2020-2021学年宁夏吴忠市同心县九年级(上)期末数学试卷
宁夏吴忠市2020年九年级上学期数学期末考试试卷A卷
宁夏吴忠市2020年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)方程x2-6x-5=0左边配成一个完全平方式后,所得的方程是()A . (x-6)2=41B . (x-3)2=4C . (x-3)2=14D . (x-6)2=362. (1分)(2018·聊城模拟) 下列各函数中,y随x增大而增大的是()A . y=﹣x+1B .C . y=x2+1D . y=2x﹣33. (1分)下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (1分) (2018九上·梁子湖期末) 如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC 相切于点E,则⊙O的半径为()A . 4B .C . 5D .5. (1分)下列说法正确的是()A . 在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖B . 随机抛一枚硬币,落地后正面一定朝上C . 同时掷两枚均匀的骰子,朝上一面的点数和为6D . 在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是6. (1分) (2020九上·宽城期末) 已知△ABC如图所示,则下面四个三角形中与△ABC相似的是()A .B .C .D .7. (1分)下列四个函数中,y的值随着x值的增大而减小的是()A . y=2xB . y=x+1C . y=(x>0)D . y=x2(x>0)8. (1分)(2018·广州模拟) 如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则()A . 4B . 3C . 2D . 59. (1分)(2016·深圳模拟) 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)10. (1分)(2017·濉溪模拟) 如图,已知反比例函数y= (x>0),则k的取值范围是()A . 1<k<2B . 2<k<3C . 2<k<4D . 2≤k≤4二、填空题 (共6题;共6分)11. (1分) (2019九下·常熟月考) 计算;sin30°•tan30°+cos60°•tan60°=________.12. (1分)已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是________ .13. (1分) (2020九上·石城期末) 函数y=(1-m)xm2-2+2是关于x的二次函数,且抛物线的开口向上,则m 的值为________。
2020-2021学年吴忠市同心县九年级上学期期末数学试卷(含答案解析)
2020-2021学年吴忠市同心县九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列关于x的方程中,一元二次方程是A. x 2+2x−1=0B.C. D. x 2+2=x 2+x2.已知关于x的方程x2+mx−1=0的根的判别式的值为5,则m的值为()A. ±3B. 3C. 1D. ±13.把抛物线y=x2+1向左平移3个单位,再向下平移2个单位,得到的抛物线表达式为()A. y=(x+3)2−1B. y=(x−3)2−2C. y=(x−3)2+2D. y=(x−3)2−14.根据下列表格中的对应值,得到二次函数y=ax2+bx+c(a≠0)与x轴有一个交点的横坐标x的范围是()x 3.23 3.24 3.25 3.26y−0.06−0.020.030.09A. x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.265.已知⊿ABC的三个内角分别是A、B、C,在①=90°−B;②A+B=C;③A︰B︰C=1︰1︰2;④A︰B︰C=1︰2︰3中,能判定⊿ABC是直角三角形的有()A. 1个B. 2个C. 3个D. 4个6.如图是一个是圆形房间的地板图案,其中大圆的直径恰好等于两个小圆的直径的和(两个小圆的直径相等),若在房间内任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是()A. 12B. 13C. 14D. 1π7.在平行四边形、等腰三角形、矩形、菱形四个图形中,既是中心对称图形又是轴对称图形的有()A. 0个B. 1个C. 2个D. 3个8.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是()A. 6πB. 5πC. 4πD. 3π9.如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=46°,则∠B的度数是()A. 21°B. 22°C. 27°D. 28°10.如图,Rt△ABC中,∠ABD=90°,AD=5,BD=3,以AB为直径的⊙O交AD于点C,设弦AC的中点为E,若点P为边AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为()A. 2B. 32C. 2或3225D. 2或2532二、填空题(本大题共10小题,共30.0分)11.已知关于x的一元二次方程x2−bx+3=0的一个实数根为1,则b=______.12.宁都县某脐橙园2016年产量为1000吨,2018年产量为1440吨,求该脐橙园脐橙产量的年平均增长率,设该脐橙园脐橙产量的年平均增长量为x,则根据题意可列方程为______.13.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上(不与A、D重合),MN为折痕,折叠后B′C′与DN交于P,则四边形MNC′B′面积最小值为______.14.二次函数y=x2的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A10在y轴的正半轴上,点B1,B2,B3…B10在二次函数y=x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A9B10A10都是直角顶点在抛物线上的等腰直角三角形,则△A9B10A10的斜边长为______.15.小丽与小刚一起玩“剪刀、石头、布”的游戏,小丽出“石头”的概率是______ .16.数学学习应经历“观察、实验、猜想、证明”等过程.如表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德⋅摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为______(精确到0.1).17. 已知点P(3,−1)关于原点的对称点Q的坐标是(a+b,b−1),则a b的值为______.18. 如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③AE2=AD⋅AF;④AF=AB+CF.其中正确结论为是______.(填写所有正确结论的序号)19. 过A,C,D三点的圆的圆心为E,过B,E两点的圆的圆心为D,如果∠A=60°,那么∠B为______.20. 如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是______.三、解答题(本大题共9小题,共60.0分)21. 解方程:(1)4(x+1)2=36;(2)x2−x−56=0;(3)2x2−4x−1=0;(4)(x−2)2=(2x+3)2.22. 已知抛物线y=x2+bx+c的对称轴为直线x=1,且经过点P(3,0)(1)求抛物线的表达式;(2)请直接写出y>0时x的取值范围.23. 作图如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,已知△ABC的三个顶点均在格点上.(1)画出△ABC沿AA1方向平移后的△A1B1C1,并求出△ABC所扫过的面积;(2)画出将△ABC绕点B按顺时针旋转90°所得的△A2BC2,并求出点A旋转到点A1的路径的长度.24. 细心观察图形,认真分析下列各式,然后解答问题.(√1)2+1=2,S1=√1;2(√2)2+1=3,S2=√2;2(√3)2+1=4,S3=√3;2…(1)请在横线上直接写出OA15的长度______;(2)请用含n(n是正整数)的等式表示上述变化规律;(3)求S12+S22+⋯+S202的值.25. 如图,在正方形ABCD中,点E在对角线BD上,EF//AB交AD于点F,连接BF.(1)如图1,若AB=4,DE=√2,求BF的长;(2)如图2.连接AE,交BF于点H,若DF=HF=2,求线段AB的长;(3)如图3,连接BF,AB=3√2,设EF=x,△BEF的面积为S,请用x的表达式表示S,并求出S的最大值;当S取得最大值时,连接CE,线段DB绕点D顺时针旋转30°得到线段DJ,DJ与CE交于点K,连接CJ,求证:CJ⊥CE.26. 为调查七年级学生了解校园防欺凌知识的情况,小刚在主题班会后就本班学生对校园防欺凌知识的了解程度进行了一次调查统计:A:熟悉,B:较了解,C:知道.如下是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形图中将表示“知道”的部分补充完整;(3)在扇形统计图中,求“较了解”部分所对应的圆心角的度数;(4)如果七年级共有460名同学,请你估算全年级对校园防欺凌知识“熟悉”的学生人数.27. “低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?28. 某宾馆有客房50间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满.如果每间客房每天的定价每增加10元,就会减少1间客房出租.设每间客房每天的定价増加x元,宾馆出租的客房为y间.求:(1)y关于x的函数关系式;(2)如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,房价定为多少时,宾馆利润最大?)=0.29. 已知关于x的一元二次方程x2−(2k+1)x+4(k−12(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.参考答案及解析1.答案:A解析:只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断。
宁夏吴忠市2021年九年级上学期数学期末考试试卷(I)卷
宁夏吴忠市2021年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·肥城模拟) ﹣2的绝对值是()A . ﹣B . ﹣2C .D . 22. (2分)如图,已知边长为4的正方形ABCD中,E为AD中点,P为CE中点,F为BP中点,FH⊥BC交BC 于H,连接PH,则下列结论正确的是()①BE=CE;②sin∠EBP=;③HP∥BE;④HF=1;⑤S△BFD=1.A . ①④⑤B . ①②③C . ①②④D . ①③④3. (2分)下列各组中得四条线段成比例的是()A . 4cm、3cm、5cm、7cmB . 1cm、2cm、3cm、4cmC . 25cm、35cm、45cm、55cmD . 1cm、2cm、20cm、40cm4. (2分)(2013·崇左) 若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限5. (2分) (2015九上·新泰竞赛) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是().A . 0B . 1C . 2D . 36. (2分)(2016·长沙模拟) 已知在Rt△AB C中,∠C=90°,AC=2,BC=3,则AB的长为()A . 4B .C .D . 57. (2分) (2020九上·德清期末) 如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .8. (2分)在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为()A . 32B . 42C . 32或42D . 