高2013级排列与组合、二项式定理导学与训练题(新课标)
2013届高考数学排列组合.doc
排列组合二项式定理概率统计(附高考预测)一、本章知识结构:二、重点知识回顾 1.排列与组合⑪ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.⑫ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑬ 排列与组合的主要公式 ①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A m n (m ≤n) A n n =n! =n(n ―1)(n ―2) ·…·2·1. ②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C m n (m ≤n).③组合数性质:①m n n m n C C -=(m ≤n). ②n n n n n n C C C C 2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C2.二项式定理 ⑪ 二项式定理(a +b)n =C 0n a n +C 1n a n -1b+…+C r n a n -r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n a n -r b r .⑫ 二项展开式的通项公式二项展开式的第r+1项T r+1=C r n a n -r b r (r=0,1,…n)叫做二项展开式的通项公式。
⑬ 二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等,即C r n = C rn n - (r=0,1,2,…,n).②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2n n;若n 是奇数,则中间两项(第21+n 项和第23+n 项)的二项式系数相等,并且最大,其值为C21-n n= C21+n n.③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C nn =2n .④奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C 2n +…=C 1n +C 3n+…=2n ―1. 3.概率(1)事件与基本事件::S S S ⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化. (3)互斥事件与对立事件:(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型. 几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积).两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率()P A 的范围为:0()1P A ≤≤.②互斥事件A 与B 的概率加法公式:()()()P A B P A P B =+ . ③对立事件A 与B 的概率加法公式:()()1P A P B +=.(7) 如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率是p n (k) = C k np k (1―p)n ―k . 实际上,它就是二项式[(1―p)+p]n 的展开式的第k+1项. (8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k n P X k C p p k n -==-= ,,,,,.此时称随机变量X服从二项分布,记作~()X B n p ,,并称p 为成功概率.4、统计(1)三种抽样方法 ①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性. ②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样. 系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k ,当N n(N为总体中的个体数,n 为样本容量)是整数时,N k n=;当N n不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n 整除,这时N k n'=;第三步,在第一段用简单随机抽样确定起始个体编号l ,再按事先确定的规则抽取样本.通常是将l 加上间隔k 得到第2个编号()l k +,将()l k +加上k ,得到第3个编号(2)l k +,这样继续下去,直到获取整个样本. ③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样. 分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为s=.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.(4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出211nni i i i i x y x y x ==∑∑,,,;第二步:计算回归系数的a ,b ,公式为1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑,;第三步:写出回归直线方程 y bx a =+.(4)独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表1构造随机变量22()()()())n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)得到2K 的观察值k 常与以下几个临界值加以比较:如果 2.706k >,就有0090的把握因为两分类变量X 和Y 是有关系;如果 3.841k>就有0095的把握因为两分类变量X和Y是有关系;如果 6.635k>就有0099的把握因为两分类变量X和Y是有关系;如果低于 2.706k≤,就认为没有充分的证据说明变量X和Y是有关系.②三维柱形图:如果列联表1的三维柱形图如下图由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值-较大,说明两分类变量X和Y是有关的,否则的话是无关的.||ad bc图重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。
2013年全国高考(理科)数学试题分类汇编:排列、组合及二项式定理
全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 (新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-*D2 (山东数学(理)试题)用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279*B3 (高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8*B4 (大纲版数学(理))()()8411+x y +的展开式中22xy 的系数是( )A .56B .84C .112D .168*D5 (福建数学(理)试题)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10*B6 (上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x *C7 (辽宁数学(理)试题)使得()3nx n N n +⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7 *B8 (高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20*C9 (高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15*A10(高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40*C二、填空题11(上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为222222(133)(22323)(2232++++⨯+⨯++⨯+⨯=+(参照上述方法,可求得2000的所有正约数之和为________________________*483612(高考四川卷(理))二项式5()x y +的展开式中,含23xy 的项的系数是_________.*1013(上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).*4514(浙江数学(理)试题)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)*48015(重庆数学(理)试题)从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________*59016(天津数学(理)试题)6x⎛⎝的二项展开式中的常数项为______.*1517(浙江数学(理)试题)设二项式53)1(xx -的展开式中常数项为A ,则=A ________.*10-18(高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =*2a =-19(高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.*9620(安徽数学(理)试题)若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.*21 21(大纲版数学(理))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____种.*480。
2013年全国高考理科数学试题分类汇编13:排列、组合及二项式定理(T)
2013年高考数学(理)真题分类解析汇编13:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1- 【答案】D【解析】已知(1+ax )(1+x )5的展开式中x 2的系数为+a •=5,解得a=﹣12 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数( )A .243B .252C .261D .279【答案】B【解析】有重复数字的三位数个数为91010900⨯⨯=。
