热力学 第二章分子动理论

合集下载

分子动理论的主要内容是什么

分子动理论的主要内容是什么

分子动理论的主要内容是什么
分子动理论是描述气体、液体和固体微观结构和性质的理论框架,其主要内容包括以下几点:
1. 分子模型:分子动理论假设物质是由大量微观粒子(如分子、原子等)组成的。

这些微观粒子在空间中不断运动,并且彼此之间存在相互作用。

2. 分子运动:分子动理论认为,物质的宏观性质(如压强、温度等)是由微观粒子的运动状态决定的。

分子在空间中做各种随机运动,包括平动、转动和振动等。

3. 碰撞:分子之间存在相互作用力,它们会不断地发生碰撞。

碰撞导致分子的能量转移和动量变化,从而影响物质的宏观性质。

4. 理想气体模型:分子动理论假设理想气体中的分子是无限小的、质量可以忽略不计的硬球,它们之间不存在相互作用力。

根据这些假设,可以推导出理想气体的状态方程和热力学性质。

5. 宏观性质的解释:分子动理论可以解释许多宏观性质,如气体的压强、体积、温度等,以及相变过程中的能量转移和吸放热等现象。

6. 热力学规律:分子动理论与热力学定律相一致,如玻意耳定律、查理定律、阿伏伽德罗定律等。

总的来说,分子动理论是描述物质微观结构和性质的重要理论框架,它通过研究微观粒子的运动状态和相互作用来解释物质的宏观性质和行为。

第二章分子动力学理论的平衡态理论

第二章分子动力学理论的平衡态理论

这种在大量随机事件的 集合中出现的规律性叫统计 规律性。
少数分子无规律性
大量分子的统计分布 7
二、等概率性与概率的基本性质
1、概率的定义
概率:在总次数趋于无限大时,某事件出现次数对总次数的比率。
No Image
离散变量xi
P(xi)N li m N Ni
连续变量x , x-x+dx区间
d(N x)
§2.3 麦克斯韦速率分布
要深入研究气体的性质,不能光是研究一些平均值,
如t ,V2
等,还应该进一步弄清分子按速率和按能量等的分布情 况。
个别分子的运动是杂乱无章的,但大量分子运动的 集体表现存在着一定的统计规律。
统计物理关心两件事:
1. 平均值; 2. 分布;
几个要用的积分公式 高斯积分
Q xn e a2d x ,x (a0 ,n0 ,1 ,2 ,3 , ) 0
一、分子射线束实验
实验装置
接抽气泵
No Image
No Image
No Image
金属蒸汽
狭缝
No Image
No Image

No Image


19
二 . 麦克斯韦速率分布函数 1859年麦克斯韦导出了理想气体在无外场的平衡态下,
分子速率分布函数为:
f(v)4(
m3/2 m 2v/2kT 2 m——分子的质量 ) e v T——热力学温度
分子平动动能的平均值
讨论 速率介于v1~v2之间的气体分子的平均速率的计算
v v1~v2
v2 vf (v)dv
v1
v2 f (v)dv
v1
vv1~v2
v2 v f(v)dv

热力学中的理想气体分子动理论

热力学中的理想气体分子动理论

感谢您的观看
汇报人:XX
分子平均转动动能计算
分子转动动能公式:Erot=1/2Iω2 分子转动动能与温度的关系:随着温度的升高,分子转动动能增大 理想气体分子转动动能计算公式:Erot=1/2Iω2=1/2kT 理想气体分子平均转动动能计算公式:Erot=1/2kT
理想气体分子的 分布律
麦克斯韦分布律
定义:描述理想气体分子在平衡态 下速度分布的规律
分子碰撞与平均自由程
分子碰撞:气体分子间的相互碰撞, 是气体分子动理论的基本概念。
分子动理论:基于分子碰撞和平均 自由程的理论,解释了气体的一些 基本性质和行为。
添加标题
添加标题
添加标题
添加标题
平均自由程:分子在连续两次碰撞 之间所走的平均距离,是气体分子 动理论中的重要参数。
理想气体:在分子动理论中,理想气 体被视为无相互作用的单个分子的集 合,其行为可以通过分子动理论来描 述。
理想气体分子动 能的计算
分子平均动能计算
分子平均动能的概念:分子在运动过程中所具有的动能的总和除以分子的数目。
分子平均动能的影响因素:温度和物质的种类。
分子平均动能与温度的关系:温度越高,分子平均动能越大。
分子平均动能的计算公式:E=3/2*k*T,其中E为分子平均动能,k为玻尔兹曼常数,T为热力学温 度。
热力学中的理想气体分 子动理论
汇报人:XX
目录
理想气体模型
理想气体分子动能的计算
01
04
分子动理论
02
热力学定律与分子动理论
03
理想气体分子的分布律
05
理想气体分子的速率分布 和能量分布的实验验证
06
理想气体模型
理想气体定义

分子动理论知识点

分子动理论知识点

分子动理论知识点分子动理论知识点1、分子动理论〔1〕物质是由大量分子组成的分子直径的数量级一般是10-10m。

〔2〕分子永不停息地做无规那么热运动。

①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。

温度越高,扩散越快。

②布朗运动:在显微镜下看到的悬浮在液体〔或气体〕中微小颗粒的无规那么运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规那么运动的宏观反映。

颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

〔3〕分子间存在着互相作用力分子间同时存在着引力和斥力,引力和斥力都随分子间间隔增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。

