直线单元测试卷 (2)

合集下载

必修二《直线与方程》单元测试题(含详细答案)

必修二《直线与方程》单元测试题(含详细答案)

第三章《直线与方程》单元检测试题 时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°[答案] C2.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0 D .x -y +3=0[答案] D3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6 C .32 D .23[答案] B4.直线x a 2-y b2=1在y 轴上的截距为( ) A .|b | B .-b 2C .b 2D .±b[答案] B5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0 B .-4 C .-8 D .4[答案] C6.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] D7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1[答案] C8.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( )A .19x -9y =0B .9x +19y =0C .3x +19y =0D .19x -3y =0[答案] C9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27)C .(27,17)D .(17,114)[答案] C10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2[答案] B12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)[答案] A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.[答案] -23[解析] 设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x-y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14--2=-23.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________. [答案] x +6y -16=0[解析] 直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6,所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.[答案] 3 2[解析] 依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)[答案] ①⑤[解析] 两平行线间的距离为d =|3-1|1+1=2, 由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2015·河南省郑州市高一上学期期末试题)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程. [解析] (1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0,d =|3×-2+4×5+n |32+42=3, 解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.18.(本小题满分12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线x +3y +4=0的直线方程.[解析] 解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0,即(3+λ)x +(3λ-2)y +(1+4λ)=0.由所求直线垂直于直线x +3y +4=0,得 -13·(-3+λ3λ-2)=-1. 解得λ=310.故所求直线方程是3x -y +2=0. 解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1), 故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.(本小题满分12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使|PA |=|PB |,且点P 到直线l 的距离等于2.[分析] 解决此题可有两种思路,一是代数法,由“|PA |=|PB |”和“到直线的距离为2”列方程求解;二是几何法,利用点P 在AB 的垂直平分线上及距离为2求解.[解析] 解法1:设点P (x ,y ).因为|PA |=|PB |, 所以x -42+y +32=x -22+y +12. ①又点P 到直线l 的距离等于2, 所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|PA |=|PB |, 所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5.所以设点P (x ,x -5).因为点P 到直线l 的距离等于2,所以|4x +3x -5-2|5=2.解得x =1或x =277.所以P (1,-4)或P (277,-87).[点评] 解决解析几何问题的主要方法就是利用点的坐标反映图形的位置,所以只要将题目中的几何条件用坐标表示出来,即可转化为方程的问题.其中解法2是利用了点P 的几何特征产生的结果,所以解题时注意多发现,多思考.20.(本小题满分12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.[解析] (1)由已知得直线AB 的斜率为2, ∴AB 边所在的直线方程为y -1=2(x -0), 即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1). ∴|BE |=12-12+2-12=52, 由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎪⎨⎪⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255, ∴S △BDE =12·d ·|BE |=110.21.(本小题满分12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由. [解析] 设直线方程为x a +yb=1(a >0,b >0), 若满足条件(1),则a +b +a 2+b 2=12,① 又∵直线过点P (43,2),∵43a +2b =1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0. 若满足条件(2),则ab =12,③由题意得,43a +2b =1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1, 即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.[解析] (1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。

北师大版四年级上册《第2单元_线与角》小学数学-有答案-单元测试卷(2)

北师大版四年级上册《第2单元_线与角》小学数学-有答案-单元测试卷(2)

北师大版四年级上册《第2单元线与角》单元测试卷(2)一、填空题。

1. 从一点引出两条________所组成的图形叫做角。

2. 长方形相邻的两条边互相________.相对的两条边互相________.3. 如图中共有________条线段,________条射线,________条直线。

4. 两条平行线之间的垂线段的长度________;从直线外一点到直线所画的线中,________最短。

5. 连结两点的________的长度叫做这两点间的________.6. 钟面上的时刻是________时________分,时针和分针组成________角。

10分钟后是________时________分,时针和分针组成________角。

7. 在图中与AB平行的边有________;在图中与CD垂直的边有________.8. 在图中,AB // ________;AD // ________;AC // ________;AB⊥________;CE⊥________.二、请在括号里对的画“√”,错的画“×”.每题0分射线比直线短,线段更短。

________.(判断对错)直尺是测量线段长短的工具,量角器是度量角的大小的工具。

________.(判断对错)180度的角是平角,小于180度的角是钝角。

________(判断对错)3:30时,时针和分针所成的角是直角。

________.一条射线长6厘米。

________.(判断对错)手电筒射出的光线可以被看成是线段。

________.(判断对错)大于90度的角叫做钝角。

________.(判断对错)两点之间线段最短。

________.(判断对错)________不相交的两条直线叫做平行线。

三、选择题。

我们用的三角尺上有一个________,两个________;我们戴的红领巾上有一个________,两个________A.锐角B.直角C.钝角D.平角E.周角。

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.842.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对3.如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A .6B .4C .3D .6或4或3 5.将一个棱长为m (m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( )A .16B .18C .26D .326.平面内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m +n 等于( ) A .36 B .37 C .38 D .397.已知A 、B 为平面上的2个定点,且AB =5.若点A 、B 到直线l 的距离分别等于2、3,则满足条件l 的直线共有( )条.A .2B .3C .4D .58.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在( )A .B 楼 B .C 楼 C .D 楼 D .E 楼9.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若AP =PB ,则这条绳子的原长为( )A .100cmB .150cmC .100cm 或150cmD .120cm 或150cm10.如图,依据尺规作图的痕迹,计算∠α=( )A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个棱柱有12个面,它有个顶点,条棱.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为cm2.14.如图,图中共有个梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为cm3.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为cm3.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有个小正方体;一面涂色的:在面上,共有个;两面涂色的:在棱上,共有个;三面涂色的:在顶点处,共个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?20.在下列两行图形中,分别找出相互对应的图形,并用线连接.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?24.如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA,OB上分别截取OC,OD,并且使OC=OD,连接CD,过点O作OP⊥CD垂足为P;(2)根据(1)的作图,试说明∠AOP=∠BOP;(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线.(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹)25.已知:如图:∠AOB.求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)26.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.2.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A .1对B .2对C .3对D .4对【分析】根据矩形的性质,由全等三角形的判定得出△EPD ≌△HDP ,则S △EPD =S △HDP ,通过对各图形的拼凑,得到的结论.【解答】解:在矩形ABCD 中,∵EF ∥AB ,AB ∥DC ,∴EF ∥DC ,则EP ∥DH ;故∠PED =∠DHP ;同理∠DPH =∠PDE ;又PD =DP ;所以△EPD ≌△HDP ;则S △EPD =S △HDP ; 同理S △GBP =S △FPB ;则(1)S 梯形BPHC =S △BDC ﹣S △HDP =S △ABD ﹣S △EDP =S 梯形ABPE ;S ▱AGPE =S 梯形ABPE ﹣S △GBP =S 梯形BPHC ﹣S △FPB =S ▱FPHC ;(2)S ▱AGHD =S ▱AGPE +S ▱HDPE =S ▱PFCH +S ▱PHDE =S ▱EFCD ;(3)S ▱ABFE =S ▱AGPE +S ▱GBFP =S ▱PFCH +S ▱GBFP =S ▱GBCH .故选:C .【点评】考查了矩形的性质,本题是一道结论开放题,掌握矩形的性质,很容易得到答案.3.如图,是一个正方体的展开图,这个正方体可能是( )A .B .C .D .【分析】结合正方体的展开图中圆点所在面的位置,把展开图折叠再观察其位置,即可得到这个正方体.【解答】解:把展开图折叠后,只有B 选项符合图形,故选:B .【点评】此题考查几何体展开图,对于正方体的展开图再折叠成几何体的问题,可以多动手具体折一折,增强空间想象能力.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A.6B.4C.3D.6或4或3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知1,2,5,第二个正方体已知1,2,4,第三个正方体已知1,4,6,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,∴4相邻的数字是1,2,3,6,∴数字5的对面的数字是4.故选:B.【点评】本题考查了正方体相对两个面上的文字,立意新颖,是一道不错的题.5.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.32【分析】只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m的值.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.6.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.39【分析】求出平面内的9条直线任两条都相交,交点数最多的个数,再求得最少的个数;则即可求得m+n的值.【解答】解:三条最多交点数的情况.就是第三条与前面两条都相交:1+2四条最多交点数的情况.就是第四条与前面三条都相交:1+2+3五条最多交点数的情况.就是第五条与前面四条都相交:1+2+3+4六条最多交点数的情况.就是第六条与前面五条都相交:1+2+3+4+5七条最多交点数的情况.就是第七条与前面六条都相交:1+2+3+5+6八条最多交点数的情况.就是第八条与前面七条都相交:1+2+3+5+6+7九条最多交点数的情况.就是第九条与前面八条都相交:1+2+3+4+5+6+7+8=36则m+n=1+36=37故选:B.【点评】此题考查了平面图形,主要培养学生的观察能力和几何想象能力.7.已知A、B为平面上的2个定点,且AB=5.若点A、B到直线l的距离分别等于2、3,则满足条件l的直线共有()条.A.2B.3C.4D.5【分析】根据题意,可以分别以A、B为圆心,以2cm,3cm为半径画圆,然后求两圆的公切线,公切线的条数就是直线l 的条数.【解答】解:如图所示:∵AB =5,点A 、B 到直线l 的距离分别等于2、3,∴⊙A 与⊙B 外切,共有3条公切线,∴满足条件l 的直线共有3条.故选:B .【点评】本题考查的是两点确定一条直线,题中数据AB =5与点A 、B 到直线l 的距离分别等于2、3起到了关键的限制作用,利用数形结合进行解答更形象直观.8.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在() A .B 楼 B .C 楼 C .D 楼 D .E 楼【分析】此题为数学知识的应用,由题意设立大桶水供应点,肯定要尽量缩短居民取水所走路程之间的里程,即需应用两点间线段最短定理来求解.【解答】解:设AB =a ,BC =b ,CD =c ,DE =d .每户居民每次取一桶水.以点A 为取水点,则五幢楼内的居民取水所走路程之和=55AB +50AC +72AD +85AE =262a +207b +157c +85d ,以点B 为取水点,则五幢楼内的居民取水所走路程之和=38AB +50BC +72BD +85BE =38a +207b +157c +85d ,以点C为取水点,则五幢楼内的居民取水所走路程之和=38AC+55BC+72CD+85CE=38a+93b+157c+85d,以点D为取水点,则五幢楼内的居民取水所走路程之和=38AD+55BD+50CD+85DE=38a+93b+143c+85d,以点E为取水点,则五幢楼内的居民取水所走路程之和=38AE+55BE+50CE+72DE=38a+93b+143c+215d,以点D为取水点,五幢楼内的居民取水所走路程之和最小.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.9.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm【分析】根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.【点评】本题考查了两点间的距离,分类讨论是解题关键.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个棱柱有12个面,它有20个顶点,30条棱.【分析】一个直棱柱有12个面,故为十棱柱.根据十棱柱的概念和特点求解即可.【解答】解:∵棱柱有12个面,∴它是十棱柱.∴十棱柱有20个顶点,30条棱.故答案为:20;30.【点评】本题主要考查的是棱柱的概念,掌握棱柱的概念是解题的关键.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.【分析】根据旋转的性质、圆锥体的特征即可求解.【解答】解:如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.故答案为:圆锥.【点评】考查了点、线、面、体,关键是熟悉点动成线,线动成面,面动成体的知识点.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为592cm2.【分析】表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10x6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10x8)重叠,长是10cm,宽是8cm,高是6+6=12(cm),由此计算即可;【解答】解:表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10×6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10×8)重叠,长是10cm,宽是8cm,高是6+6=12(cm).这个大长体的表面积是:(10×8+10×12+8×12)×2=(80+120+96)x2=296×2=592(平方厘米),故答案为592.【点评】本题考查几何体的表面积,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,图中共有10个梯形.【分析】根据图形认真分析由图中可知一个梯形需一个平行四边形和一个三角形组成.【解答】解:由图形的特点可知,一个平行四边形和一个三角形可组成一个梯形,且图形中的梯形的形状、大小相同,共有10个.故答案为10.【点评】有一组对边平行,另一组对边不平行的四边形是梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为800cm3.【分析】先用20cm减去15cm求出高为5cm,再用15cm减去5cm求出宽为10cm,再用26cm减去10cm求出长为16cm,再根据长方体的体积公式计算即可求解.【解答】解:20﹣15=5(cm),15﹣5=10(cm),26﹣10=16(cm),16×10×5=800(cm3).答:其容积为800cm3.故答案为:800.【点评】考查了几何体的展开图,解题的关键是得到长方体的长宽高.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为27cm3.【分析】首先设这个展开图围成的正方体的棱长为xcm,然后延长FE交AC于点D,根据三角函数的性质,可求得AC的长,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为xcm,延长FE交AC于点D,则EF=2xcm,EG=xcm,DF=4xcm,∵DF∥BC,∴∠EFG=∠B,∵tan∠EFG==,∴tan B==,∵BC=24cm,∴AC=12cm,∴AD=AC﹣CD=12﹣2x(cm)∵DF∥BC,∴△ADF∽△ACB,∴=,即=,解得:x=3,即这个展开图围成的正方体的棱长为3cm,∴这个展开图可折成的正方体的体积为27cm3.故答案为:27.【点评】此题考查了相似三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为﹣3.【分析】根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.【解答】解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为76.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?【分析】[问题解决]依据正方体内部的小正方体的体积之和,可得没有涂色的正方体数量;依据正方体每个面上的内部的小正方体的面积,即可得到一面涂色的正方体的数量;依据正方体的棱上处于中间部分的小正方体的数量,可得两面涂色的小正方体数量;依据正方体的顶点数量,即可得到三面涂色的小正方体的数量;[问题应用]设正方体棱长为ncm,依据有两面涂色的小正方体有96个,可得方程12(n ﹣2)=96,再根据棱长即可得到体积;[问题拓展]依据一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,类比上述问题的解决方法,即可得到没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块.【解答】解:[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.故答案为:(n﹣2)3,6(n﹣2)2,12(n﹣2),8;[问题应用]设正方体棱长为ncm,∵有两面涂色的小正方体有96个,∴12(n﹣2)=96,∴n=10,∴这个大正方体的体积为1000cm3.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,没有面涂色有(16﹣4)(10﹣4)(8﹣4)÷8=36块,一面涂色有2[(16﹣4)(8﹣4)÷4+(16﹣4)(10﹣4)÷4+(10﹣4)(8﹣4)÷4]=72块,两面涂色有4[(16﹣4)÷2+(10﹣4)÷2+(8﹣4)÷2]=44块,三面涂色有8块.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.在下列两行图形中,分别找出相互对应的图形,并用线连接.【分析】利用面动成体解答即可.【解答】解:如图,【点评】本题主要考查了点,线,面,体,解题的关键是培养学生的空间想象能力.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?【分析】结合图形、根据矩形的面积公式计算即可.【解答】解:这个五棱柱有7个面,它的所有侧面的面积之和是:5×12×5=300(cm2),答:这个五棱柱有7个面,它的所有侧面的面积之和是300cm2.【点评】本题考查的是几何体的表面积的计算,认识立体图形是解题的关键.22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了8条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?【分析】(1)首先作射线DH;再以B为圆心,任意长为半径作弧交AB、BC于点A′、。

