适当控制电路板的尺寸。
过小的尺寸可能会导致布局不合理,影响电路的稳定性和性能。
2.适当使用电容器:为了提高电路的稳定性和性能,需要适当使用电容器。
在布局和走线时,需要考虑电容器的位置和引脚连接,以确保电容器的正常工作。
3.防止电磁干扰:电子产品常常会遭受到来自外部的电磁干扰。
为了减小电磁干扰的影响,需要采取一些措施,如使用屏蔽罩、保持走线的平衡和合理设置地线等。
4.热量分散:电子元器件在工作过程中会产生热量,如果不能有效地分散热量,会影响电路的功能和寿命。
射频 pcb layout 设计规则-概述说明以及解释
射频pcb layout 设计规则-概述说明以及解释1.引言1.1 概述概述部分主要介绍了射频PCB布局设计规则这篇长文的背景和主要内容。
在现代电子设备中,无线通信技术得到了广泛的应用与发展。
射频电路作为其中的一个重要组成部分,对于无线通信的性能起到关键影响。
而射频PCB布局设计正是为了优化射频电路的性能而提出的一种设计规则。
射频PCB布局设计规则是针对射频电路在PCB板上的布局位置、布线方式以及各器件之间的互连关系等方面制定的一系列规范和原则。
通过合理的布局设计,可以减小射频电路中的信号传输损耗、最大限度地降低噪声干扰和回波等问题,从而提高射频电路的工作效率和可靠性。
本文将重点介绍射频PCB布局设计中的一些重要规则,包括组件布置、信号走线、地平面和分离布局等方面。
具体而言,我们将深入探讨射频器件的布局位置选择、射频信号走线的规则以及如何设计地平面和分离布局来最大程度地减小电磁干扰和回波。
通过详细的说明和实例示范,读者将能够更加深入地理解射频PCB布局设计规则的重要性和应用价值。
同时,本文还将展望未来射频PCB布局设计的发展方向,以期为射频电路设计提供更加详尽和准确的指导。
在本文的后续内容中,我们将逐一介绍这些规则并给出相应的设计建议,希望读者能够从中受益并应用到自己的实际工作中。
1.2 文章结构:本文将分为以下几个部分进行阐述射频PCB布局设计规则。
首先,引言部分将概述本文主要内容,并介绍文章结构。
接着,正文部分将详细探讨射频PCB布局设计的重要性,包括其对系统性能和电磁兼容性的影响。
同时,本节还将介绍射频PCB布局设计的一般原则和技巧,以帮助读者理解和应用这些规则。
最后,在结论部分,我们将对全文进行总结,并展望未来射频PCB布局设计的发展趋势。
通过本文的阐述,读者将能够深入了解射频PCB布局设计的重要性,掌握射频电路布局的基本原则和规则。
这些知识将有助于读者在实际设计中更好地应用射频技术,提高系统的性能和可靠性。
PCB设计基本概述
PCB设计基础知识印刷电路板(Printed circuitboard,PCB)几乎会出现在每一种电子设备当中。
如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。
除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。
随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。
规范的PCB长得就像这样。
裸板(上头没有零件)也常被称为「印刷线路板Printed WiringBoard(PWB)」。
板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。
在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。
这些线路被称作导线(conductorpattern)或称布线,并用来提供PCB上零件的电路连接。
为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。
在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。
这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。
因为如此,PCB的正反面分别被称为零件面(ComponentSide)与焊接面(Solder Side)。
如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。
由于插座是直接焊在板子上的,零件可以任意的拆装。
下面看到的是ZIF(ZeroInsertionForce,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。
插座旁的固定杆,可以在您插进零件后将其固定。
如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edgeconnector)。
金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。
通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。
pcb设计知识点总结
pcb设计知识点总结1. PCB的基本概念PCB全称为Printed Circuit Board,中文名称为印刷电路板。
它是一种用于连接和支持电子元器件的基准板。
PCB上通过印刷方式形成导线、焊盘、插孔等电气连接的构成,用于实现电路连接和固定电子元器件。
在电子产品设计中,PCB的设计对产品的性能和稳定性有着非常重要的影响。
2. PCB设计流程PCB设计的流程主要包括需求分析、电路设计、PCB布局设计、布线设计、PCB制作和PCB测试等阶段。
在需求分析阶段,设计师需要明确产品的功能需求和性能指标,然后进行电路设计,确定所需元器件的型号和参数。
接下来是PCB布局设计阶段,设计师需要将电路中的各个元器件合理地布局在PCB板上,考虑到信号传输、电气连接、热管理等因素。
然后进行布线设计,根据电路的连接关系和信号传输特性,将导线铺设在PCB板上。