没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252-,选B.3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B【天利解析】因为m 为正整数,由(x+y )2m展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a=,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b=. 再由13a=7b ,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1).解得m=6,故选B .4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D【解析】(x+1)3的展开式的通项为T r+1=C 3r x r令r=2得到展开式中x 2的系数是C 32=3,(1+y )4的展开式的通项为T r+1=C 4r y r令r=2得到展开式中y 2的系数是C 42=6,(1+x )3(1+y )4的展开式中x 2y 2的系数是:3×6=18,故选D .5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数( ) A .14 B .13C .12D .10【答案】B【天利解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为( ) A .4 B .5C .6D .7【答案】B【解析】展开式的通项公式为521(3)3k n kn kkk n kk nnT C x C x---+==。
二项式定理训练题(含答案)
⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。
2012-2013年高考真题汇编:排列、组合及二项式定理
2012-2013高考真题分类汇编:排列、组合及二项式定理一、选择题1.(2013年新课标Ⅱ)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-2.(2013年山东)用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .2793.(2013新课标)设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .84 .(2013年福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .105 .(2013年辽宁)使得()3nx n N n +⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .76.(2013年四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( ) A .9 B .10 C .18 D .207.(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 ( )A .-20B .20C .-15D .158(2013年江西)(x 2-32x)5展开式中的常数项为 ( )A .80B .-80C .40D .-40 9.(2013年大纲版)()()8411+x y +的展开式中22x y 的系数是( ) A .56B .84C .112D .16810.【2012重庆】821⎪⎪⎭⎫⎝⎛+x x 的展开式中常数项为 A.1635 B.835 C.435 D.105 11.【2012浙江】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 A.60种 B.63种 C.65种 D.66种12.【2012新课标】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种13.【2012四川】7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、2114.【2012陕西】两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A. 10种 B.15种 C. 20种 D. 30种15.【2012山东】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 (A )232 (B)252 (C)472 (D)48416.【2012辽宁】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9!17.【2012湖北】设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =A .0B .1C .11D .1218.【2012北京】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6 19.【2012安徽】2521(2)(1)x x+-的展开式的常数项是( ) ()A 3- ()B 2- ()C 2 ()D 3[20.【2012高考真题安徽理10】6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )()A 1或3 ()B 1或4 ()C 2或3 ()D 2或4 21.【2012高考真题天津理5】在52)12(xx -的二项展开式中,x 的系数为 (A )10 (B )-10 (C )40 (D )-4022.【2012高考真题全国卷理11】将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 (A )12种(B )18种(C )24种(D )36种二、填空题23、(2013四川)二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 24.(2013年浙江)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 25.(2013重庆)从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是_______(用数字作答) 26.(2013年理)6x⎛- ⎝的二项展开式中的常数项为______.27.(2013年浙江)设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 28.(2013上海)常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =29.(2013年北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.30.(2013年安徽)若8x ⎛ ⎝的展开式中4x 的系数为7,则实数a =______. 31.(2013大纲)6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.32【2012重庆】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 . 33.【2012高考陕西】5()a x +展开式中2x 的系数为10, 则实数a 的值为 .34.【2012上海】在6)2(x x -的二项展开式中,常数项等于 。
高考复习专题:排列组合、二项式定理测试题及答案
专题20 排列组合、二项式定理测试题满分150分 时间120分钟一、选择题(本大题共12小题,每题5分,共60分) 1.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 42.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种4.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024 D .-1 0245.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .168C .144D .1006.若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .360B .180C .90D .457.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ) A .232 B .252 C .472 D .4848.若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016 x 2 016,则a 12+a 222+…+a 2 01622 016的值为( ) A .2 B .0 C .-1 D .-29.某校开设A 类课3门,B 类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( )A .15种B .30种C .45种D .90种10.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则不同的安排方法有( )A .24种B .48种C .96种D .114种11.若n⎛⎫的展开式中的二项式系数之和为64,则该展开式中3y 的系数是( ) A .15 B .15- C .20 D .20-12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S =( ) A .23 008 B .-23 008 C .23 009 D .-23 009 二、填空题(本大题共4小题,每题5分,共20分)13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 . 14.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).16.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则函数f (x )=a 2x 2+a 1x +a 0的单调递减区间是________.三、解答题(本大题共6小题,共70分)17.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?18.