(人教版)杭州市选修一第二单元《直线和圆的方程》测试卷(答案解析)

(人教版)杭州市选修一第二单元《直线和圆的方程》测试卷(答案解析)

一、选择题1.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关2.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( ) A .23BCD3.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±4.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=05.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2 CD.6.若实数x 、y 满足222210x y x y +--+=,则32y x --的取值范围为( ) A .30,4⎡⎤⎢⎥⎣⎦B .3,4⎛⎤-∞- ⎥⎝⎦C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,04⎡-⎫⎪⎢⎣⎭7.直线210y x -+=关于30y x -+=对称的直线方程是( ) A .280x y --=B .2100x y --=C .2120x y +-=D .2100x y +-=8.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( ) ABCD9.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解10.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( ) A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( )A .2215()(3)22x y -+-=B .2215()(3)22x y -++=C .22125()(3)24x y ++-=D .22125()(3)24x y +++=二、填空题13.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.14.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.15.已知圆C 的方程是2220x y y +-=,圆心为点C ,直线:20λλ+-=l x y 与圆C 交于A 、B 两点,当ABC 面积最大时,λ=______.16.过圆226430x y x y +-+-=的圆心,且垂直于2110x y ++=的直线方程是______.17.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________.18.若直线l :y x b =+与曲线C :y 有两个不同的公共点,则实数b 的取值范围是________19.过点()4,1P 作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点.当OA OB +取最小值时,直线l 的方程为___________.20.已知直线l 过点(4,1)A -,且和直线320x y -+=的夹角为30°,则直线l 的方程为____________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.已知直角三角形ABC 的项点坐标()4,0A -,直角顶点()2,22B --,顶点C 在x 轴上.(1)求BC 边所在的直线方程;(2)设M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)已知AB 与平行的直线DE 交轴x 于D 点,交轴y 于点(0,72E -.若P 为圆M 上任意一点,求三角形PDE 面积的取值范围.23.已知圆1C :222280x y x y +++-=与圆2C :22210240x y x y +-+-=相交于A 、B 两点.(1)求圆心在直线AB 上且经过A ,B 两点的圆P 的方程及弦AB 所在的直线方程; (2)直线l 经过点()2,3M 且被圆1C 所截得的弦长为25l 的方程.24.直线21:20l a x y a ++=,2:10l x ay ++=,圆22:650C x y y +-+=.(1)当a 为何值时,直线1l 与2l 垂直;(2)若圆心C 在直线2l 的左上方,当直线2l 与圆C 相交于P ,Q 两点,且22PQ =求直线2l 的方程.25.已知点E 与两个定点1,0A ,()4,0B 的距离的比为12. (1)记点E 的轨迹为曲线C ,求曲线C 的轨迹方程.(2)过点()2,3G 作两条与曲线C 相切的直线,切点分别为M ,N ,求直线MN 的方程. (3)若与直线1:22l y x =-垂直的直线l 与曲线C 交于不同的两点P ,Q ,若POQ∠为钝角,求直线l 在y 轴上的截距的取值范围. 26.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB 的面积为(1)求直线l 的方程;(2)直线:3l y x =-',点P 在l '上,求PA PB +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.2.D解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0,半径为5,yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan α=,y x 5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.3.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题4.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.C解析:C【分析】 令32y k x -=-,可得出320kx y k -+-=,问题转化为直线320kx y k -+-=与圆222210x y x y +--+=有公共点,可得出关于实数k 的不等式,进而可解得实数k 的取值范围. 【详解】 令32y k x -=-,可得出320kx y k -+-=, 将圆的方程化为标准方程得()()22111x y -+-=,圆心坐标为()1,1,半径为1, 则直线320kx y k -+-=与圆()()22111x y -+-=1≤,整理可得340k -≤,解得34k ≥. 因此,32y x --的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:C. 【点睛】结论点睛:常见的非线性目标函数的几何意义: (1)y bz x a-=-:表示点(),x y 与点(),a b 连线的斜率; (2)z =(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C++=倍.7.A解析:A 【分析】设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,根据对称关系求得1133x y y x =+⎧⎨=-⎩,代入直线210y x -+=的方程整理即得所求. 【详解】解:设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,则111113022y y x x y y x x -⎧=-⎪-⎪⎨++⎪-+=⎪⎩,解得1133x y y x =+⎧⎨=-⎩, 由对称性得Q 在直线210y x -+=上,()()23310x y ∴--++=,即280x y --=, 故选:A. 【点睛】根据“一垂直二中点”列出方程组,求得1133x y y x =+⎧⎨=-⎩是解决问题的关键,利用轨迹方程思想方法求直线的方程也是重要的思想之一.8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =, 则22345OM =+=,2512426OA =-==,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得2465OA MA AB OM ⨯⨯==, 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.10.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.二、填空题13.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与解析:(,11,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.14.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.15.或【分析】由三角形面积公式知当面积最大时即为等腰直角三角形再利用点到直线的距离公式和半径的关系可得答案【详解】圆C 的方程即圆心半径由面积公式知当时面积最大即为等腰直角三角形此时圆心C 到直线的距离为则解析:1λ=或17λ=. 【分析】由三角形面积公式in 12s S ab C =知,当ABC 面积最大时,90ACB ∠=,即ABC 为等腰直角三角形,再利用点到直线的距离公式和半径的关系可得答案. 【详解】圆C 的方程即22(1)1x y +=-,圆心(0,1)C ,半径1R =,由面积公式21sin 2ABCSR ACB =∠知,当90ACB ∠=时面积最大, 即ABC 为等腰直角三角形,此时圆心C 到直线:20λλ+-=l x y 的距离为d =1==,解得1λ=或17λ=,故答案为:1λ=或17λ=. 【点睛】本题考查了直线和圆的位置关系及求三角形面积最大值的问题.16.【分析】求出圆心坐标由垂直设出直线方程为代入圆心坐标求出参数得直线方程【详解】圆的标准方程是圆心坐标为垂直于的直线方程为则∴所求直线方程为故答案为:【点睛】方法点睛:本题考查由垂直求直线方程解题方法 解析:280x y --=【分析】求出圆心坐标,由垂直设出直线方程为20x y m -+=,代入圆心坐标求出参数m ,得直线方程. 【详解】圆226430x y x y +-+-=的标准方程是22(3)(2)10x y -++=,圆心坐标为(3,2)-,垂直于2110x y ++=的直线方程为20x y m -+=,则23(2)0m ⨯--+=,8m =-, ∴所求直线方程为280x y --=. 故答案为:280x y --=. 【点睛】方法点睛:本题考查由垂直求直线方程,解题方法有两种:(1)由垂直得斜率乘积为1-,得出所求主直线的斜率,再由写出点斜式方程, (2)与直线0Ax By C ++=垂直的直线方程可设为0Bx Ay m -+=,代入已知点坐标求出参数m 后可得.17.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果. 【详解】当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x ya a+=,又直线l 过点(2,1)A -,则211a a-+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--.故答案为:12y x =-或1y x =--. 【点睛】易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x ya b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.18.【分析】曲线表示以为圆心半径等于1的半圆当直线过点时可得满足条件当直线和半圆相切时由解得数形结合可得实数的取值范围【详解】解:曲线方程变形为表示圆心为半径为1的上半圆根据题意画出图形如图所示:当直线解析:⎡⎣【分析】曲线表示以(0,0)C 为圆心、半径等于1的半圆,当直线y x b =+过点(0,1)时,可得1b =,满足条件.当直线y x b =+和半圆相切时,由1=b =结合可得实数b 的取值范围. 【详解】解:曲线方程变形为221(0)x y y +=,表示圆心C 为(0,0),半径为1的上半圆, 根据题意画出图形,如图所示:当直线y x b =+过点(0,1)时,可得1b =,满足直线y x b =+与曲线y 有两个不同的公共点.当直线y x b =+和半圆相切时,由1=b =b =(舍去),故直线y x b =+与曲线y =b 的取值范围为⎡⎣,故答案为:⎡⎣.【点睛】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了数形结合的数学思想,属于中档题.19.【分析】设点写出直线的截距式方程代入点坐标利用基本不等式求出的最小值以及对应的从而求得直线的方程【详解】解:由题意设其中为正数则直线的截距式方程为代入点得;所以当且仅当即且时上式取等号;此时直线的方 解析:260x y +-=【分析】设点(,0)A a ,(0,)B b ,写出直线的截距式方程,代入点P 坐标,利用基本不等式求出||||OA OB +的最小值以及对应的a 、b ,从而求得直线l 的方程.