小学数学组合图形面积
小学数学五年级上册《组合图形的面积》7篇
小学数学五年级上册《组合图形的面积》7篇小学数学五年级上册《组合图形的面积》1组合图形面积是学生学习了长方形,正方形,平行四边形,三角形与梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
在教学过程中,主要让学生在操作活动中认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。
在让学生动手操作,自主探究如何使组合图形转化为已学过的基本图形的过程中,首先让学生把这个图形分成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。
接着让学生来说说自己的做法,通过投影展示学生的分法(以分割成两个长方形为例),第一,你是怎样分的(分割成两个长方形);第二,长方形的面积公式是怎样的;第三,要计算第一个长方形的面积,长是多少,宽是多少要计算第二个长方形的面积,长是多少,宽是多少在这个环节中,学生基本上都能够运用分割或添补法把组合图形转化为所学过的基本图形,但在展示学生分法时,忘记了将在巡堂时发现的个别学生的分法是由于找不到相关条件无法计算图形面积也进行展示和集体讨论为什么,这是不足的地方(如果当时在这个环节中,让学生充分展示汇报不同的分法后,教师接着引导学生总结优化出哪种分法更利于我们计算这个组合图形的面积或者哪种分法计算这个组合图形的面积更简单,然后就让学生用这种方法来计算图形的面积,可能后面的环节就不会不够时间)。
学生汇报了不同的分法后,就让学生用自己喜欢的方法去进行图形的面积计算,然后让学生汇报展示,从中小结优化出那种分割法或添补法计算这个组合图形的面积更简单。
这个环节花的时间比较多,跟前面的环节有类似,结果后面的时间很紧。
因此在今后教学中应要多注意教学环节之间的内容设计,尽量紧凑,及时发现问题和作出反馈。
小学数学五年级上册《组合图形的面积》2一分耕耘一分收获。
这次百花奖,让我感受颇深,对于本节课,《组合图形的面积》是学生学习了长方形、正方形、平行四边形,三角形和梯形的`面积计算的基础上认识学习组合图形面积的计算,这是面积知识的提升和发展。
小学数学《组合图形面积》优秀教案(通用10篇)
小学数学《组合图形面积》优秀教案小学数学《组合图形面积》优秀教案(通用10篇)作为一名教职工,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。
快来参考教案是怎么写的吧!以下是小编为大家整理的小学数学《组合图形面积》优秀教案,希望能够帮助到大家。
小学数学《组合图形面积》优秀教案篇1教学目标1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点能根据条件求组合图形的面积。
教学难点理解分解图形时简单图形的差较难分解。
教具、学具教师指导与教学过程学生学习活动过程设计意图一、试一试教师引导学生读题,理解题意。
二、练一练第1题1、请学生任意分割,后说说分割的是什么已经学过的图形2、老师要求再分割3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程学生学习活动过程设计意图三、练一练第3题学生看书上的图。
教师读题,要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?四、作业完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
小学五年级数学《组合图形面积的计算》优秀教案三篇
小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。
计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
【易错题精析】第14讲 组合图形的面积 小学数学五年级上册易错专项练(知识梳理易错汇总易错精讲易错
第14讲组合图形的面积(讲义)小学数学五年级上册易错专项练(知识梳理+易错汇总+易错精讲+易错专练)1.组合图形的面积的求法。
把组合图形的面积转化成几个简单的平面图形的面积和或差来计算。
2.不规则图形面积的估算方法。
方法一:借助方格纸用数格子的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
1.在对组合图形进行分解时,一定要考虑到分别求面积时所需要的数据条件下是否充分。
将组合图形分成几个简单图形,计算每个简单图形的面积时要找准数据。
【易错一】1.请你估算一下,图中的叶子大约是()cm2。
A.16cm2~34cm2B.18cm2~36cm2C.20cm2~38cm2D.22cm2~40cm2【解题思路】首先要看清图形所占方格的个数,然后用每个方格的面积乘个数即可。
【完整解答】完整的小正方形有18个,所以图形面积大于18cm2;不完整的小正方形有18个,所以图形面积小于18+18=36(cm2)。
