高考数学讲义含试题答案解析——不等关系与不等

合集下载

2020高考文科数学(人教版)一轮复习讲义:第41讲不等关系与不等式的性质含答案

2020高考文科数学(人教版)一轮复习讲义:第41讲不等关系与不等式的性质含答案

1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 3.二元一次不等式组与简单线性规划问题 (1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 4.基本不等式:ab ≤a +b2(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题. 5.合情推理与演绎推理(1)了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用. (2)了解演绎推理的重要性,掌握演绎推理的“三段论”,并能运用它们进行一些简单的推理. (3)了解合情推理与演绎推理之间的联系与差异. 6.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点. (2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.1.2014~2018年全国卷Ⅰ的考查情况2.2014~2018年全国卷Ⅱ的考查情况2018第14题线性规划,求最大值直接考查不等式的试题,主要是线性规划,2014年至2018年全国卷Ⅰ和卷Ⅱ考查线性规划的试题每年1道,占5分.主要考查线性目标函数的最值或范围,且线性目标函数一般是具体系数的函数,只有2014年全国卷Ⅰ目标函数中含有一个参数,由最值确定其参数值.难度一般是中等难度,2016年全国卷Ⅰ考查了线性规划的实际应用问题.直接考查推理与证明的试题只有2014年全国卷Ⅰ的第14题和2016年全国卷Ⅱ的第16题及2017年全国卷Ⅱ的第9题,都是考查演绎推理,难度中等.1.不等式与高中数学其他内容联系密切,在数学各分支中都有很广泛的应用.从近几年全国全国卷高考试题来看,纯粹考查不等式这一章的试题每年的分值占全卷的比例并不高,但从整套试卷来看,却处处分布着不等式的知识、方法和技巧.因此,在不等式的复习过程中,要重视不等式的“工具”作用,提高应用意识,会用不等式的知识和方法解决有关问题.在不等式这一部分的复习过程中,要注意以下问题:(1)复习不等式的性质时,注意培养严格的逻辑思维,分清一类性质是条件与结论的等价关系,另一类性质仅是由条件推导出结论.(2)对均值不等式常有求最值或证明不等式中结合其他知识进行考查,注意解题过程中对代数式进行适当的变形及化简,以达到利用均值不等式的三个条件即“一正、二定、三相等”.(3)不等式的解法以一元二次不等式的解法作为重点,要求掌握含参数一元二次不等式或可化为含参数的二次不等式的求解问题,同时注意三个二次间的联系.(4)线性规划是高考的热点内容,在高考中频繁出现,对线性规划的考查仍以线性目标函数的最值为重点,还可能以考查线性规划思想方法的形式出现,适当注意利用代数式的几何意义(距离、斜率、面积等)求最值及线性规划的实际应用.(5)应用问题与不等式结合考查,需要根据题意建立不等式,设法求解或利用均值不等式或函数的单调性求最值.(6)重视不等式的应用,注意不等式作为“工具性”知识在其他分支的应用,如求函数定义域、值域、单调性及不等式恒成立或有解等问题.2.在高考中,直接考查推理与证明的试题不多,但推理与证明贯穿于高中数学各章节,因此,本部分内容在高考中单独命题的可能性不大,仍然是以其他知识为载体,作为一种方法和思路考查有关内容.在备考时要注意:(1)高考对推理的考查以考查演绎推理为主,主要是在其他章节中结合具体的知识进行考查,如在立体几何中结合位置关系的证明,在导数中结合单调性的证明等进行考查.归纳、类比不仅是新课标创新要求的体现,同时也是复习的有效方法,如等差数列与等比数列之间的类比,圆锥曲线之间的类比等.(2)在直接证明和间接证明中,其主要有综合法、分析法、反证法等.在应用这些证明方法时,要注意过程的严谨、格式的规范.综合法是高考中考查最多的一种证明方法,它是从已知条件推导出结论,一般按照演绎推理进行,分析法是由结论追溯到条件的证明方法.反证法是从结论的反面成立出发,推出矛盾的一种间接证明方法,单独要求用反证法证明或举反例的题目不会很多,但是反证法作为一种数学思维模式在解决数学问题中却常常见到.第41讲不等关系与不等式的性质1.了解不等式的概念,理解不等式的性质.2.会比较两个代数式的大小.3.会利用不等式的性质解决有关问题.知识梳理1.不等式的定义用不等号“>、≥、<、≤、≠”将两个数学表达式连接起来,所得的式子叫不等式. 2.两个实数的大小比较(1)作差法.设a ,b ∈R ,则a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . (2)作商法.设a >0,b >0,则a b >1⇔a >b ;a b =1⇔a =b ;ab <1⇔a <b .3.不等式的基本性质①对称性:a >b ⇔b <a ;②传递性:a >b ,b >c ⇔a >c ; ③可加性:a >b ⇔a +c >b +c ;④不等式加法:a >b ,c >d ⇔a +c >b +d ;⑤可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ ac <bc ; ⑥不等式乘法:a >b >0,c >d ac >bd ;⑦不等式乘方:a >b >0⇒ a n >b n (n ∈N ,n ≥1); ⑧不等式开方:a >b >0⇒ na >nb (n ∈N ,n >1).1.倒数性质 (1)a >b ,ab 1a <1b ; (2)a <0<b1a <1b. 2.分数性质若a >b >0,m >0,则(1)真分数性质:b a <b +m a +m ;b a >b -ma -m (b -m >0);(2)假分数性质:a b >a +m b +m ;a b <a -mb -m (b -m >0).热身练习1.某地规定本地最低生活保障金不低于300元,若最低保障金用W 表示,则上述关系可以表示为(B) A .W >300 B .W ≥300 C .W <300 D .W ≤3002.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是(A) A .f (x )>g (x ) B .f (x )=g (x )C .f (x )<g (x )D .随x 的值的变化而变化因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1) =x 2-2x +2=(x -1)2+1>0, 所以f (x )>g (x ).3.“a +c >b +d ”是“a >b 且c >d ”的(A)A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件a >b 且c >d ⇒a +c >b +d .当取a =1,b =2,c =5,d =3时,满足a +c >b +d ,但不能推出a >b 且c >d ,故选A. 4.若a >b >0,c <d <0,则一定有(D) A.a c >b d B.a c <b d C.a d >b c D.a d <b c由c <d <0,cd1d <1c<0, 所以1-d >1-c >0,又a >b >0,所以-a d >-b c ,所以a d <b c.5.(2017·北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c的值依次为 -1,-2,-3(答案不唯一) .只要取一组满足条件的整数即可.如-1,-2,-3;-3,-4,-6;-4,-7,-10等.比较大小设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小.因为(x 2+y 2)(x -y )-(x 2-y 2)(x +y ) =(x -y )[x 2+y 2-(x +y )2]=-2xy (x -y ),因为x <y <0,所以xy >0,x -y <0,所以-2xy (x -y )>0.所以(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).比较大小的方法有作差法和作商法.①作差法:作差→变形→判断符号→结论.其中关键是变形,变形的方法有分解因式、配方、通分等. ②作商法:作商→变形→判断与1的大小关系→结论.1.(2017·全国卷Ⅰ·理)设x ,y ,z 为正数,且2x =3y =5z ,则(D) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z令t =2x =3y =5z ,因为x ,y ,z 为正数,所以t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5.所以2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,所以2x >3y .又因为2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,所以2x <5z ,所以3y <2x <5z .判断或证明大小关系下列命题:①若a >b ,则a 2>b 2; ②若a >b >0,c >d >0,则a d>b c; ③已知a ,b ,m 都是正数,并且a <b ,则a +m b +m >ab;④若a >b ,则a 3>b 3.其中,真命题的序号是__________.对于①,令a =1,b =-2有a >b ,但a 2>b 2不成立.故①为假命题. 对于②,因为c >d >0,1cd >0,所以1d >1c ,又a >b >0,所以a d >bc >0,所以a d>bc.故②为真命题. 对于③,因为a +m b +m -a b =m (b -a )(b +m )b >0.所以a +m b +m >a b,即③为真命题.对于④,因为y =x 3在(-∞,+∞)上是增函数, 所以当a >b 时,a 3>b 3.所以④为真命题.②③④(1)要判断一个不等式不成立,只需举出一个反例即可.而要判断一个不等式成立,一般需要证明. (2)判断大小关系,常用的方法有: ①利用不等式的性质;②利用比较法(如作差法或作商法);③利用函数的单调性或借助函数的图象.2.设a >b >1,c <0,给出下列三个结论: ①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ). 其中正确结论的序号是 ①②③ .①(方法一:利用不等式性质) 由a >b >1,1ab >0,得1b >1a ,又c <0,所以c a >cb ,故①正确.(方法二:利用作差比较法)因为c a -c b =c (b -a )ab >0,所以c a >c b .故①正确.②(方法一:利用作商比较法) 因为a >b >1,所以ab>1,c <0,所以a c b c =(a b)c<1,所以a c <b c .所以②正确.(方法二:利用函数的性质)由幂函数y =x c (c <0)在(0,+∞)上是减函数可知,当a >b >1时,a c <b c ,故②正确.③因为a >b >1,又c <0,所以a -c >b -c ,由对数函数的性质得:log b (a -c )>log a (a -c )>log a (b -c ),故③正确.不等式性质的应用若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9, 则z =x +2y 的最小值为__________.本题一般采用线性规划知识进行求解,也可用不等式的性质求解.因为2x +y ,x -y 的范围已经给出,若能将x +2y 用2x +y ,x -y 表示,则可利用2x +y 与x -y 的范围求出x +2y 的范围,利用不等式的性质进行求解,可化繁为简,迅速得到结果.因为x +2y =(2x +y )+y -x , 而3≤2x +y ≤9,-9≤y -x ≤-6, 所以-6≤x +2y ≤3,当⎩⎪⎨⎪⎧2x +y =3,y -x =-9,即x =4,y =-5时取到左边等号, 所以z 的最小值为-6.-6(1)不等式的性质中,同向不等式可以作加法运算,正的同向不等式可以作乘法运算.但如果涉及等号,能否取到最值,则要同时满足各个取等号的条件,这一点要特别注意.本题中,2x +y 与x -y 中的x ,y 不是独立的,而是相互制约的,因此,可把2x +y 与x -y 看作一个整体,把x +2y 用2x +y ,x -y 表示,再求出x +2y 的取值范围.即先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算,求得整体的范围.(2)将x +2y 用2x +y ,x -y 表示时,若不能直接观察得到,可采用待定系数法,设x +2y =m (2x +y )+n (x -y ),再比较得到m =1,n =-1.3.(2016·北京卷)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为(C)A .0B .3C .4D .52x +y =13(2x -y )+43(x +y )≤13×0+43×3=4.当且仅当⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,即⎩⎪⎨⎪⎧x =1,y =2时取等号,满足x ≥0, 所以(2x +y )max =4.1.比较数(式)的大小,常采用:(1)作差法,具体步骤:作差→变形→判断(与0比较)→结论;(2)作商法,具体步骤:作商→变形→判断(与1比较)→结论,必须注意分母的符号.2.运用不等式的基本性质解决不等式问题,要注意不等式成立的条件.有关判断性命题,主要依据是不等式的概念和性质.一般地,要判断一个命题为真命题,必须严格证明,要判断一个命题是假命题,只需举出反例,或者由题设中条件推出与结论相反的结果.3.求范围问题:(1)差的范围转化为和的范围.⎩⎨⎧ a <x <b c <y <d ⇒⎩⎪⎨⎪⎧a <x <b -d <-y <-c ⇒a -d <x -y <b -c . 这种方法在三角函数中求角的范围时经常用到. (2)商的范围转化为积的范围.(3)由M 1<f 1(x ,y )<N 1,M 2<f 2(x ,y )<N 2,求g (x ,y )的范围.常令g (x ,y )=mf 1(x ,y )+nf 2(x ,y ),用恒等关系求出m ,n ,再利用同向不等式相加求得范围.。