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?19、在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中的常数项;(2)求展开式中各项的系数和.20(1)求展开式中各项的系数和;(2)求展开式中的有理项.21.从1到9这九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中任意两个偶数都不相邻的七位数有几个?22、已知()(23)n f x x =-展开式的二项式系数和为512,且2012(23)(1)(1)n x a a x a x -=+-+-(1)n n a x ++-L .(1)求2a 的值; (2)求123n a a a a ++++L 的值.专题20 排列组合、二项式定理测试题参考答案一、选择题1.解析:选A 二项式的通项为T r +1=C r 6x 6-r i r,由6-r =4,得r =2. 故T 3=C 26x 4i 2=-15x 2.故选A.2.解析:选D 从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类:第一类是取四个偶数,即C 44=1种方法;第二类是取两个奇数,两个偶数,即C 25C 24=60种方法;第三类是取四个奇数,即C 45=5,故有5+60+1=66种方法.学_科网3.解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30种.4.解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-943. 5.解析:选D 先安排小品类节目和相声类节目,然后让歌舞类节目去插空.(1)小品1,相声,小品2.有A 22A 34=48; (2)小品1,小品2,相声.有A 22C 13A 23=36; (3)相声,小品1,小品2.有A 22C 13A 23=34.共有48+36+36=100种. 6.解析:选B 依题意知n =10, ∴T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102r·x 5-52r , 令5-52r =0,得r =2,∴常数项为C 21022=180.7..解析:选C 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取3张,有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.8.解析:选C 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016, ∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.9.解析:可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有C 13C 25种不同的选法;②A 类选修课选2门,B 类选修课选1门,有C 23C 15种不同的选法.∴根据分类计数原理知不同的选法共有C 13C 25+C 23C 15=30+15=45(种).答案:C10解析:5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25C 23A 22·A 33=90种,A ,B 住同一房间有C 23A 33=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种),故选D. 答案:D11. 【答案】A 【解析】由题意得264,6nn ==,因此3363622166r r r r r r r T C C x y ---+==,从而333,42r r -==,因此展开式中3y 的系数是426615.C C ==选A. 12. 答案:B 解析:设(x -2)2 006=a 0x 2 006+a 1x 2 005+…+a 2 005x +a 2 006,则当x =2时,有a 0(2)2006+a 1(2)2 005+…+a 2 0052+a 2 006=0①;当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 0052+a 2 006=23 009②.①-②得2[a 1(2)2 005+…+a 2 005(2)]=-23 009,即2S =-23 009,∴S =-23 006.故选B. 二、填空题 13.【答案】65【解析】分二类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种,52+4×2×5=65.14.解析:T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2. 答案:-215.解析:把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,∴不同获奖情况种数为A 44+C 23A 24=24+36=60. 答案:6016.解析:∵(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴a 0=1,a 1=-C 15=-5,a 2=C 25=10,∴f (x )=10x 2-5x +1=10⎝ ⎛⎭⎪⎫x -142+38,∴函数f (x )的单调递减区间是⎝ ⎛⎦⎥⎤-∞,14.答案:⎝ ⎛⎦⎥⎤-∞,14三、解答题17、解 方法一 共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).方法二 将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个18.解 分三类,第一类.2人只划左舷的人全不选,有C 35C 35=100(种);第二类,2人只划左舷的人中只选1人,有C 12C 25C 36=400(种);第三类,2人只划左舷的人全选,有C 22C 15C 37=175(种).所以共有C 35C 35+C 12C 25C 36+C 22C 15C 37=675(种).位置放入隔板,将其分为七部分),有C 69=84(种)放法.故共有84种不同的选法.19.解:展开式的通项为2311()(0,1,22n rr r r n T C x r -+=-=,…,)n由已知:00122111()()()222n n n C C C -,,成等差数列,∴ 121121824n n C C n ⨯=+∴=,(1)5358T = (2)令1x =,各项系数和为125620.【解析】在展开式中,恰好第五项的二项式系数最大,则展开式有9项,∴ 8=n .∴ 中,令1=x(2)通项公式为 ,1,2, (8)整数,即8,5,2=r 时,展开式是有理项,有理项为第3、6、9项,即21.解 (1)分步完成:第一步:在4个偶数中取3个,有C 34种情况. 第二步:在5个奇数中取4个,有C 45种情况. 第三步:3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34·C 45·A 77=100 800(个).(2)上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5760(个). (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空位(包括两端),共有C 34·C 45·A 44·A 35=28 800(个).22.【解析】(1)根据二项式的系数和即为2n ,可得25129n n =⇒=,因此可将()f x 变形为99()(23)[2(1)1]f x x x =-=--,其二项展开式的第1r +为9919(1)2(1)(09)r r r r r T C x r --+=--≤≤,故令7r =,可得727292(1)144a C =-=-;(2)首先令令901,(213)1x a ==⨯-=-,再令令2x =,得901239(223)1a a a a a +++++=⨯-=L ,从而1239012390()2a a a a a a a a a a ++++=+++++-=L L . (1)由二项式系数和为512知,9251229n n ==⇒= 2分,99(23)[2(1)1]x x -=-- ,∴727292(1)144a C =-=- 6分;(2)令901,(213)1x a ==⨯-=-,令2x =,得901239(223)1a a a a a +++++=⨯-=L ,∴1239012390()2a a a a a a a a a a ++++=+++++-=L L 12分.。
高考数学复习 第十章 排列、组合和二项式定理10章 综合测试
第十章排列、组合和二项式定理综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.满足Cx2-3x14=C2x-614的x的值是( )A.2和3 B.2,3和5C.3和5 D.只有3答案:C解析:由组合数性质,C m n=C n-m n,得x2-3x=2x-6或x2-3x+2x-6=14,解得x=-2或x=3或x=-4或x=5,又x2-3x≥0且2x-6≥0,∴x=3或5.故选C.2.(2009·广西一模)在(1-x)6展开式中,含x3项的系数是( )A.20 B.-20 C.-120 D.120答案:B解析:通项T r+1=C r6(-x)r=(-1)r C r6x r,所以x3项的系数是(-1)3C36=-20.3.(2009·湖南,5)某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( ) A.14 B.16 C.20 D.48答案:B解析:分两类:①含有甲有C12C24种,②不含有甲有C34种,共有C12C24+C34=16(种),选B.4.(2009·湖北,4)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( ) A.120种 B.96种C.60种 D.48种答案:C解析:按分步计数原理求解.先从5人中选出4人参加活动有C45种方法,要依次安排三天派出的人员,分别有C14,C23,C11种方法,所以共有C45×C14×C23=5×4×3=60种方法,故选C.5.(2009·四川,11)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A.60 B.48 C.42 D.36答案:B解析:依题意,先排3位女生,有A33种.