故答案为:B【易错点】解答此题,要注意认真分析图形,弄清图形所占的方格数是解答此题的关键。
【易错二】一个梯形分成一个三角形和一个平行四边形(如图),已知平行四边形的面积是14.4cm2,这个梯形的面积是( )cm2。
【解题思路】由图可知,平行四边形和三角形等高,利用“平行四边形的高=平行四边形的面积÷底”求出三角形的高,再根据“三角形的面积=底×高÷2”求出三角形的面积,最后求出平行四边形和三角形的面积和即可。
【完整解答】14.4÷4.5×5.5÷2+14.4=3.2×5.5÷2+14.4=17.6÷2+14.4=8.8+14.4=23.2(cm2)所以,这个梯形的面积是23.2cm2。
【易错点】掌握平行四边形和三角形的面积计算公式是解答题目的关键。
【易错三】如下图,在一块平行四边形的草地中,有一条长12米,宽1米垂直于底边的小路,如果铺1平方米草坪需要12元,铺这块草坪大约需要多少钱?【解题思路】可以把左右两块草地合在一起,使其成为一个平行四边形。
苏教版五年级数学上册《组合图形的面积》PPT课件
利用新知识解决生活中的问题
1、新丰小学有一块菜地,形状如下图,这块菜 地的面积是多少平方米
50m
33m
计算这个组合图形的面积
10cm 5cm
10cm
20cm
小结
方法:一分图形 二找条件 三算面积
关键:学会运用“分割”与“添补” 的方
法计算组合图形面积.
2、某工厂有一种用铁皮剪成的零件。 (如图)
3m
7m (三)
6m 3m
(7二m) 4m
7m (四)
3m
4m
4m
4m
3m 3m
6m
6m
6m
3m
3m
7m
4m
3m
6m
3m
7m
7m
} 分割法
转化
添补法
3m
7m
一.下面各个图形可以分成哪些已经学 过的图形?
怎么计算组合图形的面积?
1、分图形:用分割法或添补法分把组 合图形成我们会计算的简单图形。 2、找条件,算面积:分别计算简单图 形的面积。 3、最后求和或差。
请计算做一个这样的零件要用多少铁皮 (单位:米)
先仔细观察图形,然后用你熟悉的方法去完成这道题。
2m 3m
3m 3m
3m 3m
方法一:
把组合图形分割成一个长方形加一个梯形
2m
3m 3m
3m 3m
3m
方法二:
把组合图形添补成一个长方形减去一个梯形
2m 3m
3m
3m
3一个长方形
已经学过的几种平面图形的面积计算公式
b
a
S=ab
a
a
S=a×a
h
a
S=ah
五年级《组合图形的面积》教学设计4篇
五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
小学数学组合图形面积
小学数学组合图形的面积,10种解题思路,值得收藏小学数学组合图形的面积,10种解题思路,值得收藏一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积分析:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
分析:先求出正方形面积再减去里面圆的面积即可.三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.例如:下图,求阴影部分的面积。
分析:通过分析发现阴影部分就是一个底是2、高是4的三角形四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积。
分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,求两个正方形中阴影部分的面积。
分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.六、割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如:下图,若求阴影部分的面积。
分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如:下图,求阴影部分的面积。
分析:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】
五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!五年级下册数学《圆之组合图形的面积计算》的教案【优秀8篇】作为一名老师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。
五年级数学上册教学课件《组合图形的面积》
四、随堂练习 [教材P99 练习二十二 第3题]
下面是一块正方形空心地砖,它实际占地面积是多少?
30×30-13×13 = 731(cm2) 答:它实际占地的面积是 731 平 方厘米。
四、随堂练习 [教材P99 练习二十二 第4题]
在一块梯形的地中间有一个长方形的游泳池,其余的地 方是草地。草地的面积是多少平方米?
五、课堂小结
通过本节课的学习,你有什么收获?