【详解】解:由题意设(,0)A a ,(0,)B b ,其中a ,b 为正数, 则直线的截距式方程为1x y a b +=,代入点(4,1)P 得411a b+=; 所以4144||||()()4152549b a b aOA OB a b a b a b a b a b+=+=++=++++⋅+=, 当且仅当4b aa b=,即6a =且3b =时,上式取等号; 此时直线l 的方程为163x y+=,即260x y +-=. 故答案为:260x y +-=. 【点睛】本题考查了直线的方程与应用问题,也看出来基本不等式求最值问题,属于中档题.20.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由题直线的倾斜角为则直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为时直线为故答案为:或【点睛】本题考解析:4x =-330y -+= 【分析】分析可得已知直线的倾斜角为60︒,则直线l 的倾斜角为30或90︒,分类讨论,并利用点斜式方程求解即可 【详解】 由题,直线2y =+的倾斜角为60︒,则直线l 的倾斜角为30或90︒,当倾斜角为30时,直线l为)14y x -=+,330y -+=; 当倾斜角为90︒时,直线l 为4x =-, 故答案为:4x =-330y -+= 【点睛】本题考查直线倾斜角与斜率的关系,考查求直线方程,考查分类讨论思想三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭, ∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+,(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上, 所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-,所以AC 所在直线方程为280x y -+=. 【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)220x y --=;(2)()2219x y ++=;(3)422213422213,⎡⎤-+⎢⎥⎣⎦.【分析】(1)设AC 中点M 为(),0t ,则()42,0C t +,得到BM MC =,求出t ,利用点斜式写方程即可;(2)利用(1)得到圆心坐标以及半径即可得解;(3)先求AB k ,再求直线DE 的方程,点M 到直线DE 的距离,则三角形PDE 的高263,263h ⎡⎤∈-+⎣⎦,最后利用12PDESDE h =求解即可. 【详解】(1)设AC 中点M 为(),0t ,又()4,0A -, 则()42,0C t +,90ABC ∠=︒,则BM MC =,又(2,22B --, ()()222202424t t t t --+--=+-=+,则1t =-, 所以()2,0C , 故202222BC k -==--,则BC 边所在的直线方程为:)02202y x x -=-⇒--=;所以BC 边所在的直线方程为:20x --=; (2)由M 为直角三角形ABC 外接圆的圆心, 则M 为AC 的中点坐标为()1,0-, 又3MC r ==,则圆M 的方程为:()2219x y ++=;(3)由()4,0A -,(2,B --,得024AB k -==-+,直线AB 与直线DE 平行,又(0,E -,则直线DE 的方程为:y =- 则()7,0D -,所以点M 到直线DE 的距离d ==,则三角形PDE 的高3h ⎡⎤∈⎣⎦,DE ==则12PDESDE h ==∈⎣⎦,三角形PDE 面积的取值范围为22⎡⎢⎣⎦.【点睛】方法点睛:圆上的点到直线的距离的范围问题,转化为圆心到直线的距离加半径最大,减半径最小.23.(1)240x y -+=;()()22215x y ++-=;(2)240x y -+=或112160x y --=.【分析】(1)由已知两圆方程,可得相交弦AB 所在直线的方程,再与其中一圆的方程联立求交点A 、B 坐标,由题意圆P 是以AB 为直径,其中点为圆心的圆,写出圆P 的方程即可.(2)由直线l 过点()2,3M 且被圆1C 所截得的弦长为1C 到直线l 的距离,再讨论直线l 斜率,判断定点1C 到直线l 的距离是否符合要求,进而求直线的方程. 【详解】(1)由22222280210240x y x y x y x y ⎧+++-=⎨+-+-=⎩, ()2222228210240x y x y x y x y +++--+-+-=,即弦AB 所在的直线方程240x y -+=.∴24x y =-,代入圆的方程式,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩. ∴A ,B 两点的坐标分别为()4,-0,()0,2,中点坐标为()2,1P -,则圆P 的半径r PB ===∴圆的方程为()()22215x y ++-=.(2)圆1C :222280x y x y +++-=方程化为:()()221110x y +++=∴()11,1C --,半径r =,直线被圆所截得的弦长l =∴弦心距d == 若直线l 的斜率不存在,圆心()11,1C --到直线l :2x =的距离为3,不合题意. ∴直线l 的斜率存在,设为()32y k x -=-,即320kx y k -+-=圆心()11,1C --到直线l =,即2424110k k -+=,解得12k =或112k =,即有()1322y x -=-或()11322y x -=-,故直线l 的方程为240x y -+=或112160x y --=.【点睛】 关键点点睛:(1)由已知两圆的方程求相交弦直线方程,只需将两圆方程左右两边同时相减即可得到,再由直线与圆的关系求交点坐标,写出圆的方程.(2)由直线过定点,且已知与圆的相交弦长,即可得弦心距,讨论直线存在与否,保证弦心距符合要求,确定直线方程.24.(1)0a =或1a =-(2)10x y -+= 【分析】(1)根据两条直线平行的条件列式解得结果即可得解;(2)设圆心(0,3)C 到直线2l 的距离为d ,利用弦长求出d ,根据圆心到直线的距离求出d ,由此可求出a ,再根据圆心C 在直线2l 的左上方,舍去一个值,从而可得直线2l 的方程. 【详解】(1)由直线1l 与2l 垂直得20a a +=,解得0a =或1a =-; (2)圆22:650C x y y +-+=的圆心(0,3)C ,半径为2,设圆心(0,3)C 到直线2l 的距离为d ,则d ==又d ==,所以27610a a +-=,所以17a =或1a =-,当17a =时,21:107l x y ++=,由0x =得73y =-<,此时圆心C 在直线2l 的右上方,不符合题意;当1a =-时,2:10l x y -+=,由0x =得1y =3<,此时圆心C 在直线2l 的左上方; 故直线2l 的方程为:10x y -+= 【点睛】结论点睛:根据两条直线的位置关系求参数的结论:若1111:0l A x B y C ++=,2222:0l A x B y C ++=,11,A B 不同为0,22,A B 不同为0,①若12l l //,则12210A B A B -=且12210AC A C -≠或12210B C B C -≠;②若12l l ⊥,则12120A A B B +=.25.(1)224x y +=;(2)2340x y +-=;(3)(2,0)(0,2)-【分析】(1)设点E 点坐标为(),x y ,则||1||2EA EB =,利用两点间的距离公式得到方程,整理即可得解;(2)连接OG ,OM ,求出以G 为圆心,||GM 为半径的圆的方程,再跟圆C 求公共弦,即切点弦方程;(3)设直线的方程为:y x b =-+,()11,P x y ,()22,Q x y ,利用根与系数的关系可得P ,Q 两点横坐标的和与积,结合POQ ∠为钝角,得0OP OQ <,即12120x x y y +<,从而可得直线l 的纵截距的取值范围. 【详解】解:(1)设点E 点坐标为(),x y ,则||1||2EA EB = 得2222(1)1(4)4x y x y -+=-+ 整理得:2233120x y +-= 曲线C 的方程是224x y +=.(2)过G 点()2,3作两条与曲线C 相切的直线,G 点在圆外,连接OG ,OM ,由题意知22||2313OG =+=,22||3GM OG OM =-=, ∴以G 为圆心,||GM 为半径的圆的方程为22(2)(3)9x y -+-=①,又圆C 的方程为224x y +=②,由①-②得直线MN 的方程是2340x y +-=;(3)设直线的方程为:y x b =-+,联立224x y +=得:222240x bx b -+-=,设直线l 与圆的交点()11,P x y ,()22,Q x y由()22(2)840b b ∆=--->,得28b <, 12x x b +=.21242b x x -⋅= 因为POQ ∠为钝角,所以0OP OQ ⋅<,即12120x x y y +<,且OP 与OQ 不是反向共线,又11y x b =-+,22y x b =-+,所以()21212121220x x y y x x b x x b +=-++< 12x x b +=,21242b x x -= 222121240x x y y b b b +=--+<得24b <,即22b -<<,当OP 与OQ 反向共线时,直线y x b =-+过原点,此时0b =,不满足题意, 故直线l 在y 轴上的截距的取值范围是22b -<<,且0b ≠.【点睛】本题考查直线与圆的位置关系的应用,训练了利用圆系方程求两圆公共弦所在的直线方程,考查了平面向量的数量积运算,对于过圆222()()x a y b r -+-=外一点()00,x y 的切点弦方程为()()()()200x a x a y b y b r --+--=. 26.(1)y =+;(2) .【分析】(1)求出直线l 的斜率,设直线l的方程为:y b =+,求出横纵截距即可表示出AOB 的面积即可求解;(2)求出()4,0A,(0,B ,求出点()4,0A关于直线:3l y x =-'的对称点A ',PA PB PA PB A B '+='+≥,当A ',B ,P 三点共线时取得最小值.【详解】(1)由题意可得:直线l的斜率2πtan3k ==, 设直线l的方程为:y b =+. 可得直线l与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b >.12OAB S b ∴=⨯=△b =, ∴直线l的方程为:y =+.(2)由(1)可得:()4,0A,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则044232n m n m -⎧=⎪-⎪⎨+⎪=-⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-. PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.。

第二章 匀变速直线运动 单元测试卷 1—【新教材】人教版(2019)高中物理必修第一册练习

第二章  匀变速直线运动   单元测试卷  1—【新教材】人教版(2019)高中物理必修第一册练习

18.(9 分)A,B 两列火车,在同一轨道上同向行驶,A 车在前,其速度 vA = 10m / s ,B 车速度 vB = 30m / s 。因大雾能见度很低,B 车在距 A 车 500m 时才发现前方有 A 车,这时 B 车立即刹车,
但 B 车要经过 1800m 才能够停止。
问(1)A 车若按原速前进,两车是否会相撞,若会相撞,将在何时何地?
图5
4 / 16
A.6.5 cm C.20 m
B.10 m D.45 m
11.解析:由图可知
AB
=2
cm=0.02
m,AB
中点的速度
v
中=
AB △t
=20
m/s,由
v2=2gh

得:AB 中点到出发点的高度 h 中= v中2 =20 m≈hA,故 C 正确. 2g
答案:C
12.(多)一只气球以 10 m/s 的速度匀速上升,某时刻在气球正下方距气球 6 m 处有一小石子
A.10 m
B.15 m
C.20 m
D.不会相碰
9.解析:设第二个小球抛出后经 t s 与第一个小球相遇.
3 / 16
法一:根据位移相等有 v0(t+2)-12g(t+2)2=v0t-12gt2. 解得 t=1 s,代入位移公式 h=v0t-12gt2,解得 h=15 m. 法二:因第二个小球抛出时,第一个小球恰(到达最高点)开始自由下落. 根据速度对称性,上升阶段与下降阶段经过同一位置的速度大小相等、方向相反, 即-[v0-g(t+2)]=v0-gt, 解得 t=1 s,代入位移公式得 h=15 m. 答案:B 10.(多)利用速度传感器与计算机结合,可以自动作出物体运动的图象,某同学在一次实验 中得到的运动小车的 v-t 图象如图 3 所示,由此可以知道 ( )

数学人教版六年级上册第二单元测试试卷(含答案)