再把男生甲插到3位女生中间有A12种.把相邻的两位女生捆绑,剩下一个男生插空,有C14种,所以不同排法种数为A33·A12·C14=48,故选B.6.(2009·陕西,9)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为( )A.432 B.288 C.216 D.108答案:C解析:第一步先从4个奇数中取2个再从3个偶数中取2个共C 24C 23=18种,第二步再把4个数排列,其中是奇数的共A 12A 33=12种,故所求奇数的个数共有18×12=216种.故选C.7.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为 ( )A .-4 B.52 C .4 D.72答案:C解析:∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为:4a -1=15,∴a =4.故选C.8.若(x +1x)n展开式的二项式系数之和为64,则展开式的常数项为 ( )A .10B .20C .30D .120 答案:B解析:∵C 0n +C 1n +…+C n n =2n=64,∴n =6.T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3,常数项:T 4=C 36=20,故选B. 9.(2009·江西,7)(1+ax +by )n展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为 ( )A .a =2,b =-1,n =5B .a =-2,b =-1,n =6C .a =-1,b =2,n =6D .a =1,b =2,n =5 答案:D解析:不含x 的项的系数的绝对值为(1+|b |)n =243=35,不含y 的项的系数的绝对值为(1+|a |)n =32=25,∴n =5,⎩⎪⎨⎪⎧1+|b |=3,1+|a |=2,故选D.10.(2010·重庆模拟)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A .8种B .12种C .16种D .20种 答案:B解析:联想一空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即C 16·C 12;也可从反面入手剔除8个角上3个相邻平面,即C 36-C 18=12种.11.(2009·西安地区八校联考)某班一天上午有4节课,每节都需要安排一名教师去上课,现从A 、B 、C 、D 、E 、F 6名教师中安排4人分别上一节课,第一节课只能从A 、B 两人中安排一人,第四节课只能从A 、C 两人中安排一人,则不同的安排方案共有 ( )A .24种B .36种C .48种D .72种 答案:B解析:若A 上第一节课,则第四节课只能由C 上,其余两节课由其他人上,有A 24种安排方法;若B 上第一节课,则第四节课有2种安排方法,其余两节课由其他人上,有2×A 24种安排方法.所以不同安排方法的种数为A 24+2×A 24=36.12.(2010·江苏丹阳模拟)若对于任意的实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为 ( )A .3B .6C .9D .12 答案:B解析:解法一:等式右边为二项式结构,因此将左边x 3转化为二项式形式: x 3=[(x -2)+2]3=C 03(x -2)3·20+C 13(x -2)2·21+C 23(x -2)1·22+C 33(x -2)0·23,∴a 2=C 13·21=6.解法二:显然a 3=1,等式右边x 2的系数为a 2+a 3·C 13(-2),而等式左边x 2的系数为0,∴a 2=6.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
##2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理Word版含答案_4352
2013 年全国高考理科数学试题分类汇编10:摆列、组合及二项式定理一、选择题1.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD 版含答案))已知(1ax)(1 x)5的睁开式中x2的系数为 5, 则a()A.4B.3C.2D.1【答案】 D2.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))用 0,1,,9十个数字 ,能够构成有重复数字的三位数的个数为()A. 243B. 252C. 261D. 279【答案】 B3.( 2013 年高考新课标1(理))设m为正整数,(x y)2 m睁开式的二项式系数的最大值为a ,( x y) 2m 1睁开式的二项式系数的最大值为b ,若 13a7b ,则m()A. 5B. 6C. 7D. 8【答案】 B4.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正))184()x1+y 的睁开式中x2y2的系数是A.56D B.84C.112D.168【答案】5.( 2013年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))知足a, b1,0,1,2 ,且对于x的方程ax22x b 0 有实数解的有序数对 (a,b) 的个数为()A. 14B. 13C. 12D. 10【答案】 B6.( 2013 年上海市春天高考数学试卷(含答案 ))(1 x)10的二项睁开式中的一项为哪一项()A.45x B.90x2C.120 x3D.252x4【答案】 C7.( 2013年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))使得n1的睁开式中含有常数项的最小的为()3x n N nx xA.4B.5C.6D.7【答案】B从 1,3,5,7,9 这五个数中,每次拿出两个不一样的数分别为a, b , 8 .( 2013 年高考四川卷(理))共可获得 lg a lg b 的不一样值的个数是()A.9B.10C.18D.20【答案】 C16x, x0,9 .( 2013年高考陕西卷(理))设函数 f ( x)x则当 x>0时, f [ f (x)] 表,x ,x0.达式的睁开式中常数项为()A. -20B. 20C. -15D. 15【答案】 A10.( 2013年高考江西卷(理)) (x2-2 ) 5 睁开式中的常数项为()x3A. 80B. -80C. 40D. -40【答案】 C二、填空题11.( 2013年上海市春天高考数学试卷(含答案 ))36的所有正约数之和可按以下方法获得: 因为36=2 232, 所以36的所有正约数之和为(1 3 32)(223 2 32)(2 22232232 )(1222()1 3 32)91参照上述方法, 可求得2000 的所有正约数之和为________________________【答案】483612 .( 2013年高考四川卷(理))二项式(x y)5的展开式中, 含x2y3的项的系数是_________.(用数字作答)【答案】1013.( 2013年上海市春天高考数学试卷(含答案 ) )从4 名男同学和 6 名女同学中随机选用 3 人参加某社团活动, 选出的 3 人中男女同学都有的概率为________(结果用数值表示).【答案】4514(.2013年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))将A, B,C, D,E,F六个字母排成一排, 且A, B均在C 的同侧, 则不一样的排法共有________种( 用数字作答)【答案】48015.( 2013年一般高等学校招生一致考试重庆数学(理)试题(含答案))从 3名骨科.4 名脑外科和 5 名内科医生中选派 5 人构成一个抗震救灾医疗小组生都起码有 1人的选派方法种数是___________( 用数字作答), 则骨科. 脑外科和内科医【答案】 5901 616.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案)) x的二项x睁开式中的常数项为 ______.【答案】 1517.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯 WORD版))设二项式( x1)5 的睁开式中常数项为A , 则 A ________.3x【答案】1018.( 2013 年高考上海卷(理) )设常数 aR , 若x2ax5的二项睁开式中x 7 项的系数为10 , 则 a ______【答案】 a219.( 2013 年高考北京卷(理) ) 将序号分别为 1,2,3,4,5的 5 张观光券所有分给 4 人,每人起码 1 张 , 假如分给同一人的 2 张观光券连号 , 那么不一样的分法种数是 _________.【答案】 96820.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版))若ax3x的睁开式中 x 4 的系数为 7, 则实数 a ______.【答案】1221.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 6 个人排成一行 , 此中甲、乙两人不相邻的不一样排法共有____________ 种.( 用数字作答 ).【答案】 480。
排列组合与二项式定理综合专项训练(有答案)
9、有6本不同的书,全部借给4人,每人至少1本,有多少种不同的借法( )
A.120种B.150种C.180种D.210种
10、将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有
A.30种B.90种C.180种D.270种
11、某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )
53、若 的展开式中的第5项等于 ,则 的值为( ).
A.1 B. C. D.
54、代数式 的展开式中,含 项的系数是
A.-30B.30C.70D.90
55、将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为
65、用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有()种。
A.24B.48C.72D.96
66、若 的展开式中 的系数是80,则实数a的值为
A.-2B.2 C. D.2
38、若 的展开式中 的系数是()