六、巩固练习
计算下面各组合图形的面积。(单位:cm)
3×8÷2+5×8÷2 = 32(cm2) 16×16+16×20÷2 = 416(cm2)
六、巩固练习
计算下面各组合图形的面积。(单位:cm)
(20+10+10+10)×21÷2+20×10 = 725(cm2) (18+16)×10÷2+16×24 = 554(cm2)
方法三:拼成一个长方形
长方形面积 = 5×(5+2÷2) = 5×6 = 30(m2)
房子侧面墙的面积 = 长方形面积
三、自主探究 [教材P97 例4]
右图表示的是一间房子侧面墙的形状,
它的面积是多少平方米? 方法四:从长方形中挖走两个小三角形
长方形面积 =(5+2)×5 = 7×5 = 35(m2)
两个三角形面积 = 2×(5÷2)÷2×2 = 5(m2) 房子侧面墙的面积 = 35-5 = 30(m2)
三、自主探究
通过刚才的研究,你觉得求组合图形的面积都有哪些
方法呀? 你喜欢哪种方法呢?
方法一
方法二Leabharlann 方法三方法四状元成才 路
三、自主探究
通过刚才的研究,你觉得求组合图形的面积都有哪些 方法呀? 你喜欢哪种方法呢?
小学数学五年级——组合图形的面积
可以把它看成一个正方 形和一个三角形的组合。
方法一:
5米
2
5
=
米2米
+
米
55米米
5 米
5×2÷2+5×5
=5+25
=30(平方米)
答:它的面积是30平方米。
我把它分成两个完 全一样的梯形。
方法二:
2
2
=
米
米
+
米5米2
5 米
5米
(5÷2)米
米米5(5 5÷2)米
(5+5+2)×(5÷2)÷2×2
=12×2.5÷2×2 =30(平方米)
答:它的面积是30平方米。
你是怎样想的?
方法三:
2 米
5米
= 5
米
-
(5+2)×5 -(5÷ 2)×2÷2×2 =35-5 =30(平方米)
想:这块菜地的面积 = 平行四边形面积 + 三角形面积
50×33+35×12÷2 =1650+210 =60(平方米)
法计算组合图形面积.
正方形
长方形
平行四边形
梯形
三角形
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
下面这些物品里有哪些图形?
由两个完全 一样的梯形 组合成的
由一个长方形 和两个完全一 样的三角形组
合成的
由几个简单的图形 拼出来的图形,我们 把它们叫做组合图形。
第六单元 组合图形的面积(讲义) 小学数学五年级上册专项训练
第六单元组合图形的面积(讲义)小学数学五年级上册专项训练(知识梳理+典例精讲+专项训练)1. 组合图形的意义。
由几个简单的图形,通过不同的方式组合而成的图形。
2. 组合图形的面积的求法。
方法一:分割法。
根据图形和所给条件的关系,将图形进行合理分割,分成几个规则图形,几个规则图形的面积和就是组合图形的面积。
方法二:添补法。
将图形所缺部分进行添补,组成几个基本图形。
几个基本图形的面积减去添补图形的面积就是组合图形的面积。
方法三:割补法。
割下不规则图形的一部分,并补在适当的位置上,以形成规则的图形。
割补前后,图形面积不发生改变。
3. 不规则图形面积的估算与计算。
方法一:借助方格纸用数格子的方法进行估计。
数格子时,不满1格的可按半格来算(数格子时要有顺序,做到不重复,不遗漏)。
方法二:根据图形的特点把不规则图形近似地看作规则图形,应用规则图形的面积公式计算面积。
4. 公顷和平方千米。
边长是100米的正方形的面积是1公顷。
边长是1000米的正方形的面积是1平方千米。
测量和计算土地面积时,通常用公顷、平方千米( k㎡)做单位。
公顷和平方千米都是比平方米大的面积单位。
5. 公顷、平方米、平方千米之间的关系。
1公顷=10000平方米,1平方千米=100公顷=1000000平方米。
温馨提示:大单位化成小单位,要乘进率;小单位化成大单位,要除以进率。
【典例一】一块梯形小麦地里有一条平行四边形的小路(如下图),种小麦的面积是多少平方米?【分析】用梯形面积减去平行四边形的小路面积即可。
【详解】(50+64)×25÷2-2×25=1425-50=1375(平方米)答:种小麦的面积是1375平方米。
【点睛】熟悉组合图形面积的一般计算方法为本题考查重点。
【典例二】学校要为班级制作流动红旗,如图所示。
(1)这面流动红旗的面积是多少?(2)一块边长为2m的正方形布,最多能做多少面这样的流动红旗?(提示:流动红旗不能拼接,可以画图帮助思考哦!)【分析】(1)如图:把流动红旗分成两个面积相等的梯形,梯形的面积=(上底+下底)×高÷2;据此解答。
小学五年级数学教案 组合图形面积的计算9篇
小学五年级数学教案组合图形面积的计算9篇组合图形面积的计算 1教学内容:92和93页例4、练习十八第1、2题。
教学目标:1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积。
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积。
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
教学过程:一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.?可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形1、让学生指出有哪些图形?师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(92页的四幅图),认一认,它们是什么?这些图片分别是由哪几个平面图形组成的?这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
[板书课题]三、组合图形面积的计算。