2、物体的内能〔1〕分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。

温度是物体分子热运动的平均动能的标志。

〔2〕分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。

分子势能随着物体的体积变化而变化。

分子间的作用表现为引力时,分子势能随着分子间的间隔增大而增大。

分子间的作用表现为斥力时,分子势能随着分子间间隔增大而减小。

对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

〔3〕物体的内能:物体里所有的分子的动能和势能的总和叫做物体的.内能。

任何物体都有内能,物体的内能跟物体的温度和体积有关。

〔4〕物体的内能和机械能有着本质的区别。

物体具有内能的同时可以具有机械能,也可以不具有机械能。

3、改变内能的两种方式〔1〕做功:其本质是其他形式的能和内能之间的互相转化。

〔2〕热传递:其本质是物体间内能的转移。

〔3〕做功和热传递在改变物体的内能上是等效的,但有本质的区别。

4、热力学第一定律〔1〕内容:物体内能的增量〔ΔU〕等于外界对物体做的功〔W〕和物体吸收的热量〔Q〕的总和。

〔2〕表达式:W+Q=ΔU〔3〕符号法那么:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

大学物理06分子动理论

大学物理06分子动理论
热物理学
组成物质的分子或粒子都在作永不停息的无规则 运动,称为热运动。大量分子热运动的集体效应在宏 观上表现为物体的热现象和热性质。
研究分子热运动,讨论热现象的规律、分析物体 热性质的理论称为热物理学。 热物理学包括宏观理论和微观理论。 • 宏观理论——热力学:以观察和实验为基础,通过归 纳和推理得出有关热现象的基本规律,因而其结论普 遍而且可靠。 • 微观理论——分子动理论:从分子结构和分子运动出 发,应用力学规律和统计方法,研究大量分子热运动 的集体效应,从微观本质上解释热现象和热性质。
热力学平衡态
三、平衡与涨落 一个与外界没有能量、质量交换的系统,经一定时间后 达到稳定的,不再有宏观状态的变化。此时,系统内各 部分的宏观性质均相同。
处在平衡态的系统的宏观量,如压强,不随时间改变, 但不能保证任何时刻大量分子撞击器壁的情况完全一样, 这称为涨落现象,分子数越多,涨落就越小。 N
t
热力学平衡态
二、温标
确定温度数值的表示方法——温标 (1)选定测温质 (2)选定与温度单调变化的属性
(3)假定测温属性与温度成线性关系
(4)选定温度标准点,将温度计分度 不同测温质或不同测温属性测量同一温度数 值可能不同。
上海交通大学物理系高景jgao@
热力学平衡态
三、理想气体温标和状态方程
LR R R R LR R RRLR RRRL 1 3 4
R R R R 0 4 1
C(n) 1
上海交通大学物理系高景jgao@
C n 某一宏观态出现的几率: pn N 2
热力学平衡态
1 2 3 4 n n’
L L L L 4 0
LLLR LLR L LR LL R LLL 3 1 4

高三总复习-热力学、分子动理论

高三总复习-热力学、分子动理论

2012高第三册期末复习 讲义分子动理论 热力学定律知识网络:按照考纲的要求,本章内容可以分成两部分,即:分子动理论;热力学定律。

其中重点是布朗运动、分子力、物质内能和热力学第一定律。

难点是对分子力与分子之间距离关系、分子力做功与分子势能变化关系和定质量气体的状态变化与热力学第一定律的综合应用。

一、重难点突破1.布朗运动本身 悬浮颗粒的无规则运动 不是分子运动,却反映了液体内分子运动的 无规则性。

2.分子之间既有 引力又有 斥力。

引力和斥力都随距离增大而 减小,斥力减小的 更快。

引力和斥力都随距离减小而 增大,斥力增大的 更快。

当分子间的距离等于平衡距离时,引力 等于斥力;当分子间距离小于 平衡距离时,斥力起主要作用,分子力为斥力;当分子间距离 大于平衡距离时,引力起主要作用,分子力为引力。

当分子间距离大于分子直径的10倍时,分子间的作用力可以 忽略不计。

3.分子势能跟分子 间距有关。

r <r 0时,类“弹簧压缩”。

r >r 0时,“弹簧拉伸”。

4.物体内能是 物体内所有分子动能和分子势能的总和,与物体的 温度和体积 以及物体的摩尔数有关。

5.改变物体内能的方法有两种:做功和热传递,做功是能的转化,热传递是内能的转移。

6.热力学第一定律关系式为W + Q =ΔU。

注意正负符号。

第一类永动机是不能制成的。

7.热力学第二定律一种是按照热传导的方向性来表述的:不可能使热量由低温物体传递到高温物体而不引起其它变化。

另一种是按照机械能与内能转化过程的方向性来表述的:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化,它也可以表述为:第二类永动机是不可能制成的。