A. B. C. D.
39、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有
A. 种B. 种C. 种D. 种
40、有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是
(A)36种(B)108种(C)216种(D)432种
19、在 展开式中,含 的负整数指数幂的项共有( )
A.8项B.6项C.4项D.2项
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.B.C.D.【答案】【解析】从中随机抽取2听进行检测,总的方法数为,检测出至少有一听不合格饮料的方法数为,所以,检测出至少有一听不合格饮料的概率是,故选.【考点】组合问题,古典概型.2.的展开式中各项系数的和为2,则该展开式中常数项为【答案】【解析】根据题意,由于的展开式中各项系数的和为2,则可知令x=1,得到1+a=2,a=1,则可知表达式为展开式,当r=2,r=3对应的项的系数与,x陪凑相乘可知得到常数项为40,故答案为40.【考点】二项式定理点评:主要是考查了二项式定理的展开式的运用,属于基础题。
3.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.B.C.D.【答案】C【解析】分三步:把甲、乙捆绑为一个元素,有种方法;与戊机形成三个“空”,把丙、丁两机插入空中有种方法;考虑与戊机的排法有种方法.由乘法原理可知共有种不同的着舰方法.故应选C.【考点】排列、组合。
点评:我们在排序过程中,常用到相邻“捆绑”和不相邻“插空”的方法进行排序,在捆绑时,我们要注意其内部的顺序。
4.设编号为1,2,3,4,5,6的六个茶杯与编号为1,2,3,4,5,6的六个茶杯盖,将这六个杯盖盖在茶杯上,恰好有2 个杯盖与茶杯编号相同的盖法有A.24种B.135种C.9种D.360种【答案】B2种结果,剩下的四个小球和四个盒【解析】首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法,根据分步计数原理的结果解:由题意知本题是一个分步计数问2=15种结果,剩下的四个小球和四个盒题,首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法共有3×3=9种结果,根据分步计数原理得到共有15×9=135种结果.故选B.【考点】分步计数问题点评:本题考查分步计数问题,本题解题的关键是选出球号和盒子号一致的以后4个小球和四个盒子的方法,本题是一个基础题5.设,则二项式展开式中的项的系数为()A.B.20C.D.160【答案】C【解析】根据题意,由于,那么可知a=-2,同时由于二项式,令12-3r=3,r=3,则可知展开式中的项的系数为,故答案为C【考点】二项式定理点评:主要是考查了二项式定理的展开式通项公式的运用,属于基础题。
排列组合二项式定理综合测试(含详细解答)
排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。
排列、组合及二项式定理习题
山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编10:排列、组合及二项式定理一、选择题1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()a x x+展开式中的3x 项的系数为( ) A .-20 B .20 C .-160 D .1602 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)市内某公共汽车站6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是 ( )A .48B .54C .72D .843 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若4(1,)a a b +=+为有理数,则a+b= ( )A .36B .46C .34D .444 .(山东省济南市2013届高三3月高考模拟理科数学)二项式8(2x 的展开式中常数项是 ( ) A .28 B .-7 C .7 D .-285 .(山东省潍坊市2013届高三第一次模拟考试理科数学)某车队准备从甲、乙等7辆车中选派4辆参加救援物资的运输工作,并按出发顺序前后排成一队,要求甲、乙至少有一辆参加,且若甲、乙同时参加,则它们出发时不能相邻,那么不同排法种数为 ( )A .360B .520C .600D .7206 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x -展开式中2x 项的系数为( ) A .15 B .15- C .30 D .30-7 .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)2013年第12届全国运动会将在沈阳举行,某校4名大学生申请当A,B,C 三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A 比赛项目,则不同的安排方案共有 ( )A .20种B .24种C .30种D .36种8 .(山东省济宁市2013届高三第一次模拟考试理科数学 )某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有 ( )A .24种B .18种C .48种D .36种9 .(山东省淄博市2013届高三上学期期末考试数学(理))若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则 1211a a a ++⋅⋅⋅+的值为( ) A .0 B .5- C .5 D .25510.(山东省潍坊市2013届高三上学期期末考试数学理)某班同学准备参加学校在寒假里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是 ( )A .48B .24C .36D .6411.(山东省潍坊市2013届高三上学期期末考试数学理)若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 A .0 B .5- C .5 D .25512.(山东省威海市2013届高三上学期期末考试理科数学)从0,1,2,3,4,5,六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位奇数,有多少种取法( ) A .72 B .84 C .144 D .18013.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)把5张座位编号为1,2,3,4,5的电影票发给3个人,每人至少1张,最多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( )A .360B .60C .54D .1814.(山东省德州市2013届高三上学期期末校际联考数学(理))51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-20 B .—10C .10D .20二、填空题 15.(2013年临沂市高三教学质量检测考试理科数学)在62(x )x-的二项展开式中,常数项等于_______. 16.(山东省烟台市2013届高三3月诊断性测试数学理试题)若(x 2-n x )1的展开式中含x 的项为第6项,设 (1-3x)n=a o +a 1x+a 2x 2++a n x n ,则a l +a 2++a n 的值为_____________17.(山东省德州市2013届高三3月模拟检测理科数学)两个正整数的公因数只有1的两个数,叫做互质数,例如:2与7互质,3与4互质,在2,3,4,5,6,7的任一排列中使相邻两数都互质的不同排列方式共有_______种(用数字作答P). 18.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于______(用数字作答).19.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)设60sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.20.(山东省济宁市2013届高三第一次模拟考试理科数学 )25(ax+的展开式中各项系数的和为243,则该展开式中常数项为21.(山东省威海市2013届高三上学期期末考试理科数学)8(2x 的展开式中,常数项为___________.。
高考数学专题:排列、组合与二项式定理问题练习试题、答案
高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。
高2013级排列与组合、二项式定理导学与训练题(新课标)
共6页 第1页 共6页 第2页 共6页 第3页高2013级高二学年上期数学导学与训练排列、组合与二项式定理选题与组卷:荣刚说明:1.通过下面103题的分析解答与训练,重在深刻理解并运用两个计数原理和二项展开式的能项公式,归纳概括排列、组合与二项式定理的基本题型及相应的解题策略与方法:常见的背景,常见的限制条件与对应的解题方法,易错点与对策等。
2.通过训练提升阅读理解能力、理性思维能力、运算求解能力及分析解决实际问题的能力等。
3、题号后带“*”的题目选做,也可根据自己的知识与能力水平分阶段选做,逐步完成。
一.选择题:在每小题给出的四个选项中,只有一个是符合题目要求的1.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有 ( )A .1444C C 种B .1444C A 种 C .44C 种 D .44A 种 2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有 ( ) A .60种 B .70种 C .75种 D .150种3.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的排列个数是 ( ) A .6 B .12 C .18 D .244.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有 ( ) A .108种 B .186种 C .216种 D .270种5.5名男生2名女生站成一排,2名女生相邻但不站在两端,不同的站法共有 ( ) A .1440种 B .960种 C .720种 D .480种6.从某班由5位同学组成的综合实践活动小组中选派4位同学在星期五、星期六、星期日参加社区服务,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 ( ) A .40种 B .60种 C .100种 D .120种7.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有 ( ) A .20种 B .30种 C .40种 D .60种8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 ( ) A .6种 B .12种 C .24种 D .30种9.甲、乙两人从4门课程中各选修2门.则甲、乙所选的课程中至少有1门不相同的选法共有 ( ) A .6种 B .12种 C .30种 D .36种10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 ( ) A .12种 B .18种 C .36种 D .54种11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( ) A .70种 B .80种 C .100种 D .140种 12.某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有 ( ) A .30种 B .35种 C .42种 D .48种13.从6名教师中选出4名分别安排到A 、B 、C 、D 四所农村学校支教,要求每所学校一人且每人只去一所学校,若这6人中甲、乙两人不去A 学校,则不同的选派方案共有 ( ) A .300种 B .240种 C .144种 D .96种14.2014年8月31日“环中国”自行车赛各参赛队齐聚南江光雾山大坝风景区,为给各参赛队提供优质服务,同时展现南江人民的良好素质,组委会要从小张、小何、小李、小万、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小何只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A .36种 B .12种 C .18种 D .48种15.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( ) A .60种 B .63种 C .65种 D .66种16.两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种 B .15种 C .20种 D .30种17.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24 B .18 C .12 D .618.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,a b ,共得到lg lg a b -的不同值的个数是 ( ) A .9 B .10 C .18 D .2019.用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .27920.满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .1021.