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

人教版高中数学必修二讲义专题03 不等关系与不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)专题03 不等关系与不等式 考点1:不等关系与不等式知识点一 基本事实两个实数a ,b ,其大小关系有三种可能,即a >b ,a =b ,a <b .思考 x 2+1与2x 两式都随x 的变化而变化,其大小关系并不显而易见.你能想个办法,比较x 2+1与2x 的大小吗?正确答案 作差:x 2+1-2x =( x -1)2≥0,所以x 2+1≥2x . 知识点二 重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.题型1:用不等式( 组)表示不等关系例1 《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票( 以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票. ……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h ( 米),物品外部长、宽、高尺寸之和为P ( 厘米),请用不等式表示下表中的不等关系.解 由题意可获取以下主要信息:( 1)身高用h ( 米)表示,物体长、宽、高尺寸之和为P ( 厘米);( 2)题中要求用不等式表示不等关系.参考解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20( 2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-( a 2b +ab 2)=( a 3-a 2b )+( b 3-ab 2) =a 2( a -b )+b 2( b -a )=( a -b )( a 2-b 2)=( a -b )2( a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,( a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵( x 3-1)-( 2x 2-2x )=x 3-2x 2+2x -1 =( x 3-x 2)-( x 2-2x +1)=x 2( x -1)-( x -1)2 =( x -1)( x 2-x +1)=( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴( x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 正确答案 C详细解析 对于A,x 应满足x ≤2 000,故A 错误;对于B,x ,y 应满足x <y ,故B 错误;C 正确;对于D,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm,人跑开的速度为每秒4 m,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x ( cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100正确答案 C详细解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关正确答案 A详细解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2C .y 1<y 2D .随x 值变化而变化 正确答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .( a +4)( b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 正确答案 C详细解析 由题意知a >4b ,根据面积公式可以得到( a +4)( b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.( 不用化简)正确答案 5x -2( 19-x )≥80,x ∈N *详细解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2( 19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 正确答案 |x -500|≤1详细解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________. 正确答案x 1+x 2≤12详细解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2( a -b )+a -b =( a -b )( a 2+1), 所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y ,得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130.∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .无法确定正确答案 B详细解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-( a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1( a 2-1)-( a 2-1)=( a 1-1)( a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12正确答案 A详细解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式( 组)将题中的不等关系表示为________.正确答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *)详细解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55( x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.( 填“>”“<”“=”) 正确答案 >详细解析 a 1b 1+a 2b 2-( a 1b 2+a 2b 1) =a 1( b 1-b 2)+a 2( b 2-b 1) =( b 1-b 2)( a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即( b 1-b 2)( a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 ( 1)如果a =b ,那么b =a . ( 2)如果a =b ,b =c ,那么a =c . ( 3)如果a =b ,那么a ±c =b ±c . ( 4)如果a =b ,那么ac =bc . ( 5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 ( 1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.正确答案 ①③详细解析 对于①,若ab >0,则1ab >0,又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-( -10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a ( b +m )<b ( a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.( 2)已知a >b >0,c <d <0.求证:3ad<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-a d>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 正确答案 C详细解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8( a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定正确答案 C详细解析 P 2=2a +13+2(a +6)(a +7),Q 2=2a +13+2(a +5)(a +8),因为( a +6)( a +7)-( a +5)( a +8)=a 2+13a +42-( a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b,则a >0,b <0B .若a >b ,b ≠0,则a b>1 C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d正确答案 A详细解析 对于A,∵1a >1b ,∴b -a ab>0, 又a >b ,∴b -a <0,∴ab <0,∴a >0,b <0,故A 正确;对于B,当a >0,b <0时,有a b<1,故B 错; 对于C,当a =10,b =2时,有10+1>2+3,但1<3,故C 错;对于D,当a =-1,b =-2时,有( -1)×( -1)>( -2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和a b的取值范围. 解 ∵15<b <36,∴-36<-b <-15,∴12-36<a -b <60-15,即-24<a -b <45.又136<1b <115,∴1236<a b <6015,即13<a b<4. 故-24<a -b <45,13<a b<4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________.正确答案 -32<2a -b <52详细解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12( a +b )-32( -a +b ), 结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |正确答案 A详细解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .( a -b )c 2≥0正确答案 D详细解析 ∵a >b ,∴a -b >0,∴( a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数正确答案 A详细解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 正确答案 C详细解析 利用性质可得A,B,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 正确答案 D详细解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 正确答案 a >0>b详细解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.正确答案 ②③详细解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=( a -b )( a 2+ab +b 2)=( a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<( -3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.正确答案 z >y >x详细解析 ∵a >b >c >0,y 2-x 2=b 2+( c +a )2-a 2-( b +c )2=2ac -2bc=2c ( a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.( 1)若a <b ,c <0,则c a <c b; ( 2)a c 3<b c 3,则a >b ; ( 3)若a >b ,且k ∈N *,则a k >b k ;( 4)若a >b ,b >c ,则a -b >b -c .解 ( 1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. ( 2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.( 3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.( 4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x ( a +b )+y ( a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52( a +b )<152,-2<-12( a -b )<-1,所以-92<52( a +b )-12( a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b正确答案 D详细解析 对于A,若c <0,其不成立;对于B,若a ,b 均小于0或a <0,其不成立;对于C,若a >0,b <0,其不成立;对于D,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 正确答案 C详细解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0. 所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c | 正确答案 C详细解析 对于A,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立;对于D,当c=0时,a|c|=b|c|,∴D不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a,b,c,d,已知a+b=c+d,a+d>b+c,a+c<b,则这四个小球由重到轻的排列顺序是( )A.d>b>a>c B.b>c>d>aC.d>b>c>a D.c>a>d>b正确答案A详细解析∵a+b=c+d,a+d>b+c,∴a+d+( a+b)>b+c+( c+d),即a>c.∴b<d.又a+c<b,∴a<b.综上可得,d>b>a>c.。

第2章不等式第1节不等关系与不等式课件高考数学一轮复习

第2章不等式第1节不等关系与不等式课件高考数学一轮复习
【答案】 必要且不充分
123
内容索引
3. (2023全国高三专题练习)若1<α<3,-4<β<2,则2α+|β|的取值范围 是________.
【分析】 根据绝对值定义求|β|的范围,再根据不等式性质求出结 果.
【解析】 因为-4<β<2,所以0≤|β|<4,又1<α<3,所以2<2α<6,所 以2<2α+|β|<10.
(2) 由题意,知 f(-1)=a-b, f(1)=a+b,f(-2)=4a-2b. 设 m(a+b)+n(a-b)=4a-2b, 则mm+-nn==4-,2, 解得mn==31,, 所以 f(-2)=(a+b)+3(a-b)=f(1)+3f(-1). 因为 1≤f(-1)≤2,2≤f(1)≤4, 所以 5≤f(-2)≤10, 故 f(-2)的取值范围是[5,10].
活动二 典型例题
题组一 比较两个数(式)的大小 1 (1) 已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小 关系是________; 【解析】 M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)(a2- 1).因为a1∈(0,1),a2∈(0,1),所以a1-1<0,a2-1<0,所以(a1-1)(a2- 1)>0,即M-N>0,所以M>N. 【答案】 M>N
【答案】 ②④
内容索引
不等式性质应用问题的常见类型及解题策略: (1) 不等式成立问题:熟记不等式性质的条件和结论是基础,灵活运 用是关键,要注意不等式性质成立的前提条件; (2) 与充分性、必要性相结合的问题:用不等式的性质分别判断p⇒q 和q⇒p是否成立,要注意特殊值法的应用; (3) 与命题真假判断相结合的问题:解决此类问题除根据不等式的性 质求解外,还经常采用特殊值验证的方法.

2017-2018学年高中数学(人教B版)5名师讲义:第三章3.1 不等关系与不等式含答案

2017-2018学年高中数学(人教B版)5名师讲义:第三章3.1 不等关系与不等式含答案

均值不等式(1)均值不等式的形式是什么?需具备哪些条件?(2)在利用均值不等式求最值时,应注意哪些方面?(3)一般按照怎样的思路来求解实际问题中的最值问题?[新知初探]1.均值定理如果a,b∈R+,那么a+b2≥错误!。

当且仅当a=b时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a,b,数错误!称为a,b的算术平均值(平均数),数错误!称为a,b的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛](1)“a=b”是错误!≥错误!的等号成立的条件.若a≠b,预习课本P69~71,思考并完成以下问题则错误!≠错误!,即错误!>错误!。

(2)均值不等式错误!≥错误!与a2+b2≥2ab成立的条件不同,前者a >0,b>0,后者a∈R,b∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值;(2)两个正数的和为常数时,它们的积有最大值.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)对任意a,b∈R,a2+b2≥2ab,a+b≥2错误!均成立()(2)若a≠0,则a+错误!≥2错误!=4()(3)若a〉0,b〉0,则ab≤错误!2()解析:(1)错误.任意a,b∈R,有a2+b2≥2ab成立,当a,b都为正数时,不等式a+b≥2错误!成立.(2)错误.只有当a>0时,根据均值不等式,才有不等式a+错误!≥2错误!=4成立.(3)正确.因为错误!≤错误!,所以ab≤错误!2.答案:(1)×(2)×(3)√2.已知f(x)=x+错误!-2(x>0),则f(x)有()A.最大值为0 B.最小值为0C .最小值为-2D .最小值为2答案:B 3.对于任意实数a ,b ,下列不等式一定成立的是( )A .a +b ≥2错误!B.错误!≥错误! C .a 2+b 2≥2abD.错误!+错误!≥2答案:C4.已知0<x <1,则函数y =x (1-x )的最大值是________. 答案:14利用均值不等式比较大小[典例] (1)已知m =a +错误!(a 〉2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( )A .m 〉nB .m 〈nC .m =nD .不确定(2)若a >b >1,P =错误!,Q =错误!(lg a +lg b ),R =lg 错误!,则P ,Q ,R 的大小关系是________.[解析] (1)因为a 〉2,所以a -2>0,又因为m =a +错误!=(a -2)+错误!+2,所以m≥2错误!+2=4,由b≠0,得b2≠0,所以2-b2〈2,n=22-b2<4,综上可知m>n.(2)因为a>b〉1,所以lg a〉lg b〉0,所以Q=错误!(lg a+lg b)>错误!=P;Q=错误!(lg a+lg b)=lg 错误!+lg 错误!=lg 错误!〈lg 错误!=R.所以P〈Q〈R.[答案] (1)A (2)P<Q<R利用均值不等式比较实数大小的注意事项(1)利用均值不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用均值不等式时,一定要注意条件是否满足a>0,b>0。