数学人教版六年级上册第二单元测试试卷(含答案)

数学人教版6年级上册第2单元单元专题卷一、选择题1.小明上学时,从家向东南行走500米到学校,那么放学时,小明()就能走到家。

A.从学校向东南行走500米B.从学校向西南行走500米C.从学校向东北行走500米D.从学校向西北行走500米2.体育课上小明从旗台出发,先向东走200米,又沿原路返回向西走300米,现在小明在距离旗台()米处。

A.100B.200C.300D.5003.下列描述中指的是同一方向的是()。

A.南偏西20度与北偏东20度B.东偏北20度与北偏东70度C.西偏南20度与南偏东70度D.东偏北35度与北偏东35度4.对于下图,下列说法正确的是()。

A.A在B的东偏南30°方向上。

B.B在A的西偏北30°方向上。

C.B在A的南偏东60°方向上。

5.医院位于公园的西偏南30°方向800米处。

从医院去公园,要往()方向走800米。

A.东偏北30°B.西偏南30°C.西偏南60°D.东偏北60°6.如图,图中三角形ABC是一个边长为5cm的等边三角形,那么点A在点B的()。

A.西偏北60°方向5cm处B.西偏北30°方向5cm处C.东偏北60°方向5cm处7.如图表示了某地区博物馆、体育馆和图书馆之间的位置关系。

根据这幅图,下面描述中错误的是()。

A.体育馆在图书馆西偏北30°方向1500米处B.博物馆在体育馆南偏西45°方向500米处C.图书馆在体育馆西偏南30°方向1500米处8.火车站在学校南偏西30°方向20km处;机场在学校北偏东30°方向40km处。

用字母表示:火车站是(),机场是()。

A.D;C B.B;D C.C;D D.C;B9.图书馆在学校北偏东40°方向1km处。

画图表示正确的是()。

A.B.C.D.10.下图每个小正方形的对角线长30cm ,则点()2,4东偏南45°方向90cm 处是点( )。

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

(北师大版)小学数学四年级上册 第二单元测试试卷02及答案

(北师大版)小学数学四年级上册 第二单元测试试卷02及答案

第二单元测试一、选择题1.用一副三角尺不能拼出()的角.A.15°B.20°C.135°D.150°2.图中有()个角.A.5B.6C.10D.153.在同一个平面内,过直线外一点可以作()条这条直线的垂线.A.一条B.二条C.三条D.无数条4.下列说法不正确的是().A.射线是直线的一部分B.线段是直线的一部分C.直线是无限延长的D.直线的长度大于射线的长度5.如果同一平面内两条直线都垂直于同一条直线,那么这两条直线().A.平行B.互相垂直C.互相平行D.相交二、填空题6.下面图形中,________是直线,________是射线,________是线段.7.一周角=________平角=________直角8.你认为,过一点可以画________条直线,过两点可以画________条直线.Ð=________.9.已知°235Ð=,那么1Ð+Ð=,°1212510.6点整时,时针与分针所成的角度是________度,是________角.11.度量一个角,角的一条边对着量角器上“180”的刻度,另一条边对着刻度“60”,这个角是________.12.判断下面两条直线的位置关系.________________________________________13.用一副三角尺像下面这样拼在一起,拼成的角各是多少度?________________________________________________14.如下图中,点A到直线a的距离是________毫米,过点A所画直线b的平行线,两平行线间的距离是________毫米.15.下面的每个图形中各有几组平行的线段.________组________组________组________组三、判断题16.角的大小与边的长度无关.________17.不相交的两条直线一定互相平行.________18.直角一定比锐角大.________19.9:30时,时针和分针组成的角是直角.________20.周角是一条射线,平角是一条直线.________四、计算题Ð.21.已知°Ð=,求2125五、作图题22.过点P 分别作出直线A 和直线B 的平行线.23.画出下面各角.(1)30°(2)150°六、解答题24.把一张长方形的纸折成如下图,其中°123210Ð+Ð+Ð=,求123ÐÐÐ、、的度数.25.°12184Ð+Ð=,°254Ð=,那么1Ð是多少度?26.如下图是一个梯形的广场①从A 点走到对边CD ,怎样走最近,在图上画出来.②过A 点作BC 边的平行线.Ð的度数,并标在图中.③量出ADC27.在下图中你能看出哪些线段互相垂直?哪些线段互相平行?Ð等于多少度?28.将一张长方形的纸折叠后,得到°Ð=,那么2140第二单元测试答案一、1.【答案】B2.【答案】D3.【答案】A4.【答案】D5.【答案】C二、6.【答案】①⑧②⑦④7.【答案】2 48.【答案】无数一9.【答案】90°10.【答案】180 平11.【答案】120°12.【答案】相交垂直平行相交平行13.【答案】70° 105° 135° 180° 120° 15°14.【答案】15 2015.【答案】2 1 2 3三、16.【答案】√17.【答案】×18.【答案】√19.【答案】×20.【答案】×四、21.【答案】65°五、22.【答案】如图:23.【答案】(1)(2)六、24.【答案】°130Ð=,°2150Ð=,°330Ð=25.【答案】13026.【答案】解答如图:27.【答案】根据平行线与垂线的定义结合正方形的特征可知:AC 与GE 两条线段互相平行.AG 与CE 两条线段互相平行.BD 与HF 两条线段互相平行.HB 与FD 两条线段互相平行.AC 与CE 两条线段互相垂直.CE 与EG 两条线段互相垂直.EG 与AG 两条线段互相垂直.AG 与AC 两条线段互相垂直.BD 与DF 两条线段互相垂直.DF 与FH 两条线段互相垂直.FH 与HB 两条线段互相垂直.HB 与BD 两条线段互相垂直.28.【答案】70°。

第二章 相交线与平行线单元测试卷(二)及答案解析

第二章 相交线与平行线单元测试卷(二)及答案解析

第二章相交线与平行线单元测试卷(二)一.选择题(共10小题)1.下列说法中正确的个数是()①过两点有且只有一条直线;②两直线相交只有一个交点;③0的绝对值是它本身④射线AB和射线BA是同一条射线.A.1个B.2个C.3个D.4个2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°3.如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=()A.360°B.180°C.120°D.904.如图,AO⊥BO,垂足为点O,直线CD经过点O,下列结论正确的是()A.∠1+∠2=180°B.∠1﹣∠2=90°C.∠1﹣∠3=∠2 D.∠1+∠2=90°5.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,这样做的理由是()A.两点之间,线段最短B.垂线段最短C.过一点可以作无数条直线D.两点确定一条直线6.如图,AC⊥BC,CD⊥AB,下列结论中,正确的结论有()①线段CD的长度是C点到AB的距离;②线段AC是A点到BC的距离;③AB>AC>CD;④线段BC是B到AC的距离;⑤CD<BC<AB.A.2个B.3个C.4个D.5个7.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段AD的长度D.线段BD的长度8.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个9.下列各组线中一定互相垂直的是()A.对顶角的平分线B.同位角的平分线C.内错角的平分线D.邻补角的平分线10.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°二.填空题(共8小题)11.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=°.12.已知一个角的两边分别垂直于另一个角的两边,且这两个角的差是30°,则这两个角的度数分别是.13.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是,理由是.14.两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是.15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,点D在△ABC的边AC的延长线上,DE∥BC,若∠A=65°,∠B=40°,则∠D的度数为.17.如图,若要说明AC∥DE,则可以添加的条件是.18.若∠A与∠B的两边分别平行,且∠A比∠B的5倍少20°,则∠A的度数为.三.解答题(共3小题)19.直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;(2)如图②,点G是CD上的一点,连接MA、MG,∠MGD+∠EAB=180°,MC平分∠AMG.①∠AMG和∠EAB满足怎么样的数量关系时EC⊥AM?②若∠AMG=36°,求∠ACD的度数.20.如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB∥CD【要求写出每一步的理论依据】.21.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.参考答案与试题解析一.选择题(共10小题)1.【解答】解:①过两点有且只有一条直线,故①正确;②两直线相交只有一个交点,故②正确;③0的绝对值是它本身,故③正确;④射线AB和射线BA的端点不同,延伸方向也不同,不是同一条射线,故④错误.故选:C.2.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.3.【解答】解:因为对顶角相等,所以∠1+∠2+∠3=×360°=180°.故选:B.4.【解答】解:∵如图,AO⊥BO,∴∠AOB=90°.A、∠1+∠3=180°,只有当∠2=∠3时,等式∠1+∠2=180°才成立,故本选项不符合题意.B、∠1=180°﹣∠3,则∠1﹣∠2=180°﹣∠3﹣∠2=90°,故本选项符合题意.C、∠1>90°,∠2+∠3=90°,则∠1≠∠3+∠2,即∠1﹣∠3=∠2,故本选项不符合题意.D、∠2+∠3=90°,只有当∠1=∠3时,等式∠1+∠2=90°才成立,故本选项不符合题意.故选:B.5.【解答】解:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.故选:B.6.【解答】解:①线段CD的长度是C点到AB的距离,正确;②线段AC的长度是A点到BC的距离,错误;③AB>AC>CD,正确;④线段BC的长度是B到AC的距离,错误;⑤CD<BC<AB,正确;故选:B.7.【解答】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.8.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.9.【解答】解:A、对顶角的平分线在同一直线上,故本选项错误;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项错误;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项错误;D、邻补角的平分线互相垂直,故本选项正确.故选:D.10.【解答】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.二.填空题(共8小题)11.【解答】解:根据题意得:∠1=138°﹣60°=78°,故答案为:7812.【解答】解:∵一个角的两边分别垂直于另一个角的两边,∴这两个角相等或互补.又∵这两个角的差是30°,∴这两个角互补.设一个角为x,则另一个角为x+30°,根据题意可知:x+x+30°=180°.解得:x=75°,x+30°=75°+30°=105°.故答案为:75°、105°.13.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM,垂线段最短.14.【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180°,解得:x=20,∴∠1=20°.故答案为:20°.15.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.【解答】解:如图所示:∵∠A+∠B+∠ACB=180°,∠A=65°,∠B=40°,∴∠ACB=180°﹣∠A﹣∠B=108°﹣65°﹣40°=75°,又∵DE∥BC,∴∠ACB=∠D,∴∠D=75°.故答案为75°,17.【解答】解:由题可得,当∠A=∠EDB时,AC∥DE,(同位角相等,两直线平行)当∠A+∠ADE=180°时,AC∥DE,(同旁内角互补,两直线平行)当∠C=∠CDE时,AC∥DE,(内错角相等,两直线平行)故答案为:∠A=∠EDB(答案不唯一).18.【解答】解:设∠B=x,则∠A=5x﹣20°,由题意x=5x﹣20°,或x+5x﹣20°=180°,解得x=5°或()°,∴∠A=5°或()°故答案为5°或()°.三.解答题(共3小题)19.【解答】解:(1)∵CM是∠ACD的平分线,∠MCD=55°,∴∠ACD=2∠MCD=110°,又∵AB∥CD,∴∠BAC=180°﹣110°=70°,又∵AM⊥EF,∴∠MAN=90°﹣70°=20°;(2)①当∠AMG=∠EAB=90°时EC⊥AM,理由如下:∵CM是∠ACD的平分线,MC平分∠AMG,∴∠ACM=∠GCM,∠AMC=∠GMC,又∵CM=CM,∴△AMC≌△GMC(ASA),∴∠CGM=∠CAM,∵EC⊥AM,∴∠CGM=∠CAM=90°,∴∠MGD=90°,∵∠MGD+∠EAB=180°,∴∠EAB=∠BAF=90°,∵AB∥CD,∴∠ACG=90°,∴∠AMG=360°﹣90°﹣90°﹣90°=90°;②∵MC平分∠AMG且∠AMG=36°,∴∠CMG=18°,∵MC平分∠ACG,∴∠MCG=∠ACG,∵∠CAB+∠EAB=180°,∠MGD+∠EAB=180°,∴∠BAC=∠MGD,∵AB∥CD,∴∠BAC+∠ACD=180°,设∠ACD=α,则∠MCG=∠ACD=α,∠BAC=∠MGD=180°﹣α,∵∠MGD是△CMG的外角,∴∠MGD=∠CMG+∠MCG,即180°﹣α=α+18°,解得α=108°,∴∠ACD=108°.20.【解答】证明:∵∠1=55°(已知),∴∠CNM=55°(对顶角相等),∵∠2=125°(已知),∴∠CNM+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).21.【解答】解:(1)∠3+∠1=∠2成立,理由如下:如图①,过点P作PE∥l1,∴∠1=∠AEP,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE+∠APE=∠2,∴∠3+∠1=∠2;(2)∠3+∠1=∠2不成立,新的结论为∠3﹣∠1=∠2,理由为:如图②,过P作PE∥l1,∴∠1=∠APE,∵l1∥l2,∴PE∥l2,∴∠3=∠BPE,∵∠BPE﹣∠APE=∠2,∴∠3﹣∠1=∠2.。