以上都不对二、填空题 (共8题;共9分)9. (1分)(2017·杭州模拟) 分解因式:ma2﹣4ma+4m=________.10. (1分) (2018九上·建瓯期末) 二次函数y=x2﹣2x+6的最小值是________.11. (1分)(2012·泰州) 如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是________.12. (1分) (2016九上·北京期中) 如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).13. (1分)已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以点C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.14. (2分)已知函数y=3x﹣6,当x=0时,y=________;当y=0时,x=________.15. (1分) (2015八下·浏阳期中) 如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1= ;再过P1作P1P2⊥OP1且P1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得=________.16. (1分) (2017九上·曹县期末) 如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是________.三、解答题 (共12题;共99分)17. (5分) (2016七下·天津期末) 解不等式组,并把解集在数轴上表示出来.18. (5分) (2020九下·云南月考) 先化简,再求值:,其中 .19. (1分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y= t2;③cos∠ABE= ;④当t= 秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是________.20. (5分)如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B 分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).21. (12分) (2016九上·江阴期末) 已知抛物线(1)该抛物线的对称轴是________,顶点坐标________;(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;x……y……(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.22. (15分)如图,点A、O、E在同一条直线上,OB、OC、OD都是射线,∠1=∠2,∠1与∠4互为余角.(1)∠2与∠3的大小有何关系?请说明理由.(2)∠3与∠4的大小有何关系?请说明理由.(3)说明∠3的补角是∠AOD.23. (5分) (2016九下·崇仁期中) 在一次暑假旅游中,小亮在仙岛湖的游船上(A处),测得湖西岸的山峰太婆尖(C处)和湖东岸的山峰老君岭(D处)的仰角都是45°.游船向东航行100米后(B处),测得太婆尖,老君岭的仰角分别为30°,60°.试问太婆尖、老君岭的高度为多少米?24. (5分) (2016七下·谯城期末) 如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.25. (11分)(2016·镇江模拟) 如图,已知一次函数y=ax﹣2的图象与反比例函数y= 的图象交于A(k,a),B两点.(1)求a,k的值;(2)求B点的坐标;(3)不等式ax<﹣2的解集是________(直接写出答案)26. (10分) (2017九上·拱墅期中) 如图,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为,而当手指接触键盘时,肘部形成的“手肘角” 约为.图是其侧面简化示意图,其中视线水平,且与屏幕垂直.(1)若屏幕上下宽,科学使用电脑时,求眼睛与屏幕的最短距离的长.(2)若肩膀到水平地面的距离,上臂,下臂水平放置在键盘上,其到地面的距离,请判断此时是否符合科学要求的?(参考数据:,,,,所有结果精确到个位)27. (10分) (2019九上·沙坪坝期末) 在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.28. (15分) (2017八上·上城期中) 如图,中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)当秒时,求的长.(2)求出发时间为几秒时,第一次能形成等腰三角形?(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共12题;共99分)17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
吴忠市2021版九年级上学期数学期末考试试卷(I)卷
吴忠市2021版九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A . 这个球一定是黑球B . 摸到黑球、白球的可能性的大小一样C . 这个球可能是白球D . 事先能确定摸到什么颜色的球2. (2分)(2018·驻马店模拟) 下列命题是真命题的是()A . 若一组数据是1,2,3,4,5,则它的方差是3B . 若分式方程有增根,则它的增根是1C . 对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D . 若一个角的两边分别与另一个角的两边平行,则这两个角相等3. (2分) (2018九上·江海期末) 抛物线的顶点坐标是()A . (–3,1)B . (3,1)C . (3,–1)D . (–3,–1)4. (2分) (2018九上·江海期末) 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A .B .C .D .5. (2分) (2018九上·江海期末) 用配方法解方程,配方后得到的方程为()A .B .C .D .6. (2分) (2018九上·江海期末) 已知反比例函数的图象经过点P(-2,1),则这个函数的图像位于()A . 第一、第三象限B . 第二、第三象限C . 第二、第四象限D . 第三、第四象限7. (2分) (2018九上·江海期末) 已知圆锥的母线长是9,底面圆的直径为12,则这个圆锥的侧面积是()A .B .C .D .8. (2分) (2018九上·江海期末) 如图,在⊙O中,半径为13,弦AB垂直于半径OC交OC于点D,AB=24,则CD的长为()A . 5B . 12C . 8D . 79. (2分) (2018九上·江海期末) 如图,已知二次函数的图象与正比例函数的图象交于点A(3,2),与x轴交于点B(2,0),若,则x的取值范围是()A . 0<x<2B . x<0或x>3C . 2<x<3D . 0<x<310. (2分) (2018九上·江海期末) 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020九上·遂宁期末) 如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于________.12. (1分) (2018九上·江海期末) 把抛物线先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为________13. (1分) (2018九上·江海期末) 若函数的图象在其象限内随的增大而减小,则的取值范围是 ________14. (1分)(2017·通州模拟) 如图,AB是⊙O的直径,∠C=30°,则∠ABD等于________.15. (1分) (2018九上·江海期末) 若关于的一元二次方程有两个不相等的实数根,则的取值范围为________16. (1分) (2018九上·江海期末) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△ 的位置,点B,O分别落在点 , 处,点在轴上,再将△ 绕点顺时针旋转到△ 的位置,点在轴上,将△ 绕点顺时针旋转△ 的位置,点在轴上……依次进行下去。
宁夏回族自治区吴忠市同心县2023-2024学年九年级上学期期末数学试题
宁夏回族自治区吴忠市同心县2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________二、填空题9.已知2是关于x 的方程240x x m -+=的一个根,则m =.10.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由50元降为32元,设平均每次降价的百分率是x ,则根据题意,可列方程为. 11.二次函数22(3)5y x =-++的开口方向是.12.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为E ,如果20AB =,6OE =,那么弦CD 的长为.13.如图,AB 是O e 的直径,»»AD CD=,40COB ∠=︒,则A ∠的度数是°.14.已知扇形的圆心角为120°,面积为12π,则扇形的半径是 .15.某农科所通过大量重复的实验,发现某种子发芽的频率在0.85附近波动,现有1000kg 种子中发芽的大约有kg .16.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将OAP △绕点O 逆时针旋转,每次旋转90︒,则第2024次旋转结果时,点A 的坐标为.三、解答题 17.解方程.(1)2214x x ++=(2)260x x +-=18.已知一长方形公园()ABCD AB BD <的面积为24800m ,围绕这个公园的栅栏长为280m ,求这个公园的长BD 和宽AB .19.已知抛物线的顶点为(0,4),与x 轴交于点(-2,0),求抛物线的解析式. 20.如图,ABC V 的顶点坐标分别是()3,6A 、()1,3B 、()4,2C .(1)如果将ABC V 沿x 轴翻折得到A B C '''V ,写出A B C '''V 的顶点坐标;(2)如果将A B C '''V 绕点C '按逆时针方向旋转90︒得到A B C ''''''△,写出点A ''、B ''的坐标. 21.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为 ;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率. 22.如图,四边形ABCD 内接于⊙O ,∠BOD =140°,求∠BCD 的度数.23.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x 为整数)时,月销售利润为y 元.当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?24.如图,AB 为⊙D 的切线,BD 是∠ABC 的平分线,以点D 为圆心,DA 为半径的⊙D 与AC 相交于点E .求证:BC 是⊙D 的切线;25.如图,二次函数的图象与x 轴交于(3,0)A -和(1,0)B 两点,交y 轴于点(0,3)C .(1)求二次函数的解析式.(2)P 点是抛物线上一个动点,且ABP V 的面积为8,求出点P 的坐标.26.如图,ABC V 中,AB AC =,30BAC ∠=︒,将ABC V 绕着点A 逆时针旋转30︒,点C 的对应点为点D ,AD 的延长线与BC 的延长线相交于点E .。
宁夏吴忠市2021年九年级上学期数学期末考试试卷C卷