最后是PCB制作和测试,通过PCB制作厂家制作出实际的PCB板,并进行各项测试和调试。
3. PCB布局设计PCB布局设计是PCB设计中非常重要的一环,它直接影响着PCB的性能和稳定性。
在布局设计中,设计师需要考虑以下几个方面的因素:(1)元器件的布局:需要考虑元器件之间的布局关系,以及与外部接口的布局关系。
合理的布局能够降低电路的互相干扰,提高电路的稳定性和可靠性。
(2)信号传输路径:在布局设计中需要考虑信号传输的路径,尽量缩短传输路径,减小信号传输的延迟和失真。
(3)热管理:在布局设计中需要考虑到电路的热管理问题,合理设置散热器和风扇等散热装置,以保证电路的稳定工作。
(4)防干扰设计:在布局设计中需要考虑到防干扰的 design,合理设计电路的接地、屏蔽和隔离等措施,减小外部干扰对电路的影响。
4. PCB布线设计PCB布线设计是PCB设计中非常重要的一环,它直接影响着信号传输的性能和稳定性。
在布线设计中,设计师需要考虑以下几个方面的因素:(1)导线宽度和间距:设计师需要根据电路的电流和信号传输特性选择合适的导线宽度和间距,以保证信号传输的稳定性和可靠性。
PCB基础知识培训
PCB基础知识培训PCB(Printed Circuit Board)是印刷电路板的缩写,是电子产品中不可或缺的一部分。
它是用作支持和连接电子元件的基础,同时也是电路的物理支撑。
以下是一些关于PCB基础知识的培训内容:1. PCB的基本结构PCB通常由一层或多层的基板组成,基板上镀有铜,形成了电路连接的铜箔。
通常,PCB 的设计分为内层和外层两个部分。
内层电路通过通孔连接,外层电路则通过焊接连接。
2. PCB的材料PCB的主要材料包括基板、铜箔、绝缘材料和防护材料。
这些材料的选择将影响PCB的性能和特性,比如耐热性、耐腐蚀性、介电常数等。
3. PCB的制造工艺PCB的制造工艺包括原料准备、图纸设计、印刷制版、制程加工等。
此外,还需要进行表面处理、组装检测等步骤,以确保PCB的质量和可靠性。
4. PCB的元件安装技术PCB上的元件安装包括表面贴装技术(SMT)和插件安装技术(THT)。
SMT通常应用于小型元件的精确安装,THT则适用于大型元件或联接器的安装。
5. PCB的设计规范PCB的设计规范包括了元件布局、走线设计、功耗分布、散热设计等。
设计规范的贯彻执行将直接影响到PCB的电性能和可靠性。
以上就是关于PCB基础知识的培训内容,PCB的设计和制造是一个复杂的工程,需要耐心和细心的操作。
希望大家在日常工作中能够加强学习,提高自身技术水平。
PCB是电子产品中不可或缺的一部分,它的质量和性能直接影响到整个电子产品的稳定性和可靠性。
因此,对于电子工程师和制造商来说,掌握PCB的基础知识是非常重要的。
接下来我们将继续深入了解PCB的相关内容。
6. PCB的层次结构PCB可以由单层、双层、多层板组成。
不同层数的PCB适用于不同的应用场景。
例如,双层板通常用于一般的电子产品,而多层板则常用于高端的通讯设备和计算机系统中。
7. PCB的特殊工艺在某些特殊应用场景下,需要采用特殊的PCB工艺,比如柔性PCB、刚性-柔性PCB等。
pcb设计常识
pcb设计常识(1.25mm)焊盘尺寸:至少钻孔尺寸+ 40mil (1mm) (钻孔为矩形或卵形)抗电边距:钻孔尺寸+ 30mil阻焊层:规矩焊盘+ 6mil助焊层:规矩焊盘的尺寸内孔尺寸:钻孔尺寸+ 16mil外孔尺寸:钻孔尺寸+ 30mil开口尺寸:12:开孔尺寸<= 10mil15:开孔尺寸11~40 mil20:开孔尺寸41 ~ 70mil30:开孔尺寸71~170mil40:开孔尺寸171 以上上图为通孔焊盘示意图PCB元件(Symbo)中须要的CLASS 和SUBCLASS*这些层在添加pad时差不多添加,无需额外添加。
其他层须要在Allegro中建立封装时添加。
**关于PLACE_BOUND_TOP,DIP元件要比零件框大年夜1mm SMD的话是0.2mm注:这些层除标明须要外,其他的层能够不包含在内。
别的其他层能够视情形添加进来。
序号CLASSSUBCLASS元件要素备注1ETHTopPad/PIN(表贴孔或通孔)Shape(贴片IC下的散热铜箔)须要、有导电性2ETHBottomPad/PIN(通孔或盲孔)视须要而定、有导电性3Package GeometryPin_Number映射道理图元件的Pin号。
假如PAD没有标号,标示道理图不关怀那个Pin或是机械孔须要4Ref DesSilkscreen_Top元件的位号须要5Component ValueSilkscreen_Top元件的型号或元件值须要6Package GeometrySilkscreen_Top元件的外形和说明:线条、弧、字、Shape等须要7Package GeometryPlace_Bound_Top元件占地区域和高度须要8Route KeepoutTop禁止布线区视须要而定9Via KeepoutTop禁止过孔区视须要而定备注:Regular pad,thermal relief,anti pad的概念和应用方法答:Regular pad(正规焊盘)主假如与top layer,bottom layer,internal layer等所有的正片进行连接(包含布线和覆铜)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB设计基本概述(doc 18页)PCB设计基础知识印刷电路板(Printed circuitboard,PCB)几乎会出现在每一种电子设备当中。
如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。
除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。
随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。