高考数学不等关系与不等式

高考数学不等关系与不等式

已知-1<x<4,2<y<3,则x-y的取值范围是 ________,3x+2y的取值范围是________.
解析:∵-1<x<4,2<y<3, ∴-3<-y<-2,∴-4<x-y<2. 由-1<x<4,2<y<3, 得-3<3x<12,4<2y<6,∴1<3x+2y<18. 答案:(-4,2) (1,18)
1 1 2.若ab>0,且a>b,则a与b的大小关系是________.
1 1 答案:a<b
考点一
比较两个数式的大小 基础送分型考点 ——自主练透 [题组练透 ]
1.已知 a1, a2∈ (0,1),记 M= a1a2, N= a1+ a2- 1,则 M 与 N 的大小关系是 ________.
2.若a>0>b>-a,c<d<0,则下列结论:①ad>bc; a b ② d + c <0;③a-c>b-d;④a(d-c)>b(d-c)中成立 的个数是________.
解析:∵a>0>b,c<d<0,∴ad<0,bc>0, ∴ad<bc,故①错误. ∵a>0>b>-a,∴a>-b>0, ∵c<d<0,∴-c>-d>0, ∴a(-c)>(-b)(-d), a b ac+bd ∴ac+bd<0,∴d+ c= cd <0,故②正确. ∵c<d,∴-c>-d, ∵a>b,∴a+(-c)>b+(-d),即a-c>b-d,故③正确. ∵a>b,d-c>0,∴a(d-c)>b(d-c),故④正确.答案:3
b 2ln 3 解析:易知 a,b 都是正数, = =log89>1, a 3ln 2 所以 b>a. 答案:<
3 3.若实数a≠1,比较a+2与 的大小. 1-a

2025版高考数学一轮总复习第1章集合常用逻辑用语不等式第3讲不等关系与不等式课件

2025版高考数学一轮总复习第1章集合常用逻辑用语不等式第3讲不等关系与不等式课件

不等式的性质及应用——多维探究
角度 1 不等式的性质
1.(多选题)已知 a>b>0,c>d>0,则下列不等式中一定成立的是
( ABD ) A.a+c>b+d
B.a-d>b-c
ab C.c>d
D. ac> bd
[解析] 对于 A,因为 a>b>0,c>d>0,所以 a+c>b+d 成立; 对于 B,因为 a+c>b+d,所以 a-d>b-c 成立;
1α3 [解析] 由 1<α<3 得2<2<2,
由-4<β<2 得-2<-β<4,
α 所以2-β
的取值范围是-23,121.
a2 4.(角度 2)已知-3<a<-2,3<b<4,则 b 的取值范围为( A )
角度 2 利用不等式的性质求范围问题 1.已知-1<x<4,2<y<3,则 x-y 的取值范围是__(_-__4_,2_)____,3x+ x
2y 的取值范围是___(_1_,1_8_)____,y的取值范围是________. [解析] ∵-1<x<4,2<y<3, ∴-3<-y<-2,∴-4<x-y<2. 由-1<x<4,2<y<3,得-3<3x<12,4<2y<6, ∴1<3x+2y<18.
-a2)>0,∴M>N.
1
1
解法二(特殊值法):取 a1=a2=2,∴M=4,N=0,∴M>N.
2.若 a>0,b>0,则 p=

