普通高中数学会考试卷及答案
普通高中会考数学参考答案
浙江省普通高中会考数学参考答案和评分标准一.选择题(1至20每小题2分,21至26每小题3分,共58分)则()()2,0,(2,1),(2,),2,C E BF BE F λλλλλ==,因此(22,)FC λλ=--,其中[]0,1λ∈,2224(2,)(22,)545()55EF FC λλλλλλλ⋅=--=-+=--+, 因此41,5EF FC ⎡⎤⋅∈-⎢⎥⎣⎦30.★★解析:对于()()()2,,10,f x ax b f x a ax k f x-''=++=-== 因此3(1)2y f a b ===+,要使a ax b x x ++>恒成立,则有123a x x x ⎛⎫+->- ⎪⎝⎭因为1x >时,120x x +->,则()2221(1)231211(1)1(1)2x x x a x x x x x----->==-----+-, 而212111(1)x x --<--,因此1a ≥,宜选D34.★★解析:因为n s 单调递增,因此()02,n a n >≥则20a >必成立, 因此有()()52,2130,70f f a b a b >∴+>+>;对于()()613663555(7)0f f a b a b a b a b -=+--=+=+>因此D 正确三.填空题(2分一题,共10分)35 26.9π 37.[)1,-+∞ 38.8 39.①②39.★★解析:此题需采用逆推分析法,对于n C 不妨令,b c m a ===,则对于1n C -:111,,b m c a ===或111,,b c m a ===对于2n C -:有四种可能,他们分别是2222,,2,b c m a m e ====或22221,,2,2b m c a m e ====;或2222,,,b c a e ====或2222,,,b c a e ====四.解答题40.(1)略 (2)060 41.(1)22525(2)24x y ⎛⎫-+-= ⎪⎝⎭(2)(1,0),(4,0)M N ,…… 42.★★★(1)由已知得()2(1)4(5)f x x a x a '=-+-+, ()2511(5)g x ax ax x x x'=+-=-+ 由()0,4f x x '=∴=-或5,0,5x a x a =+>∴>-,因此5x a =+为()(),f x g x 的共同的极值点,则()()250,510,0g a a a a ⎡⎤'+=+-=∴=⎣⎦或4a =-或6a =-(舍去) 经检验,当0a =或4a =-时,函数()f x ,()g x 有相同的极值点(2)因为()f x 在()0,5a +上单调递减,其中5a >-,因此5m n a <≤+, 不妨令2()5h x ax x =-+,要使()h x 在(),m n 上有小于0的解, 当0a =时,()f x 在()0,5上单调递减,()g x 在()0,5上单调递增,因此0a ≠;当0a >时,要使()h x 在()0,5a +上有小于零的解,则需要满足01052a a ∆>⎧⎪⎨<<+⎪⎩, 因此12001052a a a ∆=->⎧⎪⎨<<+⎪⎩,若11,10,20,2a a <∴>与15520a +<+矛盾,因此0a >(舍去); 当0a <时,要使()h x 在()0,5a +上有小于零的解,因(0)50,(5)0,h h a =>+<4a ∴>-或6a <-,因为5a >-因此40a -<<,此时55n a ≤+<, ,m n Z ∈,则4m n <≤,因此n 可以取到最大值为4,则40455(3)920a a h a -<<⎧⎪-≤+<⎨⎪=+≤⎩,因此219a -≤≤- 综上,n 可以取到最大值为4,219a -≤≤-。
山东普通高中会考数学真题及答案A
山东普通高中会考数学真题及答案A一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3} 2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.34.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.45.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.36.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0 8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.9.(3分)实数的值等于()A.1 B.2 C.3 D.410.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.712.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.213.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.816.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.220.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.22.(3分)已知,那么=()A.B.C.D.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5 330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?参考答案与解析一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1},B={﹣1,1,3},∴A∩B={1}.故选:B.【点评】本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)【考点】96:平行向量(共线).菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用数乘向量运算法则直接求解.【解答】解:∵平面向量,满足=2,=(1,2),∴=2(1,2)=(2,4).故选:D.【点评】本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.3【考点】II:直线的一般式方程与直线的平行关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:∵直线y=kx﹣1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.4【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数的图象可得f(﹣1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.【点评】本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.3【考点】4B:指数函数的单调性与特殊点.菁优网版权所有【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】由题意代入点的坐标,即可求出a的值.【解答】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.【点评】本题考查了指数函数的图象和性质,属于基础题.6.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110【考点】B3:分层抽样方法.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】根据分层抽样的定义和题意知,抽样比例是,根据样本的人数求出应抽取的人数【解答】解:根据分层抽样的定义和题意,则高中学生中抽取的人数 600×=60(人).故选:A.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0【考点】IJ:直线的一般式方程与直线的垂直关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.【解答】解:∵直线l与直线x﹣y﹣3=0垂直,∴直线l的斜率为﹣1,则y﹣0=﹣(x﹣0),即x+y=0故选:C.【点评】本题考查了直线方程的求法,属于基础题.8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.【考点】9H:平面向量的基本定理.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用.【分析】直接利用向量的线性运算求出结果.【解答】解:在矩形ABCD中,E为CD中点,所以:,则:=.故选:A.【点评】本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.(3分)实数的值等于()A.1 B.2 C.3 D.4【考点】41:有理数指数幂及根式;4H:对数的运算性质.菁优网版权所有【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】直接利用有理指数幂及对数的运算性质求解即可.【解答】解:=2+0=2.故选:B.【点评】本题考查了有理指数幂及对数的运算性质,是基础题.10.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.【解答】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;,为指数函数,在区间(0,+∞)上为减函数;y=lgx中,在区间(0,+∞)为增函数;故选:C.【点评】本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.7【考点】C2:概率及其性质.菁优网版权所有【专题】38:对应思想;4R:转化法;5I:概率与统计.【分析】根据互斥事件概率加法公式即可得到其发生的概率的大小.【解答】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.【点评】此题考查概率加法公式及互斥事件,是一道基础题.12.