四年级上册数学西师大版第5单元测试卷2(含答案)

四年级上册数学西师大版第5单元测试卷2(含答案)

第五单元测试卷一、填一填。

(每空3分,共33分。

)1、两条直线相交成直角时,这两条直线就互相(2、在同一平面内,两条不相交的直线互相(相垂直。

)。

)。

相交成()角时,两条直线互3、下图中有()组线段互相平行,有()组线段互相垂直。

4、同一平面内,直线a与直线b互相垂直,直线c与直线a互相垂直,那么直线b与直c的关系是()。

5、在一个长方形中,有()组垂线。

6、如图,直线a和直线b互相垂直,()是直线b的垂线,()是直线a的垂线,()是垂足。

7、如图,点A到直线CE的距离是线段()的长度。

二、判断。

(每题2分,共16分。

)1、上午九时整,钟面上的时针和分针互相垂直。

……(2、长方形相对的两条边互相垂直且平行。

………())3、同一平面内过直线外一点只能画一条直线和它垂直。

………(4、在同一平面内,平行的两条直线永远不会相交。

………())5、平行线间的距离处处相等。

(6、一条直线只有一条垂线。

())7、两条平行线之间只能作一条垂线。

()8、在同一平面内两条直线不相交就一定垂直。

()三、选择。

(每题2分,共8分)1、两条平行线之间的( )最短。

A 、线段B 、直线C 、垂线段2、正方形的相邻两边互相( )A 、垂直B 、平行C 、重合C 、43、右图中有( A 、2 )组平行线。

B 、3 4、两条直线互相垂直,这两条直线相交成( )°的角.A 、180°B 、90°C 、45°四、动手实践。

(共43分)1、用两根小棒摆一摆,画一画,并说一说每组两根小棒之间的关系。

(8分)新2、在既有平行线段,又有垂直线段的图形下面画“√”。

(12分)3、小明家想修一条水泥路到公路上,怎样修最近?请你在图中画出来。

(5分)4、一张纸上画了三条直线,已知直线a平行于直线b,直线b平行于直线c,那么直线a与直线c的位置关系是怎样的?(5分)5、直线a外一点A到直线的距离是4厘米,在下图中标出A点。

北师大版四年级数学上册第二单元(线与角)综合测试卷(含答案)

北师大版四年级数学上册第二单元(线与角)综合测试卷(含答案)

北师大版四年级数学上册第二单元(线与角)综合测试卷(线与角)时间:90分钟满分100分题号一二三四五六七八九十总分得分一、填空。

(18分)1:一条射线绕着它的端点旋转90度形成()角,旋转180度形成()角,旋转一周又回到原来的位置形成()角。

2.窗户、门上的角一般都是()角。

3.一个周角=()个平角=()个直角。

4.平行线之间可以作()条垂直线段,这些垂直线段的长度都()。

5.3时整,钟面上的时针和分针所形成的较小角是()角;6时整,时针和分针所形成的角是()角;4时整,时针和分针所形成的较小角是()角。

6.将一张圆形纸片对折()次可以得到90°角,对折()次可以得到45°角。

7.比直角小的角是()角,钝角比()角大,比()角小。

8.已知∠1+∠2=平角的度数,∠1=65°,那么∠2=()。

∠3是∠4的2倍,∠3加上∠4等于一个直角,∠3=()。

二、判断。

(对的打“√”错的打“x”)(6分)1.手电筒射出的光线可以看成直线。

()2.角的两条边越长,角的度数就越大。

()3.两个锐角的和一定大于直角。

()4.当两条直线相交成直角时,这两条直线就互相垂直。

()5.两条线段平行,则它们的长度也相等。

()6.在同一平面内,如果直线。

与直线6平行,与直线c垂直,那么直线b和直线c垂直线有: 。

()角()角()角()角()角()角六、画一画,量一量。

(20分)1.先画一条射线,再以射线的端点开始,截取一条长4cm的线段。

(3分)2.先估一估下面各角的度数,再量一量。

(6分)()()()3.以所给的射线0A为角的一边,画出角的另一边0B,使它成为125°的角。

(3分)4.过点A画出已知直线的垂线。

过点B画出已知直线的平行线。

(4分)5.从A,B两点各修一条小路与公路连接,怎样修最近?请画出来。

(4分)()条()条()条()条九、不用量角器,写出下面各角的度数。

(8分)()()()()十、把一张长方形的纸按下图折叠。

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若将双曲线y=2x向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是( )A.0<a<12B.12<a<1C.1<a<2D.2<a<32.(3分)已知抛物线y=﹣(x﹣m)2+2m过不同的两点A(a,n),B(b,n),则当点C(a+b,m)在该函数图象上时,m的值为( )A.0B.1C.0或1D.±13.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n4.(3分)如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A.a>0,b>0B.a>0,b<0C.a>0,c<0D.a>0,c>0 5.(3分)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是( )A.m<―254B.m≤―254或m=0C.m<―254或m=0D.―254<m<06.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中,x与y的部分对应值如表:x…﹣10124…y…﹣10.510.5﹣3.5…有下列结论:①函数有最大值,且最大值为1;②b=1;③若x 0满足a x 02+bx 0+c =0,则2<x 0<3或﹣1<x 0<0;④若方程ax 2+bx +c +m =0有两个不等的实数根则m <﹣1;其中正确结论的个数是( )A .1B .2C .3D .47.(3分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x …﹣2﹣1012…y =ax 2+bx +c…tm﹣2﹣2n…且当x =―12时与其对应的函数值y >0,则下列各选项中不正确的是( )A .abc >0B .m =nC .a <83D .图象的顶点在第四象限8.(3分)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则下列结论正确的是( )A .x 1<﹣1<5<x 2B .x 1<﹣1<x 2<5C .﹣1<x 1<5<x 2D .﹣1<x 1<x 2<59.(3分)已知二次函数y =x 2+bx +c ,当m ≤x ≤m +1时,此函数最大值与最小值的差( )A .与m ,b ,c 的值都有关B .与m ,b ,c 的值都无关C .与m ,b 的值都有关,与c 的值无关D .与b ,c 的值都有关,与m 的值无关10.(3分)已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是 .12.(3分)已知抛物线y=x2与直线y=(k+2)x+1﹣2k的两个不同交点分别为A(x1,y1),B(x2,y2).若x1和x2均为整数,则实数k的值为 .13.(3分)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.14.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .15.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 .三、解答题(共8小题,满分75分)16.(9分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.17.(9分)如图,抛物线y=―12x2+2x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明△ABC为直角三角形.18.(9分)某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.19.(9分)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,―94)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.20.(9分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B,C两点.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上的一动点,当点E到直线BC的距离最大时,求点E 的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,B,C 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.(10分)如图,抛物线y=﹣x2+ax与直线y=﹣x+b交于点A(4,0)和点C.(1)求a和b的值;(2)求点C的坐标,并结合图象写出不等式﹣x2+ax>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向右平移2个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.(10分)如图,抛物线y=ax2﹣2ax﹣3a与x轴交于A,B两点,与y轴交点为(0,﹣3),顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连接BC,BC的垂直平分线MN交直线PC 于点M,交BC于点N,求线段PM的长.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.D;5.C;6.C;7.C;8.A;9.C;10.D;二、填空题(共5小题,满分15分,每小题3分)11.x1=﹣3,x2=1.12.213.14 914.(﹣5,﹣4)或(0,1)15.1或―4 5三、解答题(共8小题,满分75分)16.(1)证明:∵Δ=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)解:由x2﹣(2k+1)x+k2+k=0,解得:x1=k,x2=k+1,∴A(k,0),B(k+1,0),∵OA+OB=5,∴|k|+|k+1|=5,①当k<﹣1时,|k|+|k+1|=5变为﹣k﹣(k+1)=5,解得:k=﹣3;②当﹣1≤k<0时,|k|+|k+1|=5变为﹣k+k+1=5,此方程无解;③当k≥0时,|k|+|k+1|=5变为k+k+1=5,解得:k=2.综上所述,k的值为﹣3或k=2.17.(1)解:对于抛物线y=―12x22x+2,当y=0时,则―12x2+2x+2=0,解得x1=―x2=当x=0时,y=2,∴A(―0),B(0),C(0,2).(2)证明:连接AC,BC,∵OA OB=AOC=∠BOC=90°,∴AC22+22=6,BC2=(2+22=12,∴AC2+BC2=6+12=18;∵AB=(―∴AB2=(2=18,∴AC2+BC2=AB2,∴△ABC是直角三角形.18.解:(1)设每个零件售价降低x元,则每个零件的实际售价为(200﹣x)元,每月的实际销售量为(1000+x5×100),则w=(200﹣x﹣80)(1000+x5×100)=20x2十1400x+120000,∵x≥0200―x―80≥0,∴0≤x≤120,∴w与x之间的函数关系式为w=﹣20x2+1400x+120000(0≤x≤120);(2)设捐款后的实际利润为p元,则p=﹣20x2+1400x+120000﹣(1000+x5×100)n,整理得:p=﹣20x2+(1400﹣20n)x+120000﹣1000n,则p是x的二次函数,其对称轴为直线x=―140020n2×(20)=70n2,∵0<n≤6,∴32≤70n2<35,∵﹣20<0,∴函数图象开口向下,当40≤x≤60时,p随x的增大而减小,∴当x=40时,p有最大值135000,即﹣20×402+40(1400﹣20n)+120000﹣1000n=135000,解得:n=5.19.解:(1)设抛物线L1的表达式是y=a(x―1)2―9 4,∵抛物线L1过点A(﹣2,0),∴0=a(―2―1)2―9 4,解得a=1 4,∴y=14(x―1)2―94.即抛物线L1的表达式是y=14(x―1)2―94;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=14x2+bx,则―2=14×22―2b,解得b=32即抛物线L2的解析式是y=14x2+32x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=14x2+bx+2,则0=14×22+2b+2,解得:b=―3 2,即抛物线L2的解析式是y=14x2―32x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设y=14x2+bx+c,则―2=14×16―4b+c―4=14×4―2b+c,解得b=12c=―4,即抛物线L2的解析式是y=14x2+12x―4.综上所述:L2的表达式为:y=14x2+32x,y=14x2―32x+2或y=14x2+12x―4.20.解:(1)∵直线y=﹣x+4与x轴交于点C,与y轴交于点B,∴点B,C的坐标分别为B(0,4),C(4,0),把点B(0,4)和点C(4,0)代入抛物线y=ax2+x+c,得:16a+4+c=0,c=4,,解之,得a=―12,c=4,,∴抛物线的解析式为y=―12x2+x+4.(2)∵BC为定值,∴当△BEC的面积最大时,点E到BC的距离最大.如图,过点E作EG∥y轴,交直线BC于点G.设点E的坐标为(m,―12m2+m+4),则点G的坐标为(m,﹣m+4),∴EG=―12m2+m+4―(―m+4)=―12m2+2m,∴S△BEC=12EG⋅OC=12×4(―12m2+2m)=―m2+4m=―(m―2)2+4,∴当m=2时,S△BEC最大.此时点E的坐标为(2,4).(3)存在.由抛物线y=―12x2+x+4可得对称轴是直线x=1.∵Q是抛物线对称轴上的动点,∴点Q的横坐标为1.①当BC为边时,点B到点C的水平距离是4,∴点Q到点P的水平距离也是4.∴点P的横坐标是5或﹣3,∴点P的坐标为(5,―72)或(―3,―72);②当BC为对角线时,点Q到点C的水平距离是3,∴点B到点P的水平距离也是3,∴点P的坐标为(3,52 ).综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是(5,―72)或(―3,―72)或(3,52).21.解:(1)根据题意得:D (﹣2,0),C (2,0),E ((0,1),设抛物线的解析式为y =ax 2+1(a ≠0),把D (﹣2,0)代入得:4a +1=0,解得a =―14,∴抛物线的解析式为y =―14x 2+1;(2)在y =―14x 2+1中,令y =134―3=14得:14=―14x 2+1,解得x∴距离地面134米高处,隧道的宽度是;(3)这辆货运卡车能通过该隧道,理由如下:在y =―14x 2+1中,令y =3.6﹣3=0.6得:0.6=―14x 2+1,解得x =±5,∴|2x |≈2.53(m ),∵2.53>2.4,∴这辆货运卡车能通过该隧道.22.解:(1)∵抛物线y =﹣x 2+ax 的图象过点A (4,0),∴0=﹣42+a ×4,解得a =4,∵直线y =﹣x +b 的图象过点A (4,0),∴0=﹣4+b ,解得b =4;(2)由(1)得,抛物线解析式为y =﹣x 2+4x ,一次函数解析式为y =﹣x +4,联立方程组y =―x 2+4x y =―x +4,解得:x =1y =3或x =4y =0(舍去),∴点C 坐标为(1,3),由图象得不等式﹣x 2+ax >﹣x +b 的解集为:1<x <4;(3)∵抛物线y =﹣x 2+4x 的对称轴为直线x =2,∴C 点关于对称轴的对称点坐标为(3,2),又∵抛物线y =﹣x 2+4x 的顶点坐标为(2,4),∴当M (0,4)时,N 点坐标为(2,4),此时抛物线与线段MN 有一个交点,当M (4,0)时,此时抛物线与线段MN 有一个交点,当M (1,3)时,此时抛物线与线段MN 有两个交点,∴0≤x M ≤4且x M ≠1.23.解:(1)∵抛物线y =ax 2﹣2ax ﹣3a 与y 轴交点为(0,﹣3),∴﹣3a =﹣3,∴a =1,即a 的值为1;(2)∵a =1,∴抛物线y =ax 2﹣2ax ﹣3a =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点C 的坐标为(1,﹣4);(3)∵顶点C 的坐标为(1,﹣4),∴物线的对称轴为直线x =1,∴P (1,0),∵抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,令y =0,则x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴BP =2,PC =4,∴BC =∵MN 垂直平分BC ,∴CN =12BC MNC =90°,∴∠BPC =∠MNC .又∠MCN =∠BCP ,∴△MCN ∽△BCP ,∴CN CP =CM CB ,即4CM ,∴CM =52,∴PM =PC ﹣CM =4―52=32.即线段PM 的长为32.。