宁夏吴忠市2021年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2012·来宾) 使式子有意义的x的取值范围是()A . x≥﹣1B . ﹣1≤x≤2C . x≤2D . ﹣1<x<22. (1分)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A . 如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B . 如果方程M的两根符号相同,那么方程N的两根符号也相同C . 如果5是方程M的一个根,那么是方程N的一个根D . 如果方程M和方程N有一个相同的根,那么这个根必是x=13. (1分)sin60°的值等于()A .B .C .D .4. (1分)如图,AB∥CD∥EF,则在图中下列关系式一定成立的是()A .B .C .D .5. (1分) (2017九上·拱墅期中) 现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A .B .C .D .6. (1分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c >0;④9a+3b+c<0其中,正确结论的个数是()A . 1B . 2C . 3D . 47. (1分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为A . 10°B . 15°C . 20°D . 30°8. (1分)(2018·北京) 跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A .B .C .D .9. (1分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015 ,到BC的距离记为h2015 .若h1=1,则h2015的值为()A .B .C . 1-D . 2-10. (1分)如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为6m,则这两棵树之间的坡面AB的长为()A . 12mB . 3mC . 4mD . 12m二、填空题 (共5题;共5分)11. (1分) (2019八下·阜阳期中) 计算. =________.12. (1分) (2016七下·马山期末) 剧院里5排2号可以用(5,2)表示,则(7,4)表示________.13. (1分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n 的值为________.14. (1分)(2017·保康模拟) 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为________m(结果保留根号).15. (1分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣101234…y…1052125…若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=________时,y1=y2 .三、解答题 (共8题;共13分)16. (1分) (2018七上·邗江期中) 先化简,再求值:,其中.17. (1分) (2015九上·宜昌期中) 若x1、x2是方程x2+2(m﹣2)x+m2+4=0的两个实数根,且x12+x22﹣x1x2=21,求m的值.18. (1分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.19. (2分) (2017八下·东台期中) 病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?20. (1分)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼与二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米?(精确到0.01米)(备用数据:sin32°=0.5299,con32°=0.8480tan32°=0.6249。
吴忠市2021版九年级上学期数学期末考试试卷D卷
吴忠市2021版九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·惠山模拟) 函数y=中自变量x的取值范围是()A . x>2B . x≤2C . x≥2D . x≠22. (2分) (2019七下·钦州期末) 如图,数轴上点P表示的数可能是()A .B .C .D .3. (2分) (2017九上·秦皇岛开学考) 已知x2+(a+3)x+a+1=0是关于x的一元二次方程.下列说法正确的是()A . 方程总有两个不相等的实数根B . 方程总有两个相等的实数根C . 方程没有实数根D . 方程根的情况无法判断4. (2分)如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A . 甲B . 乙C . 丙D . 丁5. (2分) (2017九上·顺德月考) 用配方法解方程,下列配方结果正确的是().A .B .C .D .6. (2分)(2019·南浔模拟) 七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.已知如图1所示的“正方形”和如图2所示的“风车型”都是由同一副七巧板拼成的,若图中正方形ABCD的面积为16,则正方形EFGH的面积为()A . 22B . 24C . 26D . 287. (2分) (2017九上·南平期末) 抛物线y=ax2﹣4ax﹣3a的对称轴是()A . 直线x=3B . 直线x=2C . 直线x=1D . 直线x=﹣48. (2分) (2016九上·重庆期中) 在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A .B .C .D .二、填空题 (共6题;共7分)9. (1分) (2017八下·嘉兴期中) 已知的整数部分是,小数部分是,则 ________.10. (1分) (2015八下·鄂城期中) 若最简二次根式与是同类根式,则b的值是________.11. (1分) (2020九下·镇江月考) 如图,在△ABC中,DE∥BC,若AD=3,DB=5,DE=3.3,那么BC=________.12. (1分) (2015八下·江东期中) 一元二次方程(a﹣1)x2+x+a2﹣1=0一根为0,则a=________.13. (1分)将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的解析式为________.14. (2分)(2018·沈阳) 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=________m时,矩形土地ABCD的面积最大.三、解答题 (共10题;共79分)15. (5分) (2017八下·萧山期中) 计算:(1)(2)16. (10分)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.17. (10分)在如图的两个圆中,按要求分别画出与图中不重复的图案(用尺规画、徒手画均可,但要尽可能准确、美观) a.是轴对称图形但不是中心对称图形; b.既是轴对称图形又是中心对称图形.18. (10分) (2016八上·县月考) 如图,抛物线y= x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.19. (10分)(2019·瑶海模拟) 互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.(参考数据:≈1.414)(1)求平均每年增长率;(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.20. (5分) (2019九上·上海月考) 如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC 表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.21. (2分)(2014·钦州) 甲口袋中装有3个相同的小球,它们分别写有数值﹣1,1,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y),请用树形图或列表法,求点A落在第一象限的概率.22. (2分)(2017·邵阳模拟) 为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧(参考数据:sin54°≈0.81,道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)23. (15分) (2016九上·常熟期末) 在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。
宁夏吴忠市九年级上册数学期末考试试卷
宁夏吴忠市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2012·河南) 某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A . 中位数为170B . 众位数为168C . 极差为35D . 平均数为1702. (2分)以2、-3为根的一元二次方程是()A .B .C .D .3. (2分)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A .B .C .D .4. (2分)如图,⊙P的直径AB=10,点C在半圆上,BC=6.PE⊥AB交AC于点E,则PE的长是()A .B . 4C . 5D .5. (2分)如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A . 不存在B . 等腰三角形C . 直角三角形D . 等腰三角形或直角三角形6. (2分)(2020·浙江模拟) 在RtΔABC中,∠C=90°,如果sinA= ,那么sinB的值是()A .B .C .D . 37. (2分)(2018·重庆) 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D ,过点B作PD的垂线交PD的延长线于点C ,若的半径为4,,则PA的长为()A . 4B .C . 3D . 2.58. (2分)若二次函数y=x2+2x+c配方后为y=(x+h)2+7,则c、h的值分别为()A . 8、﹣1B . 8、1C . 6、﹣1D . 6、1二、填空题 (共10题;共14分)9. (1分)已知若x1 , x2是方程x2+3x+2=0的两根,则x1+x2=________10. (1分)将二次函数y=﹣2x2+6x﹣5化为y=a(x﹣h)2+k的形式,则 y=________.11. (1分)(2016·孝感) 如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为________12. (1分) (2018九上·北仑期末) 若圆锥的底面半径为3cm,高是4cm,则它的侧面展开图的面积为________.13. (5分)在2015年的政府工作报告中提出了九大热词,某数学兴趣小组就A互联网+、B民生底线、C中国制造2.0、D能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________ 名同学;(2)条形统计图中,m=________ ,n=________ ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是________ ;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是 ________14. (1分) (2019九上·平遥月考) 关于x的一元二次方程x2-kx+1=0有两个相等的实数根,则k=________ 。
吴忠市九年级上学期数学期末考试试卷
吴忠市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)将抛物线y=2x2﹣1向右平移1个单位后,再向上平移2个单位,得到的抛物线的顶点坐标是()A . (2,1)B . (1,2)C . (1,﹣1)D . (1,1)2. (1分) (2020七下·揭阳期末) 下列图形中,不是轴对称图形的是()A .B .C .D .3. (1分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A . 2 cmB . 4 cmC . 2 cm或4 cmD . 2 cm或4 cm4. (1分)(2020·高新模拟) 如图,在⊙O中,四边形ABCD测得∠ABC=150°,连接AC,若⊙O的半径为4,则AC的长为()。
A . 2B . 2C . 4D . 45. (1分)下列判定正确的是()A . 是最简二次根式B . 方程不是一元二次方程C . 已知甲、乙两组数据的平均数分别是,,方差分别是,,则甲组数据的波动较小D . 若与都有意义,则的值为56. (1分)如图,△ACD和△ABC相似需具备的条件是()A . =B . =C . AC2=AD•ABD . =AD•BD7. (1分)抛物线y=-(x-2)²+1经过平移后与抛物线y=-(x+1)²-2重合,那么平移的方向可以是()A . 向左平移3个单位后再向下平移3个单位;B . 向左平移3个单位后再向上平移3个单位;C . 向右平移3个单位后再向下平移3个单位;D . 向右平移3个单位后再向上平移3个单位。