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】38:对应思想;4R:转化法;5A:平面向量及应用.【分析】根据向量的数量积的运算性质计算即可.【解答】解:∵正△ABC的边长为1,∴•=||•||cos A=1×1×cos60°=,故选:B.【点评】本题考查了向量的数量积的运算,是一道基础题.13.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.【考点】HP:正弦定理.菁优网版权所有【专题】38:对应思想;4R:转化法;58:解三角形.【分析】根据正弦定理直接代入求值即可.【解答】解:由正弦定理==,得=,解得:b=5,故选:B.【点评】本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.【考点】J2:圆的一般方程.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;5B:直线与圆.【分析】根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.【解答】解:根据题意,圆C:x2+y2﹣2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d==1;故选:C.【点评】本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.8【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11:计算题;31:数形结合;4O:定义法;5F:空间位置关系与距离.【分析】该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.【解答】解:∵在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.【点评】本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【考点】52:函数零点的判定定理.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;51:函数的性质及应用.【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:由函数f(x)=x3﹣5可得f(1)=1﹣5=﹣4<0,f(2)=8﹣5=3>0, 故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.【点评】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有【专题】35:转化思想;56:三角函数的求值.【分析】利用诱导公式化简可得答案.【解答】解:由sin130°=sin(180°﹣50°)=sin50°.∴与sin130°相等的是sin50°故选:A.【点评】题主要考察了诱导公式的应用,属于基本知识的考查.18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin x的图象向右平移个单位得到y=g(x)=sin(x﹣)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x﹣),故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.2【考点】3H:函数的最值及其几何意义.菁优网版权所有【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【解答】解:当x>﹣1时,f(x)=x2的最小值为f(0)=0;当x≤﹣1时,f(x)=﹣x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.【点评】本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④【考点】2K:命题的真假判断与应用.菁优网版权所有【专题】38:对应思想;48:分析法;5F:空间位置关系与距离.【分析】由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.【解答】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.【点评】本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.【解答】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是,故选:D.【点评】本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22.(3分)已知,那么=()A.B.C.D.【考点】GP:两角和与差的三角函数.菁优网版权所有【专题】35:转化思想;36:整体思想;56:三角函数的求值.【分析】直接利用同角三角函数关系式的应用求出结果.【解答】解:知,那么,则:=sin==, 故选:D.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.【考点】HR:余弦定理.菁优网版权所有【专题】38:对应思想;4O:定义法;58:解三角形.【分析】先判断△ABC的最大内角为A,再利用余弦定理计算cos A的值.【解答】解:△ABC中,,∴△ABC的最大内角为A,且cos A===.故选:A.【点评】本题考查了余弦定理的应用问题,是基础题.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万【考点】F4:进行简单的合情推理.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.【解答】解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D错误.【点评】本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题.25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 【考点】LW:直线与平面垂直.菁优网版权所有【专题】38:对应思想;4R:转化法;5F:空间位置关系与距离.【分析】根据面面垂直的性质定理判断即可.【解答】解:根据面面垂直的性质定理判定得:BC⊥底面PAC,故选:C.【点评】本题考查了面面垂直的性质定理,考查数形结合思想,是一道基础题.二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A= 2 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=2π(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4O:定义法;57:三角函数的图象与性质.【分析】(Ⅰ)由f(0)=1求得A的值;(Ⅱ)由正弦函数的周期性求得f(x)的最小正周期;(Ⅲ)由正弦函数的图象与性质求得f(x)的最小值以及对应x的值.【解答】解:(Ⅰ)函数由f(0)=A sin=A=1,解得A=2;(Ⅱ)函数f(x)=2sin(x+),∴f(x)的最小正周期为T=2π;(Ⅲ)令x+=2kπ﹣,k∈Z;x=2kπ﹣,k∈Z;此时函数f(x)取得最小值为﹣2.故答案为:(Ⅰ)2,(Ⅱ)2π.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有【专题】14:证明题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)由D、E分别为PB、PC的中点,得DE∥BC,由此能证明BC∥平面ADE.(Ⅱ)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.【解答】证明:(Ⅰ)在△PBC中,∵D、E分别为PB、PC的中点,∴DE∥BC,∵BC⊄平面ADE,DE⊂平面ADE,∴BC∥平面ADE.(Ⅱ)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r= 5 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.【考点】J9:直线与圆的位置关系.菁优网版权所有【专题】34:方程思想;4R:转化法;5B:直线与圆.【分析】(Ⅰ)直接由已知条件可得r;(Ⅱ)存在.由(Ⅰ)可得圆O的方程为:x2+y2=25,依题意,A(0,5),B(5,0),求出|AB|=,直线AB的方程为x+y﹣5=0,又由△PAB的面积,可得点P到直线AB的距离为,设点P(x0,y0),解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,求解即可得答案.【解答】解:(Ⅰ)r=5;(Ⅱ)存在.∵r=5,∴圆O的方程为:x2+y2=25.依题意,A(0,5),B(5,0),∴|AB|=,直线AB的方程为x+y﹣5=0,又∵△PAB的面积为15,∴点P到直线AB的距离为,设点P(x0,y0),∴,解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,解得或.∴存在点P(﹣4,3)或P(3,﹣4)满足题意.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,是中档题.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?【考点】5C:根据实际问题选择函数类型.菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(Ⅰ)将x=2,y=2代入计算即可,(Ⅱ)函数解析式为y=,令y=20﹣4=16,解得x=10,问题得以解决, (Ⅲ)根据指数函数的性质可得y=<30,问题得以解决【解答】解:(Ⅰ)r=,故答案为:(Ⅱ)根据题意,该树木的高度为16米时需要及时修剪这颗行道数,函数解析式为y=,令y=20﹣4=16,解得x=10,故这棵行道树自然生长10年必须修剪;(Ⅲ)因为>0,所以1+28×>1,所以y=<30,所以该电力线距离地面至少37米,这这棵行道树一直自然生长,始终不会影响电力线段安全.【点评】本题考查了函数在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/25 12:12:34;用户:qgjyuser10448;邮箱:qgjyuser10448.21957750;学号:21985455。