8.气体的压强是大量气体分子对容器壁的持续碰撞而产生的。

其大小与分子浓度(宏观上气体的密度)和分子热运动速率(宏观上气体的温度)。

9.理想气体的内能只计分子的动能,大小直接对应温度的高低二、典型例题例1 关于布朗运动,下列说法中正确的是()A.悬浮在液体或气体中的小颗粒的无规则运动就是分子的无规则运动B.布朗运动反映了液体分子的无规则运动C.温度越低时,布朗运动就越明显D.悬浮在液体或气体中的颗粒越小,布朗运动越明显例2 若以μ表示水的摩尔质量,v表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A为阿伏加德罗常数,M、v0表示每个水分子的质量和体积,下面是四个关系式:(1) N A= vρ/m (2) ρ=μ/( N A v0) (3)m=μ/ N A (4) v0=v/ N A其中() A.(1)和(2)都是正确的 B.(1)和(3)都是正确的C.(3)和(4)都是正确的D.(1)和(4)都是正确的例3 A、B两分子相距较远,此时它们之间的分子力可忽略,设A固定不动,B逐渐向A 靠近,直到很难再靠近的整个过程中 ( )A.力总是对B做正功B. 先克服分子力做功,然后分子力对B做正功C. 总是克服分子力做功D.分子力先对B做正功,然后B克服分子力做功例4下列叙述正确的是()A.若分子间距离r=ro时,两分子间分子力F=0,则当两分子间距离由小于ro逐渐增大到10ro分程中,分子间相互作用的势能先减小后增大B.对一定质量气体加热,其内能一定增加C.物体的温度越高,其分子的平均动能越大D.布朗运动就是液体分子热运动例5(2007重庆)氧气钢瓶充气后压强高于外界人气压,假设缓慢漏气时瓶内外温度始终相等且保持不变,不计氧气分子之间的相互作用.在该漏气过程中瓶内氧气A.分子总数减少,分子总动能不变B.密度降低,分子平均动能不变C.吸收热量,膨胀做功D.压强降低,不对外做功2012高第三册期末复习 单元练习 分子动理论 热力学定律不定项选择题:1.下列说法正确的是( )A .热量能自发地从高温物体传给低温物体B .热量不能从低温物体传给高温物体C.热传导是有方向的 D .能量耗散说明能量是不守恒的2.用r 表示两个分子间的距离,E p 表示两个分子相互作用的势能.当r =r 0时两分子间斥力等于引力.以下正确的是( )A .当r 0>r 0时,E p 随r 的增大而增加B .当r <r 0时,E p 随r 的减小而增加C .当r >r 0时,E p 不随r 而变D .当r =r 0时,E p =03.子弹头射入置于光滑水平面上的木块中,以下说法正确的是( )A.子弹头损失的机械能等于木块内能的增加量B.子弹头损失的机械能等于木块和子弹内能的增加量C.木块的内能改变是由于做功D.木块和子弹组成的系统的总能量守恒4. 对于液体和固体,如果用M 表示摩尔质量,ρ表示物质密度,V 表示摩尔体积,V 0表示分子体积,NA 表示阿伏加德罗常数,那么下列关系式中正确的是 ( )ρρ⋅====M V MV V V N V V N A A . .. .D C B A 00 5. 对于一定质量的理想气体 ( )A .它吸收热量以后,温度一定升高B .当它体积增大时,内能一定减小C .当气体对外界做功过程中,它的压强可能增大D .当气体与外界无热传递时,外界对气体做功,它的内能一定增大6.(2000年全国)对于一定量的理想气体,下列四个论述中正确的是A .当分子热运动变剧烈时,压强必变大。

大学物理 分子动理论、热力学(完全版)

大学物理 分子动理论、热力学(完全版)

2 p n 3
(7-3)
27
理想气体的压强公式:
2 p n 3
说明与讨论:
(7-3)
1 该式是一条统计规律.宏观量p和微观量分子速度υ、 分子动能的统计平均值联系起来。 2 n一定,p
3 分子平均平动动能一定时,pn
28
三.温度的统计意义
2 因 p =nkT, p n 3
16
§7-3 理想气体的压强和温度
一.理想气体的微观模型
液体的不可压缩性说明液体分子的间距接近于分
子本身的大小。气体的可压缩性说明气体分子的间距 比气体分子的大小大得多,气体分子本身的限度可以 忽略。于是对理想气体分子运动有以下的力学假设: (1)分子本身的线度与分子之间的平均距离相比可 忽略不计。 (2)分子之间距离很大,除碰撞的瞬间外,可不计分子 间的相互作用力;如无特殊考虑,重力也可忽略。
实际中并不存在绝对孤立系统,也没有宏观性质绝对 不变的系统。
四. 状态参量
描述平衡态下系统宏观属性的一组独立宏观量状 态参量。 气体处于平衡态的标志是状态参量P、V、T处处相 同且不随时间变化。 9
§7-1 理想气体的状态方程
M pV RT vRT M mol
(7-1)
单位:SI 压强 p : Pa帕斯卡(帕斯卡)。 1atm=76cmHg=1.013×105Pa (atmosphere) 体积V:m3 ; 1l = 10-3 m3 温度T:K (T =273+t C ) M: 气体质量(kg); Mmol : 摩尔质量(kg)。 普适气体恒量: R =8.31 (J.mol-1.K-1)
组成的系统称为热力学系统。处于系统之外的物体成
为外界。
与外界完全隔绝的系统称之为孤立系统。系统和外界

高中物理培优辅导讲义:专题13-热学(含答案解析)

高中物理培优辅导讲义:专题13-热学(含答案解析)

【知识精讲】一.分子动理论1.分子动理论的基本观点是:物质是由大量分子组成,分子永不停息的做无规则运动,分子之间总是同时存在相互作用的引力和斥力。

布朗运动的永不停息,说明液体分子运动的永不停息;布朗运动的无规则性,说明液体分子运动是无规则的。

分子力是斥力和引力的合力。

2. 解答分子动理论中的估算问题是对分子进行合理抽象,建立模型。

由于固体和液体分子间距很小,因此可以把固体和液体分子看作紧密排列的球体,小球直径即为分子直径。

一般情况下利用球体模型估算固体和液体分子个数、质量、体积、直径等。

设n 为物质的量,m 为物质质量,v 为物质体积,M 为摩尔质量,V 为摩尔体积,ρ为物质的密度。

则(1)分子数N =A A N M m nN ==A A N V v N M v =ρ. (2)分子质量AA N V N M m ρ==0. (3)分子体积A A N M N V v ρ==0 (4)对于固体或液体,把分子看作小球,则分子直径33066AN V v d ππ==。

对于气体,分子之间距离很大,可把每个气体分子所占空间想象成一个立方体,该立方体的边长即为分子之间的平均距离。

(1)若标准状态下气体体积为0V ,则气体物质的量n =30104.22-⨯V ; (2)气体分子间距330A N V v d ==AN M ρ=。

3. “用油膜法估测分子的大小”实验是把液体中油酸分子看做紧密排列的小球,把油膜厚度看做分子直径。

4.物体内所有分子动能的平均值叫做分子平均动能。

温度是分子平均动能的标志。

任何物体,只要温度相同,其分子平均动能就相等。

温度越高,分子平均动能越大。

由分子之间的相互作用和相对位置所决定的能,叫做分子势能。

分子势能与体积有关。

要注意体积增大,分子势能不一定增大。

物体中所有分子热运动的动能与分子势能之和叫做物体内能。

任何物体都有内能。

二.物态和物态变化1.固体和液体都是自然界存在的物质形态。

固体分晶体和非晶体,晶体分单晶体和多晶体。

热学总复习提纲

热学总复习提纲

2009年 热学总复习提纲第一章 温度1、基本概念:孤立系;封闭系;开放系统;平衡态; 稳恒态;温度。

2、掌握:温标建立的三要素及类型;温度计类型;理想气体温标特点。

3、熟练掌握:理想气体状态方程。

4、熟练掌握常数:5、熟练掌握混合理想气体状态方程6、了解Van der Waals 方程:1mol 实际气体: 任意质量实际气体:第二章气体分子运动论的基本概念(气体动理论) 1. 了解物质微观模型2、熟练掌握理想气体微观模型(1) 分子本身的线度比起分子之间的距离小得对多而忽略不计。