8. (1分) (2020七下·深圳期中) 长方形的周长为24cm,其中一边为xcm(其中 x>0),面积为,则这样的长方形中y与x的关系可以写为()A .B .C .D .9. (1分)在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为()A . 平行B . 垂直且平分C . 斜交D . 垂直不平分10. (1分)(2019·秦安模拟) 已知⊙O1 与⊙O2交于 A、B 两点,且⊙O2 经过⊙O1 的圆心O1 点,点 C 在⊙O1 上如图所示,,则 =()A .B .C .D .11. (1分)(2012·丹东) 如图,点A是双曲线y= 在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()A . ﹣1B . 1C . 2D . ﹣212. (1分)(2020·南宁模拟) 某地区2月初感染新冠病毒确诊人数6千人,通过社会各界的努力,4月初确诊人数减少至1千人.设2月初至4月初该地区确诊人数的月平均下降率为,根据题意列方程为()A .B .C .D .二、填空题 (共8题;共8分)13. (1分)将半径为4cm的半圆围成一个圆锥,在圆锥里有一个内接圆柱(如图),当圆柱的侧面面积最大时,圆柱的底面半径是________ cm.14. (1分)已知点A(a,1)与点B(5,b)是关于原点O的对称点,则a=________,b=________15. (1分)(2020·温州模拟) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则OA2﹣AB2=________.16. (1分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为________17. (1分)如图中两三角形相似,则x=________.18. (1分)如图,⊙O的直径AB垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则CD=________厘米.19. (1分) (2016九上·温州期末) 如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为________度.20. (1分)如果是一元二次方程x2+3x-2=0的两个根,则a2+2a- 的值是________.三、解答题 (共6题;共14分)21. (2分) (2020七下·淮南月考) 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了一场,得17分.(1)前8场比赛中,这支球队共胜了多少场;(2)这支球队打满14场比赛,最高能得多少分;(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,•才能达到预期目标.22. (2分)(2017·宁城模拟) 已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.23. (4分) (2018九上·乌鲁木齐期末) 有张看上去无差别的卡片,上面分别写着,随机抽取张后,放回并混在一起,再随机抽取张.(1)请用树状图或列表法等方法列出各种可能出现的结果;(2)求两次抽到的卡片上的数字之和等于的概率.24. (2分)(2016·贺州) 计算:﹣(π﹣2016)0+| ﹣2|+2sin60°.25. (2分) (2016九上·自贡期中) 已知关于x的方程x2﹣(k+1)x+ k2+1=0.(1)当k取何值方程有两个实数根.(2)是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为.26. (2分) (2019九上·台州期中) 为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w 元.(1)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共14分)21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、。
吴忠市九年级上学期数学期末考试试卷
吴忠市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共10小题,共30分) (共10题;共29分)1. (3分)下列方程中是关于x的一元二次方程的是()A .B .C .D .2. (3分)用两个边长为a的等边三角形纸片拼成的四边形是().A . 等腰梯形B . 正方形C . 矩形D . 菱形3. (3分) (2018九下·游仙模拟) 如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P,B,C为顶点的三角形是等腰三角形,则P,D(P,D两点不重合)两点间的最短距离为多少?()A . 1B .C . 2D . -14. (2分)如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间作了猜测. 根据胡老师给出的方向坐标,猜测比较合理的是()A . 小明:“早上8点”B . 小亮:“中午12点”C . 小刚:“下午5点”D . 小红:“什么时间都行”5. (3分)关于直角三角形,下列说法正确的是()A . 所有的直角三角形一定相似;B . 如果直角三角形的两边长分别是3和4,那么第三边的长一定是5;C . 如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解;D . 如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定.6. (3分)已知如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点.若矩形AEFD 与矩形ABCD相似,则a:b等于()A . :1B . 1:C . :1D . 1:7. (3分)(2017·丹东模拟) 如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x 轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P 作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A .B .C .D .8. (3分)(2017·静安模拟) 在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A . m•sinαB . m•cosαC . m•tanαD . m•cotα9. (3分)已知函数y=k1x和,若常数k1 , k2异号,且k1>k2 ,则它们在同一坐标系内的图象大致是(如图所示)()A .B .C .D .10. (3分)以OA为斜边作等腰直角△OAB,再以OB为斜边在△OAB外侧作等腰直角△OBC,如此继续,得到8个等腰直角三角形(如图),则图中△OAB与△OHI的面积比值是()A . 32B . 64C . 128D . 256二、填空题(每题3分,共4题,共12分) (共4题;共12分)11. (3分) (2017七下·泰兴期末) 若把代数式化成的形式,其中m , k为常数,则 =________.12. (3分)(2018·青羊模拟) 如图,已知四边形ABCD的一组对边AD、BC的延长线相交于点E.另一组对边AB、DC的延长线相交于点F,若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,则AD的长为________(用含n的式子表示).13. (3分) (2018九上·大庆期末) 如图,在⊙O中,弦AB=8,M是弦AB上的动点,且OM的最小值为3.则⊙O的半径为________.14. (3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是________ .三、解答题(共9小题, 总计58分) (共9题;共57分)15. (4分)计算(结果用根号表示)(2+3)(2﹣3)16. (8分) (2019九上·句容期末) 解下列方程:(1) 2(x-3)2=x2-9;(2) 2y2+4y=y+2.17. (6分) (2017九上·西湖期中) 网格中每个小正方形的边长都是.(1)将图①中的格点绕点顺时针旋转,画出旋转的三角形.(2)在图②中画一个格点,使,且相似比为.(3)在图③中画一个格点,使,且相似比为.18. (6分) (2018九上·建平期末) 如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.19. (6分)(2017·镇江) 某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是________;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;(3)他们三人都参加实验A考查的概率是________.20. (5分)(2017·呼和浩特) 如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)21. (5分) (2018九上·郴州月考) 某电商销售一款时装,进价元/件,售价元/件,每天销售件,每销售一件需缴纳平台推广费元.该电商计划开展降价促销活动,通过市场调研发现,该时装售价每降元,每天销量增加件.为保证市场稳定,供货商规定售价不得低于元/件.问该电商对这款时装的每件售价定为多少元才能使每天扣除平台推广费之后的利润达到元?22. (7.0分)(2016·巴中) 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤ 的解集.23. (10分)(2013·绵阳) 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.参考答案一、选择题(每题3分,共10小题,共30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每题3分,共4题,共12分) (共4题;共12分)11-1、12-1、13-1、14-1、三、解答题(共9小题, 总计58分) (共9题;共57分)15-1、16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、。
宁夏吴忠市九年级上学期数学期末考试试卷
宁夏吴忠市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2012·阜新) ﹣5的相反数是()A . ﹣5B .C . 5D . ﹣2. (2分)(2019·湖南模拟) 下列计算正确的是()A .B .C .D .3. (2分) (2019七下·武昌期中) 不等式组的解集在数轴上表示为()A .B .C .D .4. (2分) (2015八下·绍兴期中) 已知关于x的方程 x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是()A . 2B . 1C . 0D . ﹣15. (2分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要()位.A . 3位B . 2位C . 9位D . 10位6. (2分) (2018九上·鄞州期中) 抛物线的顶点坐标()A .B .C .D .7. (2分)圆锥的主视图是边长为4 cm的等边三角形,则该圆锥俯视图的面积是()A . 4pcm2B . 8p cm2C . 12p cm2D . 16p cm28. (2分) (2018九上·江海期末) 已知反比例函数的图象经过点P(-2,1),则这个函数的图像位于()A . 第一、第三象限B . 第二、第三象限C . 第二、第四象限D . 第三、第四象限二、填空题 (共6题;共6分)9. (1分) (2019七上·九龙坡期中) 已知代数式x+2y-1的值是6,则代数式3x+6y+1的值是________.一个数为-380000用科学记数法表示为________10. (1分) (2015八上·怀化开学考) 分解因式:a3﹣2a2b+ab2=________.11. (1分)(2019·杭州模拟) 一组数据-1,1,0,5,-3的极差是________.12. (1分)(2017·安徽模拟) 在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.13. (1分) (2016九下·句容竞赛) 要使分式有意义,则x的取值范围是________.14. (1分) (2019九上·腾冲期末) 已知两圆的半径分别为1和3.