2023年6月福建高中学业水平合格性考试数学试卷真题(答案详解)
2023年6月福建高中学业水平合格性考试数学试卷真题(答案详解)一、选择题1.甲、乙两数的和是15,乙、丙两数的和是23,已知甲、丙两数的和是35,求甲、乙、丙三数的和。
题解:设甲、乙、丙三数分别为x、y、z,根据题意可得以下等式:x + y = 15 (1)y + z = 23 (2)x + z = 35 (3)将上述三个等式相加,得到:2x + 2y + 2z = 73x + y + z = 73 / 2 = 36.5所以甲、乙、丙三数的和为36.5。
2.若函数 f(x) = ax^2 + bx + c 的图象经过点 (1, 2),并且在 x = 2 处的导数为 3,求 a、b、c 的值。
题解:由题意可得以下等式:a +b +c = 2 (1)4a + 2b + c = 3 (2)将等式 (1) 乘以 2,减去等式 (2) 的两倍,得到:2a - b = 1 (3)将等式 (1) 乘以 4,减去等式 (2) 的四倍,得到:4a - b = -1 (4)解方程组 (3) 和 (4) 可得 a = 1,b = -1,c = 2。
二、填空题1.若正方形 ABCD 的边长为 x,则其面积为 \\\_。
解:正方形的面积为边长的平方,所以面积为 x^2。
2.若对于任意实数 x,都有 f(x) = f(-x),则函数 f(x) 的对称轴方程为 \\\_。
解:函数 f(x) 的对称轴方程为 x = 0。
三、解答题1.一辆卡车开出150km/h的速度行驶了2小时后,由于发现车上货物不牢靠,司机停车重新安装货物,停车时间为30分钟,然后以120km/h的速度继续行驶,此后到达目的地还需行驶1小时。
求该卡车从出发到达目的地一共行驶了多少公里。
解:卡车在前2小时行驶了2 * 150 = 300公里。
停车30分钟相当于0.5小时,所以在120km/h的速度下行驶了0.5 * 120 = 60公里。
最后1小时行驶了1 * 120 = 120公里。
山东高二高中数学水平会考带答案解析
山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。
江苏普通高中会考数学真题及答案D
江苏普通高中会考数学真题及答案D一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1.2.3.6}.B={x|﹣2<x<3}.则A∩B= {﹣1.2} .【分析】根据已知中集合A={﹣1.2.3.6}.B={x|﹣2<x<3}.结合集合交集的定义可得答案.【解答】解: ∵集合A={﹣1.2.3.6}.B={x|﹣2<x<3}.∴A∩B={﹣1.2}.故答案为: {﹣1.2}【点评】本题考查的知识点是集合的交集及其运算.难度不大.属于基础题.2.(5分)复数z=(1+2i)(3﹣i).其中i为虚数单位.则z的实部是 5 .【分析】利用复数的运算法则即可得出.【解答】解: z=(1+2i)(3﹣i)=5+5i.则z的实部是5.故答案为: 5.【点评】本题考查了复数的运算性质.考查了推理能力与计算能力.属于基础题.3.(5分)在平面直角坐标系xOy中.双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量.即可求出双曲线﹣=1的焦距.【解答】解: 双曲线﹣=1中.a=.b=.∴c==.∴双曲线﹣=1的焦距是2.故答案为: 2.【点评】本题重点考查了双曲线的简单几何性质.考查学生的计算能力.比较基础.4.(5分)已知一组数据4.7.4.8.5.1.5.4.5.5.则该组数据的方差是0.1 .【分析】先求出数据4.7.4.8.5.1.5.4.5.5的平均数.由此能求出该组数据的方差.【解答】解: ∵数据4.7.4.8.5.1.5.4.5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1.∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为: 0.1.【点评】本题考查方差的求法.是基础题.解题时要认真审题.注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3.1] .【分析】根据被开方数不小于0.构造不等式.解得答案.【解答】解: 由3﹣2x﹣x2≥0得: x2+2x﹣3≤0.解得: x∈[﹣3.1].故答案为: [﹣3.1]【点评】本题考查的知识点是函数的定义域.二次不等式的解法.难度不大.属于基础题.6.(5分)如图是一个算法的流程图.则输出的a的值是9 .【分析】根据已知的程序框图可得.该程序的功能是利用循环结构计算并输出变量a的值.模拟程序的运行过程.可得答案.【解答】解: 当a=1.b=9时.不满足a>b.故a=5.b=7.当a=5.b=7时.不满足a>b.故a=9.b=5当a=9.b=5时.满足a>b.故输出的a值为9.故答案为: 9【点评】本题考查的知识点是程序框图.当循环次数不多.或有规律可循时.可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1.2.3.4.5.6个点的正方体玩具)先后抛掷2次.则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10.由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解: 将一颗质地均匀的骰子(一种各个面上分别标有1.2.3.4.5.6个点的正方体玩具)先后抛掷2次.基本事件总数为n=6×6=36.出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10.出现向上的点数之和不小于10包含的基本事件有:(4.6).(6.4).(5.5).(5.6).(6.5).(6.6).共6个.∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为: .【点评】本题考查概率的求法.是基础题.解题时要认真审题.注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列.S n是其前n项和.若a1+a22=﹣3.S5=10.则a9的值是20 .【分析】利用等差数列的通项公式和前n项和公式列出方程组.求出首项和公差.由此能求出a9的值.【解答】解: ∵{a n}是等差数列.S n是其前n项和.a1+a22=﹣3.S5=10.∴.解得a1=﹣4.d=3.∴a9=﹣4+8×3=20.故答案为: 20.【点评】本题考查等差数列的第9项的求法.是基础题.解题时要认真审题.注意等差数列的性质的合理运用.9.(5分)定义在区间[0.3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7 .【分析】画出函数y=sin2x与y=cosx在区间[0.3π]上的图象即可得到答案.【解答】解: 画出函数y=sin2x与y=cosx在区间[0.3π]上的图象如下:由图可知.共7个交点.故答案为: 7.【点评】本题考查正弦函数与余弦函数的图象.作出函数y=sin2x与y=cosx在区间[0.3π]上的图象是关键.属于中档题.10.(5分)如图.在平面直角坐标系xOy中.F是椭圆+=1(a>b>0)的右焦点.直线y=与椭圆交于B.C两点.且∠BFC=90°.则该椭圆的离心率是.【分析】设右焦点F(c.0).将y=代入椭圆方程求得B.C的坐标.运用两直线垂直的条件:斜率之积为﹣1.结合离心率公式.计算即可得到所求值.【解答】解: 设右焦点F(c.0).将y=代入椭圆方程可得x=±a=± a.可得B(﹣ a.).C( a.).由∠BFC=90°.可得k BF•k CF=﹣1.即有•=﹣1.化简为b2=3a2﹣4c2.由b2=a2﹣c2.即有3c2=2a2.由e=.可得e2==.可得e=.故答案为: .【点评】本题考查椭圆的离心率的求法.注意运用两直线垂直的条件: 斜率之积为﹣1.考查化简整理的运算能力.属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数.在区间[﹣1.1)上.f(x)=.其中a∈R.若f(﹣)=f().则f(5a)的值是﹣.【分析】根据已知中函数的周期性.结合f(﹣)=f().可得a值.进而得到f(5a)的值.【解答】解: f(x)是定义在R上且周期为2的函数.在区间[﹣1.1)上.f(x)=.∴f(﹣)=f(﹣)=﹣+a.f()=f()=|﹣|=.∴a=.∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣.故答案为: ﹣【点评】本题考查的知识点是分段函数的应用.函数的周期性.根据已知求出a值.是解答的关键.12.(5分)已知实数x.y满足.则x2+y2的取值范围是[.13] .【分析】作出不等式组对应的平面区域.利用目标函数的几何意义.结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解: 作出不等式组对应的平面区域.设z=x2+y2.则z的几何意义是区域内的点到原点距离的平方.由图象知A到原点的距离最大.点O到直线BC: 2x+y﹣2=0的距离最小.由得.即A(2.3).此时z=22+32=4+9=13.点O到直线BC: 2x+y﹣2=0的距离d==.则z=d2=()2=.故z的取值范围是[.13].故答案为: [.13].【点评】本题主要考查线性规划的应用.涉及距离的计算.利用数形结合是解决本题的关键.13.(5分)如图.在△ABC中.D是BC的中点.E.F是AD上的两个三等分点.•=4.•=﹣1.则•的值是.【分析】由已知可得=+.=﹣+.=+3.=﹣+3.=+2 .=﹣+2.结合已知求出2=.2=.可得答案.【解答】解: ∵D是BC的中点.E.F是AD上的两个三等分点.∴=+.=﹣+.=+3.=﹣+3.