高考数学第一轮复习:《不等关系与不等式》

高考数学第一轮复习:《不等关系与不等式》

高考数学第一轮复习:《不等关系与不等式》最新考纲1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用.【教材导读】1.若a>b,c>d,则a-c>b-d是否成立?提示:不成立,同向不等式不能相减,如3>2,4>1,但3-4<2-1. 2.若a>b>0,则ac>bc是否成立?提示:不成立.当c=0时,ac=bc,当c<0时,ac<bc.3.若a>b,则a n>b n,na>nb是否成立?提示:不一定.当a>b>0,n∈N,n≥2时才成立.1.实数的大小顺序与运算性质之间的关系设a,b∈R,则(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的基本性质性质性质内容注意对称性a>b⇔b<a ⇔传递性a>b,b>c⇒a>c ⇒可加性a>b⇔a+c>b+c ⇔可乘性⎭⎪⎬⎪⎫a>bc>0⇒ac>bcc的符号⎭⎪⎬⎪⎫a>bc<0⇒ac<bc同向可加性⎭⎪⎬⎪⎫a >b c >d ⇒a +c >b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a >b >0c >d >0⇒ac >bd ⇒可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)a ,b 同为正数可开方性a >b >0⇒n a >nb (n ∈N ,n ≥2)(1)倒数性质 ①a >b ,ab >0⇒1a <1b . ②a <0<b ⇒1a <1b . (2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质b a <b +m a +m ;b a >b -ma -m (b -m >0). ②假分数的性质a b >a +m b +m ;a b <a -mb -m (b -m >0).1.设a +b <0,且b >0,则( ) (A)b 2>a 2>ab (B)b 2<a 2<-ab (C)a 2<-ab <b 2 (D)a 2>-ab >b 2答案:D2.若b <a <0,则下列结论不正确...的是( ) (A)a 2<b 2 (B)ab <b 2 (C)b a +ab >2 (D)|a |-|b |=|a -b | 答案:D3.设a=2,b=7-3,c=6-2,则a,b,c的大小关系是() (A)a>b>c(B)a>c>b(C)b>a>c(D)b>c>aB解析:b=7-3=47+3,c=6-2=46+2.因为7+3>6+2,所以47+3<46+2,所以b<c.因为2(6+2)=23+2>4,所以46+2< 2.即c<a.综上可得b<c<a.故选B.4.若P=a+2+a+5,Q=a+3+a+4(a≥0),则P,Q的大小关系为() (A)P>Q(B)P=Q(C)P<Q(D)由a的取值确定C解析:因为a≥0,P>0,Q>0,所以Q2-P2=2a+7+2a2+7a+12-(2a+7+2a2+7a+10)=2(a2+7a+12-a2+7a+10)>0.所以P<Q.5.已知a>b,ab≠0,则下列不等式中:①1a<1b;②a3>b3;③a2+b2>2ab,恒成立的不等式的个数是________.解析:①取a=2,b=-1,则1a<1b不成立;②函数y=x3在R上单调递增,a>b,所以a3>b3成立;③因为a>b,ab≠0,所以a2+b2-2ab=(a-b)2>0,所以a2+b2>2ab成立.综上可得:恒成立的不等式有两个.答案:2考点一 用不等式(组)表示不等关系(1)某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,用不等式表示销售的总收入仍不低于20万元为________.(2)已知4枝郁金香和5枝丁香的价格最多22元,而6枝郁金香和3枝丁香的价格不小于24元,则满足上述所有不等关系的不等式组为________.答案:(1)(8-x -2.50.1×0.2)x ≥20 (2)⎩⎨⎧4x +5y ≤226x +3y ≥24,x ≥0y ≥0【反思归纳】 用不等式(组)表示不等关系 (1)分析题中有哪些未知量.(2)选择其中起关键作用的未知量,设为x 或x ,y 再用x 或x ,y 来表示其他未知量. (3)根据题目中的不等关系列出不等式(组). 提醒:在列不等式(组)时要注意变量自身的范围.【即时训练】 已知甲、乙两种食物的维生素A ,B 含量如表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/kg)800400设用甲、乙两种食物各有56 000单位维生素A 和62 000单位维生素B ,则x ,y 应满足的所有不等关系为________.解析:x ,y 所满足的关系为⎩⎪⎨⎪⎧x +y ≤100,600x +700y ≥56 000,800x +400y ≥62 000,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤100,6x +7y ≥560,2x +y ≥155,x ≥0,y ≥0.答案:⎩⎨⎧x +y ≤1006x +7y ≥5602x +y ≥155x ≥0,y ≥0考点二 不等式的性质若a >b >0,且ab =1,则下列不等式成立的是( ) (A)a +1b <b2a <log 2(a +b ) (B)b 2a <log 2(a +b )<a +1b (C)a +1b <log 2(a +b )<b 2a (D)log 2(a +b )<a +1b <b2a【命题意图】本题考查不等式的应用,同时考查对数的运算.B 解析:根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b2a .【反思归纳】 判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:①不等式两边都乘以一个代数式时,所乘的代数式是正数、负数或0;②不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变;③不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变.【即时训练】 (1)已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a 2<b 2 (B)ab 2<a 2b(C)1ab2<1ba2(D)ba<ab(2)若a,b∈R则1a3>1b3成立的一个充分不必要条件是()(A)ab>0 (B)b>a(C)a<b<0 (D)a>b>0答案:(1)C(2)C考点三比较大小(1)比较x6+1与x4+x2的大小,其中x∈R;(2)比较a a b b与a b b a(a,b为不相等的正数)的大小.解析:(1)(x6+1)-(x4+x2)=x6-x4-x2+1=x4(x2-1)-(x2-1)=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)=(x2-1)2(x2+1).当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2.(2)a a b ba b b a=a a-b b b-a=⎝⎛⎭⎪⎫aba-b,当a>b>0时,ab >1,a-b>0,∴⎝⎛⎭⎪⎫aba-b>1;当0<a<b时,ab <1,a-b<0,∴⎝⎛⎭⎪⎫aba-b>1.综上所述,总有a a b b>a b b a.【反思归纳】比较大小常用的方法(1)作差法一般步骤是①作差;②变形;③判号;④定论.其中变形是关键,常采用因式分解、配方等方法把差变成积或者完全平方的形式.当两个式子都含有开方运算时,可以先乘方再作差.(2)作商法一般步骤是:①作商;②变形;③判断商与1的大小;④结论.作商比较大小时,要注意分母的符号避免得出错误结论.(3)特值法对于选择题可以用特值法比较大小.【即时训练】(1)(2017崇明县一模)若a<0,b<0,则p=b2a+a2b与q=a+b的大小关系为()(A)p<q(B)p≤q(C)p>q(D)p≥q(2)若a=1816,b=1618,则a与b的大小关系为________.解析:(1)p-q=b2a+a2b-a-b=b2-a2a+a2-b2b=(b2-a2)·1a-1b=(b2-a2)(b-a)ab=(b-a)2(a+b)ab,因为a<0,b<0,所以a+b<0,ab>0,若a=b,则p-q=0,此时p=q,若a≠b,则p-q<0,此时p<q,综上p≤q.故选B.(2)ab=18161618=1816161162=98161216=98216,因为982∈(0,1),所以98216<1,因为1816>0,1618>0,所以1816<1618.