若两圆相切,则两圆的圆心距为________.三、解答题 (共9题;共96分)15. (5分) (2020七下·江阴期中) 计算:(1);(2);(3);(4) .16. (5分)先化简,再求值:()÷(x+1),其中x=tan60°+1.17. (10分)(2019·北部湾模拟) 如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,1),B(-4,1),C(-2,3)①画出△ABC关于点O成中心对称的△A1B1C1;②以点A为位似中心,将△ABC放大为原来的2倍,得到△AB2C2 ,请在第二象限内画出△AB2C2;③直接写出以点A1 , B1 , C1为顶点,以A1B1为一边的平行四边形的第四个顶点D的坐标.18. (16分) (2017八下·徐州期中) 为了了解某中学初三年级650名学生升学考试的数学成绩,从中随机抽取了50名学生的数学成绩进行分析,并求得样本的平均成绩是93.5分.下面是根据抽取的学生数学成绩制作的统计表:分组频数累计频数频率60.5~70.5正3a70.5~80.5正正60.1280.5~90.5正正90.1890.5~100.5正正正正170.34100.5~110.5正正b0.2110.5~120.5正50.1合计501根据题中给出的条件回答下列问题:(1)表中的数据a=________,b=________;(2)在这次抽样调查中,样本是________;(3)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数约为________人.19. (10分)(2018·金华模拟) 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若,,求菱形BMDN的面积和对角线MN的长.20. (15分) (2016九上·无锡期末) 如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.21. (15分)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x 的函数关系式为________.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?22. (10分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得168元的销售利润,销售价应定为多少?23. (10分) (2020九上·中山期末) 如图,抛物线y=ax2- x+c与x轴相交于点A(-2,0)、B(4,0),与y轴相交于点C,连接AC、BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D、E,点P在BC下方的抛物线上运动。
宁夏吴忠市2020版九年级上学期数学期末考试试卷C卷
宁夏吴忠市2020版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分)车轮要做成圆形,实际上就是根据圆的特征()A . 同弧所对的圆周角相等B . 直径是圆中最大的弦C . 圆上各点到圆心的距离相等D . 圆是中心对称图形2. (3分)(2016·茂名) 下列事件中,是必然事件的是()A . 两条线段可以组成一个三角形B . 400人中有两个人的生日在同一天C . 早上的太阳从西方升起D . 打开电视机,它正在播放动画片3. (3分)(2020·南通模拟) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .4. (3分) (2017九上·双城开学考) 抛物线y=x2﹣bx+8的顶点在x轴上,则b的值一定为()A . 4B . ﹣4C . 2或﹣2D . 4 或﹣45. (3分) (2018九上·大冶期末) 如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,∠AMD=100°,∠A=30°,则∠B=()A . 40°B . 45°C . 50°D . 60°6. (3分) (2016九上·苍南月考) 某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C . 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D . 掷一个质地均匀的正方体骰子,向上的面的点数是47. (3分)已知等腰三角形的一边长为5,另两边的长是方程x2-6x+m=0的两根,则此等腰三角形的周长为()A . 10B . 11C . 10或11D . 11或128. (3分)(2018·濮阳模拟) 如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为()A .B .C .D .9. (3分)若a为方程式(x-)2=100的一根,b为方程式(y-4)2=17的一根,且a、b都是正数,则a-b 之值为()A . 5B . 6C .D . 10-10. (3分)如图,在直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A . h=mB . k= nC . k>nD . h>0,k>0二、填空题(共24分) (共6题;共24分)11. (4分)(2017·安陆模拟) 方程x2﹣2=0的根是________.12. (4分) (2019九上·淮阴期末) 点在二次函数的图象上,则m的值是________.13. (4分)(2018·吴中模拟) 有一个正六面体,六个面上分别写有1---6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是________.14. (4分)(2018·嘉定模拟) 已知弓形的高是厘米,弓形的半径长是厘米,那么弓形的弦长是________厘米.15. (4分)(2018·安顺) 如图,C为半圆内一点,O为圆心,直径AB长为2cm,,,将绕圆心O逆时针旋转至,点在OA上,则边BC扫过区域(图中阴影部分)的面积为________ .(结果保留)16. (4分) (2017八下·徐州期末) 已知等式,对任意正整数n都成立.计算:=________.三、解答题(一)(共18分) (共3题;共18分)17. (6分)解方程x(x+1)=3x+3.18. (6分)为丰富学生的校园文化生活,珠海第十中学举办了“十中好声音”才艺比赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭挡的结果;(2)求同一年级男、女选手组成搭档的概率;(3)求高年级男选手与低年级女选手组成搭档的概率.19. (6分) (2016九上·海淀期中) 如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.四、解答题(二)(共21分) (共3题;共21分)20. (7.0分) (2018九上·宁波期中) 如图,正方形网格中(每个小正方形的边长都为1个单位),在平面直角坐标系内,△OBC的顶点B、C分别为B(0,-4),C(2,-4).(1)请在图中标出△OBC的外接圆的圆心P的位置________ ,并填写:圆心P的坐标:P ( ________ , ________ )(2)画出△OBC绕点O逆时针旋转90°后的△OB1C1 ;(3)在(2)的条件下,求出旋转过程中点C所经过的路径长(结果保留π).21. (7.0分) (2018九上·番禺期末) 关于的方程有两个不相等的实数根.(1)求实数的取值范围;(2)设方程的两个实数根分别为,是否存在实数k,使得?若存在,试求出的值;若不存在,说明理由.22. (7.0分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE(2)试判断四边形BFCD的形状,并说明理由(3)若BC=8,AD=10,求CD的长.五、解答题(三)(共27分) (共3题;共27分)23. (9分)(2016·北区模拟) 如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=6,sin∠P= ,求AB的值.24. (9分)(2017·商水模拟) 如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,试判断S有最大值或最小值?并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25. (9分)(2017·宁德模拟) 如图,抛物线l:y= (x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.参考答案一、选择题(共30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一)(共18分) (共3题;共18分)17-1、18-1、19-1、四、解答题(二)(共21分) (共3题;共21分) 20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、五、解答题(三)(共27分) (共3题;共27分) 23-1、23-2、24-1、24-2、24-3、25-2、。
宁夏吴忠市九年级上学期数学期末考试试卷
宁夏吴忠市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)以下列各组数据为边长,能构成直角三角形的是()A . 2,3,5B . 4,5,6C . 11,12,15D . 8,15,172. (2分)如图,已知⊙O是△ABC的外接圆,AB=AC,D是直线BC上一点,直线AD交⊙O于点E,AE=9,DE=3,则AB的长等于()A . 7B .C .D .3. (2分)下列函数中,当x>0时,y随x增大而增大的是()A . y=﹣xB . y=C . y=3﹣2xD . y=x24. (2分)如图,已知△ABC,P是边AB上的一点,连结CP,以下条件中不能确定△ACP与△ABC相似的是()A . ∠ACP=∠BB . ∠APC=∠ACBC . AC2=AP·ABD .5. (2分)如图,D、E分别是AB、AC的中点,则S△ADE:S△ABC=()A . 1∶2B . 1∶3C . 1∶4D . 2∶36. (2分) (2016高二下·河南期中) 在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A .B .C .D .7. (2分) (2019九上·温州月考) 如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A . 4 mB . mC . 5mD . m8. (2分) (2020九上·新乡期末) 如图是二次函数的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是抛物线上两点,则y1<y2 ,其中正确的结论有()个A . 1B . 2C . 3D . 49. (2分)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF .设BE=x , DF=y ,则y是x的函数,函数关系式是()A . y=x+1B . y=x-1C . y=x2-x+1D . y=x2-x-110. (2分) (2020九上·醴陵期末) 下列各组图形一定相似的是()A . 两个直角三角形B . 两个等边三角形C . 两个菱形D . 两个矩形二、填空题 (共4题;共5分)11. (1分) (2016九上·泰顺期中) 如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=________.12. (1分)(2018·成都) 已知,且,则的值为________.13. (1分)如图,△A BC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是________.14. (2分)如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为________.三、解答题 (共9题;共80分)15. (5分)(2017九下·宜宾期中) 计算:(1)(2)16. (5分) (2019九上·西城期中) 如图,在四边形ABCD中,,,,,如果,求CD的长.18. (10分)(2019·张家界) 已知抛物线过点,两点,与y轴交于点C ,.