∴•=2﹣2=﹣1.•=92﹣2=4.∴2=.2=.又∵=+2.=﹣+2.∴•=42﹣2=.故答案为:【点评】本题考查的知识是平面向量的数量积运算.平面向量的线性运算.难度中档.14.(5分)在锐角三角形ABC中.若sinA=2sinBsinC.则tanAtanBtanC的最小值是8 .【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC.进而得到tanB+tanC=2tanBtanC.结合函数特性可求得最小值.【解答】解: 由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC.sinA=2sinBsinC. 可得sinBcosC+cosBsinC=2sinBsinC.①由三角形ABC为锐角三角形.则cosB>0.cosC>0.在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC.又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②.则tanAtanBtanC=﹣•tanBtanC.由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣.令tanBtanC=t.由A.B.C为锐角可得tanA>0.tanB>0.tanC>0.由②式得1﹣tanBtanC<0.解得t>1.tanAtanBtanC=﹣=﹣.=()2﹣.由t>1得.﹣≤<0.因此tanAtanBtanC的最小值为8.当且仅当t=2时取到等号.此时tanB+tanC=4.tanBtanC=2.解得tanB=2+.tanC=2﹣.tanA=4.(或tanB.tanC互换).此时A.B.C均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识.有一定灵活性.二、解答题(共6小题.满分90分)15.(14分)在△ABC中.AC=6.cosB=.C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理.即可求AB的长;(2)求出cosA、sinA.利用两角差的余弦公式求cos(A﹣)的值.【解答】解: (1)∵△ABC中.cosB=.∴sinB=.∵.∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角.∴sinA=.∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理.考查两角和差的余弦公式.考查学生的计算能力.属于基础题.16.(14分)如图.在直三棱柱ABC﹣A1B1C1中.D.E分别为AB.BC的中点.点F在侧棱B1B 上.且B1D⊥A1F.A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC.进而DE∥A1C1.据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D.进而可得平面B1DE⊥平面A1C1F.【解答】解: (1)∵D.E分别为AB.BC的中点.∴DE为△ABC的中位线.∴DE∥AC.∵ABC﹣A1B1C1为棱柱.∴AC∥A1C1.∴DE∥A1C1.∵A1C1⊂平面A1C1F.且DE⊄平面A1C1F.∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱.∴AA1⊥平面A1B1C1.∴AA1⊥A1C1.又∵A1C1⊥A1B1.且AA1∩A1B1=A1.AA1、A1B1⊂平面AA1B1B.∴A1C1⊥平面AA1B1B.∵DE∥A1C1.∴DE⊥平面AA1B1B.又∵A1F⊂平面AA1B1B.∴DE⊥A1F.又∵A1F⊥B1D.DE∩B1D=D.且DE、B1D⊂平面B1DE.∴A1F⊥平面B1DE.又∵A1F⊂平面A1C1F.∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明.以及平面与平面相互垂直的证明.把握常用方法最关键.难度不大.17.(14分)现需要设计一个仓库.它由上下两部分组成.上部的形状是正四棱锥P﹣A1B1C1D1.下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示).并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m.PO1=2m.则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m.则当PO1为多少时.仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍.可得PO1=2m时.O1O=8m.进而可得仓库的容积;(2)设PO1=xm.则O1O=4xm.A1O1=m.A1B1=•m.代入体积公式.求出容积的表达式.利用导数法.可得最大值.【解答】解: (1)∵PO1=2m.正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m.∴仓库的容积V=×62×2+62×8=312m3.(2)若正四棱锥的侧棱长为6m.设PO1=xm.则O1O=4xm.A1O1=m.A1B1=•m.则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x.(0<x<6).∴V′=﹣26x2+312.(0<x<6).当0<x<2时.V′>0.V(x)单调递增;当2<x<6时.V′<0.V(x)单调递减;故当x=2时.V(x)取最大值;即当PO1=2m时.仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积.导数法求函数的最大值.难度中档.18.(16分)如图.在平面直角坐标系xOy中.已知以M为圆心的圆M: x2+y2﹣12x﹣14y+60=0及其上一点A(2.4).(1)设圆N与x轴相切.与圆M外切.且圆心N在直线x=6上.求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点.且BC=OA.求直线l的方程;(3)设点T(t.0)满足: 存在圆M上的两点P和Q.使得+=.求实数t的取值范围.【分析】(1)设N(6.n).则圆N为: (x﹣6)2+(y﹣n)2=n2.n>0.从而得到|7﹣n|=|n|+5.由此能求出圆N的标准方程.(2)由题意得OA=2.k OA=2.设l: y=2x+b.则圆心M到直线l的距离: d=.由此能求出直线l的方程.(3)=.即||=.又||≤10.得t∈[2﹣2.2+2].对于任意t∈[2﹣2.2+2].欲使.只需要作直线TA的平行线.使圆心到直线的距离为.由此能求出实数t的取值范围.【解答】解: (1)∵N在直线x=6上.∴设N(6.n).∵圆N与x轴相切.∴圆N为: (x﹣6)2+(y﹣n)2=n2.n>0.又圆N与圆M外切.圆M: x2+y2﹣12x﹣14y+60=0.即圆M: ((x﹣6)2+(x﹣7)2=25.∴|7﹣n|=|n|+5.解得n=1.∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2.k OA=2.设l: y=2x+b.则圆心M到直线l的距离: d==.则|BC|=2=2.BC=2.即2=2.解得b=5或b=﹣15.∴直线l的方程为: y=2x+5或y=2x﹣15.(3)=.即.即||=||.||=.又||≤10.即≤10.解得t∈[2﹣2.2+2].对于任意t∈[2﹣2.2+2].欲使.此时.||≤10.只需要作直线TA的平行线.使圆心到直线的距离为.必然与圆交于P、Q两点.此时||=||.即.因此实数t的取值范围为t∈[2﹣2.2+2]..【点评】本题考查圆的标准方程的求法.考查直线方程的求法.考查实数的取值范围的求法.是中档题.解题时要认真审题.注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0.b>0.a≠1.b≠1).(1)设a=2.b=.①求方程f(x)=2的根;②若对于任意x∈R.不等式f(2x)≥mf(x)﹣6恒成立.求实数m的最大值;(2)若0<a<1.b>1.函数g(x)=f(x)﹣2有且只有1个零点.求ab的值.【分析】(1)①利用方程.直接求解即可.②列出不等式.利用二次函数的性质以及函数的最值.转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2.求出函数的导数.构造函数h(x)=+.求出g(x)的最小值为: g(x0).同理①若g(x0)<0.g(x)至少有两个零点.与条件矛盾.②若g(x0)>0.利用函数g(x)=f(x)﹣2有且只有1个零点.推出g(x0)=0.然后求解ab=1.【解答】解: 函数f(x)=a x+b x(a>0.b>0.a≠1.b≠1).(1)设a=2.b=.①方程f(x)=2;即: =2.可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立.即≥m()﹣6恒成立.令t=.t≥2.不等式化为: t2﹣mt+4≥0在t≥2时.恒成立.可得: △≤0或即: m2﹣16≤0或m≤4.∴m∈(﹣∞.4].实数m的最大值为: 4.(2)g(x)=f(x)﹣2=a x+b x﹣2.g′(x)=a x lna+b x lnb=a x[+]lnb.0<a<1.b>1可得.令h(x)=+.则h(x)是递增函数.而.lna<0.lnb>0.因此.x0=时.h(x0)=0.因此x∈(﹣∞.x0)时.h(x)<0.a x lnb>0.则g′(x)<0.x∈(x0.+∞)时.h(x)>0.a x lnb>0.则g′(x)>0.则g(x)在(﹣∞.x0)递减.(x0.+∞)递增.因此g(x)的最小值为: g(x0).①若g(x0)<0.x<log a2时.a x>=2.b x>0.则g(x)>0.因此x1<log a2.且x1<x0时.g(x1)>0.因此g(x)在(x1.x0)有零点.则g(x)至少有两个零点.与条件矛盾.②若g(x0)>0.函数g(x)=f(x)﹣2有且只有1个零点.g(x)的最小值为g(x0).可得g(x0)=0.由g(0)=a0+b0﹣2=0.因此x0=0.因此=0.﹣=1.