标准的PCB长得就像这样。
裸板(上头没有零件)也常被称为「印刷线路板Printed WiringBoard(PWB)」。
板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。
在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。
这些线路被称作导线(conductorpattern)或称布线,并用来提供PCB上零件的电路连接。
为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。
在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。
这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。
因为如此,PCB的正反面分别被称为零件面(ComponentSide)与焊接面(Solder Side)。
如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。
由于插座是直接焊在板子上的,零件可以任意的拆装。
下面看到的是ZIF(ZeroInsertionForce,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。
插座旁的固定杆,可以在您插进零件后将其固定。
如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edgeconnector)。
金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。
通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。
在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。
PCB上的绿色或是棕色,是阻焊漆(soldermask)的颜色。
这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。
在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。
通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。
丝网印刷面也被称作图标面(legend)。
都是打穿整个板子。
不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。
埋孔(Buriedvias)和盲孔(Blindvias)技术可以避免这个问题,因为它们只穿透其中几层。
盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。
埋孔则只连接内部的PCB,所以光是从表面是看不出来的。
在多层板PCB中,整层都直接连接上地线与电源。
所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。
如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。
零件封装技术插入式封装技术(Through Hole Technology)将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through HoleTechnology,THT)」封装。
这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。
所以它们的接脚其实占掉两面的空间,而且焊点也比较大。
但另一方面,THT零件和SMT(SurfaceMountedTechnology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。
像是排线的插座,和类似的界面都需要能耐压力,所以通常它们都是THT封装。
表面黏贴式封装技术(Surface Mounted Technology)使用表面黏贴式封装(Surface MountedTechnology,SMT)的零件,接脚是焊在与零件同一面。
这种技术不用为每个接脚的焊接,而都在PCB上钻洞。
表面黏贴式的零件,甚至还能在两面都焊上。
SMT也比THT的零件要小。
和使用THT零件的PCB比起来,使用SMT技术的PCB板上零件要密集很多。
SMT封装零件也比THT的要便宜。
所以现今的PCB上大部分都是SMT,自然不足为奇。
因为焊点和零件的接脚非常的小,要用人工焊接实在非常难。
不过如果考虑到目前的组装都是全自动的话,这个问题只会出现在修复零件的时候吧。
设计流程在PCB的设计中,其实在正式布线前,还要经过很漫长的步骤,以下就是主要设计的流程:系统规格首先要先规划出该电子设备的各项系统规格。
包含了系统功能,成本限制,大小,运作情形等等。
系统功能区块图接下来必须要制作出系统的功能方块图。
方块间的关系也必须要标示出来。
将系统分割几个PCB将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。
系统功能方块图就提供了我们分割的依据。
像是计算机就可以分成主机板、显示卡、声卡、软盘驱动器和电源等等。
决定使用封装方法,和各PCB的大小当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。
如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。
在选择技术时,也要将线路图的品质与速度都考量进去。
绘出所有PCB的电路概图概图中要表示出各零件间的相互连接细节。