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.19. (10分) (2019九上·温州开学考) 如图,直线与x轴、y轴分别交于点B,C,抛物线过B,C两点,且与x轴的另一个交点为点A,连接AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点与点A不重合,使得,若存在,求出点D的坐标;若不存在,请说明理由;(3)有宽度为2,长度足够长的矩形阴影部分沿x轴方向平移,与y轴平行的一组对边交抛物线于点P 和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M 的坐标.20. (10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,点F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6 ,AF=4 ,求AE的长.21. (10分)(2020·许昌模拟) 如下图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点 .另一边交的延长线于点 .(1)观察猜想:线段与线段的数量关系是________;(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若、,求的值.22. (10分) (2019·东湖模拟) 如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交⊙O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为⊙O切线;(2)若sin∠BAC=,求tan∠AFO的值.23. (15分) (2019九上·腾冲期末) 如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为________(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共5分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、15-2、16-1、18-1、18-2、18-3、18-4、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
宁夏吴忠市2020年九年级上学期数学期末考试试卷A卷
宁夏吴忠市2020年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共6小题,每小题3分,共18分) (共5题;共13分)1. (2分)(2019·百色) 下列图形,既是轴对称图形又是中心对称图形的是()A . 正三角形B . 正五边形C . 等腰直角三角形D . 矩形2. (3分)(2019·河南) 一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根3. (3分)下列函数中,当x>0时,y随x增大而增大的是()A . y=﹣xB . y=C . y=3﹣2xD . y=x24. (2分)(2017·绵阳) “赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A . 68πcm2B . 74πcm2C . 84πcm2D . 100πcm25. (3分) (2017九上·江北期中) 如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A . ①②B . ②③C . ①③D . ①②③④二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)6. (3分)(2017·金乡模拟) 若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为________7. (3分) (2018九上·上杭期中) 已知抛物线y=a(x+1)2 经过点,,则________ 填“ ”,“ ”,或“ ” .8. (3分)从-1,0,1,2四个数中选出不同的三个数用作二次函数y=ax2+bx+c的系数,其中不同的二次函数有________ 个,这些二次函数开口向下且对称轴在y轴的右侧的概率是________ .9. (3分)(2018·鄂州) 如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△ 处,此时线段与BO的交点E为BO的中点,则线段的长度为________.10. (3分) (2016九上·九台期中) 如图,点D、E、F分别为△ABC三边AB、BC、AC的中点,若△DEF的周长为8,则△ABC的周长为________.11. (3分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC中点,若DE=2,则AB的长为________ .三、解答题(本大题共5小题,每小题6分,共30分) (共5题;共30分)12. (6分) (2015九上·应城期末) 解下列方程:(1) x2﹣2x﹣3=0;(2)(x﹣5)2=2(5﹣x)13. (6分) (2020九上·常州期末) 如图,用长6m的铝合金条制成“日”字形窗框,窗框的宽和高各是多少时,窗户的透光面积为1.5m2 (铝合金条的宽度不计) ?14. (6分)(2018·毕节模拟) 在北海市创建全国文明城活动中,需要30名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生18人,女生12人.(1)若从这30人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.15. (6分) (2019七上·宝安期末) 阅读材料:用尺规作图要求作线段AB等于线段a时,小明的具体作法如下:已知:线段a,如图1.求作:线段AB,使得线段.解:作图步骤如下.作射线AM;用圆规在射线AM上截取,如图2.线段AB为所求作的线段解决下列问题:已知:线段b,如图3.(1)请你仿照小明的作法,在图2中的射线AM上作线段BD,使得;不要求写作法和结论,保留作图痕迹,用签字笔加粗(2)在(1)的条件下,取AD的中点E,若,,求线段BE的长?16. (6分) (2018九上·湖州期中) 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求弧AC的长.四、解答题(本大题共3小题,每小题8分,共24分) (共3题;共24分)17. (8分)(2019·梁平模拟) 已知x1 , x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式7+4x1x2>x12+x22,且m为整数,求m的值.18. (8分)(2017·新野模拟) 某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?19. (8分)(2019·番禺模拟) 如图,以原点为圆心,3为半径的圆与轴分别交于两点,在半径上取一点(其中),过点作轴的平行线交于,直线,交于点 .(1)当时,求的值;(2)若,试求的值及点的坐标;(3)在(2)的条件下,将经过点的抛物线向右平移个单位,使其恰好经过点,求的值.五、解答题(本大题共2小题,每小题9分,共18分) (共2题;共18分)20. (9分) (2016九上·临沭期中) 某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率= )(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?21. (9.0分) (2017八上·广水期中) 在平面直角坐标系中,A(2,0)、B(0,3),过点B作直线l∥x轴,点P(a,3)是直线上的动点,以AP为边在AP右侧作等腰Rt∆APQ,∠APQ=90°,直线AQ交y轴于点C.(1)当a= 时,求点Q的坐标;(2)当PA+PO最小时,求a.六、解答题(本大题共12分) (共1题;共12分)22. (12分) (2019八下·太原期中) 综合与实践:问题情境:在数学综合与实践课上,张老师启示大家利用直线、线段以及点的运动变换进行探究活动.变换条件如下:如图1,直线AB,AC,BC两两相交于A,B,C三点,得知△ABC是等边三角形,点E是直线AC上一动点(点E不与点A,C重合),点F在直线BC上,连接BE,EF,使EF=BE.独立思考:(1)张老师首先提出了这样一个问题:如图1,当E是线段AC的中点时,确定线段AE与CF的数量关系,请你直接写出结论:AE________CF(填“>”“<”或“=”).提出问题:(2)“奋斗”小组受此问题的启发,提出问题:若点E是线段AC上的任意一点,其他条件不变,(1)中的结论是否成立?该小组认为结论仍然成立,理由如下:如图2,过点E作ED∥BC,交AB于点D.(请你补充完整证明过程)(3)“缜密”小组提出的问题是:动点E的运动位置如图3,图4所示,其他条件不变,根据题意补全图形,并判断线段AE与CF的数量关系是否发生变化?请你选择其中一种予以证明.(4)“爱心”小组提出的问题是:若等边△ABC的边长为,AE=1,则BF的长为________.(请你直接写出结果).参考答案一、选择题(本大题共6小题,每小题3分,共18分) (共5题;共13分) 1-1、2-1、3-1、4-1、5-1、二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分) 6-1、7-1、8-1、9-1、10-1、11-1、三、解答题(本大题共5小题,每小题6分,共30分) (共5题;共30分) 12-1、12-2、13-1、14-1、14-2、15-1、15-2、16-1、16-2、四、解答题(本大题共3小题,每小题8分,共24分) (共3题;共24分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、五、解答题(本大题共2小题,每小题9分,共18分) (共2题;共18分) 20-1、20-2、21-1、21-2、六、解答题(本大题共12分) (共1题;共12分)22、答案:略。
吴忠市2020年九年级上学期数学期末考试试卷A卷
吴忠市2020年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列所画的数轴中,正确的是()A .B .C .D .2. (2分)(2017·深圳模拟) 如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A .B .C .D .3. (2分) (2020九上·港南期末) 下列运算中,正确的是()A .B .C .D .4. (2分)(2017·潮南模拟) 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .5. (2分) (2020九上·港南期末) 已知x:y:z=3:4:6,则的值为()A .B . 1C .D .6. (2分) (2020九上·港南期末) 正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A . (﹣1,﹣2)B . (﹣2,﹣1)C . (1,2)D . (2,1)7. (2分) (2020九上·港南期末) 在中,,,则的值等于()A .B .C .D . 或8. (2分) (2019九上·台安月考) 将抛物线y=(x-2)2+1向左平移2个单位,得到的新抛物线顶点坐标是()A .B .C .D .9. (2分) (2020九上·港南期末) 如图,中,,若,,则边的长是()A . 2B . 4C . 6D . 810. (2分) (2020九上·港南期末) 如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是().A . 72°B . 54°C . 36°D . 18°11. (2分) (2020九上·港南期末) 如图,在矩形中,,,是边上一动点(不含端点),连接,是边上一点,设,若存在唯一点,使,则的值是()A .B .C . 3D . 