即a<b.答案:(1)B(2)a<b不等式变形中扩大变量范围致误设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.解析:法一设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a+(n-m)b,于是得⎩⎨⎧ m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A 32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, 所以5≤f (-2)≤10. 答案:[5,10]易错提醒:(1)解决此类问题的一般解法是,先建立待求整体与已知范围的整体关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)此类求范围问题如果多次利用不等式的可加性,有可能扩大变量的取值范围而致误.课时作业基础对点练(时间:30分钟)1.设a ,b ∈R ,则“a >1且b >1”是“ab >1”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件A 解析:a >1且b >1⇒ab >1;但ab >1,则a >1且b >1不一定成立,如a =-2,b =-2时,ab =4>1.故选A.2.如果a >b ,则下列各式正确的是( ) (A)a ·lg x >b ·lg x (x >0) (B)ax 2>bx 2 (C)a 2>b 2(D)a ·2x >b ·2xD 解析:两边相乘的数lg x 不一定恒为正,选项A 错误;不等式两边都乘以x 2,它可能为0,选项B 错误;若a =-1,b =-2,不等式a 2>b 2不成立,选项C 错误.选项D 正确.3.已知1a <1b <0,给出下面四个不等式:①|a |>|b |;②a <b ;③a +b <ab ;④a 3>b 3.其中不正确的不等式的个数是( )(A)0 (B)1 (C)2 (D)3C 解析:由1a <1b <0可得b <a <0,从而|a |<|b |,①不正确;a >b ,②不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.故选C.4.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) (A)M <N (B)M >N (C)M =N (D)不确定答案:B5.设a <b <0,则下列不等式中不成立的是( ) (A)1a >1b (B)1a -b >1a (C)|a |>-b (D)-a >-b答案:B6.若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>lnb 2.其中正确的不等式是( ) (A)①④ (B)②③ (C)①③ (D)②④答案:C7.设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( )(A)① (B)①② (C)②③ (D)①②③答案:D8.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0.则提价多的方案是________.解析:设原价为a ,方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a ⎝ ⎛⎭⎪⎫1+p +q 2%2,∵⎝ ⎛⎭⎪⎫1+p +q 2%2=⎝⎛⎭⎪⎫1+p %+1+q %22≥((1+p %)(1+q %))2=(1+p %)(1+q %),又∵p >q >0,∴等号不成立,则提价多的为方案乙.答案:乙9.已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n (n ∈N +,n >2),则f (n ),g (n ),φ(n )的大小关系是________.解析:f (n )=n 2+1-n =1n 2+1+n<12n =φ(n ),g (n )=n -n 2-1=1n +n 2-1>12n =φ(n ),∴f (n )<φ(n )<g (n ).答案:f (n )<φ(n )<g (n )10.已知-1<a +b <3,且2<a -b <4,则2a +3b 的取值范围为____________. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎪⎨⎪⎧ x =52,y =-12,因为-52<52(a +b )<152,-2<-12(a -b )<-1,所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.答案:-92,132能力提升练(时间:15分钟)11.有外表一样、重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )(A)d >b >a >c(B)b >c >d >a (C)d >b >c >a (D)c >a >d >bA 解析:∵a +b =c +d ,a +d >b +c ,∴2a >2c ,即a >c .因此b <d .∵a +c <b ,∴a <b ,综上可得,c <a <b <d .12.若不等式(-1)n a <2+(-1)n +1n 对于任意正整数n 都成立,则实数a 的取值范围是( )(A)⎣⎢⎡⎭⎪⎫-2,32 (B)⎣⎢⎡⎭⎪⎫-2,32 (C)⎣⎢⎡⎭⎪⎫-3,32 (D)⎝ ⎛⎭⎪⎫-3,32 A 解析:当n 取奇数时,-a <2+1n ,因为n ≥1,故2<2+1n ≤3,所以-a ≤2,所以a ≥-2;当n 取偶数时,a <2-1n ,因为n ≥2,所以32≤2-1n <2,所以a <32,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,32,故选A.13.若a ,b ,c ,d 均为正实数,且a >b ,那么四个数b a ,a b ,b +c a +c ,a +d b +d由小到大的顺序是________.解析:∵a >b >0,∴a b >1,a +d b +d >1,b a <1,b +c a +c <1,则a b -a +d b +d =d (a -b )b (b +d )>0, 即a b >a +c b +c ,b a -b +c a +c =c (b -a )a (a +d )<0,即b a <b +c a +c ,所以由小到大的顺序是b a <b +c a +c <a +d b +d <a b答案:b a <b +c a +c <a +d b +d <a b14.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76000v v 2+18v +20l. ①如果不限定车型,l =6.05,则最大车流量为______辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加______辆/时.解析:①当l =6.05时,F =76000v v 2+18v +121=76000v +121v +18≤760002v ·121v+18=7600022+18=1900. 当且仅当v =11米/秒时等号成立,此时车流量最大为1900辆/时.②当l =5时,F =76000v v 2+18v +100=76000v +100v +18≤760002v ·100v +18=7600020+18=2000. 当且仅当v =10米/秒时,车流量最大为2000辆/时比①中最大车流量增加100辆/时.15.建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比不应小于10%,并且这个比值越大,住宅的采光条件越好,同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.解:设原来的窗户面积与地板面积分别为a 、b ,且a b ≥10%,窗户面积和地板面积同时增加的面积为c ,则现有的窗户面积与地板面积分别为a +c ,b +c .于是原来窗户面积与地板面积之比为a b ,面积均增加c 以后,窗户面积与地板面积之比为a +c b +c,因此要确定采光条件的好坏,就转化成比较a b 与a +c b +c的大小,采用作差比较法. a +c b +c -a b =c (b -a )(b +c )b. 因为a >0,b >0,c >0,又由题设条件可知a <b ,故有a b <a +c b +c 成立,即a +c b +c >a b≥10%. 所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.。