线和角单元测试卷二

线和角单元测试卷二

单元测试卷二1.填空。

(1)直线有()个端点,射线有()个端点,线段有()个端点。

(2)从一点引出两条射线所组成的图形叫()。

角的计量单位是(),用符号()表示。

(3)145°的角比平角小()度,比直角大()度。

(4)下图中有()条线段。

(5)30°角的()倍是直角,30°角的()倍是平角,30°角的()倍是周角。

(6)2时整,时针与分针成()角;6时整,时针与分针成()角;3时整,时针与分针成()角。

2.将正确答案的序号填在括号里。

(1)通过一点能画()条直线。

A.1B.2C.无数(2)用直尺把两点连接起来,就得到一条()。

A.直线B.线段C.射线(3)把一张圆形的纸对折3次后,得到的角的度数是()。

A.180°B.90°C.45°(4)用量角器量角的大小时,角的顶点要与量角器的()重合。

A.中心点B.0刻度线C.外圈或内圈刻度线(5)两个锐角的和一定是()。

A.锐角B.直角C.钝角D.不能确定(6)角的大小与()无关。

A.两边叉开的大小B.边的长短C.角的度数3.判断。

(对的打“√”,错的打“×”)(1)大于90°的角都是钝角。

()(2)一个平角的度数等于两个直角度数的和。

()(3)三个角组成一个平角,这三个角一定都是锐角。

()(4)从一点出发只能画一条射线。

()(5)一条直线长12厘米。

()(6)用一副三角板可以拼出130°的角。

()4.小朋友手中牌子上写的角各指的是什么角?请找一找,连一连。

5.数一数,下图中各有几个角?()个角()个角()个锐角()个直角()个钝角6.画一画。

7.找一找,把序号填在相应的圈里。

8.下面钟面上的时针与分针组成的角各是多少度?填一填。

9.求角的度数。

(1)已知∠1=35°,∠2=()。

(2)已知∠1=30°,∠2=120°,求∠3的度数。

郑州第二章 匀变速直线运动单元测试卷附答案

郑州第二章 匀变速直线运动单元测试卷附答案

一、第二章 匀变速直线运动的研究易错题培优(难)1.假设列车经过铁路桥的全过程都做匀减速直线运动,已知某列车长为L 通过一铁路桥时的加速度大小为a ,列车全身通过桥头的时间为t 1,列车全身通过桥尾的时间为t 2,则列车车头通过铁路桥所需的时间为 ( )A .1212·t t L a t t +B .122112·2t t t t L a t t +--C .212112·2t t t t L a t t ---D .212112·2t t t t L a t t --+ 【答案】C 【解析】 【分析】 【详解】设列车车头通过铁路桥所需要的时间为t 0,从列车车头到达桥头时开始计时,列车全身通过桥头时的平均速度等于12t 时刻的瞬时速度v 1,可得: 11L v t =列车全身通过桥尾时的平均速度等于202t t +时刻的瞬时速度v 2,则 22L v t =由匀变速直线运动的速度公式可得:2121022t t v v a t ⎛⎫=-+- ⎪⎝⎭联立解得:21210122t t t t L t a t t --=⋅- A. 1212·t t L a t t +,与计算不符,故A 错误. B. 122112·2t t t t L a t t +--,与计算不符,故B 错误.C. 212112·2t t t t L a t t ---,与计算相符,故C 正确.D. 212112·2t t t t L a t t --+,与计算不符,故D 错误.2.质点做直线运动的v —t 图象如图所示,规定向右为正方向,则该质点在前8s 内平均速度的大小和方向分别为( )A .0.25m/s ,向右B .0.25m/s ,向左C .1m/s ,向右D .1m/s ,向左 【答案】B 【解析】 【详解】由图线可知0-3s 内的位移为1132m 3m 2s =⨯⨯=方向为正方向;3-8s 内的位移为21(83)2m 5m 2s =⨯-⨯=方向为负方向;0-8s 内的位移为122m s s s =-=-0-8s 内的平均速度为2m 0.25m/s 8ss v t -===-, 负号表示方向是向左的.A. 前8s 内平均速度的大小和方向分别为0.25m/s ,向右,与分析不一致,故A 错误;B. 前8s 内平均速度的大小和方向分别为0.25m/s ,向左,与分析相一致,故B 正确;C. 前8s 内平均速度的大小和方向分别为1m/s ,向右,与分析不一致,故C 错误;D. 前8s 内平均速度的大小和方向分别为1m/s ,向左,与分析不一致,故D 错误.3.如图所示,小球沿足够长的斜面向上做匀变速运动,依次经过a 、b 、c 、d 到达最高点e .已知ab = bd = 6 m ,bc = 1m ,小球从a 到c 的时间和从c 到d 的时间都是2 s ,设小球经过b 、c 的速度分别为v b 、v c ,则A .v b 8m/sB .v c =1.5m/sC .3m de x =D .从d 到e 所用的时间为4 s【答案】D【解析】 【详解】物体在a 点时的速度大小为v 0,加速度为a ,则从a 到c 有:201112ac x v t at =+即:0722v a =+物体从a 到d 有:202212ad x v t at =+即:01248v a =+故:21m/s 2a =-,04m/s v =A .从a 到b 有:220-2b ab v v ax =解得:2b v =,故A 错误。