612. (2分) (2020九上·港南期末) 如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)在实数π,,,,- ,0.2121121112…(每两个2之间依次多一个1)中,无理数共有________个.14. (1分) (2020九上·港南期末) 若tan(α–15°)= ,则锐角α的度数是________.15. (1分)(2019·海珠模拟) 若a是方程的解,计算: =________.16. (1分) (2020九上·港南期末) 如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.17. (1分) (2020九上·港南期末) 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.18. (1分) (2020九上·港南期末) 如图,在轴的正半轴上依次截取,过点分别作轴的垂线与反比例函数的图象相交于点,得直角三角形、,,,,并设其面积分别为,则________(的整数)三、解答题 (共8题;共82分)19. (5分)(2017·湖州模拟) 计算:|﹣2|﹣(1+ )0+ ﹣cos30°.20. (6分) (2020九上·港南期末) 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1 .(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2 ,并写出A2点的坐标________.21. (10分) (2020九上·港南期末) 如图,一次函数的图象与反比例函数的图象交于点,,交y轴于点B,交x轴于点D.(1)求一次函数与反比例函数的函数关系式;(2)连结OA、OC,求的面积;22. (15分) (2020九上·港南期末) 为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1) m=________%,这次共抽取了________名学生进行调查;并补全条形图;(2)请你估计该校约有 ________名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?23. (6分) (2020九上·港南期末) 某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.(1)当售价为万元/辆时,平均每周的销售利润为________万元;(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.24. (10分) (2020九上·港南期末) 在中,,平分,是边上一点,以为直径的经过点,且交于点 .(1)求证:是的切线;(2)若,的半径为5,求的长.25. (15分) (2020九上·港南期末) 如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.26. (15分) (2020九上·港南期末) 已知四边形和四边形都是正方形,且 .(1)如图1,连接 .求证:;(2)如图2,将正方形绕着点旋转到某一位置时恰好使得, .求的度数;(3)在(2)的条件下,当正方形的边长为时,请直接写出正方形的边长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
宁夏吴忠市2021年九年级上学期期末数学试卷(II)卷
宁夏吴忠市2021年九年级上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017九下·萧山开学考) 的值为()A .B .C .D . 12. (2分)(2019·鄞州模拟) 已知点(2,3)在反比例函数的图象上,则该图象必过的点是()A . (1,6)B . (-6,1)C . (2,-3)D . (-3,2)3. (2分)方程x(x+3)=0的根是()A . x=0B . x=-3C . x1=0,x2=3D . x1=0,x2=-34. (2分)(2016·龙岩) 如图所示正三棱柱的主视图是()A .B .C .D .5. (2分) (2018八下·长沙期中) 已知二次函数,下列说法正确是()A . 开口向上,顶点坐标B . 开口向下,顶点坐标C . 开口向上,顶点坐标D . 开口向下,顶点坐标6. (2分)(2016·贵港) 从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是()A .B .C .D .7. (2分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了促进销售,增加盈利,尽量减少库存,商场决定适当地降价,若每件衬衫每降价1元,商场平均每天多销售出2件,若商场平均每天要盈利1200元,每件衬衫应降价()元.A . 10B . 20C . 10或20D . 无法确定8. (2分)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的()A . 北偏东20°方向上B . 北偏东30°方向上C . 北偏东40°方向上D . 北偏西30°方向上9. (2分) (2018九上·顺义期末) 已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE 面积是4则四边形DBCE的面积是()A . 6B . 9C . 21D . 2510. (2分)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A . 0.5mB . 0.55mC . 0.6mD . 2.2m11. (2分)如图所示的二次函数y=ax2+bx+c的图象中,刘敏同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c<0;(3)2a-b>0;(4)a-b+c<0,你认为其中错误的有()A . 1个B . 2个C . 3个D . 4个12. (2分) (2017八下·泉山期末) 已知反比例函数,在下列结论中,不正确的是().A . 图象必经过点(1,2);B . 图象在第一、三象限;C . 随的增大而减少;D . 若 >1,则 <2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年宁夏吴忠市同心县九年级(上)期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.下列方程属于一元二次方程的是()A. (x2−2)x=x2B. ax2+bx+c=0=5 D. x2=3xC. 3x+1x2.若2a+3c=0,则关于x的一元二次方程ax2+bx+c=0(a≠0)的根的情况是()A. 方程有两个相等的实数根B. 方程有两个不相等的实数根C. 方程必有一根是0D. 方程没有实数根3.y=2x2向上平移3个单位后所得抛物线的解析式是()A. y=2x2+3B. y=2(x+3)2C. y=2(x−3)2D. y=2x2−34.抛物线y=x2+2x+m−1与x轴有交点,则m的取值范围是()A. m≤2B. m<−2C. m>2D. 0<m≤25.下列事件中,属于必然事件的为()A. 打开电视机,正在播放广告B. 任意画一个三角形,它的内角和等于180°C. 掷一枚硬币,正面朝上D. 在只有红球的盒子里摸到白球6.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是()A. 58B. 12C. 34D. 787.下列图形中,是中心对称但不一定是轴对称图形的是()A. 等边三角形B. 矩形C. 菱形D. 平行四边形8.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为()A. 80°B. 90°C. 100°D. 120°9.如图,四边形ABDC是⊙O的内接四边形,连接BO、CO,若∠BOC=116°,则∠CDB的度数为()A. 116°B. 122°C. 128°D. 112°10.如图,在直径为20的⊙O中,弦AB=12,OP⊥AB,垂足为P,则OP的长为()A. 6B. 5C. 8D. 7第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)11.方程kx2−(k−1)x+k−7=0的一个根为0,则k=______.12.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.13.二次函数y=−2x2+8x−6的最大值是________.14.抛物线y=−x2+4x−4的对称轴是______.15.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是______.16.在一个不透明的盒子中,装有n个除颜色外其它都相同的小球,其中有9个白球.从中任意摸出一个球记下颜色后,放回盒子再摸,经反复实验,发现摸到白球的频率稳定在30%,那么估计盒子中小球的个数n为________.17.平面直角坐标系中,P(2,3)关于原点对称的点A坐标是______.18.如图,E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE’的位置.若AE=1,BE=2,CE=3,那么∠BE’C=______.19.如图,△ABC内接于⊙O,∠OAC=25°,则∠ABC=______.20.已知一个圆锥的底面半径为1cm,母线长为3cm,则其侧面积为________cm2.三、解答题(本大题共9小题,共60.0分)21.解方程:2x(x−1)−3(x−1)=0.22.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,顶点为D.求二次函数的解析式及四边形ADBC的面积.23.如图,已知△ABC的顶点A,B,C的坐标分别是A(−2,3).B(−3,2).C(−1,1).(1)作出△ABC关于原点O的中心对称图形△A1B1C1;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点A2的坐标.24.如图,AE是⊙O的直径,半径OC⊥弦AB,点D为垂足,连BE、EC.(1)若∠BEC=26°,求∠AOC的度数;(2)若∠CEA=∠A,EC=6,求⊙O的半径.25.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;将△ABC绕点顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,求n的大小和图中阴影部分的面积.26.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有学生2400名,试估计该校喜爱看电视的学生人数.(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,求恰好抽到2名男生的概率.27.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.已知矩形花圃ABCD的面积为4m2,求AB的长度(可利用的围墙长度超过6m).28.丑橘,又名不知火,是近年来颇受欢迎的柑橘品种.临近春节一水果经销商以6元/千克的价格购进10000千克丑橘,为了保鲜放在冷藏室里,但每天仍有50千克丑橘变质丢弃,且每存放一天需要各种费用共300元,据预测,每天每千克丑橘的市场价格会在进价的基础上上涨0.1元.(1)设x天后每千克丑橘的售价为p元,直接写出p与x的函数关系式;(不要求写出函数自变量的取值范围);(2)若存放x天后将该批丑橘一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批丑橘存放多少天后一次性售出,可以获得最大利润,最大利润为多少?29.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过BD⏜上一点E作EG//AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.答案和解析1.【答案】D【解析】【分析】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【解答】解:A.未知数的最高次数是3,不是一元二次方程,故此选项错误;B.当a=0时,不是一元二次方程,故此选项错误;C.不是整式方程,不是一元二次方程,故此选项错误;D.是一元二次方程,故此选项正确.故选D.2.【答案】B【解析】【分析】本题主要考查根的判别式.由条件可得到ac<0,则可得出判别式的符号,进而可求得答案.【解答】解:∵2a+3c=0,a≠0,∴ac<0,∴−4ac>0,∴Δ=b2−4ac>0,∴方程有两个不相等的实数根,故选:B.3.【答案】A【解析】【分析】本题考查的是二次函数的图象和平移的性质有关知识,直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选A.4.