【新高考】高三数学一轮基础复习讲义:第七章 7.1不等关系与不等式-教师版

【新高考】高三数学一轮基础复习讲义:第七章 7.1不等关系与不等式-教师版

不等关系与不等式判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若a b >1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)一个非零实数越大,则其倒数就越小.( × )(5)a >b >0,c >d >0⇒a d >b c .( √ )(6)若ab >0,则a >b ⇔1a <1b .( √ )题型一 比较两个数(式)的大小例1 (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .不确定(2)若a =ln 33,b =ln 44,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 (1)B (2)B解析 (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1,所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln x x 2, 易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .思维升华 比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( )A .A ≤B B .A ≥BC .A <BD .A >B(2)若a =1816,b =1618,则a 与b 的大小关系为________.答案 (1)B (2)a <b解析 (1)∵A ≥0,B ≥0,A 2-B 2=a +2ab +b -(a +b )=2ab ≥0,∴A ≥B .(2)a b =18161618=(1816)161162=(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1,∵1816>0,1618>0,∴1816<1618,即a <b .题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是() A .ab >ac B .c (b -a )<0C .cb 2<ab 2D .ac (a -c )>0(2)若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有( )A .①②B .②③C .①④D .③④答案 (1)A (2)C解析 (1)由c <b <a 且ac <0知c <0且a >0.由b >c 得ab >ac 一定成立.(2)因为1a <1b<0,所以b <a <0,a +b <0,ab >0, 所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b ,因为b <0,所以ab <b 2.因此正确的是①④.思维升华 解决此类问题常有两种方法:一是直接利用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4答案 C解析 方法一 ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd<0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确,故选C.方法二取特殊值.题型三不等式性质的应用命题点1应用性质判断不等式是否成立例3已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为()A.①②③B.①②④C.①③④D.②③④答案 A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是______,3x +2y 的取值范围是______. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.引申探究1.若将已知条件改为-1<x <y <3,求x -y 的取值范围.解 ∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).2.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为(-32,232). 思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.(2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1bB .a 2<ab C.|b ||a |<|b |+1|a |+1 D .a n >b n(2)设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③答案 (1)C (2)D解析 (1)(特殊值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1) ⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)由不等式性质及a >b >1知1a <1b, 又c <0,∴c a >c b,①正确; 构造函数y =x c ,∵c <0,∴y =x c 在(0,+∞)上是减函数,又a >b >1,∴a c <b c ,②正确;∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧ a -b >0⇔a > b a -b =0⇔a = b a -b <0⇔a < b(a ,b ∈R ); (2)作商法⎩⎪⎨⎪⎧ a b >1⇔a > b a b =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质不等式的一些常用性质(1)倒数的性质①a >b ,ab >0⇒1a <1b. ②a <0<b ⇒1a <1b. ③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a. (2)有关分数的性质若a >b >0,m >0,则①b a <b +m a +m ;b a >b -m a -m(b -m >0). ②a b >a +m b +m ;a b <a -m b -m(b -m >0). 典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ② ①+②得3≤2a ≤6,∴6≤4a ≤12,又由①可得-2≤-a +b ≤-1,③ ②+③得0≤2b ≤3,∴-3≤-2b ≤0,又f (-2)=4a -2b ,∴3≤4a -2b ≤12,∴f (-2)的取值范围是[3,12].答案 [3,12]现场纠错解析 方法一 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , 得⎩⎨⎧ a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4 确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时, 取得最小值4×32-2×12=5, 当f (-2)=4a -2b 过点B (3,1)时,取得最大值4×3-2×1=10,∴5≤f (-2)≤10.答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.设a <b <0,则下列不等式中不成立的是( )A.1a >1bB.1a -b >1a C .|a |>-b D.-a >-b答案 B解析 由题设得a <a -b <0,所以有1a -b <1a成立, 即1a -b >1a 不成立.2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0a -b >0.3.若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是( )A .a -b >0B .a 3+b 3>0C .a 2-b 2<0D .a +b <0答案 D解析 由a +|b |<0知,a <0,且|a |>|b |,当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立.故选D.4.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0,∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式成立的是() A .ad >bc B .ac >bdC .a -c >b -dD .a +c >b +d答案 D解析 由不等式的同向可加性得a +c >b +d .2.若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9≤c ≤18B .15<c <30C .9≤c ≤30D .9<c <30答案 D解析 ∵c =a +b ≤3a 且c =a +b ≥3a 2,∴9<3a 2≤a +b ≤3a <30.3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π)D .(-π6,π) 答案 D解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b答案 C解析 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0,知a >0且b <0,所以1a >1b成立,C 正确; 当a <0且b <0时,可知D 不正确.7.若a >b >0,则下列不等式中一定成立的是( )A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b答案 A解析 取a =2,b =1,排除B ,D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A. 8.若a >b >0,则下列不等式一定不成立的是( )A.1a <1b B .log 2a >log 2bC .a 2+b 2≤2a +2b -2D .b <ab <a +b 2<a 答案 C 解析 ∵(a -1)2+(b -1)2>0(由a >b >0,得a ,b 不能同时为1),∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2,∴C 项一定不成立.9.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ;③若a >b ,则a ·2c >b ·2c .其中正确命题的序号是________.答案 ②③解析 ①不对,因为c 2可以为0;②对,因为c 2>0;③对,因为2c >0.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________. 答案 a =b >c解析 ∵a =log 23+log 23=log 233,b =log 29-log 23=log 233,∴a =b ,又a =log 233>1,c =log 32<1,∴a >c .故a =b >c .11.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0; ②若ab >0,c a -d b>0,则bc -ad >0;③若bc-ad>0,ca-db>0,则ab>0.其中正确的命题是________.答案①②③解析∵ab>0,bc-ad>0,∴ca-db=bc-adab>0,∴①正确;∵ab>0,又ca-db>0,即bc-adab>0,∴bc-ad>0,∴②正确;∵bc-ad>0,又ca-db>0,即bc-adab>0,∴ab>0,∴③正确.故①②③都正确.12.设a>b>c>0,x=a2+(b+c)2,y=b2+(c+a)2,z=c2+(a+b)2,则x,y,z的大小关系是________.(用“>”连接)答案z>y>x解析方法一y2-x2=2c(a-b)>0,∴y>x.同理,z>y,∴z>y>x.方法二令a=3,b=2,c=1,则x=18,y=20,z=26,故z>y>x.13.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?解设路程为s,跑步速度为v1,步行速度为v2,甲到教室所用时间为t甲,乙到教室所用时间为t乙.t甲=s2v1+s2v2=s(v1+v2)2v1v2,s =t 乙2·v 1+t 乙2·v 2⇒t 乙=2s v 1+v 2, ∴t 甲t 乙=(v 1+v 2)24v 1v 2≥(2v 1v 2)24v 1v 2=1. ∴t 甲≥t 乙,当且仅当v 1=v 2时“=”成立.由实际情况知v 1>v 2,∴t 甲>t 乙.∴乙先到教室.*14.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1) =14x +34nx , y 2=45nx . 所以y 1-y 2=14x +34nx -45nx =14x -120nx =14x (1-n 5). 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠;当单位去的人数多于5人时,甲车队收费更优惠;当单位去的人数少于5人时,乙车队收费更优惠.。