直线和圆的方程单元测试卷

直线和圆的方程单元测试卷

直线和圆的方程单元测试卷(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)π11.若0≤θ≤,当点(1,coθ)到直线某inθ+ycoθ-1=0的距离是时,这条直线的斜率是()243A.1B.-1D.-232.设A、B为某轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为某-y+1=0,则直线PB的方程为()A.2某+y-7=0B.2某-y-1=0C.某-2y+4=0D.某+y-5=03.(2022·北京市西城区)已知圆(某+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线4.过点M(2,1)的直线l与某轴,y轴分别交于P、Q两点且|MP|=|MQ|,则l的方程是()A.某-2y+3=0B.2某-y-3=0C.2某+y-5=0D.某+2y-4=05.直线某-2y-3=0与圆C:(某-2)2+(y+3)2=9交于E、F两点,则△ECF的面积为()3335A.B.C.5D.2456.若a,b,c分别是△ABC中角A,B,C所对边的边长,则直线inA·某+ay+c=0与b某-inB·y+c=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直3π7.已知直线l1:b某-2y+2=0和l2:2某+6y+c=0相交于点(1,m),且l1到l2的角为,则b、c、m的4值分别为()3333A.1,,-11B.1,-11C.1,-11D.-11122228.已知A(-3,8)和B(2,2),在某轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()2222A.(-1,0)B.(1,0)C.(0)D.(0,)559.把直线某-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆某2+y2+2某-4y=0相切,则实数λ的值为() A.3或13B.-3或13C.3或-13D.-3或-1310.在如右图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=a某+y(a>0)取得最大值的最优解有无数个,则a的值等于()1A.B.1C.632某-y+2≥011.如果点P在平面区域某-2y+1≤0某+y-2≤0A.5-1D.3上,点Q在曲线某2+(y+2)2=1上,那么|PQ|的最小值为()4-1C.22-12-1512.过点C(6,-8)作圆某2+y2=25的切线于切点A、B,那么C到两切点A、B连线的距离为()15A.15B.1C.D.52二、填空题(本大题共4小题,每小题5分,共20分)13.设直线2某+3y+1=0和某2+y2-2某-3=0相交于点A、B,则弦AB所在直线的垂直平分线方程是________.y≥0y≤某14.在坐标平面上有两个区域M和N,其中区域M=(某,y)|y≤2-某,区域N={(某,y)|t≤某≤t+1,0≤t≤1},区域M和N公共部分的面积用函数f(t)表示,则f(t)的表达式为________.1415.已知点P(m,n)位于第一象限,且在直线某+y-1=0上,则使不等式+≥a恒成立的实数a的取值mn范围是________.16.(2022·天津)已知圆C的圆心与抛物线y2=4某的焦点关于直线y=某对称.直线4某-3y-2=0与圆C相交于A、B两点,且|AB|=6,则圆C的方程为________.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)过点M(0,1)作直线,使它被直线l1:某-3y+10=0和l2:2某+y-8=0所截得的线段恰好被M平分,求此直线方程.18.(本小题满分12分)已知方程某2+y2-2某-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线某+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.19.(本小题满分12分)A、B、C三城市分别有某种机器10台、10台、8台,支援D市18台、E市10台.从A市调一台机器到D、E两市的运费分别为200元和800元;从B市调一台机器到D、E两市的运费分别为300元和700元;从C市调一台机器到D、E两市的运费分别为400元和500元.(1)若从A、B两市各调某台到D市,当三市28台机器全部调运完毕后,求总运费P(某)关于某的函数表达式,并求P(某)的最大值和最小值;(2)若从A市调某台到D市,从B市调y台到D市,当28台机器全部调运完毕后,用某、y表示总运费P,并求P的最大值和最小值.20.(本小题满分12分)已知圆M:某2+y2-2m某-2ny+m2-1=0与圆N:某2+y2+2某+2y-2=0交于A、B两点,且这两点平分圆N的圆周,求圆M的圆心的轨迹方程,并求其中半径最小时圆M的方程.21.(本小题满分12分)将一块直角三角板ABO置于平面直角坐标系中(如右图所示).已知AB=OB=1,AB⊥11OB,点P24是三角板内一点.现因三角板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN.问应如何确定直线MN的斜率,可使锯成的△AMN的面积最大?22.(本小题满分12分)在直角坐标系某Oy中,以O为圆心的圆与直线某3y=4相切.(1)求圆O的方程;→→(2)圆O与某轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求PA·PB的取值范围.一、选择题(本大题共12小题,每小题5分,共60分)π11.若0≤θ(1,coθ)到直线某inθ+ycoθ-1=0()2433A.1B.-1D.-23答案:D解析:由点到直线的距离公式得|inθ+co2θ-1|π1222d|inθ-inθ|,又∵0≤θ≤∴inθ≥inθ.故inθ-inθ,24inθ+coθ133∴inθ,则tanθ,从而直线的斜率k=-tanθ=-2332.(2022·北京市东城区)设A、B为某轴上两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为某-y+1=0,则直线PB的方程为() A.2某+y-7=0B.2某-y-1=0C.某-2y+4=0D.某+y-5=0答案:D解析:∵PA的方程为某-y+1=0,∴P(2,3);又∵A点在某轴上,∴A(-1,0);而|PA|=|PB|,且B点在某轴上,∴B(5,0);∴直线PB的方程为:某+y-5=0,故选D.3.(2022·北京市西城区)已知圆(某+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:B解析:∵|PA|=|PN|,∴|PM|+|PN|=|PM|+|PA|=|MA|=6>|MN|,所以动点P的轨迹是椭圆,故选B.4.过点M(2,1)的直线l与某轴,y轴分别交于P、Q两点且|MP|=|MQ|,则l的方程是()A.某-2y+3=0B.2某-y-3=0C.2某+y-5=0D.某+2y-4=0答案:D解析:由题意知,M是线段PQ的中点.设直线的方程为y=k(某-2)+1,12-+0k112-,0,Q(0,1-2k),由中点坐标公式得分别令y=0,某=0,得P2,∴k=-,k221所以直线的方程为y=-某-2)+1,即某+2y-4=0.故选D.25.直线某-2y-3=0与圆C:(某-2)2+(y+3)2=9交于E、F两点,则△ECF的面积为()3335A.C.25D.245|2+6-3|答案:C解析:圆心(2,-3)到EF的距离d=5.5又|EF|=29-5=4,∴S△ECF=某4某5=25.故选C.26.若a,b,c分别是△ABC中角A,B,C所对边的边长,则直线inA·某+ay+c=0与b某-inB·y+c=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直答案:C解析:a>0,inA>0,b>0,inB>0,abinA△ABC中,,①直线inA·某+ay+c=0的斜率k1=-,inAinBabinAb直线b某-inB·y+c=0的斜率k2=k1·k2=-②inBainB将①代入②,得k1·k2=-1.故两直线相互垂直.故选C.3π7.已知直线l1:b某-2y+2=0和l2:2某+6y+c=0相交于点(1,m),且l1到l2的角为,则b、c、m的4值分别为()3A.1,,-1123C.1,-11231,-1123D.-11,,12b1答案:C解析:直线l1、l2的斜率分别为k1=k2=-,231b--323π3由l1到l2的角为,得=-1,解得b=1.将(1,m)代入l2:某-2y+2=0,得m=4b21-63将(1)代入l2:2某+6y+c=0,得c=-11.故选C.28.已知A(-3,8)和B(2,2),在某轴上有一点M,使得|AM|+|BM|为最短,那么点M的坐标为()A.(-1,0)B.(1,0)2222C.0)D.(0,)55答案:B解析:点B(2,2)关于某轴的对称点为B′(2,-2),连接AB′,易求得直线AB′的方程为2某+y-2=0,它与某轴的交点M(1,0)即为所求.故选B.9.把直线某-2y+λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆某2+y2+2某-4y=0相切,则实数λ的值为() A.3或13B.-3或13C.3或-13D.-3或-13答案:A解析:直线某-2y+λ=0按a=(-1,-2)平移后的直线为某-2y+λ-3=0,与圆相切,则圆|λ-8|心(-1,2)到直线的距离d=5,求得λ=13或3.故选A.510.在如右图所示的坐标平面的可行域(阴影部分且包括边界)内,若是目标函数z=a某+y(a>0)取得最大值的最优解有无数个,则a的值等于()1A.B.1C.6D.33答案:B解析:将z=a某+y化为斜截式y=-a某+z(a>0),则当直线在y轴上截距最大时,z最大.∵最优解有无数个,∴当直线与AC 重合时符合题意.又kAC=-1,∴-a=-1,a=1.故选B.2某-y+2≥011.如果点P在平面区域某-2y+1≤0某+y-2≤0A.5-1上,点Q在曲线某2+(y+2)2=1上,那么|PQ|的最小值为()4-15C.22-1D.2-1答案:A解析:由几何意义可得所求为可行域内的点与圆上的点之间的距离最小值,画出可行域可得d最小-1.故选A.12.过点C(6,-8)作圆某2+y2=25的切线于切点A、B,那么C到两切点A、B连线的距离为()15A.15B.1C.D.52答案:C解析:∵切点弦AB的方程为6某-8y=25,|6某6-8·(-8)-25|15∴点C(6,-8)到直线AB的距离为d故选C.26+8二、填空题(本大题共4小题,每小题5分,共20分)13.设直线2某+3y+1=0和某2+y2-2某-3=0相交于点A、B,则弦AB所在直线的垂直平分线方程是________.答案:3某-2y-3=0解析:圆某2+y2-2某-3=0的圆心为C(1,0),由平面几何知识知,弦AB的垂直平分线必过圆心C(1,0).23∵直线2某+3y+1=0的斜率为kAB=-.∴所求直线的斜率为k=323∴弦AB的垂直平分线方程为y=(某-1),即3某-2y-3=0.2y≥014.在坐标平面上有两个区域M和N,其中区域M=(某,y)|y≤某y≤2-某,区域N={(某,y)|t≤某≤t+1,0≤t≤1},区域M和N公共部分的面积用函数f(t)表示,则f(t)的表达式为________.答案:f(t)=-t2+t2y≥0解析:作出不等式组y≤某y≤2-某所表示的平面区域.由t≤某≤t+1,0≤t≤1,得f(t)=S△OEF-S△AOD-S△BFC111=1-t2-(1-t)2=-t2+t+.2221415.已知点P(m,n)位于第一象限,且在直线某+y-1=0上,则使不等式a恒成立的实数a的mn取值范围是________.答案:(-∞,9]解析:由题意:m+n=1,m>0,n>0,1414∴=()(m+n)mnmnn4m=5≥5+24=9.mn12当且仅当n=2m,即m=n=时等号成立.33∴a的取值范围是a≤9.16.(2022·天津)已知圆C的圆心与抛物线y2=4某的焦点关于直线y=某对称.直线4某-3y-2=0与圆C相交于A、B两点,且|AB|=6,则圆C的方程为________.答案:某2+(y-1)2=10解析:y2=4某,焦点F(1,0),∴圆心O(0,1).5O到4某-3y-2=0的距离d1,5则圆半径r满足r2=12+32=10,∴圆方程为某2+(y-1)2=10.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)过点M(0,1)作直线,使它被直线l1:某-3y +10=0和l2:2某+y-8=0所截得的线段恰好被M平分,求此直线方程.10解法一:过点M且与某轴垂直的直线是y轴,它和两已知直线的交点分别是(0和(0,8),显然不满3足中点是点M(0,1)的条件.故可设所求直线方程为y=k某+1,与已知两直线l1,l2分别交于A、B两点,联立方程组y=k某+1,①某-3y+10=0,y=k某+1,②2某+y-8=0,77由①解得某A=,由②解得某B=3k-1k+2∵点M平分线段AB,77∴某A+某B=2某M,即0.3k-1k+2解得k=-某+4y-4=0.4解法二:设所求直线与已知直线l1,l2分别交于A、B两点.∵点B 在直线l2:2某+y-8=0上,故可设B(t,8-2t),M(0,1)是AB的中点.由中点坐标公式得A(-t,2t-6).∵A点在直线l1:某-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直线方程为某+4y-4=0.18.(本小题满分12分)已知方程某2+y2-2某-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线某+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)(某-1)2+(y-2)2=5-m,∴m<5.(2)设M(某1,y1),N(某2,y2),则某1=4-2y1,某2=4-2y2,则某1某2=16-8(y1+y2)+4y1y2∵OM⊥ON,∴某1某2+y1y2=0∴16-8(y1+y2)+5y1y2=0①某=4-2y8+m16由22得5y2-16y+m+8=0∴y1+y2y1y2=55某+y-2某-4y+m=08代入①得,m=.5(3)以MN为直径的圆的方程为(某-某1)(某-某2)+(y-y1)(y-y2)=0即某2+y2-(某1+某2)某-(y1+y2)y=0816∴所求圆的方程为某2+y2-某-=0.5519.(本小题满分12分)A、B、C三城市分别有某种机器10台、10台、8台,支援D市18台、E市10台.从A市调一台机器到D、E两市的运费分别为200元和800元;从B市调一台机器到D、E两市的运费分别为300元和700元;从C市调一台机器到D、E两市的运费分别为400元和500元.(1)若从A、B两市各调某台到D市,当三市28台机器全部调运完毕后,求总运费P(某)关于某的函数表达式,并求P(某)的最大值和最小值;(2)若从A市调某台到D市,从B市调y台到D市,当28台机器全部调运完毕后,用某、y表示总运费P,并求P的最大值和最小值.解:(1)机器调运方案如下表:总运费P(某-800某,又由0≤某≤10,0≤18-2某≤8,得定义域5≤某≤9,所以P(某)ma某=P(5)=13200元,P(某)min=P(9)=10000(元),(2)总运费P其中0≤某≤10,0≤y≤10,0≤18-某-y≤8.在某Oy平面内作出上述不等式的可行域(如上图中阴影部分).其中l1:某+y=18,l2:某+y=10.可见,当某=10,y=8时,Pmin=9800;当某=0,y=10时,Pma某=14200.20.(本小题满分12分)已知圆M:某2+y2-2m某-2ny+m2-1=0与圆N:某2+y2+2某+2y-2=0交于A、B两点,且这两点平分圆N的圆周,求圆M的圆心的轨迹方程,并求其中半径最小时圆M的方程.解:由圆M的方程知M(m,n).又由方程组222某+y-2m某-2ny+m-1=0,22某+y+2某+2y-2=0,得直线AB的方程为2(m+1)某+2(n+1)y-m2-1=0.又AB平分圆N 的圆周,所以圆N的圆心N(-1,-1)在直线AB上.∴2(m+1)(-1)+2(n+1)(-1)-m2-1=0.∴m2+2m+2n+5=0,即(m+1)2=-2(n+2).(某)∴(某+1)2=-2(y+2)即为点M的轨迹方程.又由题意可知当圆M的半径最小时,点M到AB的距离最小,即MN最小.d(m+1)+(n+1)=-2(n+2)+(n+1)=n-3.由(某)可知n≤-2,∴d≥1.即最小值为1,此时m=-1,n=-2,故此时圆M的方程为(某+1)2+(y+2)2=5.(本小题满分12分)将一块直角三角板ABO置于平面直角坐标系中(如右图所示).已知AB=OB=1,AB11⊥OB,点P24是三角板内一点.现因三角板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点P的任一直线MN将三角板锯成△AMN.问应如何确定直线MN的斜率,可使锯成的△AMN的面积最大?解:由题意可知B(1,0),A(1,1),11kOP=,kPB=-,2211-,lAO:y=某;lAB:某=1.∴kMN∈22设lMN:y=k某+b,11∵直线MN过P2,4,1111∴bk,∴y=k某+42.421-2k1-2k,N1,k1.∴M4-4k4-4k24211k1-2k(3-2k)S△AMN=1-42某124-4k32(1-k)13设t=1-k∈2,2.4t2+4t+113S△AMN=t∈2,2时,函数单调递增.32t311∴当t=,即kS△AMN(ma某)=.22322.(本小题满分12分)在直角坐标系某Oy中,以O为圆心的圆与直线某-3y=4相切.(1)求圆O的方程;→→(2)圆O与某轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求PA·PB的取值范围.4解:(1)依题设,圆O的半径r等于原点O到直线某3y=4的距离,即r==2.1+3所以圆O的方程为某2+y2=4.(2)不妨设A(某1,0),B(某2,0),且某1<某2,由某2=4,得A(-2,0),B(2,0).设P(某,y),由|PA|、|PO|、|PB|成等比数列,得(某+2)+y(某-2)+y=某2+y2,即某2-y2=2,→→所以PA·PB=(-2-某,-y)·(2-某,-y)222=某-4+y=2(y-1).22某+y<4,由于点P在圆O内,故22某-y=2,由此得0≤y2<1.→→所以PA·PB的取值范围为[-2,0).。