【答案】A【解析】解:由题意可知:△=4−4(m−1)≥0,∴m≤2,故选(A)根据抛物线与x轴有交点可知,△≥0,本题考查抛物线与x轴交点,解题的关键是列出不等式,本题属于基础题型.5.【答案】B【解析】解:打开电视机,可能在播广告,也可能不在播放广告,因此A选项不符合题意,任意三角形的内角和都是180°,因此选项B符合题意,掷一枚硬币,可能正面朝上,也可能反面向上,因此选项C不符合题意,在只有红球的盒子里是摸不到白球的,因此选项D不符合题意,故选:B.打开电视机,正在播放广告是随机事件;任意画一个三角形,它的内角和等于180°是必然事件;掷一枚硬币,正面朝上是随机事件;在只有红球的盒子里摸到白球是不可能事件,综合做出判断即可.考查随机事件的意义,三角形的内角和定理,掌握必然事件,不可能事件,随机事件的意义是正确判断的前提.6.【答案】B【解析】解:观察这个图可知:转盘停止转动时指针指向阴影部分的面积与非阴影部分,面积相等,各占12.故其概率等于12故选:B.根据几何概率的求法:转盘停止转动时指针指向阴影部分的概率即转盘停止转动时指针指向阴影部分的面积与总面积的比值.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.7.【答案】D【解析】【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形.故不合题意;B.矩形是轴对称图形,也是中心对称图形.故不合题意;C.菱形是轴对称图形,也是中心对称图形.故不合题意;D.平行四边形不一定是轴对称图形,是中心对称图形.故合题意.故选D.8.【答案】B【解析】【分析】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【解答】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°−90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.9.【答案】B【解析】【分析】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.根据圆周角定理求出∠A,根据圆内接四边形的性质计算,得到答案.【解答】解:由圆周角定理得,∠A=12∠BOC=12×116°=58°,∵四边形ABDC是⊙O的内接四边形,∴∠CDB=180°−∠A=122°,故选B.10.【答案】C【解析】【分析】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.连接OA,根据垂径定理得到AP=12AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB ⊥OP ,∴AP =12AB =12×12=6,∵∠APO =90°,又OA =10,∴OP =√OA 2−AP 2=8,故选C . 11.【答案】7【解析】【分析】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.把x =0代入方程kx 2−(k −1)x +k −7=0即可得到k 的值.【解答】解:把x =0代入方程kx 2−(k −1)x +k −7=0得k −7=0,解得k =7.故答案为7.12.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a(1±x)2=b . 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.13.【答案】2【解析】【分析】本题考查了二次函数的最值.利用配方法把二次函数写成顶点式即可得出结论.【解答】解:∵y=−2x2+8x−6=−2(x−2)2+2,抛物线开口向下,∴当x=2时,y有最大值2,故答案为2.14.【答案】x=2【解析】解:∵y=−x2+4x−4=−(x−2)2,∴抛物线对称轴为x=2,故答案为:x=2.把抛物线解析式化为顶点式可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).15.【答案】58【解析】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是5,8.故答案为:58根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n16.【答案】30【解析】【分析】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【解答】=30%,解:根据题意得9n解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故答案为30.17.【答案】(−2,−3)【解析】【分析】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:P(2,3)关于原点对称的点A坐标是(−2,−3),故答案为:(−2,−3).18.【答案】135°【解析】【分析】此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′,,∵△ABE绕点B顺时针旋转90°到△CBE′,∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等,∴BE=BE′=2,∠AEB=∠BE′C,∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为135°.19.【答案】115°【解析】解:∵OA=OC,∠OAC=25°,∴∠AOC=180°−25°×2=130°,由圆周角定理得,∠ABC=(360°−130°)÷2=115°,故答案为:115°.根据等腰三角形的内角和定理求出∠AOC,根据圆周角定理解答.本题考查的是三角形的外接圆,掌握圆周角定理是解题的关键.20.【答案】【解析】【分析】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键. 根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解答】解:圆锥的侧面积=12⋅2π⋅1⋅3=3π(cm 2).故答案为3π. 21.【答案】解:原方程可化为(x −1)(2x −3)=0,解得x 1=1,x 2=32.【解析】将(x −1)作为公因式,提公因式解答即可.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.【答案】解:(1)设二次函数解析式为y =a(x −2)2+k ,把A(1,0),C(0,6)代入得:{a +k =04a +k =6, 解得:{a =2k =−2, 则二次函数解析式为y =2(x −2)2−2=2x 2−8x +6;(2)∵y =2(x −2)2−2,∴顶点D 的坐标为(2,−2),由A(1,0),对称轴为直线x =2可知另一个与x 轴的交点B(3,0),∴AB =2,∴S 四边形ADBC =S △ABD +S △ABC =12×2×2+12×2×6=8.【解析】此题考查了待定系数法求二次函数解析式,抛物线与x轴的交点,二次函数的性质,熟练掌握待定系数法是解本题的关键.(1)根据二次函数的对称轴为直线x=2,设出二次函数解析式,把A与C坐标代入求出a与k的值,确定出二次函数解析式;(2)找出函数图象顶点D的坐标,进而根据对称性求得B的坐标,根据S四边形ADBC=S△ABD+S△ABC求得即可.23.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点A2的坐标为(3,2).【解析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.【答案】解:(1)连接OB,∵半径OC⊥弦AB,∴AC⏜=BC⏜,∴∠AOC=∠BOC,∵∠BOC=2∠BEC=52°,∴∠AOC=52°;(2)连接AC,∵AE是⊙O的直径,∴∠EBA=90°,∴EB⊥AB,∵OC⊥AB,∴OC//BE,∴∠OCE=∠BEC,∵OC=OE,∴∠OCE=∠CEA,∵∠CEA=∠EAB,∠EAB+∠AEB=90°,∴∠EAB=∠CEA=∠BEC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,即OA=AC=OC,∵EC=6,在Rt△ACE中,AC2+CE2=AE2,即:(OA)2+62=(2OA)2,解得:OA=2√3,∴⊙O的半径为2√3.【解析】本题考查的是垂径定理和圆周角定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.(1)根据垂径定理得到AC⏜=BC⏜,根据圆周角定理解答;(2)连接AC,根据圆周角定理得到∠ACE=90°,根据已知得出∠EAB=∠CEA=∠BEC= 30°,进而得出∠AOC=60°,OA=AC,在Rt△ACE中,根据根据勾股定理求出⊙O的半径.25.【答案】解:∵将△ABC绕点C按顺时针方向旋转n度后得到△EDC,∴BC=DC,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=90°−∠A=60°,∴△DBC是等边三角形,∴n=∠DCB=60°,∴∠DCA=90°−∠DCB=90°−60°=30°,∵BC=2,∴DC=2,∵∠FDC=∠B=60°,∴∠DFC=90°,∴DF=12DC=1,∴FC=√DC2−DF2=√3,∴S阴影=S△DFC=12DF⋅FC=12×1×√3=√32.【解析】由旋转的性质,易得BC=DC=2,由在Rt△ABC中,∠ACB=90°,∠A=30°,即可求得∠B=60°,即可判定△DBC是等边三角形,即可求得旋转角n的度数,易得△DFC是含30°角的直角三角形,则可求得DF与FC的长,继而求得阴影部分的面积.此题考查了旋转的性质、等边三角形的判定与性质、含30°角的直角三角形的性质以及勾股定理,此题综合性较强,难度适中,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.26.【答案】解:(1)∵被调查的总人数为5÷10%=50(人),∴看电视的人数为50−(15+20+5)=10(人),补全图形如下:(2)2400×1050=480(人),所以估计该校喜爱看电视的学生人数为480人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率=612=12.【解析】(1)先求出被调查的总人数,再根据各项目人数之和等于总人数可得看电视的人数,据此可补全条形图;(2)用总人数乘以样本中看电视人数所占比例可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.27.【答案】解:设AB=xm,则BC=(6−2x)m,根据题意可得,x(6−2x)=4,解得x1=1,x2=2(舍去),答:AB的长为1m.【解析】根据栅栏的总长度是6m,AB=xm,则BC=(6−2x)m,再根据矩形的面积公式列方程,解一元二次方程即可.28.【答案】解:(1)由题意得:p=0.1x+6;(2)由题意得:y=p(10000−50x)=−5x2+700x+60000;(3)设丑橘的总利润为w,则:w=y−300x−6×10000=−5x2+400x=−5x(x−20),∵−5<0,∴w有最大值,当x=40时,最大值为8000.答:这批丑橘存放40天后一次性售出可以获得最大利润,最大利润为8000.【解析】(1)由题意得:p=0.1x+6;(2)由题意得:y=p(10000−50x),即可求解;(3)设丑橘的总利润为w,则:w=y−300x−6×10000,即可求解.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.29.【答案】解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r−3,OC=r,则(r−3)2+42=r2,解得:r=256,∵GM//AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AHEM =HCOE,即3EM=4256,解得:EM=258.【解析】(1)连接OE,由FG=EG得∠GEF=∠GFE=∠AFH,由OA=OE知∠OAE=∠OEA,根据CD⊥AB得∠AFH+∠FAH=90°,从而得出∠GEF+∠AEO=90°,即可得证;(2)连接OC,设OA=OC=r,再Rt△OHC中利用勾股定理求得r=256,再证△AHC∽△MEO得AHEM =HCOE,据此求解可得.本题主要考查切线的判定与性质,解题的关键是掌握等腰三角形的性质、切线的判定与性质、勾股定理及相似三角形的判定与性质.。