(2) 除碰撞的一瞬间外,分子间相互作用力可忽略不计。

(3) 处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性的碰撞。

在标准状态下,1摩尔理想气体中的分子数:例如固体氮:分子紧密排列,分子的半径:3、熟练掌握理想气体的压强公式(气动理论的基本公式)4、熟练掌握温度的微观意义地球的逃逸速度=11.2km.s-1。

RT MRT PV μυ==RTP V M μρ==mol N A2310023.6⨯=K mol J R .31.8=K J N R k A231038.1-⨯==VV i i =α∑=ii μαμM M i i =β∑=ii μβμ1RT b v v a P =-+))((2RT M b M V Va M p μμμ=-+))((22232500107.2-⨯==m v N n A mn L 9310103.31-⨯≈⎪⎪⎭⎫ ⎝⎛=33.1000.1-⨯=m kg ρ3341r n π=m N n r A N 103131103.343432-⨯≈⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=πρμπεn P 32=nkT P =μRT m kT v v rms 332===22123mv kT ==ε计算大气中如下各分子逃逸速度与方均根速度之比(0℃)。

H2、He 、H2O 、N2、O2,试解释地球大气里H2、He 未能保住,主要成分是N2、O2的原因。

高考物理二轮复习:分子动理论、气体及热力学定律(含答案解析)

高考物理二轮复习:分子动理论、气体及热力学定律(含答案解析)

