2019年高考数学总复习课件:第八章 平面解析几何 (10份打包)6

合集下载

2019版高考数学(文)高分计划一轮课件:第8章 平面解析几何 8-6

2019版高考数学(文)高分计划一轮课件:第8章 平面解析几何 8-6

2.已知双曲线1x62 -y92=1 上有一点 P,F1,F2 是双曲线 的焦点,且∠F1PF2=3π,则△PF1F2 的面积为__9___3___.
解析 由题意,得|F1F2|=2 16+9=10. ||PF1|-|PF2||=8,
因为|PF1|2+|PF2|2-2|PF1|·|PF2|cosπ3=100, 所以|PF1|·|PF2|=36. 所以 S△PF1F2=12|PF1|·|PF2|sinπ3=9 3.
(1)当 a<c 时,P 点的轨迹是双曲线; (2)当 a=c 时,P 点的轨迹是两条 射线 ; (3)当 a>c 时,P 点不存在.
2.双曲线的标准方程和几何性质
标准 方程
ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0,b>0)
图形
3.必记结论 (1)焦点到渐近线的距离为 b. (2)等轴双曲线:实轴长和虚轴长相等的双曲线叫等轴 双曲线,其方程可写作:x2-y2=λ(λ≠0). (3)等轴双曲线⇔离心率 e= 2⇔两条渐近线 y=±x 相 互垂直.
()
A. 3
B.3
C. 3m
D.3m
解析 由题意知,双曲线的标准方程为3xm2 -y32=1,其
中 a2=3m,b2=3,故 c= a2+b2= 3m+3,不妨设 F 为
双曲线的右焦点,故 F( 3m+3,0).其中一条渐近线的方
程为
y=
1 m
x,即 x-
my=0,由点到直线的距离公式可

d=
| 3· m+1| = 1+- m2
解析 设点 A(1,0),因为△PF1F2 的内切圆与 x 轴切于 点(1,0),则|PF1|-|PF2|=|AF1|-|AF2|,所以 2a=(c+1)-(c -1),则 a=1.因为点 P 与点 F1 关于直线 y=-bax对称,所 以∠F1PF2=2π,且||PPFF12||=ba=b,结合|PF1|-|PF2|=2,|PF1|2 +|PF2|2=4c2=4+4b2,可得 b=2.所以双曲线的方程为 x2 -y42=1.

高中数学--平面解析几何课件ppt

高中数学--平面解析几何课件ppt

目录
3.直线方程的几种形式
名称
方程的形式
已知条件
局限性
点斜式
_y_-__y_1=__k_(_x-__x_1_)
(x1,y1)为直线上 一定点,k为斜 率
不包括垂直于x轴的 直线
斜截式
___y_=__k_x_+_b____
k为斜率,b是直 线在y轴上的截 距
不包括垂直于x轴的 直线
目录
名 方程的形式
目录
法二:由题意,所求直线的斜率存在且 k≠0, 设直线方程为 y-2=k(x-3), 令 y=0,得 x=3-2k,令 x=0,得 y=2-3k, 由已知 3-2k=2-3k,解得 k=-1 或 k=23, ∴直线 l 的方程为: y-2=-(x-3)或 y-2=23(x-3), 即直线 l 的方程为 x+y-5=0 或 2x-3y=0.
目录
【解】 (1)法一:设直线 l 的方程为 y-1=k(x-2)(k<0),
则 A(2-1k,0),B(0,1-2k), ∴S△AOB=12(2-1k)(1-2k)=2+12(-4k-1k)
≥2+12×2
-4k-1k=4,
当且仅当-4k=-1k,即 k=±12时取等号.
∵k<0,∴k=-12,
故所求直线方程为 y-1=-12(x-2), 即 x+2y-4=0.
第八章 平面解析几何
第1课时 直线及其方程
考纲展示
2016高考导航
备考指南
1.在平面直角坐标系中,结合具体图
形,掌握确定直线位置的几何要素. 1.基本公式、直线的斜率、方程以
2.掌握确定直线位置的几何要素,掌 及两直线的位置关系是高考的重
握直线方程的三种形式(点斜式、两 点.