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)

高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。

新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法

新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法

新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。

高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-

高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-

第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。

艺术生高考数学专题讲义:考点21 不等关系与不等式

艺术生高考数学专题讲义:考点21 不等关系与不等式

考点二十一 不等关系与不等式知识梳理1.不等式在现实世界和日常生活中,既有相等关系,又存在着形形色色的不等关系,它们都是客观存在的基本数量关系,是数学研究的重要内容.在数学中,我们用不等式表示不等关系.不等式的定义:用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个实数或代数式,以表示它们之间的不等关系.含有这些不等号的式子,叫做不等式.注意:“a ≥b ”是指“a >b 或a =b ”,等价说法是“a 不小于b ”,对于“a ≥b ”而言,只要a >b 和a =b 中有一个成立,a ≥b 就成立,例如:3≥2,2≥2等都是真命题.同理,“a ≤b ”是指“a <b 或a =b ”,等价说法是“a 不大于b ”,只要a <b 和a =b 中只要有一个成立,a ≤b 就成立. 2.同向不等式我们把a >b 和c >d (或a <b 和c <d )这类不等号方向相同的不等式,叫做同向不等式. 3.实数比较大小的两大法则:作差比较和作商比较法关系法则作差比较 作商比较a >b a -b >0 a b >1(a ,b >0)或ab<1(a ,b <0) a =b a -b =0 ab=1(b ≠0) a <ba -b <0a b <1(a ,b >0)或ab>1(a ,b <0) 注意:作商比较时要分清所研究变两个变量的正负,然后根据“若a b >1,b >0,则a >b ;若ab >1,b <0则a <b )”的原则进行判断. 4.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2). 5.不等式的倒数性质(1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd.注意:(1)在应用传递性时,注意等号是否传递下去,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a ≤b ,b <c ⇒a <c ;(2)在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).典例剖析题型一 不等关系例1 某汽车公司因发展需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解析 设购买A 型汽车和B 型汽车分别为x 辆、y 辆, 则⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *.即⎩⎪⎨⎪⎧4x +9y ≤100,x ≥5,y ≥6,x ,y ∈N *.变式训练 某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是__________.(填序号)① ② ③ ④答案 ④解析 ∵x 不低于95分,∴ x ≥95. ∵y 是高于380分,∴y >380. ∵z 超过45分.∴z >45.解题要点 解题时关键是要弄懂“不超过”、“至少”、“不低于”、“超过”这些文字语言,它们与不等号的对应关系如下表:文字语言不超过,至多,小于等于不低于,至少,大于等于超过,大于,高于少于,小于,低于不等号 ≤ ≥ > <题型二 比较大小例2 比较下列各组中两个代数式的大小: (1)x 2+3与3x ; (2)x 1+x 2与12. 解析 (1)(x 2+3)-3x =x 2-3x +3=(x -32)2+34≥34>0,∴x 2+3>3x .(2) ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2) ≤0,∴x 1+x 2≤12. 变式训练 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解析 (x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)[(x -12)2+34],∵x <1,∴x -1<0.又(x -12)2+34>0,∴(x -1)[(x -12)2+34]<0,∴x 3-1<2x 2-2x .解题要点 “作差比较法”的一般步骤为: (1)作差:对要比较大小的两个式子作差;(2)变形:对差式通过通分、因式分解、配方等手段进行变形; (3)判断符号:对变形后的结果结合题设条件判断出差的符号; (4)作出结论.题型三 不等式的性质例3 (2014·四川)若a >b >0,c <d <0,则一定有__________.(填序号) ① a c >bd②a c <b d ③a d >b c④a d <bc答案 ④解析 方法一:令a =3,b =2,c =-3,d =-2,则a c =-1,bd =-1,所以①,②错误;a d =-32,b c =-23,所以a d <bc ,所以③错误.故选④.方法二:因为c <d <0,所以-c >-d >0,所以1-d >1-c>0.又a >b >0,所以a -d >b -c,所以a d <bc .故选④.变式训练 设a ,b 是非零实数,若a <b ,则下列不等式成立的是__________.(填序号) ① a 2<b 2 ②ab 2<a 2b ③1ab 2<1a 2b④b a <ab答案 ③解析 当a <0时,a 2<b 2不一定成立,故①错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故②错. 因为1ab 2-1a 2b =a -ba 2b 2<0,所以1ab 2<1a 2b ,故③正确.④项中b a 与ab的大小不能确定.解题要点 在利用不等式的性质比较不等式时,如果可以赋值,就用赋值法,这样可使问题快速得解;如果赋值不能排除,则应通过推理判断,结合不等式的性质作出判断. 题型三 不等式的性质的应用例4 设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是__________. 答案 ⎝⎛⎭⎫-π6,π 解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.变式训练 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围为________.答案 [1,7]解析 设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围是[1,7].解题要点 在利用同向不等式相加求解表达式范围时,一般可用待定系数法.注意,如果多次利用不等式有可能扩大变量取值范围.当堂练习1.若a 、b 为实数,则“0<ab <1”是“b <1a”的__________条件.答案 既不充分也不必要解析 若0<ab <1,当a <0时,b >1a ,反之,若b <1a ,当a <0时,ab >1.故为既不充分也不必要条件.2.已知a <0,-1<b <0,那么下列不等式成立的是__________.(填序号) ① a >ab >ab 2 ② ab 2>ab >a ③ ab >a >ab 2 ④ ab >ab 2>a 答案 ④解析 ∵a <0,-1<b <0,∴ab 2-a =a (b 2-1)>0,ab -ab 2=ab (1-b )>0. ∴ab >ab 2>a .也可利用特殊值法,取a =-2,b =-12,则ab 2=-12,ab =1,从而ab >ab 2>a .故应选④.3. 设a ,b ,c ∈R ,且a >b ,则__________.(填序号) ① ac >bc ② 1a <1b ③ a 2>b 2 ④ a 3>b 3答案 ④解析 ①项中,若c 小于等于0则不成立;②项中,若a 为正数b 为负数则不成立;③项中,若a ,b 均为负数则不成立.故选④.4.若角α,β满足-π2<α<β<π,则α-β的取值范围是__________.答案 (-3π2,0)解析 ∵-π2<α<β<π,∴-π2<α<π,-π<-β<π2,∴-3π2<α-β<3π2,又α-β<0, ∴-3π2<α-β<0.5.若a 、b ∈R ,则下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a ≥2中一定成立的是__________.(填序号) 答案 ①②解析 ①a 2-2a +3=(a -1)2+2>0; ②a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0;③a 5-a 3b 2+b 5-a 2b 3=a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a +b )(a -b )2(a 2+ab +b 2),若a =b ,则上式=0,不成立; ④若a <0,则a +1a <0.∴①②一定成立.课后作业一、 填空题1.设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是__________.(填序号) ①a -b >0 ② a +b >0 ③ a 2-b 2>0 ④ a 3+b 3<0 答案 ②解析 由b >|a |,可得-b <a <b .由a <b ,可得a -b <0,所以选项①错误.由-b <a ,可得a +b >0,所以选项②正确.由b >|a |,两边平方得b 2>a 2,则a 2-b 2<0,所以选项③错误,由-b <a ,可得-b 3<a 3,则a 3+b 3>0,所以选项④错误.2.设a <b <0,则下列不等式中不成立的是__________.(填序号) ①1a >1b ②1a -b >1a ③|a |>-b ④-a >-b 答案 ②解析 由题设得a <a -b <0,所以有1a -b <1a 成立,即1a -b >1a 不成立.3.若a >b >0,则下列不等式中一定成立的是__________.(填序号) ①a +1b >b +1a ②b a >b +1a +1 ③a -1b >b -1a ④2a +b a +2b >a b答案 ①解析 ∵a >b >0,∴1b >1a >0,∴a +1b >b +1a,选①项.4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的__________条件. 答案 充分而不必要解析 若(a -b )·a 2<0,则a ≠0,且a <b ,所以充分性成立;若a <b ,则a -b <0,当a =0时,(a -b )·a 2=0,所以必要性不成立.故“(a -b )·a 2<0”是“a <b ”的充分而不必要条件. 5.若a 、b 、c 为实数,则下列命题正确的是__________.(填序号) ①若a >b ,c >d ,则ac >bd ②若a <b <0,则a 2>ab >b 2 ③若a <b <0,则1a <1b ④若a <b <0,则b a >ab答案 ②解析 对于①,只有当a >b >0,c >d >0时,不等式才成立;③中由a <b <0,得1a >1b ,故③不正确,又b a -a b =b 2-a 2ba =(b +a )(b -a )ab ,又a <b <0,∴(b +a )(b -a )ab <0,∴b a <ab ,故④不正确;对于②,∵a <b <0,∴a 2>ab >b 2,故选②. 6.若a ,b ∈R ,下列命题中①若|a |>b ,则a 2>b 2; ②若a 2>b 2,则|a |>b ; ③若a >|b |,则a 2>b 2; ④若a 2>b 2,则a >|b |. 其中正确的是__________.(填序号) 答案 ②和③解析 条件|a |>b ,不能保证b 是正数,条件a >|b |可保证a 是正数, 故①不正确,③正确.a 2>b 2⇒|a |>|b |≥b ,故②正确,④不正确.7.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是__________.(填序号) ①c a <b a ②b -a c >0 ③b 2c <a 2c ④a -c ac <0 答案 ③解析 ∵c <b <a ,且ac <0,∴c <0,a >0,∴c a <b a ,b -a c >0,a -c ac <0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.选③项. 8.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是__________.(填序号) ①a 2>b 2 ②a |c |>b |c | ③1a <1b ④a c 2+1>bc 2+1答案 ④解析 方法一:(特殊值法)令a =1,b =-2,c =0,代入①,②,③,④中,可知①,②,③均错,故选④. 方法二:(直接法)∵a >b ,c 2+1>0,∴a c 2+1>bc 2+1,故选④.9.若a >b >c ,则1b -c 与1a -c的大小关系为________. 答案1a -c <1b -c解析 ∵a >b >c ,∴a -c >b -c >0,∴1a -c <1b -c.10.现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2a -b -32;③7+10>3+14.其中恒成立的不等式共有________个. 答案 2解析 ①∵a 2+1-2a =(a -1)2≥0,故①不恒成立; ②a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0, ∴a 2+b 2>2a -b -32恒成立;③∵(7+10)2=17+270,(3+14)2=17+242, 又∵70>42, ∴17+270>17+242, ∴7+10>3+14,成立.11.若x >y ,a >b ,则在 ①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的不等式的序号是__________.(写出所有恒成立的不等式的序号). 答案 ②④解析 令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立. 又∵ax =-6,by =-6, ∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推 出②④成立. 二、解答题12.已知某学生共有10元钱,打算购买单价分别为0.6元和 0.7元的铅笔和练习本,根据需要,铅笔至少买7枝,练习本至少买6本.写出满足条件的不等式. 解析 设铅笔买x 枝,练习本买y 本(x ,y ∈N *),总钱数为 0.6x +0.7y ,且不大于10,∴⎩⎪⎨⎪⎧0.6x +0.7y ≤10,x ≥7,x ∈N *,y ≥6,y ∈N *.13.设x =(a +3)(a -5),y =(a +2)(a -4),试比较x 与y 的大小. 解析 ∵x -y =a 2+3a -5a -15-a 2-2a +4a +8=-7<0,∴x <y .。