所有系统中的PC B都必须要描出来,现今大多采用CAD(计算机辅助设计,ComputerAided Design)的方式。
下面就是使用CircuitMakerTM设计的范例。
PCB的电路概图初步设计的仿真运作为了确保设计出来的电路图可以正常运作,这必须先用计算机软件来仿真一次。
这类软件可以读取设计图,并且用许多方式显示电路运作的情况。
这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。
将零件放上PCB零件放置的方式,是根据它们之间如何相连来决定的。
它们必须以最有效率的方式与路径相连接。
所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。
下面是总线在PCB上布线的样子。
为了让各零件都能够拥有完美的配线,放置的位置是很重要的。
测试布线可能性,与高速下的正确运作现今的部份计算机软件,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。
这项步骤称为安排零件,不过我们不会太深入研究这些。
如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。
导出PCB上线路在概图中的连接,现在将会实地作成布线的样子。
这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。
下面是2层板的导线模板。
红色和蓝色的线条,分别代表PCB的零件层与焊接层。
白色的文字与四方形代表的是网版印刷面的各项标示。
红色的点和圆圈代表钻洞与导孔。
最右方我们可以看到PCB上的焊接面有金手指。
这个PCB的最终构图通常称为工作底片(Artwork)。
每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其它类似的实际限制等。
这些规定依照电路的速度,传送信号的强弱,电路对耗电与噪声的敏感度,以及材质品质与制造设备等因素而有不同。
如果电流强度上升,那导线的粗细也必须要增加。
为了减少PCB 的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。
如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免信号层上的传送信号受到影响,并且可以当作信号层的防护罩。
导线后电路测试为了确定线路在导线后能够正常运作,它必须要通过最后检测。
这项检测也可以检查是否有不正确的连接,并且所有联机都照着概图走。
建立制作档案因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标准的档案,才能制造板子。
标准规格有好几种,不过最常用的是Gerberfiles规格。
一组Gerberfiles包括各信号、电源以及地线层的平面图,阻焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。
电磁兼容问题没有照EMC(电磁兼容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。
EMC对电磁干扰(EMI),电磁场(E MF)和射频干扰(RFI)等都规定了最大的限制。
这项规定可以确保该电器与附近其它电器的正常运作。
EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。
换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。
这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。
电源和地线层可以防止信号层受干扰,金属盒的效用也差不多。
对这些问题我们就不过于深入了。
电路的最大速度得看如何照EMC规定做了。
内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。
如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。
这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。
布线的延迟率也很重要,所以长度自然越短越好。
所以布线良好的小PCB,会比大PCB更适合在高速下运作。
制造流程PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的「基板」开始影像(成形/导线制作)制作的第一步是建立出零件间联机的布线。
我们采用负片转印(Subtractivetransfer)方式将工作底片表现在金属导体上。
这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。
追加式转印(Addit ivePatterntransfer)是另一种比较少人使用的方式,这是只在需要的地方敷上铜线的方法,不过我们在这里就不多谈了。
如果制作的是双面板,那么PCB的基板两面都会铺上铜箔,如果制作的是多层板,接下来的步骤则会将这些板子黏在一起。
接下来的流程图,介绍了导线如何焊在基板上。
正光阻剂(positivephotoresist)是由感光剂制成的,它在照明下会溶解(负光阻剂则是如果没有经过照明就会分解)。
有很多方式可以处理铜表面的光阻剂,不过最普遍的方式,是将它加热,并在含有光阻剂的表面上滚动(称作干膜光阻剂)。
它也可以用液态的方式喷在上头,不过干膜式提供比较高的分辨率,也可以制作出比较细的导线。
遮光罩只是一个制造中PCB层的模板。
在PCB板上的光阻剂经过UV光曝光之前,覆盖在上面的遮光罩可以防止部份区域的光阻剂不被曝光(假设用的是正光阻剂)。
这些被光阻剂盖住的地方,将会变成布线。
在光阻剂显影之后,要蚀刻的其它的裸铜部份。
蚀刻过程可以将板子浸到蚀刻溶剂中,或是将溶剂喷在板子上。