分子动理论 气体及热力学定律热点视角备考对策本讲考查的重点和热点:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题;④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小.命题形式基本上都是小题的拼盘. 由于本讲内容琐碎,考查点多,因此在复习中应注意抓好四大块知识:一是分子动理论;二是从微观角度分析固体、液体、气体的性质;三是气体实验三定律;四是热力学定律.以四块知识为主干,梳理出知识点,进行理解性记忆.`一、分子动理论 1.分子的大小(1)阿伏加德罗常数N A =×1023 mol -1.(2)分子体积:V 0=V molN A (占有空间的体积).(3)分子质量:m 0=M molN A.(4)油膜法估测分子的直径:d =VS . (5)估算微观量的两种分子模型 【①球体模型:直径为d =36V 0π.②立方体模型:边长为d =3V 0. 2.分子热运动的实验基础(1)扩散现象特点:温度越高,扩散越快.(2)布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈.3.分子间的相互作用力和分子势能(1)分子力:分子间引力与斥力的合力.分子间距离增大,引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快.(2)分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增加;当分子间距为r 0时,分子势能最小. —二、固体、液体和气体1.晶体、非晶体分子结构不同,表现出的物理性质不同.其中单晶体表现出各向异性,多晶体和非晶体表现出各向同性.2.液晶是一种特殊的物质,既可以流动,又可以表现出单晶体的分子排列特点,在光学、电学物理性质上表现出各向异性.3.液体的表面张力使液体表面有收缩到最小的趋势,表面张力的方向跟液面相切. 4.气体实验定律:气体的状态由热力学温度、体积和压强三个物理量决定. (1)等温变化:pV =C 或p 1V 1=p 2V 2.(2)等容变化:p T =C 或p 1T 1=p 2T 2.(3)等压变化:V T =C 或V 1T 1=V 2T 2.*(4)理想气体状态方程:pV T =C 或p 1V 1T 1=p 2V 2T 2.三、热力学定律 1.物体的内能 (1)内能变化温度变化引起分子平均动能的变化;体积变化,分子间的分子力做功,引起分子势能的变化. (2)物体内能的决定因素2.热力学第一定律 #(1)公式:ΔU =W +Q .(2)符号规定:外界对系统做功,W >0,系统对外界做功,W <0;系统从外界吸收热量,Q >0,系统向外界放出热量,Q <0.系统内能增加,ΔU >0,系统内能减少,ΔU <0. 3.热力学第二定律(1)表述一:热量不能自发地从低温物体传到高温物体.(2)表述二:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.(3)揭示了自然界中进行的涉及热现象的宏观过程都具有方向性,说明了第二类永动机不能制造成功.热点一 微观量的估算?命题规律:微观量的估算问题在近几年高考中出现的较少,但在2015年高考中出现的概率较大,主要以选择题的形式考查下列两个方面: (1)宏观量与微观量的关系;(2)估算固、液体分子大小,气体分子所占空间大小和分子数目的多少.1.若以μ表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面五个关系式中正确的是( )A .N A =VρmB .ρ=μN A ΔC .m =μN AD .Δ=V N AE .ρ=μV^[解析] 由N A =μm =ρVm ,故A 、C 对;因水蒸气为气体,水分子间的空隙体积远大于分子本身体积,即V ≫N A ·Δ,D 不对,而ρ=μV ≪μN A·Δ,B 不对,E 对.[答案] ACE2.某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M =0.283 kg·mol -1,密度ρ=×103 kg·m -3.若100滴油酸的体积为1 mL ,则1滴油酸所能形成的单分子油膜的面积约是多少(取N A =×1023 mol -1,球的体积V 与直径D 的关系为V =16πD 3,结果保留一位有效数字)[解析] 一个油酸分子的体积V =MρN A分子直径D =36M πρN A最大面积S =V 油D代入数据得:S =1×101 m 2. [答案] 1×101 m 2 $3.(2014·潍坊二模)空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥,若有一空调工作一段时间后,排出液化水的体积V =×103 cm 3.已知水的密度ρ=×103 kg/m 3、摩尔质量M =×10-2 kg/mol ,阿伏加德罗常数N A =×1023 mol -1.试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N ; (2)一个水分子的直径d .[解析] 水是液体,故水分子可以视为球体,一个水分子的体积公式为V ′0=16πd 3.(1)水的摩尔体积为V 0=Mρ①该液化水中含有水分子的物质的量n =VV 0②水分子总数N =nN A ③由①②③得N =ρVN AM `=错误!≈3×1025(个).(2)建立水分子的球模型有:V 0N A=16πd 3得水分子直径d =36V 0πN A= 36××10-5××1023m≈4×10-10m. [答案] (1)3×1025个 (2)4×10-10 m[方法技巧] 解决估算类问题的三点注意1固体、液体分子可认为紧靠在一起,可看成球体或立方体;气体分子只能按立方体模型计算所占的空间.2状态变化时分子数不变. ^3阿伏加德罗常数是宏观与微观的联系桥梁,计算时要注意抓住与其有关的三个量:摩尔质量、摩尔体积和物质的量.)热点二 分子动理论和内能命题规律:分子动理论和内能是近几年高考的热点,题型为选择题.分析近几年高考命题,主要考查以下几点:(1)布朗运动、分子热运动与温度的关系.(2)分子力、分子势能与分子间距离的关系及分子势能与分子力做功的关系. :1.(2014·唐山一模)如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是( )A .当r 大于r 1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间势能E p最小D.当r由r1变到r2的过程中,分子间的作用力做正功E.当r等于r2时,分子间势能E p最小[解析]由图象知:r=r2时分子势能最小,E对,C错;平衡距离为r2,r<r2时分子力表现为斥力,A错,B对;r由r1变到r2的过程中,分子势能逐渐减小,分子力做正功,D对.[答案]BDE,2.(2014·长沙二模)下列叙述中正确的是()A.布朗运动是固体小颗粒的运动,是液体分子的热运动的反映B.分子间距离越大,分子势能越大;分子间距离越小,分子势能也越小C.两个铅块压紧后能粘在一起,说明分子间有引力D.用打气筒向篮球充气时需用力,说明气体分子间有斥力E.温度升高,物体的内能却不一定增大[解析]布朗运动不是液体分子的运动,而是悬浮在液体中的小颗粒的运动,它反映了液体分子的运动,A正确;若取两分子相距无穷远时的分子势能为零,则当两分子间距离大于r0时,分子力表现为引力,分子势能随间距的减小而减小(此时分子力做正功),当分子间距离小于r0时,分子力表现为斥力,分子势能随间距的减小而增大(此时分子力做负功),故B错误;将两个铅块用刀刮平压紧后便能粘在一起,说明分子间存在引力,C正确;用打气筒向篮球充气时需用力,是由于篮球内压强在增大,不能说明分子间有斥力,D错误;物体的内能取决于温度、体积及物体的质量,温度升高,内能不一定增大,E正确.[答案]ACE¥3.对一定量的气体,下列说法正确的是()A.气体的体积是所有气体分子的体积之和B.气体的体积大于所有气体分子的体积之和C.气体分子的热运动越剧烈,气体温度就越高D.气体对器壁的压强是由大量气体分子对器壁不断碰撞产生的E.当气体膨胀时,气体分子之间的势能减小,因而气体的内能减小[解析]气体分子间的距离远大于分子直径,所以气体的体积远大于所有气体分子体积之和,A项错,B项对;温度是物体分子平均动能大小的标志,是表示分子热运动剧烈程度的物理量,C项对;气体压强是由大量气体分子频繁撞击器壁产生的,D项对;气体膨胀,说明气体对外做功,但不能确定吸、放热情况,故不能确定内能变化情况,E项错误.[答案]BCD;[方法技巧]1分子力做正功,分子势能减小,分子力做负功,分子势能增大,两分子为平衡距离时,分子势能最小.2注意区分分子力曲线和分子势能曲线.)热点三热力学定律的综合应用命题规律:热力学定律的综合应用是近几年高考的热点,分析近三年高考,命题规律有以下几点:(1)结合热学图象考查内能变化与做功、热传递的关系,题型为选择题或填空题.(2)以计算题形式与气体性质结合进行考查.(3)对固体、液体的考查比较简单,备考中熟记基础知识即可.】1.(2014·南昌一模)下列叙述和热力学定律相关,其中正确的是()A.第一类永动机不可能制成,是因为违背了能量守恒定律B.能量耗散过程中能量不守恒C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性E .物体从单一热源吸收的热量可全部用于做功[解析] 由热力学第一定律知A 正确;能量耗散是指能量品质降低,反映能量转化的方向性仍遵守能量守恒定律,B 错误,D 正确;电冰箱的热量传递不是自发,不违背热力学第二定律,C 错误;在有外界影响的情况下,从单一热源吸收的热量可以全部用于做功,E 正确. 。