2019版高考数学一轮复习第八章平面解析几何第

2019版高考数学一轮复习第八章平面解析几何第

.
[小题体验]
1.若直线 3x+ y+ a= 0过圆 x2+ y2+ 2x- 4y= 0的圆心,则 a 的值为 A.- 1 C. 3 B. 1 D.- 3 ( )
解析:圆的方程可化为(x+1)2+(y-2)2=5, ∵直线经过圆的圆心(-1,2), ∴3×(-1)+2+a=0,得a=1.
答案:B
2. (2018· 浙江五校联考)若点(2a, a+ 1)在圆 x2+ (y- 1)2= 5的 内部,则实数 a的取值范围是 A. (- 1,1)
答案:B
2. (2018· 永康模拟 )设 a∈ R,则 “a>1”是“方程 x2+ 2ax+ y2+ 1 = 0的曲线是圆”的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
解析:因为方程是圆,所以可转化为(x+a)2+y2=a2-1, 即a2-1>0,解得a>1或a<-1.所以当“a>1”时,有a2-1>0, 得曲线方程是圆的方程;当曲线方程是圆的方程时,有a>1 或a<-1,不一定得到a>1.所以是充分不必要条件.
1 C.- 1, 5
(
)
B. (0,1)
1 D.- , 1 5
解析:因为点在圆内,所以(2a)2+(a+1-1)2<5,解得- 1<a<1.故实数a的取值范围是(-1,1).
答案:A
3.(2018· 湖州调研 )若圆 C与圆 x2+y2+ 2x=0关于直线 x+ y-1 = 0对称,则圆心 C的坐标为 ________;圆 C的一般方程是 ________.
2.点与圆的位置关系 点 M(x0, y0)与圆 (x- a)2+ (y- b)2= r2 的位置关系:

2019版高考数学一轮复习第八章平面解析几何

2019版高考数学一轮复习第八章平面解析几何



双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点

课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础





1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,

高考数学总复习第八章 平面解析几何

高考数学总复习第八章  平面解析几何

=m2+1≥1,所以 ≤α< .故倾斜角
2-1
4
2
[ )π π
α 的取值范围是 , . 42
2.经过 P(0,-1)作直线 l,若直线 l 与连接 A(1,-2),B(2,1)的线段总有公共点,则
直线 l 的斜率 k 和倾斜角 α 的取值范围分别为________,________.
解析:如图所示,结合图形,若 l 与线段 AB 总有公共点,则
∴Error!得 k<0.
( ) 1
11
∴S△AOB=2·|OA|·|OB|=2·
2- k
·(1-2k)
( ) [ ( ) ] 1 1
1
1
= 4- -4k ≥ 4+2
2k
2
- ·-4k k
1 =4,当且仅当- =-4k,
k
1
1
即 k=- 时,△AOB 的面积有最小值 4,此时直线 l 的方程为 y-1=- (x-2),即 x
2;令 x=0,得 y=-2,即 l1 与 y 轴的交点为(0,-2),直线 l1 的倾斜角为 135°,∴直线 l2 的倾斜角为 135°-90°=45°,∴l2 的斜率为 1,故 l2 的方程为 y=x-2,即 x-y-2=0.
答案:-2 x-y-2=0
1.点斜式、斜截式方程适用于不垂直于 x 轴的直线;两点式方程不能表示垂直于 x,
[ ] [ ] π π π 5π
A. , ∪ , 62 2 6
[ ] [ ) π 5π
B. 0, ∪ ,π 66
[ ]5π
C. 0, 6
[ ] π 5π
D. , 66
3 解析:选 B 设直线的倾斜角为 θ,则 tan θ=- cos α,

2019版高考数学一轮复习第8章平面解析几何8.8曲线与方程课件理

2019版高考数学一轮复习第8章平面解析几何8.8曲线与方程课件理

因为直线l1与椭圆C相切,所以Δ=0, 得9(y0-kx0)2k2-(9k2+4)[(y0-kx0)2-4]=0, 所以-36k2+4[(y0-kx0)2-4]=0,
2.教材衍化 (1)(选修A2-1P36例3)到点F(0,4)的距离比到直线y=- 5的距离小1的动点M的轨迹方程为( ) A.y=16x2 B.y=-16x2 C.x2=16y D.x2=-16y
解析 由题意可知动点M到点F(0,4)的距离与到直线y =-4的距离相等,则点M的轨迹为抛物线,故选C.
(2)设两切线为l1,l2, ①当l1⊥x轴或l1∥x轴时,对应l2∥x轴或l2⊥x轴,可知 P(±3,±2). ②当l1与x轴不垂直且不平行时,x0≠±3.
设l1的斜率为k,则k≠0,l2的斜率为-1k,
故l1的方程为y-y0=k(x-x0),联立
x2 9