六个人从左到右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 ( ) A .192种 B .216种 C .240种 D .288种22.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为 ( ) A .144 B .120 C .72 D .2423.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( ) A .10 B .11 C .12 D .1524.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 ( ) A .72 B .96 C .108 D .14425.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .14426.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 A .12种 B .10种 C .9种 D .8种 ( ) 27.一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 ( ) A .33!⨯ B .33(3!)⨯ C .4(3!) D .9!28.已知集合{5},{1,2},{1,3,4}A B C ===,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为 ( ) A .33 B .34 C .35 D .3629.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .6286C A C .2286C AD .2258C A 30.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( ) A .60 B .48 C .42 D .3631.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ( ) A .18B .38C .58D .7832.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为 ( ) A .15B .25C .35D .4533.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 ( ) A .49B .13C .29D .1934*.将字母, , , , , a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( ) A .12种 B .18种 C .24种 D .36种35*.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 ( ) A .232 B .252 C .472 D .484 36*.设集合12345{(, , , , )|{1, 0, 1}, 1, 2, 3, 4, 5}i A x x x x x x i =∈-=,那么集合A中满足条件“123451||||||||||3x x x x x ++++≤≤”的元素个数为( )A .60B .90C .120D .13037*.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是 ( ) A .72 B .120 C .144 D .168 38.51(2)2x y -的展开式中23x y 的系数是( ) A .20- B .5- C .5 D .20 39.在6(1)x x +的展开式中,含3x 项的系数为( ) A .30 B .20 C .15 D .10 40.6(42)()R x x x --∈展开式中的常数项是( )A .20-B .15-C .15D .20共6页 第4页 共6页 第5页 共6页 第6页41.2532()x x-展开式中的常数项为( )A .80B .80-C .40D .40- 42.在251(2)x x-的二项展开式中,x 的系数是( )A .10B .10-C .40D .40-43.如果(3n x 的展开式中各项系数之和为128,则展开式中31x 的系数是 ( ) A .7 B .7- C .21 D .21- 44.若二项式7(2)a x x+的展开式中31x的系数是84,则实数a =( )A .2BC .1D45.设m 为正整数,2()m x y +展开式的二项式系数的最大值为21),(m a x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .846.使得(3()n x n +∈N 的展开式中含有常数项的最小的n 为 ( )A .4B .5C .6D .7 47.84(1)(1)x y ++的展开式中22x y 的系数是 ( ) A .56 B .84 C .112 D .168 48.已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a = ( ) A .4- B .3- C .2- D .1- 49.43(1)(1x -的展开式中2x 的系数是( ) A .6- B .3- C .0 D .3 50.64(1(1的展开式中x 的系数是 ( ) A .4- B .3- C .3D .4 51.2521(2)(1)x x+-的展开式的常数项是( )A .3-B .2-C .2D .352*.在64(1)(1)x y ++的展开式中,记m n x y 项的系数为(, )f m n ,则(3, 0)(2, 1)(1, 2)(0, 3)f f f f +++= ( ) A .45 B .60 C .120 D .210 53*.已知2(n x 的展开式中第三项与第五项的系数之比为314,则展开式中常数项是 ( ) A .1- B .1 C .45- D .45 54*.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则0111a a a +++的值为( )A .2-B .1-C .1D .2二.填空题:直接将答案填写在题中横线上55.将A B C D E F ,,,,,六个字母排成一排,且A B ,均在C 的同侧,则不同的排法共有 种.(用数字作答)56.把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C不相邻,则不同的摆法有______种.(用数字作答)57.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)58.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答)59.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各一节,则在课表上的相邻两节文化课之间最多隔1节艺术课的概率为 (用数学作答).60.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有 种.(用数字作答) 61.从集合{ O ,P ,Q ,R ,S }与{0,1,2,3,4}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是 .(用数字作答).62.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.(用数字作答)63.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种.(用数字作答)64.从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.(用数字作答)65.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答) 66.甲、乙、丙3人站到共有5级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答)67.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)68.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答)69.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 . 70.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .71.盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.从盒中一次随机取出2个球,则取出的2个球颜色相同的概率为 .72.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是__________(结果用最简分数表示).73.10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.74*.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种.(用数字作答)75*.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个应急医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法有 种.(用数字作答)76*.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是 . 77*.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法.78*.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有 种.79*.从0,1,2,3,4,5,6,7这8个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为 .(用数字作答) 80*.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 种(用数字作答).81*.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个.(用数字作答) 82*.若集合{, , , }{1, 2, 3, 4}a b c d =,且下列四个关系:① 1a =;② 1b ≠;③ 2c =;④ 4d ≠有且只有一个是正确的,则符合条件的有序数组(, , , )a b c d 的个数是_______. 83.6(x 的二项展开式中的常数项为 .84.设二项式5的展开式中常数项为A ,则A = .85.若8(x 的展开式中4x 的系数为7,则实数a =_________.86.二项式5()x y +的展开式中,含23x y 的项的系数是 .(用数学作答) 87.10()x a +的展开式中,7x 的系数为15,则a =____.(用数字填写答案)88.8的展开式中22x y 的系数为 .89.5()a x +展开式中2x 的系数为10,则实数a 的值为 .90.6的二项展开式中常数项为 (用数字作答)91.261()x x+的展开式中3x 的系数为______.(用数字作答)92.4()a x +的展开式中3x 的系数等于8,则实数a = . 93.若5(1)ax -的展开式中3x 的系数是80-,则实数a 的值是 . 94.若261()x ax +的二项展开式中3x 的系数为52,则a = (用数字作答).95.若1()n x x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为_________. 96.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .97.设*n ∈N ,则12321C C 6C 6C 6n n n n n n -++++= .98.在26(1)(1)(1)x x x ++++++的展开式中,2x 项的系数是 .(用数字作答)99.34821()()x x -++的展开式中整理后的常数项等于 .(用数字作答) 100.281(12)()x x x+-的展开式中常数项为 .(用数字作答)101.若55432012345(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++= .(用数字作答) 102.在333(1)(1(1x +++的展开式中,x 的系数为 .(用数字作答) 103.261(1)()x x x x++-的展开式中的常数项为 .(用数字作答)。
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.48【答案】D【解析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.2.设、、为整数,若和被除得余数相同,则称和对模同余,记.若,且,则的值可以为()A.B.C.D.【答案】A【解析】,因此除的余数为,即,因此的值可以为,故选A.【考点】1.二项式定理;2.数的整除性3.5名志愿者到3个不同的地方参加义务植树,则每个地方至少有一名志愿者的方案共有____种.【答案】150【解析】将5名志愿者分到3个不同的地方参加义务植树,且每个地方至少有一名志愿者,则分配至3地的人数模式只有“1、1、3”与“1、2、2”这两种模式.设这3地分别为甲、乙、丙.(1)当分配的人数模式是“1、1、3”时,即甲、乙、丙3地中有一地是3个人,其他两地都只有1人,则共有(种).即先从三地中选一地是分配3个人的,再从5名志愿者中选三人派到该地.剩余2人再分配至其余两地.(2) 当分配的人数模式是“1、2、2”时,即甲、乙、丙3地中有一地是1个人,其他两地都有2人,则共有(种).即先从三地中选一地是只分配1个人的,再从5名志愿者中选1人派到该地.剩余4人再选出2人分配至其余两地中的某地,那剩余2人即是最后一地所得.综上所述,共有60+90=150种方案.【考点】排列与组合4.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依次类推,则(1)按网络运作顺序第n行第一个数字(如第2行第一个数字为2,第3行第一个数字为4,…)是;(2)第63行从左至右的第4个数应是.【答案】(1)。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。