即lna+lnb=0.ln(ab)=0.则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用.函数的导数的应用.基本不等式的应用.函数恒成立的应用.考查分析问题解决问题的能力.20.(16分)记U={1.2.….100}.对数列{a n}(n∈N*)和U的子集T.若T=∅.定义S T=0;若T={t1.t2.….t k}.定义S T=++…+.例如: T={1.3.66}时.S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列.且当T={2.4}时.S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100).若T⊆{1.2.….k}.求证: S T<a k+1;(3)设C⊆U.D⊆U.S C≥S D.求证: S C+S C∩D≥2S D.【分析】(1)根据题意.由S T的定义.分析可得S T=a2+a4=a2+9a2=30.计算可得a2=3.进而可得a1的值.由等比数列通项公式即可得答案;(2)根据题意.由S T的定义.分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1.由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D).B=∁D(C∩D).则A∩B=∅.进而分析可以将原命题转化为证明S C≥2S B.分2种情况进行讨论: ①、若B=∅.②、若B≠∅.可以证明得到S A≥2S B.即可得证明.【解答】解: (1)当T={2.4}时.S T=a2+a4=a2+9a2=30.因此a2=3.从而a1==1.故a n=3n﹣1.(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1.(3)设A=∁C(C∩D).B=∁D(C∩D).则A∩B=∅.分析可得S C=S A+S C∩D.S D=S B+S C∩D.则S C+S C∩D﹣2S D=S A﹣2S B.因此原命题的等价于证明S C≥2S B.由条件S C≥S D.可得S A≥S B.①、若B=∅.则S B=0.故S A≥2S B.②、若B≠∅.由S A≥S B可得A≠∅.设A中最大元素为l.B中最大元素为m.若m≥l+1.则其与S A<a i+1≤a m≤S B相矛盾.因为A∩B=∅.所以l≠m.则l≥m+1.S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=.即S A≥2S B.综上所述.S A≥2S B.故S C+S C∩D≥2S D.【点评】本题考查数列的应用.涉及新定义的内容.解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题.请选定其中两小题.并在相应的答题区域内作答.若多做.则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图.在△ABC中.∠ABC=90°.BD⊥AC.D为垂足.E为BC的中点.求证: ∠EDC=∠ABD.【分析】依题意.知∠BDC=90°.∠EDC=∠C.利用∠C+∠DBC=∠ABD+∠DBC=90°.可得∠ABD=∠C.从而可证得结论.【解答】解: 由BD⊥AC可得∠BDC=90°.因为E为BC的中点.所以DE=CE=BC.则: ∠EDC=∠C.由∠BDC=90°.可得∠C+∠DBC=90°.由∠ABC=90°.可得∠ABD+∠DBC=90°.因此∠ABD=∠C.而∠EDC=∠C.所以.∠EDC=∠ABD.【点评】本题考查三角形的性质应用.利用∠C+∠DBC=∠ABD+∠DBC=90°.证得∠ABD=∠C 是关键.属于中档题.B.【选修4—2: 矩阵与变换】22.(10分)已知矩阵A=.矩阵B的逆矩阵B﹣1=.求矩阵AB.【分析】依题意.利用矩阵变换求得B=(B﹣1)﹣1==.再利用矩阵乘法的性质可求得答案.【解答】解: ∵B﹣1=.∴B=(B﹣1)﹣1==.又A=.∴AB==.【点评】本题考查逆变换与逆矩阵.考查矩阵乘法的性质.属于中档题.C.【选修4—4: 坐标系与参数方程】23.在平面直角坐标系xOy中.已知直线l的参数方程为(t为参数).椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A.B两点.求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程.然后联立方程组.求出直线与椭圆的交点坐标.代入两点间的距离公式求得答案.【解答】解: 由.由②得.代入①并整理得..由.得.两式平方相加得.联立.解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程.考查了参数方程化普通方程.考查直线与椭圆位置关系的应用.是基础题.24.设a>0.|x﹣1|<.|y﹣2|<.求证: |2x+y﹣4|<a.【分析】运用绝对值不等式的性质: |a+b|≤|a|+|b|.结合不等式的基本性质.即可得证.【解答】证明: 由a>0.|x﹣1|<.|y﹣2|<.可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a.则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明.注意运用绝对值不等式的性质.以及不等式的简单性质.考查运算能力.属于基础题.附加题【必做题】25.(10分)如图.在平面直角坐标系xOy中.已知直线l: x﹣y﹣2=0.抛物线C: y2=2px (p>0).(1)若直线l过抛物线C的焦点.求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证: 线段PQ的中点坐标为(2﹣p.﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标.然后求解抛物线方程.(2): ①设点P(x1.y1).Q(x2.y2).通过抛物线方程.求解k PQ.通过P.Q关于直线l对称.点的k PQ=﹣1.推出.PQ的中点在直线l上.推出=2﹣p.即可证明线段PQ的中点坐标为(2﹣p.﹣p);②利用线段PQ中点坐标(2﹣p.﹣p).推出.得到关于y2+2py+4p2﹣4p=0.有两个不相等的实数根.列出不等式即可求出p的范围.【解答】解: (1)∵l: x﹣y﹣2=0.∴l与x轴的交点坐标(2.0).即抛物线的焦点坐标(2.0).∴.∴抛物线C: y2=8x.(2)证明: ①设点P(x1.y1).Q(x2.y2).则: .即: .k PQ==.又∵P.Q关于直线l对称.∴k PQ=﹣1.即y1+y2=﹣2p.∴.又PQ的中点在直线l上.∴==2﹣p.∴线段PQ的中点坐标为(2﹣p.﹣p);②因为Q中点坐标(2﹣p.﹣p).∴.即∴.即关于y2+2py+4p2﹣4p=0.有两个不相等的实数根.∴△>0.(2p)2﹣4(4p2﹣4p)>0.∴p∈.【点评】本题考查抛物线方程的求法.直线与抛物线的位置关系的应用.考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m.n∈N*.n≥m.求证: (m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*.当n=m时.验证等式成立;再假设n=k(k≥m)时命题成立.推导出当n=k+1时.命题也成立.由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解: (1)7=﹣4×=7×20﹣4×35=0.证明: (2)对任意m∈N*.①当n=m时.左边=(m+1)=m+1.右边=(m+1)=m+1.等式成立.②假设n=k(k≥m)时命题成立.即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1). 当n=k+1时.左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=.右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2).∴=(m+1).∴左边=右边.∴n=k+1时.命题也成立.∴m.n∈N*.n≥m.(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明.是中档题.解题时要认真审题.注意组合数公式和数学归纳法的合理运用.。
高中数学会考模拟试题(附答案)
高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每题5分,总分值60分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,那么=)(B C A U 〔 〕A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为〔 〕 A .6π B .3π C .23π D .56π3.函数y = 〕A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞4.某赛季,甲、乙两名篮球运发动都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,那么甲、乙两名运发动得分的平均数分别为〔 〕 A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,那么点P 到点A 的距离小于1的概率为〔 〕A .4π B .14π- C .8π D .18π-6.向量a 与b 的夹角为120,且1==a b ,那么-a b 等于〔 〕 A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示〔单位:cm 〕,〔 A .212cm π B. 215cm π C. 224cm πD. 236cm π8.假设372log πlog 6log 0.8a b c ===,,,那么〔 〕 A . a b c >> B . b a c >> C . c a b >>D . b主视图6侧视图图2图19.