1.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?2.如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?先在小组内讨论方法,再后打开书计算,同时指名板演。
5×5+5×2÷2[5+(2+5)]×(5÷2)÷2×2集体订正时问:你将组合图形分成了哪几个基本图形?算式的每一步求的是什么?比较一下,你喜欢哪种算法?为什么?师:我们在计算组合图形面积时,要根据已知条件对图形进行分解,分解图形要尽量选择最简便的方法进行计算,特别要有计算面积所必需的数据。
小学数学五年级上册《6.1组合图形的面积》资料计算公式
小学数学五年级上册
《组合图形的面积》资料计算公式
长方形:
{长方形面积=长×宽}
正方形:
{正方形面积=边长×边长}
平行四边形:
{平行四边形面积=底×高}
三角形:
{三角形面积=底×高÷2}
梯形:
{梯形面积=(上底+下底)×高÷2}
圆形(正圆):
{圆形(正圆)面积=圆周率×半径×半径}
圆环:
{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)} 扇形:
{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:
{长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:
{正方体表面积=棱长×棱长×6}
球体(正球)表面积:
{球体(正球)表面积=圆周率×半径×半径×4}
椭圆
(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长). 半圆:
(半圆形的面积公式=圆周率×半径的平方÷2)。
《组合图形的面积》数学教案优秀8篇
《组合图形的面积》数学教案优秀8篇《组合图形的面积》数学教案篇一教材分析1.课标中对本节内容的要求是:在探索活动中认识组合图形,归纳并运用不同的方法计算组合图形的面积,从而解决相应的实际问题。
教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算中,要把一个组合图形分解成已学过的平面图形并进行计算,这样可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念。
因此本课在本单元中起着承上启下的作用,从简单的图形向不规则图形和组合图形的知识转化。
2.本节课的核心内容的功能和价值主要体现在两个方面:一是感受计算组合图形面积的必要性,也是日常生活中经常需要解决的问题。
二是针对组合图形的特点强调学生学习的自主探索性,每个学生可以根据自己的经验思考与解决习惯去思考如何解决相应的实际问题,从而培养学生个性化解决问题的能力。
学情分析1.本班共41名学生,从过去的学习情况来看,整体基础比较扎实,学习能力较强。
最为关键的是:本班学生有85%的学生都酷爱数学这门课程(具体调查统计过)。
只有部分学生对数学喜欢程度一般。
总体上学生思维活跃,好动、好学已经具备了一定的自学能力。
且通过之前的作业反馈、师生交流及我班特色“每天三问”的反馈对本班教学也有一定的指导意义。
2.本课的授课对象是五年级的学生,学生通过之前的学习,对于平面图形直观感知和认识上已有了一定的基础,也掌握了一些基本图形面积的计算方法。
作为五年级的学生,应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。
3.学生认知障碍点:拓展学生采用不同的方法来解决问题的能力方面是本节课最主要的障碍点。
教学目标1、知识目标(1)认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
(2)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、技能目标(1)在观察、列举中认识简单的组合图形,在尝试、交流中探索组合图形面积的计算方法。
人教版小学数学组合图形的面积 (经典例题含答案)
班级小组姓名成绩(满分120)一、组合图形的面积(一)组合图形的面积计算(共4小题,每题3分,共计12分)例1.求下面图形的面积。
(单位:cm)32×10÷2+32×203×4÷2+(5+10)×5÷210×12-(4+8)×2÷2=160+640=6+37.5=120-12=800(cm²)=43.5(cm²)=108(cm²)例1.变式1.先回答问题,再计算图形的面积。
(单位:cm)(1)组合图形的面积=(长方形)面积+(三角形)面积36×24+24×21÷2=1116(平方厘米)(2)52阴影部分的面积=(梯形)面积-(三角形)面积(30+52)×28÷2-30×28÷2=728(cm²)例1.变式2.计算下面图形的面积,你能用不同的计算方法吗?5×2.5+(3+5)×(5-2.5)÷2=5×2.5+8×2.5÷2=12.5+10=22.5(平方米)5×3+(2.5+5)×(5-3)÷2=5×3+7.5×2÷2=15+7.5=22.5(平方米)例1.变式3.如图,左边阴影部分的面积是60平方厘米。
求右边空白部分(梯形)的面积。
(单位:厘米)60×2÷8=15(厘米)(16+16+8)×15÷2=40×15÷2=300(平方厘米)答:空白部分的面积是300平方厘米.(二)组合图形的面积计算(共4小题,每题3分,共计12分)例2.计算下列组合图形的面积。
(单位:cm)(8.5+15)×13÷2-8.5×4÷2=135.75(cm²)例2.变式1.解决问题。
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
3m 3m
3m 3m
方法一:
把组合图形分割成一个长方形加一个梯形
2m
3m 3m
3m 3m
3m
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
方法二:
把组合图形添补成一个长方形减去一个梯形