4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。
5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。
7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。
故选D。
【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。
8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。
高中排列、组合与二项式定理练习题 (1)
株洲市十七中高二排列、组合与二项式定理测试卷一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( ) A .32个B .27个C .81个D .64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两 个节目插入原节目单中,则不同的插法总数为( ) A .42B .36C .30D .123.全班48名学生坐成6排,每排8人,排法总数为P ,排成前后两排,每排24人,排法 总数为Q,则有( ) A .P>QB .P=QC .P<QD .不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种 A .8B .12C .16D .205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配 方案共有( ) A .4448412C C CB .44484123CC CC .334448412AC C CD .334448412A C C C 6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼 的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有( )种 A .350B .300C .65D .507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有( )种 重新站位的方法 A .1680B .256C .360D .2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法 A .7200 B .3600 C .2400 D .1200 二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A 、B 、C 三只小船,A 船可乘3人,B 船可乘2人,C 船可乘1人,今有 三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方 可乘船,他们分乘这些船只的方法有_____________种。
高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理
高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理一、选择题1.【2014天津,理6】如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论: ①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BD AB BF .则所有正确结论的序号是 ( )EFDABC(A )①② (B )③④ (C )①②③ (D )①②④2. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )523. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .1304. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( )A.20-B.5-C.5D.205. 【2013山东,理10】用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为().A .243B .252C .261D .2796. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =().A .-4B .-3C .-2D .-18. 【2014四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .109. 【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种10. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )6012. 【2013课标全国Ⅰ,理9】设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .813. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21014.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16815. 【2014年普通高等学校招生全国统一考试湖北卷2】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( )A.2B. 54C. 1D.4216. 【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102D .9218. (2013辽宁,理7)使3nx⎛+ ⎝(n ∈N +)的展开式中含有常数项的最小的n 为( ).A .4B .5C .6D .719. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .2420.【2015湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-621. 【2013四川理8】从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b-的不同值的个数是( )(A )9 (B )10 (C )18 (D )20二、填空题1.【2013天津,理10】6x⎛- ⎝的二项展开式中的常数项为__________.2. 【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.3. 【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.4. 【2014天津,理13】在以O 为极点的极坐标系中,圆4sin 和直线sin a 相交于,A B 两点.若AOB 是等边三角形,则a 的值为___________.5. 【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .6. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.7. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C不相邻,则不同的摆法有 种.8. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)9. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 .10. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .11. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)12.【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 13.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.15. 【2013四川,理11】二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答) 16. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答).17. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________18. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 19. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).20. 【2013年.浙江卷.理11】设二项式53x x ⎛- ⎪⎝⎭的展开式中常数项为A ,则A =__________. 21. 【2013年.浙江卷.理14】将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).22.【2013高考重庆理第13题】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).23. 【2015高考重庆,理12】532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 24. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .25. 【2013,安徽理11】若83x x ⎛ ⎝的展开式中4x 的系数为7,则实数a =______. 26.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)27.【2013上海,理5】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______. 28.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答)。
排列、组合及二项式定理
2013年高考理科数学试题分类汇编:10排列、组合及二项式定理一、选择题 1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D 2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 【答案】B 3 .(2013年高考新课标1(理))设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B 4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D 5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C 7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x)5展开式中的常数项为 ( )A .80B .-80C .40D .-40 【答案】C 二、填空题 11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】10 13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将FE D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【答案】480 15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】590 16.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))6x ⎛⎝ 的二项展开式中的常数项为______.【答案】15 17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a =-19.(2013年高考北京卷(理))将序分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连,那么不同的分法种数是_________. 【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______. 【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答). 【答案】480。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高2013级高二学年上期数学导学与训练排列、组合与二项式定理选题与组卷:荣刚说明:1.通过下面103题的分析解答与训练,重在深刻理解并运用两个计数原理和二项展开式的能项公式,归纳概括排列、组合与二项式定理的基本题型及相应的解题策略与方法:常见的背景,常见的限制条件与对应的解题方法,易错点与对策等。