分子动理论热力学定律

分子动理论热力学定律
分子动理论热力学定律
(2)“不产生其他影响”的涵义是发生的热力学宏观过程 只在本系统内完成,对周围环境不产生热力学方面的
影响.如吸热、放热、做功等.
3.热力学过程方向性实例
(1)高温物体热热量量QQ不能能自自发发传传给给低温物体
(2)功不能能自自发发地且地不完全能转完化全转为化为热
(3)气体体积
V1
1.热力学第一定律
(1)内容:一个热力学系统的内能增量等于外界向它传递的
热量与外界对它所做的功的和.
(2)表达式:ΔU=Q+W
(3)符号规定
做功W
外界对物体做功 物体对外界做功
W>0 W<0
物体从外界吸收热量 吸放热Q 物体向外界放出热量
Q>0 Q<0
物体内能增加 内能变化ΔU 物体内能减少
ΔU>0 ΔU<0
第1讲 分子动理论 热力学定律
分子动理论热力学定律
分子动理论的基本观点和实验依据 阿伏加德罗常数 Ⅰ(考纲要求)
1.物体是由大量分子组成的 (1)分子的大小 ①一般分子直径的数量级:_1_0_-_1_0m ②估测的方法:_油__膜__法 (2)一般分子质量的数量级:10-26 kg (3)阿伏加德罗常数 (1)1 mol的任何物质中含有相同的粒子数,用符号NA表示, NA=_____6_._0_2_×_1m0o23l-1.
分子动理论热力学定律
2. 热力学第二定律 (1)表述一:热量不能自发地从低温物体传到高温物体. (2)表述二:不可能从单一热库吸收热量,使之完全变成功, 而不产生其他影响.
分子动理论热力学定律
1.对理想气体的三种特殊情况 (1)若过程是绝热的,则Q=0,W=ΔU. (2)若过程等容的,即W=0,Q=ΔU. (3)若过程等温的,即ΔU=0,则W+Q=0或W=-Q. 2.在热力学第二定律的表述中,“自发地”、“不产生 其他影响”的涵义 (1)“自发地”指明了热传递等热力学宏观现象的方向性, 不需要借助外界提供能量的帮助.

大学物理分子动理论

大学物理分子动理论

xM1M3 (p1p3)V1
M2
p2V2
(1301)0329.6(天 ) 1400
6-2 理想气体压强公式
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均效果。
每个分子对器壁的作用 f t
所有分子对器壁的作用 F f t
t
理想气体的压强公式
p F S
一、理想气体的分子模型 1、分子可以看作质点
说明: •平衡态是一种热动平衡
处在平衡态的大量分子仍在作热运动,而且因 为碰撞, 每个分子的速度经常在变,但是系统的宏 观量不随时间 改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
•平衡态是一种理想状态
对热力学系统的描述:
1. 宏观量——状态参量
解: (1) p1V1 p2V2
T1
T2
由已 :V 1知 2V 2,T 127 2 3 730 K ,0
T227 1 374 75 K0
p2V V 1 2T T 2 1p12 V V 22 3405 00 3p1
(2) w 3kT 2
ww2w123k(T2T1)
31.381 023(45030)03.1 11 021J 2
w 3 kT 2
p nkT
6-4 能量均分定理 理想气体的内能
一、自由度 确定一个物体的空间位置所需要的独立坐标数目。
He
O2
H2O
NH 3
以刚性分子(分子内原子间距离保持不变)为例
z
z
C(x, y,z)
y
C(x, y,z)
y
x
单原子分子
平动自由度t=3
itr3

热力学-2.气体分子动理论

热力学-2.气体分子动理论

分子间势能曲线:
分子间距离改变dr时,分子间势能的增 量就等于分子力做的功:
dE p Fdr
取r=∞时势能为零:
r
r
Ep


Fdr



(rs

rt
)dr

'
r s1

'
r t 1
分子碰撞有效直径d
d随温度升高将如何变化?
承认分子固有体积的存在 就是承认存在分子间排斥 力?
p

1 3
nmv 2
p

2 3
n(
1 2
mv 2 )

2 3
n k
•理想气体的压强正比于气体分子的数密度 和分子的平均平动动能; •理想气体的压强公式揭示了宏观量与微观 量统计平均值之间的关系。
分析:
p 2 n
3
系统总粒子数增高
碰撞频率增高
体系压强增高。
粒子平均动能增高
运动速率增高
碰撞频率增高 冲量增高,
气体分子在不停地运动着。
液体分子在不停地运动着。
• 有人做过这样一个实验,把磨得很光滑 的铅片和金片紧压在一起,在室温下过 了5年,铅片和金片就结合在一起了,切 开后发现铅和金相互渗透了约1mm深。
• 固体分子在不停地运动着。
固体、液体、气体都存在扩散现象。 扩散现象说明了: 一切物体的分子都在不停地做无规则的运动。
v12 m2
v22
m1
•当温度T=0时,气体的平均平动动能为零,这时气体分子的热
运动将停止。然而事实上是绝对零度是不可到达的(热力学第 三定律),因而分子的运动是永不停息的。
温度1000ºC及0ºC时气体分子的平均动能。

物理专题8:分子动理论、热和功及气体状态参量考点例析

物理专题8:分子动理论、热和功及气体状态参量考点例析

专题八:分子动理论、热和功及气体状态参量考点例析本部分主要包括分子动理论、内能、热力学第一定律、热力学第二定律、气体的状态参量及定性关系。

在高考中多以选择题、填空题的形式出现,理科综合一般只考一道选择题,占分比例较小,试题难度属于容易题或中档题,因此只要能识记和理解相关知识点,得到本部分试题的分数并不困难。