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
2m 3m
3m
3m
3m 3m
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
2m
3m
3m
3m
3m
3m
(方法四)
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
你敢接受挑战吗?
求下列图形的面积。(单位:cm) 20
10 16
12
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
五年级上册数学课件- 组合图形的面积ppt苏教版(共23页)
12米 米
米
15米
10 6
练一练:校园里有一个花圃,你 能算出它的面积是多少平方米吗?
5m 2m
花
圃
2m
平
面
图
6m
第一种:分割成两个长方形
2m 6m
5m 2m
第二种:分割成一个长方形和一个正方形
2m 6m
5m 2m
第三种:分割成两个梯形
2m 6m
2m 5m
第四种:添补成一个长方形
__
4m
2m
5m 2m 3m
6m
?m 算一算 ?m
5m 2m
5m
2m
5m
6m (一)
?m
2m
6m (三)
小学数学组合图形面积
小学数学组合图形的面积,10种解题思路,值得收藏小学数学组合图形的面积,10种解题思路,值得收藏一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积•例如:求下图整个图形的面积分析:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差例如:下图,求阴影部分的面积。
分析:先求出正方形面积再减去里面圆的面积即可•三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积例如:下图,求阴影部分的面积。
分析:通过分析发现阴影部分就是一个底是2、高是4的三角形四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可•例如:下图,求阴影部分的面积。
分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,求两个正方形中阴影部分的面积。
分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE ,这样整个阴影部分面积恰是大正方形面积的一半•六、割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形, 从而使问题得到解决•例下图,若求阴影部分的面积。
如:分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积•例如:下图,求阴影部分的面积。
分析:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学组合图形的面积,10种解题思路,值得收藏
小学数学组合图形的面积,10种解题思路,值得收藏一、相加法
这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.
例如:求下图整个图形的面积
分析:半圆的面积+正方形的面积=总面积
二、相减法
这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
分析:先求出正方形面积再减去里面圆的面积即可.
三、直接求法
这种方法是根据已知条件,从整体出发直接求出不规则图形面积.
例如:下图,求阴影部分的面积。
分析:通过分析发现阴影部分就是一个底是2、高是4的三角形
四、重新组合法
这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.
例如:下图,求阴影部分的面积。
分析:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法
这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可
例如:下图,求两个正方形中阴影部分的面积。
分析:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)
根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.
六、割补法
这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.
例如:下图,若求阴影部分的面积。
分析:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.
七、平移法
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.
例如:下图,求阴影部分的面积。
分析:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法
这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.
例如:下图(1),求阴影部分的面积。
分析:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.
九、对称添补法
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.
例如:下图,求阴影部分的面积。
分析:沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分。
例如:下图,求阴影部分的面积。
分析:可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.。