2.通过训练提升阅读理解能力、理性思维能力、运算求解能力及分析解决实际问题的能力等。
3、题号后带“*”的题目选做,也可根据自己的知识与能力水平分阶段选做,逐步完成。
一.选择题:在每小题给出的四个选项中,只有一个是符合题目要求的1.五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()A.种 B.种 C.种 D.种2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种 B.70种 C.75种 D.150种3.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的排列个数是()A.6 B.12 C.18 D.244.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种 B.186种 C.216种 D.270种5.5名男生2名女生站成一排,2名女生相邻但不站在两端,不同的站法共有()A.1440种 B.960种 C.720种 D.480种6.从某班由5位同学组成的综合实践活动小组中选派4位同学在星期五、星期六、星期日参加社区服务,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种 B.60种 C.100种 D.120种7.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有()A.20种 B.30种 C.40种 D.60种8.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种 C.24种 D.30种9.甲、乙两人从4门课程中各选修2门.则甲、乙所选的课程中至少有1门不相同的选法共有()A.6种 B.12种 C.30种 D.36种10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种 B.18种 C.36种 D.54种11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种 B.80种 C.100种 D.140种12.某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种 B.35种 C.42种 D.48种13.从6名教师中选出4名分别安排到A、B、C、D四所农村学校支教,要求每所学校一人且每人只去一所学校,若这6人中甲、乙两人不去A学校,则不同的选派方案共有()A.300种 B.240种 C.144种 D.96种14.2014年8月31日“环中国”自行车赛各参赛队齐聚南江光雾山大坝风景区,为给各参赛队提供优质服务,同时展现南江人民的良好素质,组委会要从小张、小何、小李、小万、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小何只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.36种 B.12种 C.18种 D.48种15.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种 B.63种 C.65种 D.66种16.两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种 B.15种 C.20种 D.30种17.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.618.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,共得到的不同值的个数是()A.9 B.10 C.18 D.2019.用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.27920.满足,且关于的方程有实数解的有序数对的个数为()A.14 B.13 C.12 D.1021.六个人从左到右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种 B.216种 C.240种 D.288种22.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.2423.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11 C.12 D.1524.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96 C.108 D.14425.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A.168 B.96 C.72 D.14426.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 A.12种 B.10种 C.9种 D.8种()27.一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为() A. B. C. D.28.已知集合,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.3629.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.30.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是() A.60 B.48 C.42 D.3631.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.32.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A. B. C. D.33.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A. B. C. D.34*.将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种 B.18种 C.24种 D.36种35*.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.48436*.设集合,那么集合A中满足条件“”的元素个数为()A.60 B.90 C.120 D.13037*.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.16838.的展开式中的系数是()A. B. C.5 D.2039.在的展开式中,含项的系数为()A.30 B.20 C.15 D.1040.展开式中的常数项是()A. B. C.15 D.2041.展开式中的常数项为()A.80 B. C.40 D.42.在的二项展开式中,的系数是() A.10 B. C.40 D.43.如果的展开式中各项系数之和为128,则展开式中的系数是 ()A.7 B. C.21 D.44.若二项式的展开式中的系数是84,则实数()A.2 B. C.1 D.45.设为正整数,展开式的二项式系数的最大值为展开式的二项式系数的最大值为,若,则()A.5 B.6 C.7 D.846.使得的展开式中含有常数项的最小的为()A.4 B.5 C.6 D.747.的展开式中的系数是()A.56 B.84 C.112 D.16848.已知的展开式中的系数为5,则()A. B. C. D.49.的展开式中的系数是()A. B. C.0 D.350.的展开式中的系数是()A. B. C.3 D.451.的展开式的常数项是()A. B. C.2 D.352*.在的展开式中,记项的系数为,则()A.45 B.60 C.120 D.21053*.已知的展开式中第三项与第五项的系数之比为,则展开式中常数项是()A. B.1 C. D.4554*.设,则的值为()A. B. C.1 D.2二.填空题:直接将答案填写在题中横线上55.将六个字母排成一排,且均在的同侧,则不同的排法共有种.(用数字作答)56.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有______种.(用数字作答)57.6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)58.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是.(用数字作答)59.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各一节,则在课表上的相邻两节文化课之间最多隔1节艺术课的概率为 (用数学作答).60.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有种.(用数字作答)61.从集合{O,P,Q,R,S}与{0,1,2,3,4}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O,Q和数字0至多只能出现一个的不同排法种数是62.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有个.(用数字作答)63.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种.(用数字作答)64.从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有种.(用数字作答)65.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)66.甲、乙、丙3人站到共有5级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是.(用数字作答)67.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有个.(用数字作答)68.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个.(用数字作答)69.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.70.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.71.盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.从盒中一次随机取出2个球,则取出的2个球颜色相同的概率为 .72.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是__________(结果用最简分数表示).73.10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.74*.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种.(用数字作答)75*.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个应急医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法有种.(用数字作答)76*.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.那么安排这6项工程的不同排法种数是 .77*.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法.78*.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有种.79*.从0,1,2,3,4,5,6,7这8个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为.(用数字作答)80*.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有种(用数字作答).81*.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.(用数字作答)82*.若集合,且下列四个关系:① ;② ;③ ;④ 有且只有一个是正确的,则符合条件的有序数组的个数是_______.83.的二项展开式中的常数项为 .84.设二项式的展开式中常数项为,则.85.若的展开式中的系数为7,则实数_________.86.二项式的展开式中,含的项的系数是 .(用数学作答)87.的展开式中,的系数为15,则____.(用数字填写答案)88.的展开式中的系数为.89.展开式中的系数为10,则实数的值为.90.的二项展开式中常数项为 (用数字作答)91.的展开式中的系数为______.(用数字作答)92.的展开式中的系数等于8,则实数 .93.若的展开式中的系数是,则实数的值是 .94.若的二项展开式中的系数为,则 (用数字作答).95.若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.96.若的展开式中项的系数为20,则的最小值为.97.设,则.98.在的展开式中,项的系数是 .(用数字作答)99.的展开式中整理后的常数项等于.(用数字作答)100.的展开式中常数项为.(用数字作答)101.若,则.(用数字作答)102.在的展开式中,的系数为 .(用数字作答)103.的展开式中的常数项为 .(用数字作答)。