y2 4
=1,得(9k2
+4)x2+18(y0-kx0)kx+9(y0-kx0)2-36=0.
冲关针对训练 已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切, 圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的 最小值为m,点F(0,1)与点M(x,y)的距离为n. (1)求圆C的圆心轨迹L的方程; (2)求满足条件m=n的点M的轨迹Q的方程.
解 (1)两圆半径都为1,两圆圆心分别为C1(0,-4), C2(0,2),由题意得|CC1|=|CC2|,可知圆心C的轨迹是线段 C1C2的垂直平分线,C1C2的中点为(0,-1),直线C1C2的 斜率不存在,故圆心C的轨迹是线段C1C2的垂直平分线, 其方程为y=-1,即圆C的圆心轨迹L的方程为y=-1.
(1)(2018·银川模拟)设点A为圆(x-1)2+y2=1上的动

2019年高考数学总复习核心突破第8章平面解析几何8.8平面解析几何经典题型课件

2019年高考数学总复习核心突破第8章平面解析几何8.8平面解析几何经典题型课件

5.圆x2+y2+2x+6y+9=0的圆心到直线3x-4y=4的距离
为1
.
题型 3.圆锥曲线的定义应用
6.已知方程 ������������ +������������ =1 表示椭圆,则 k 的取值范围是( )
������+������ ������−������
A.k>-1
B.k<3
C.k>3
C.16
D.14
【答案】A
题型 4.圆锥曲线性质的应用
10.若椭圆 kx2+3y2-6k=0 的一个焦点为(0,2),则常数 k 等
于5
.
11.双曲线������������-������������=1 的一个焦点到其渐近线的距离为( )
������������ ������
A.6 B.5 C.4 D.3
8.8 平面解析几何经典题型
题型1.求直线的方程
1.过点P(-3,2)、Q(4,5)的直线方程是
()
A.7x-3y+23=0
B.3x-7y+23=0
C.7x-3y-7=0
D.3x-7y-7=0
【答案】B
2.过点(0,-1)且平行于直线2x+y-1=0的直线方程是( )
A.2x+y+1=0 B.2x+y=0
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
为 8,则 P 到另一个焦点的距离为 ( )
A.4
B.8
C.12
D.4 或 12
【答案】D

高考数学一轮总复习教学课件第八章 平面解析几何第6节 双曲线

高考数学一轮总复习教学课件第八章 平面解析几何第6节 双曲线

A.1

B.17
C.1或17
D.8

解析:(2)对于 - =1 ,a2=16,b2=20,

所以c2=a2+b2=36,a=4,c=6,
又|PF1|=9<a+c,所以点P在双曲线的左支,则有|PF2|-|PF1|=2a=8,
所以|PF2|=17,故选B.
)
考点二
双曲线的标准方程



| | +| | -
cos∠F1PF2=
| || |
= ,
整理得|PF1|2+|PF2|2-|PF1||PF2|=100,①
根据点P在双曲线上可得||PF1|-|PF2||=6,
则(|PF1|-|PF2|)2=|PF1|2+|PF2|2-2|PF1||PF2|=36,②
解析:(1)由题意,双曲线 C1 的焦距 2c=4 ,又 C1 过点(3,1),

若 C1 的焦点在 x 轴上,设双曲线 C1 的方程为 -=1(a>0,b>0),

将点(3,1)代入 - =1(a>0,b>0),


得 - =1,①


2
2
2
又 a +b =c =8,②
)
解析:(2)设双曲线的方程为mx2+ny2=1(mn<0),

= - ,
+ = ,

解得

+ = ,
= ,

故双曲线的标准方程为 - =1.故选 B.

考点三
双曲线的简单几何性质
角度一
渐近线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档