北师大版四年级数学上册第二单元测试卷(含答案)

北师大版四年级数学上册第二单元测试卷(含答案)

第二单元测试卷一、填空题。

1.下图中有()条直线,()条射线,()条线段。

2.3时整时,时针与分针成()角;3时半时,时针与分针所成的角比直角()。

3.同一平面内,两条直线的位置关系有()种情况,是()。

4.在一个长方形中,有()组线段互相平行,()组线段互相垂直。

5.将半圆平均分成()份,其中的1份所对的角的大小叫作1°。

6.已知∠1+∠2=180°,如果∠1=80°,那么∠2=()。

二、判断题。

(对的画“√”,错的画“✕”)1.两条直线相交,这两条直线就一定互相垂直。

()2.长方形相邻的两条边互相垂直。

()3.同一平面内两条直线永远不相交,就说明它们互相平行。

()4.一个点到一条直线的连线中,垂线段最短。

()三、选择题。

(把正确答案的序号填在括号里)1.在两条平行线之间画几条垂线段,这些垂线段的长度()。

A.不相等B.相等C.不一定2.从一点出发,可以画()个角。

A.1B.2C.无数3.把两个锐角拼在一起,拼成的角不可能是()。

A.锐角B.平角C.钝角4.不能用一副三角尺拼出来的角是()。

A.20°B.75°C.135°5.下图中的线段a和线段b比较,()。

A.a比b长B.一样长C.b比a长四、说出每个钟面上时针和分针所成的角是什么角。

五、操作题。

1.过点P分别画出直线AB的平行线和垂线。

2.测量角的度数。

∠1=∠4=∠2=∠5=∠3=∠6=六、看图填空。

图中有()条射线,()个角,其中有()个直角,()个锐角,()个钝角。

七、解决问题。

1.从小莉家去小兰家有三条路,走哪条路最近?2.折一折,想一想。

∠1=30°∠1=25°∠2=∠2=3.求∠1、∠2、∠3、∠4、∠5的度数。

4.把一张长方形的纸如下图折叠,其中∠1+∠2+∠3=210°,求∠1、∠2、∠3的度数。

第二单元测试卷答案一、1. 1862.直小3.两平行或相交4. 245. 1806. 100°二、1.✕2.√3.√4.√三、1. B2. C3. B4. A5. C四、锐角直角钝角五、1.2.∠1=130°∠2=50°∠3=90°∠4=90°∠5=130°∠6=50°六、46231七、1.②号路2. 75°40°3.∠1=30°∠2=60°∠3=330°∠4=30°∠5=60°4.∠1=30°∠2=150°∠3=30°。

人教版四年级上册《第3章_角的度量》小学数学-有答案-单元测试卷(2)

人教版四年级上册《第3章_角的度量》小学数学-有答案-单元测试卷(2)

人教版四年级上册《第3章角的度量》单元测试卷(2)一、认真读题,谨慎填空.(30分)1. 线段有________个端点,射线有________个端点,直线________端点。

2. 从一点引出两条________所组成的图形叫做角。

3. 180∘的角是________角,________角小于90∘.4. 直角是________度,1周角=________直角。

5. ________时整,时针和分针成平角,________时整,时针和分针成直角。

6. 如图,已知∠1=60∘,那么∠2=________,∠3=________,∠4=________.二、解答题(共1小题,满分3分)下面的角大概是多少度?把你估计的结果写下来。

三、解答题(共2小题,满分7分)在80∘、145∘、180∘、91∘、27∘、179∘、5∘中,锐角有________,钝角有________.把钝角、锐角、直角、平角、周角的度数按从小到大的顺序排列________<________<________<________<________.二、仔细推敲,分辨是非.对的打“√”,错的打“×”.16分黑板上的直角比三角尺的直角大。

________(判断对错)过一点可以画无数条射线。

________(判断对错)小于90∘的角都是锐角,大于90∘的角都是钝角。

________ (判断对错)9点半时,时针和分针成直角________(判断对错)一条射线长10cm.________ (判断对错)用一付三角板可以拼出105∘的角。

________.(判断对错)一个直角与一个锐角拼成的角一定是钝角。

________(判断对错)三、反复比较,慎重选择.10分能量出长度的是()A.线段B.直线C.射线从一点出发可以画()个角。

A.0B.1C.2D.无数把一张圆形的纸对折3次,得到的角是()度。

A.120∘B.90∘C.45∘如图,∠3是()度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( )
3.已知两直线 和
与两坐标轴所围成的四边形有外接圆,则实数 的值 ( )
4.点 在直线 上, 原点,则 的最小值是 ( )
5.当点 到直线 的距离的平方和取最大值时, 等于 ( )
6.两直线 与 的距离是 ( )
7.过两直线 与 的交点,并且与第一条直线垂直的直线方程是 ( )
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
(1) 在 轴上的截距是 ;
(2)斜率是 .
21设三条直线
交于一点,求 的值.
22.△ 中 边上的高所在直线方程为
的平分线所在直线的方程为
,若点 的坐标为 ,求点 和点 的坐标.
[能力测试]:
一、选择题
1.如果两条直线的倾斜角相等,则这两条直线的斜率 与 的关系是 ( )
2.过点 ,且在 轴上的截距(直线与 轴交点的横坐标)是在 轴上的截距的2倍的直线方程是
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第□讲
单元测试卷
[典型例题]:
例1△ 的三个顶点
,求:
(1) 所在直线的方程;
(2) 边上中线 所在直线的方程;
(3) 边的垂直平分线 的方程.
例2已知三条直线 ,直线 和直线 ,且 与
的距离是 .
(1)求 的值;
(2)能否找到一点 ,使得 点同时满足下列三个条件:① 是第一象限的点;② 点到 的距离是 到 的距离的 ;③ 点到 的距离与 点到 的距离之比是 .若能,求 点坐标;若不能,说明理由.
第 □ 讲
单元测试卷
8.方程 确定的曲线与 轴围成的图形的面积是 ( )
9.直线 的方程为 ,若直线
不经过第二象限,则 的取值范围为 ( )
10.点 关于点 的对称点为 , 关于直线 的对称点为 ,则 点的坐标为 ( )
11.如果点 在两条平行直线 及 之间,则 应取的整数值 ( )
12.实数 满足方程 ,则 的最小值是 ( )
二、填空题
13.已知直线
的斜率不存在,则 的值是 .
14.直线 过点 ,且在第一象限和两坐标轴围成的三角形的面积是24,则 的截距式方程是
15.三角形的两顶点为 ,三角形的两边 和 中点分别在 轴、 轴上,则第三个顶点 的坐标是
16.把直线 绕点 旋转 ,所得到的直线方程为
三、解答题
17.求经过点 ,在 轴和 轴上的截距分别为 ,且满足 的直线方程.
[基础练习]:
一、选择题
1.直线 和直线
的位置关系是 ( )
相交不垂直 垂直
平行 重合
2.以 为端点的线段的垂直平分线的方程是 ( )
3.已知点 ,点 在直线上 上,若直线 垂直于直线 ,则 的坐标是 ( )
4.点 与点 关于直线 对称, 的直线方程是 ( )
5.直线 绕点 逆时针旋转 ,所得直线的方程为 ( )
18.已知定点 ,在 轴上求点 ,使 .
19.已知点 ,在直线 和 上分别有点 和点 ,使△ 的周长最短,求点 、 的坐标.
20.求经过直线 和 的交点,且在两坐标轴上截距相等的直线方程.
21.已知点 及点 ,试在直线
上,求出符合下列条件的点 .
(1)使 为最大;
(2)使 为最小;
(3)使 为最小.
11.直线 过点 ,则
的倾斜角为 ( )
12.两直线 和
分别过定点 ,则 等于 ( )
二、填空题
13.过点 ,倾斜角的正弦为 的直线方程为
14.经过直线 与 的交点,且 垂直的直线方程是
15.三条直线
相交于一点,则
16.实数 满足 ,则 的最小值为
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第 □ 讲
单元测试卷
三、解答题
17.直线 交 轴于 ,交 轴于 ,其倾斜角为 ,且 ,求点 的坐标.
18.求倾斜角是直线 倾斜角的 ,且分别满足下列条件的直线方程:
(1)经过点 ;
(2)在 轴上的截距是0.设直线 的方程为
,根据下列条件分别确定实数 的值.
6.已知两点 ,在 轴上有一点 ,且 ,则点 的坐标为 ( )
7.直线 过点 ,且与点 的距离最远,那么 的方程为 ( )
8.在平面内,与 轴、 轴和直线 的距离都相等的点共有 ( )
9.若直线 过点 ,且原点到 的距离是2,则 的方程为 ( )
10.点 关于直线 的对称点是 ,点
关于原点的对称点是 ,则 等于 ( )
22.已知过原点 的一条直线与函数 的图像关于 两点,分别过点 作 轴的平行线与函数 的图像交于 两点.
(1)证明点 和原点 在同一直线上;
(2)当 平行于 轴时,求点 的坐标.
第 页
相关文档
最新文档