函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,那么函数)(x f 的解析式是〔 〕A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,那么这个三角形最小角的余弦值为〔 〕A .378 B .34C .74D .18 11.在等差数列{}n a 中, 284a a +=,那么 其前9项的和9S 等于 ( )A .18B .27C .36D .912.实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 那么z=y-x 的最大值为〔 〕A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是〔 〕A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫⎝⎛-0,21 C .⎪⎭⎫ ⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是〔 〕 A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于〔 〕 A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M 〔3,0〕作圆的割线l ,使它被该圆截得的线段最短,那么直线l 的方程是〔 〕A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每题5分,总分值20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,假设输入的x 值为3, 那么输出的()h x 的值为 .19.假设函数84)(2--=kx x x f 在[]8,5上是单调函数,那么k的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,那么这个球的外表积是21.两条直线82:,2)3(:21-=+=++y mx l y m x l . 假设21l l ⊥,那么m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,总分值80分. 解答须写出文字说明、证明过程和演算步骤. 24.〔本小题总分值10分〕在△ABC 中,角A ,B ,C 成等差数列.〔1〕求角B 的大小;〔2〕假设()sin A B +=sin A 的值.25.:a 、b 、c 是同一平面内的三个向量,其中a =〔1,2〕 〔Ⅰ〕假设|c |52=,且a c //,求c 的坐标; 〔Ⅱ〕假设|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.〔本小题总分值12分〕如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.〔1〕求证://PB 平面ACE ;〔2〕假设四面体E ACD -的体积为23,求AB 的长.图427.〔本小题总分值12分〕某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取假设干人组成调查小组,有关数据见下表〔单位:人〕 〔1〕求x ,y 的值;〔2〕假设从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. 〔本小题总分值12分〕数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.〔1〕求数列{}n a 与{}n b 的通项公式;〔2〕求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. 〔本小题总分值12分〕直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S 〔其中O 为坐标原点〕.〔1〕当0k =,02b <<时,求S 的最大值; 〔2〕当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查根本知识和根本运算.共4小题,每题5分,总分值20分.13.()22225x y ++=〔或224210x y y ++-=〕 14.915.()0,+∞〔或[)0,+∞〕 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:〔1〕在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.〔2〕方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由〔1〕知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解〔Ⅰ〕设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分〔Ⅱ〕0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……〔※〕 ,45)25(||,5||222===b a 代入〔※〕中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.〔1〕证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .〔2〕解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,那么PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:〔1〕由题意可得,3243648x y==, 解得2x =,4y =.〔2〕记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,那么从兴趣小组A ,B 抽取的5人中选2人作专题发言的根本领件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,那么X 包含的根本领件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 应选中的2人都来自兴趣小组B 的概率为310.28.解:〔1〕因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. 〔2〕由〔1〕可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 那么 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:〔1〕当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.〔2〕设圆心O 到直线2y kx =+的距离为d,那么d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB d k=⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。
高中数学会考试卷
高中数学会考试卷第一卷(选择题共60 分)一、选择题:本大题共14 小题:第( 1)—( 10)题每小题 4 分,第( 11) - ( 14)题每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={0, 1, 2,3, 4} ,B={0, 2,4, 8} ,那么 A∩ B 子集的个数是:()A、6个B、7个C、8 个D、9个(2)式子 4· 5的值为:()A、 4/5B、5/4C、 20 D 、1/20(3)已知 sin θ =3/5,sin2θ<0,则tg(θ /2)的值是:()A、-1/2 B 、1/2 C 、1/3 D 、3(4)若 log a (a 2 +1)<log a 2a<0,则 a 的取值范围是:()A、( 0,1) B 、 (1/2,1) C、(0,1/2) D、(1,+∞)(5)函数 f(x)= π/2+arcsin2x 的反函数是()A、 f -1 (x)=1/2sinx,x ∈ [0, π] B 、 f -1 (x)=-1/2sinx,x ∈ [0, π ]C 、 f -1 (x)=-1/2cosx,x ∈ [0, π ]D 、 f -1 (x)=1/2cosx,x ∈ [0, π](6)复数 z=(+ i) 4 (-7-7i) 的辐角主值是:()A、π/ 12 B 、 11π/12 C 、19π /12 D 、 23π /12(7)正数等比数列a1 ,a 2 ,a 8的公比 q≠ 1, 则有:()A、 a1+a8 >a4 +a5 B 、 a1 +a8<a4 +a5 C、 a1+a8=a4 +a5 D、 a1+a8与 a4+a5大小不确定2 2(8)已知 a、 b∈R,条件 P: a +b ≥ 2ab、条件 Q:,则条件P 是条件 Q 的()D 、既不充分也不必要条件(9)椭圆的左焦点F1,点 P 在椭圆上,如果线段PF1的中点 M在 Y 轴上,那么 P 点到右焦点F2的距离为:()A、 34/5B、 16/5C、 34/25D、16/25(10)已知直线l 1与平面α成π /6 角,直线l 2与 l 1成π /3 角,则 l 2与平面α所成角的范围是:()A、 [0 ,π /3]B、[π/3,π/2] C[π /6,π /2]、D、[0,π/2](11)已知,b为常数,则a 的取值范围是:()A、 |a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过 3 分钟漏完。
2023年福建高中数学会考试卷
选择题:
1. 设函数f(x) = 2x^2 - 3x + 1,g(x) = x + 2,则f(g(1)) 的值为:
A. 2
B. 3
C. 4
D. 5
2. 已知直线L 过点(2, 1) 和点(-1, 3),则直线L 的斜率为:
A. -2
B. -1
C. 1
D. 2
3. 设集合A = {x | x ∈Z, 1 ≤ x ≤ 8},B = {x | x ∈Z, 3 ≤ x ≤ 9},则A ∪B 的元素个数为:
A. 6
B. 7
C. 8
D. 9
填空题:
1. 已知函数y = -2x^2 + bx - 5 的图像经过点(2, -15),则常数b 的值为______.