一、夯实基础知识1、理解并识记分子动理论的三个观点描述热现象的一个基本概念是温度。

凡是跟温度有关的现象都叫做热现象。

分子动理论是从物质微观结构的观点来研究热现象的理论。

它的基本内容是:物体是由大量分子组成的;分子永不停息地做无规则运动;分子间存在着相互作用力。

2、了解分子永不停息地做无规则运动的实验事实物体里的分子永不停息地做无规则运动,这种运动跟温度有关,所以通常把分子的这种运动叫做热运动。

(1)扩散现象和布朗运动都可以很好地证明分子的热运动。

(2)布朗运动是指悬浮在液体中的固体微粒的无规则运动。

关于布朗运动,要注意以下几点:①形成条件是:只要微粒足够小。

②温度越高,布朗运动越激烈。

③观察到的是固体微粒(不是液体,不是固体分子)的无规则运动,反映的是液体分子运动的无规则性。

④实验中描绘出的是某固体微粒每隔30秒的位置的连线,不是该微粒的运动轨迹。

3、了解分子力的特点分子力有如下几个特点:①分子间同时存在引力和斥力;②引力和斥力都随着距离的增大而减小;③斥力比引力变化得快。

4、深刻理解物体内能的概念⑴做热运动的分子具有的动能叫分子动能。

温度是物体分子热运动的平均动能的标志。

温度越高,分子做热运动的平均动能越大。

⑵由分子间相对位置决定的势能叫分子势能。

分子力做正功时分子势能减小;分子力作负功时分子势能增大。

(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小。

)由上面的分析可以得出:当r=r0即分子处于平衡位置时分子势能最小。

不论r从r0增大还是减小,分子势能都将增大。

分子势能与物体的体积有关。

分子动力学中的分子运动

分子动力学中的分子运动

分子动力学中的分子运动分子动力学是计算物理学中的一种重要方法,它通过模拟分子的运动和相互作用来研究物质的性质和行为。

在这个模拟过程中,分子运动是非常关键的一个因素,它影响着物质的热力学性质、力学性质和电学性质等。

因此,我们有必要深入理解分子动力学中的分子运动。

原子和分子的运动状态原子和分子的运动状态可以由它们的速度、位移和角位置表述。

根据统计力学的理论,分子在温度为T时的动能是:K = (3/2)kT其中k为玻尔兹曼常数。

这个公式表明分子的动能与温度成正比,并且与分子的质量有关。

因此,当温度相同时,质量大的分子具有较小的动能,而质量小的分子则具有较大的动能。

另一方面,分子的位移可以用速度和时间来表述。

分子的运动轨迹是由其速度和位置的变化所决定的。

除了热力学作用外,分子间的相互作用也会影响它们的相对位置和运动轨迹。

分子的稳定性和不稳定性分子的稳定性取决于其内能和相互作用。

如果分子之间的相互吸引力能够抵消热力学作用引起的相互排斥,那么它们就可以保持较为稳定的状态。

相反,如果分子间的排斥力大于吸引力,那么它们就会变得不稳定。

当分子处于不稳定状态时,它们的动能会增加,而且它们的速度和位置也会变化。

这种运动状态被称为非平衡状态。

在分子动力学模拟中,研究非平衡态分子的运动是非常重要的,因为这可以帮助我们预测物质的热力学性质。

分子运动与热传导分子运动对热传导也有着很大的影响。

热传导是分子间能量转移的一种形式。

在分子动力学模拟中,我们可以通过研究分子的速度和位置变化来模拟热传导过程。

热传导的速率可以通过热传导系数来计算。

热传导系数与分子间的相互作用以及它们的质量和速度有关。

通常情况下,质量越小的分子对热传导的贡献越大,速度越快的分子对热传导的贡献也越大。

分子运动与物质的相变分子运动对物质的相变也有着很大的影响。

相变是物质在不同温度、压力、密度等条件下从一种状态转化为另一种状态的过程。

在分子动力学模拟中,我们可以通过研究分子的速度和位置变化来模拟物质的相变过程。

八年级物理公式:分子动理论、能量守恒定律

八年级物理公式:分子动理论、能量守恒定律

八年级物理公式:分子动理论、能量守恒定律除了课堂上的学习外,往常的积聚与练习也是先生提高效果的重要途径,本文为大家提供了八年级物理公式:分子动实际、能量守恒定律,祝大家阅读愉快。

1.阿伏加德罗常数NA=6.021023/mol;分子直径数量级10-10米2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜外表积(m2)}3.分子动实际内容:物质是由少量分子组成的;少量分子做无规那么的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)(3)rr0,f引f斥,F分子力表现为引力(4)r10r0,f引=f斥0,F分子力0,E分子势能05.热力学第一定律:W+Q=U{(做功和热传递,这两种改植物体内能的方式,在效果上是等效的),W0:外界对物体做正功(J),Q0:物体吸收热量(J),0:内能添加(J),触及到第一类永动机不可造出}6.热力学第二定律克氏表述:不能够使热量由高温物体传递到高温物体,而不惹起其它变化(热传导的方向性);开氏表述:不能够从单一热源吸收热量并把它全部用来做功,而不惹起其它变化(机械能与内能转化的方向性){触及到第二类永动机不可造出}7.热力学第三定律:热力学零度不可到达{宇宙温度下限:-273.15摄氏度(热力学零度)}注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越清楚,温度越高越猛烈;(2)温度是分子平均动能的标志;(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;(5)气体收缩,外界对气体做负功W温度降低,内能增大0;吸收热量,Q(6)物体的内能是指物体内一切分子的分子动能和分子势能的总和,关于理想气体分子间作用力为零,分子势能为零;(7)r0为分子处于平衡形状时,分子间的距离;(8)其它相关内容:能的转化和定恒定律/动力的开发与应用、环保/物体的内能、分子的动能、分子势能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
大量分子的统计假设:
(1)分子的速度各不相同,而且通过碰撞不断 变化着;
(2)容器中任一位置处单位体积的分子数不比其 它位置占优势(平衡态时分子按位置的分布是均匀 的)。 (3)分子沿任何方向运动(个数、速率)不比其 它方向占优势(平衡态时分子的速度按方向的分布 是各向均匀的)。
.
★ 推论 (1)沿空间各方向运动的分子数目是相等的,
器壁碰撞的综合结果。 前提:理想气体分子的微观模型假设。
.
y
研究对象:长方体, N,m,
vv i
v ix
l2
在热动平衡下,分子与 6 个壁都要碰,各个面所 x 受的压强相等。
l1
l3
研究一个侧面:Sl2l3
z
▲ 先选定一个质量为m的分子,速度为
vv
i