2. 函数y = mx + 2 的图像与直线y = 3x + 1 平行,求常数m 的值为______.
3. 函数y = ax^2 + bx + c 的图像经过点(1, 2),(-3, -5),(0, 1),求a, b, c 的值分别为______, ______, ______.
应用题:
1. 甲、乙两个人同时从相距15 km 的起点出发,甲以每小时4 km 的速度向前走,乙以每小时6 km 的速度向前走,问多长时间后甲能追上乙?
2. 甲、乙、丙分别独立工作制造零件。
甲需要3 个小时制造12 个零件,乙需要5 个小时制造15 个零件,丙需要4 个小时制造多少个零件?
3. 一个长方形花坛的长和宽比为3:5,现在要扩大花坛的长和宽各增加2 米,使得新花坛的长和宽比为4:7,求原来花坛的周长是多少米?。
2023年高中数学会考试卷
2023年高中数学会考试卷第一部分:选择题1. 下列哪个数是一个无理数?A) √4B) πC) 3/4D) 0.252. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(2) 的值是多少?A) 4B) 5C) 6D) 73. 在三角形 ABC 中,∠B = 60°,BC = 8,AC = 10,求 AB 的长度。
A) 2B) 4C) 6D) 84. 一辆汽车以每小时60 公里的速度行驶,行驶3 小时后,行驶的距离是多少?A) 120 公里B) 160 公里C) 180 公里D) 240 公里5. 若 3x - 2y = 4,5x + 2y = 7,则 x 的值是多少?A) 1B) 2C) 3D) 46. 一个边长为 3 的正方形内接于一个圆,这个圆的直径是多少?A) 1B) 2C) 3D) 47. 一根长 20 厘米的杆子,被 3 个点分成 4 个部分,其中相邻两部分的长度比是 2:3:4,求最长的部分的长度。
A) 4 厘米B) 6 厘米C) 8 厘米D) 10 厘米8. 已知 a, b, c 为实数,且a ≠ 0,若方程 ax^2 + bx + c = 0 有两个相等的根,则b 的值是多少?A) 0B) 1C) -1D) 2第二部分:填空题1. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(0) 的值是多少?2. 解方程 2x + 5 = 15 的解是多少?3. 已知等差数列的首项是 2,公差是 3,求第 5 项的值。
4. 一条直线通过点 (2, 4) 和 (5, 10),求这条直线的斜率。
5. 解方程 4x^2 - 16 = 0 的解是多少?6. 一个 45°-45°-90°的直角三角形的斜边长是 8,求直角边的长度。
7. 一辆汽车以每小时 80 公里的速度行驶,行驶 2.5 小时后,行驶的距离是多少?8. 已知 2x - 3y = 7 和 3x + 4y = 5,求 x 和 y 的值。
山西普通高中会考数学真题及答案A
山西普通高中会考数学真题及答案A1.已知两条不同直线、,两个不同平面、,给出下列命题:①若∥,则平行于内的所有直线;②若,且⊥,则⊥;③若,,则⊥;④若,且∥,则∥;其中正确命题的个数为()A.1个B.2个C.3个D.4个答:A分析:试题分析:因为若∥,则与内的直线平行或异面,故①错;因为若且⊥,,则∥或与相交,故②错;③就是面面垂直的判定定理,故③正确;因为若,且∥,则∥或异面,故④错,故选A考点:空间线面平行与垂直的判定与性质,空间面面平行与垂直的判定与性质2.( )A.B.C.D.不存在答:C分析:试题分析:.考点:定积分的运算.3.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线答:D分析:试题分析:根据题意,由于点到图形上每一个点的距离的最小值称为点到图形的距离,平面内到定圆的距离与到定点的距离相等的点可能满足圆的定义,以及椭圆的定义,和双曲线的定义,不可能为直线,故选D.考点:新定义点评:主要是考查了新定义的运用,属于基础题。
4.极坐标方程表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆答:C分析:试题分析:方程可化为或,所以表示的曲线为一条直线和一个圆.考点:本小题主要考查极坐标的应用.点评:解决本小题时,不要忘记造成漏解.5.用5种不同颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则不同的涂色方法种数为()A.120B.160C. 180D.240答:C分析:试题分析:若A,C的颜色相同时:第一步涂A,C有5种方法,第二步涂B有4种方法,第三步涂D有4种方法,共计种;若A,C的颜色不同时:第一步涂A有5种方法,第二步涂B有4种方法,第三部涂C有3种方法,第四步涂D有2种方法,共计种方法,所以有180种方法考点:分步计数原理点评:完成一件事需要n部,第一步有方法,第二步有方法第n步有方法,则总的方法数有种方法6.抛物线的焦点坐标为()A.B.C.D.答:D分析:试题分析:抛物线整理为,焦点在y轴上,所以焦点为考点:抛物线标准方程及性质点评:抛物线标准方程有4个:焦点在x轴上,焦点在y轴上,其中,其焦点依次为,求抛物线焦点先要将其整理为标准方程7.如图,面,为的中点,为面内的动点,且到直线的距离为,则的最大值()A.B.C.D.答:B分析:试题分析:解:空间中到直线CD的距离为的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,b=,a=,则c=1,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角,在短轴的端点取得最大,故为60°.故选B 考点:椭圆的简单几何性质点评:本题是立体几何与解析几何知识交汇试题,题目新,考查空间想象能力,计算能力.8.如果,,那么直线不通过()A.第一象限B.第二象限C.第三象限D.第四象限答:C分析:试题分析:由得,所以直线不通过第三象限。
安徽普通高中会考数学真题及答案
2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。
因此,答案为A。
2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。
3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。
2023年数学会考试卷
2023年数学会考试卷一、选择题(共45分)1. 已知正整数n满足n² - 3n + 2 = 0,那么n的值为:A) -1B) 1C) 2D) 32. 设集合A = {x | 2 ≤ x < 7},集合B = {x | 1 ≤ x < 8},则集合A ∩B的元素个数为:A) 1B) 2C) 3D) 43. 在数列1,2,4,8,...中,第n项为2^(n-1),则第10项的值为:A) 1024B) 512C) 256D) 1284. 若α为角度A的对边上的角,β为角A的邻边上的角,则α+β的值为:A) 0°B) 45°C) 90°D) 180°5. 已知两个正整数x和y满足x + y = 10,x - y = 4,那么x的值为:A) 3B) 7C) 5D) 2(以下省略20道选择题)二、填空题(共20分)1. 若x² - 5x + 6 = 0,则x的两个解分别为______和______。
2. 子集A = {1, 2, 3}的幂集的子集个数为______。
3. 若三角形ABC的周长为15 cm,边长分别为x cm,y cm和z cm,且x:y:z = 3:4:5,则x的长度为______ cm。
4. 设函数f(x) = x² + bx + c,其中b和c为实数常数,若f(1) = 3,f(2) = 4,则b + c的值为______。
5. 已知两个有理数的加法逆元分别为-5/6和7/8,则这两个有理数之和为______。
(以下省略15道填空题)三、解答题(共60分)1. 解方程:2x + 5 = 172. 计算π的值,取结果保留到小数点后四位。
3. 计算:(-3) × (-4) ÷ 24. 判断以下陈述是否正确,并给出理由:a) 正整数与负整数相乘的结果是一个负数。
b) 在实数集上,存在一个数x,使得x × 0 = 1。
甘肃普通高中会考数学真题及答案A
甘肃普通高中会考数学真题及答案A一、选择题:本大题共10小题,每小题3分,共30分,每小只有一个正确选项.1.(3分)下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)在0,2,﹣3,﹣这四个数中,最小的数是()A.0 B.2 C.﹣3 D.﹣【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3<﹣<0<2,所以最小的数是﹣3.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.(3分)使得式子有意义的x的取值范围是()A.x≥4 B.x>4 C.x≤4 D.x<4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使得式子有意义,则:4﹣x>0,解得:x<4,即x的取值范围是:x<4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.(3分)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.5.(3分)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°【分析】直接利用已知角的度数结合平行线的性质得出答案.【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6.(3分)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.【点评】此题主要考查了点的坐标,正确得出m的值是解题关键.7.(3分)若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或0【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.(3分)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3分)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【分析】由两个班的平均数相同得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C不正确;由两个班的中位数得出选项D不正确;即可得出结论.【解答】解:A、甲、乙两班的平均水平相同;正确;B、甲、乙两班竞赛成绩的众数相同;不正确;C、甲班的成绩比乙班的成绩稳定;不正确;D、甲班成绩优异的人数比乙班多;不正确;故选:A.【点评】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.10.