沿x方向动量为 m v ix
▲ 分子与侧壁发生弹性碰撞,碰一次动量改变:
2mvix
.
y
▲ 相邻两次碰撞的时间间隔为
t 2 l1 v ix
单位时间碰撞的次数为
Z v ix
Hale Waihona Puke v1l2v1x
l3
x
l1
▲ 单位时间内2该l 1 分子动量的改z变为:
p t 2mvix
vix 2l1
m l1
v
2 ix
▲根据动量定理:F i
p t
m l1
v
2 ix
.
▲所有分子对侧壁的作用力为
气体状态(P,V,T)就是指平衡态。
平衡过程:状态1到状态2是一个状态变化的过程。
若此过程足够缓慢,这个过程中每一状态都可近似看 作平衡态,则叫平衡过程。
平衡态1
非平衡态
.
平衡态2
5.理想气体状态方程
PV M RT
6.理想气体的微观模型
克拉伯龙方程
利用扫描隧道显微镜技 术把一个个原子排列成 IBM字母的照片.
n0 ?
(3)作用在器壁上. 的压强P=?
(1)分子作用于器壁的冲量 f t 2mv1x
=1.2×10-24kg.m/s
(2)每秒碰在器壁单位面积上的分子数 n 0
分子每秒前进的距离 v 1 x 分子每秒扫过的体积 v 1 x 与速度垂直的横截面积
热 学
气体动理论 热力学基础
.
热学是研究 物体 热运动 的性质和规律的学科
1. 宏观物体:由大量微观粒子组成。 有固、液、气体,等离子体,辐射场,生命体等
2. 热运动:指宏观物体内大量微观粒子无规则的 运动。
3. 研究热运动的方法: 宏观:实验的方法
热力学
微观:统计的方法
统计力学( 统计物理)
重点研究: 理想气体的热运动
例1(4002)某容器内分子数密度为1026m-3, 每个分子的质量为3×10-27kg,设其中 1/6分子数以速率v=200ms-1垂直地向容 器的一壁运动,而其中5/6分子或者离 开此壁、或者平行此壁方向运动,且分 子与容器壁的碰撞为完全弹性。则 (1)每个分子作用于器壁的冲量P? (2)每秒碰在器壁单位面积上的分子数
.
讨论:
10只要两种气体的温度相同它们的分子平均平动动 能就相等(与质量、速度无关)。
20对分子热运动,因为 t永远0 T 0 ! 绝对零度是不可能的!
30“温度”(宏观量)的微观实质
温度只有统计意义: *是大量分子热运动剧烈程度的标志; *是分子平均平动动能的量度; *是统计平均值;
对个别分子谈温度毫无意. 义。
F
m l1
N
vi2x
i1
mN l1
v
2 x
▲所有分子对侧壁的压强
N
v
2 ix
v
2 x
i1
N
PF S
mN l1l2l3
v
2 x
m
N V
v
2 x
mnvx2
.
根据统计假设: vx2(13) v2
分子平均 平动动能
P1mnv2 3
2n(1mv2) 32
2 3
n
t
采用力学规律和统计方法求得了压强
.
讨论
P
2 3
n
t
10 P的意义:大量分子与器壁不断碰撞的结果,是 统计平均值,对单个分子谈压强是毫无意义的。
20 压强公式把宏观量P与微观量 n、t 联系起来
了,显示了宏观量和微观量的关系。
30压强公式虽然是从 所得结果相同。
中推出的,对其他容器
.
2. 理想气体状态方程的又一表达式
标准状态下: PV M RT
Nx Ny Nz
n d N 处处相等
dV
(2)分子速度在各个方向的分量的平方的平均值 相等。
vx2 v2y vz2
v2 vx2 v2y vz2.
v
2 x
v
2 y
v
2 z
1 v2 3
二、压强的微观实质及其统计意义
1.理想气体压强公式的推导 气体压强是什么? 由于气体的存在而使容器壁
单位面积上所受到的压力。 为什么气体会有压强呢?大量气体分子频繁与
(2)有局限性,与实际有偏差,不可任意推广.
热力学
相辅相成
气体动理论
.
第一章 温度 第二章 气体动理论
.
1、注意其特定的研究方法 (统计方法) 2、准确记忆每一个物理量的表达式 3、非常清楚量与量之间的内在联系
.
一、基本概念及专业术语
1. (热力学)系统 2. 宏观描述和宏观量(不可直接测量)
(如: 压强P、体积V、温度T)
3. 微观描述和微观量(可直接测量)
(如:一个分子的质量m、速度v、位置r 等等) 关系:个别分子的运动无规则,大量分子的集体表
现一定存在一种统计规律。
.
4.平衡状态及平衡过程
平衡态
热力学状态
非平衡态 平衡态:在不受外界影响的条件下,系统宏观性质均 匀一致、不随时间变化的状态,热动平衡态。
.
1 热力学 —— 宏观描述
从实验经验中总结出宏观物体热现象的
规律,从能量观点出发,研究物态变化过程
中热功转换的关系和条件.
特点
(1)具有可靠性; (2)知其然而不知其所以然; (3)应用宏观参量.
.
2 气体动理论 —— 微观描述 研究大量数目热运动的粒子系统,应用
模型假设和统计方法.
特点 (1)揭示宏观现象的本质;
气体总质量
M
:
气体摩尔数N0一N摩分 尔子 气总 体数 的分子数
气体摩尔质量
N0:阿伏伽德罗常数
P N RT N R T nkT
N0 V V N0
P =nkT .
玻尔兹曼常数
三、温度的微观实质及统计意义
t
1mv2 2
3kT 2
方均根速率
R k
NA
玻尔兹曼常数
v2
3kT
m
3RT
一个分子质量 摩尔质量(分子量)
对于由大量分子组成的热力学系统从微观上加以研 究时, 必须用统计的方法.
.
单个分子的力学假设 (1)气体分子的大小与气体分子间的距离比 , 可以忽略不计;气体分子当作质点; (2)分子之间除碰撞的瞬间外,无相互作用力, 碰撞为弹性碰撞;一般情况下,忽略分子间的相 互作用及重力的影响; (3)气体分子的运动遵从牛顿力学的规律;
相关文档
最新文档