(3分)如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac <b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>时,y随着x的增大而增大,故⑤错误;故选:C.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x3y﹣4xy=xy(x+2)(x﹣2).【分析】先提取公因式xy,再利用平方差公式对因式x2﹣4进行分解.【解答】解:x3y﹣4xy,=xy(x2﹣4),=xy(x+2)(x﹣2).【点评】本题是考查学生对分解因式的掌握情况.因式分解有两步,第一步提取公因式xy,第二步再利用平方差公式对因式x2﹣4进行分解,得到结果xy(x+2)(x﹣2),在作答试题时,许多学生分解不到位,提取公因式不完全,或者只提取了公因式.12.(3分)不等式组的最小整数解是0 .【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.(3分)分式方程=的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x+6=5x+5,解得:x=,经检验x=是分式方程的解.故答案为:.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)在△ABC中∠C=90°,tan A=,则cos B=.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tan A=,设a=x,b=3x,则c=2x,∴cos B==.故答案为:.【点评】此题考查的知识点是特殊角的三角函数值,关键明确求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.15.(3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为(18+2)cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).故答案为(18+2)cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、16.BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为2﹣.【分析】根据S阴=S△ABC﹣2•S扇形ADE,计算即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2,∴AB=2,∠A=∠B=45°,∵D是AB的中点,∴AD=DB=,∴S阴=S△ABC﹣2•S扇形ADE=×2×2﹣2×=2﹣,故答案为:2﹣【点评】本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.17.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C 落在AB边上的F处,则CE的长为.【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10, 在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=,故答案为.【点评】本题考查了矩形,熟练掌握矩形的性质以及勾股定理是解题的关键.18.(3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=1010 .【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【解答】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当图中有2019个菱形时,2n﹣1=2019,n=1010,故答案为:1010.【点评】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.三、解答题(一)本大共5小题,共26分.解答应写出必要的文字说明,证明过程成演算步骤.19.(4分)计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1﹣,=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC 两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)【分析】根据角平分线的作法、线段垂直平分线的作法作图即可.【解答】解:如图,点M即为所求,【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键.21.(6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【分析】设共有x人,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设共有x人,根据题意得:+2=,去分母得:2x+12=3x﹣27,解得:x=39,∴=15,则共有39人,15辆车.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.22.(6分)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM和DM的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题.【解答】解:连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.23.(6分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有6种等可能的结果数,再找出数字之积能被2整除的结果数,然后根据概率公式求解.【解答】解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有2个, m,n都不是方程x2﹣5x+6=0的解的结果有2个,小明获胜的概率为=,小利获胜的概率为=,∴小明、小利获胜的概率一样大.【点评】本题考查了列表法与树状图法、一元二次方差的解法以及概率公式;画出树状图是解题的关键.四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤24.(7分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50整理数据:年级x<60 60≤x<80 80≤x<90 90≤x≤100七年级0 10 4 1八年级 1 5 8 1 (说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)分析数据:年级平均数中位数众数七年级76.8 75 75八年级77.5 80 81 得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出八年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.【分析】(1)由平均数和众数的定义即可得出结果;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些;(3)由七年级总人数乘以优秀人数所占比例,即可得出结果.【解答】解:(1)七年级的平均数为(74+81+75+76+70+75+75+79+81+70+74+80+91+69+82)=76.8,八年级的众数为81;故答案为:76.8;81;(2)八年级学生的体质健康状况更好一些;理由如下:八年级学生的平均数、中位数以及众数均高于七年级,说明八年级学生的体质健康情况更好一些;故答案为:八;(3)若七年级共有300名学生,则七年级体质健康成绩优秀的学生人数=300×=20(人).【点评】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.25.(7分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=上的两点,当x1<x2<0时,比较y2与y1的大小关系.【分析】(1)利用待定系数法即可解决求问题.(2)根据对称性求出点D坐标,发现BD∥x轴,利用三角形的面积公式计算即可.(3)利用反比例函数的增减性解决问题即可.【解答】解:(1)∵反比例函数y=经过点B(2,﹣1),∴m=﹣2,∵点A(﹣1,n)在y=上,∴n=2,∴A(﹣1,2),把A,B坐标代入y=kx+b,则有,解得,∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=﹣.(2)∵直线y=﹣x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,﹣1),∵B(2,﹣1)∴BD∥x轴,∴S△ABD=×2×3=3.(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=﹣上的两点,且x1<x2<0,∴y1<y2.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.26.(8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.27.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,可得x2+62=(x+8)2﹣102,解方程即可解决问题.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,∴x2+62=(x+8)2﹣102,解得x=,∴BC==.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y 轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=AB(y D﹣y E),即可求解.【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形, 故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
普通高中数学会考试卷及答案(K12教育文档)
普通高中数学会考试卷及答案(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(普通高中数学会考试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为普通高中数学会考试卷及答案(word版可编辑修改)的全部内容。
高中数学学业水平测试题。