高中 不等关系与不等式 知识点+例题 全面

高中 不等关系与不等式 知识点+例题 全面
[巩固] (2013·课标全国Ⅱ)设 a=log32,b=log52,c=log23,则 a,b,c 的大小关系是____________. 答案 (2) c>a>b (2)因为 log32=log123<1,log52=log125<1,又 log23>1,所以 c 最大.又 1<log23<log25,所以log123>log125,即 a>b,
[例 3] 若 m x 2 2x 3(x R) , n 2 ,则 m,n 的大小关系是________. m n
[巩固]
已知 m 2a2 2a , n log 2 (a 2
a 17) ,则 m_____n(填“>”,“<”或“=”) 4
m<n
知识模块 3 经典题型
题型一:用不等式(组)表示不等关系 [例] 某商人如果将进货单价为 8 元的商品按每件 10 元销售,每天可销售 100 件,现在他采用提高售价,减少进货量 的办法增加利润.已知这种商品的单价每提高 1 元,销售量就相应减少 10 件.若把提价后商品的单价设为 x 元,怎样 用不等式表示每天的利润不低于 300 元?
a>b>0⇒n a>n b(n∈N,n≥2)
a>b,ab>0 1 1 ab
2.不等式的一些常用性质
(1)倒数的性质
①a>b,ab>0 1 1 ; ab
②a<0<b⇒1a 1b;
③a>b>0,0<c<d⇒ac bd;
④0<a<x<b

a<x<b<0⇒1b
1 x
1 a.
(2)有关分数的性质

高考数学讲义:不等关系与不等式(解析版)

高考数学讲义:不等关系与不等式(解析版)

第12讲:不等关系与不等式【学习目标】1.能用不等式(组)表示实际问题中的不等关系.2.初步学会作差法、作商法比较两实数的大小.【基础知识】基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.依据a>b⇔a-b>0. a=b⇔a-b=0. a<b⇔a-b<0结论要比较两个实数的大小,可以转化为比较它们的差与0的大小【考点剖析】考点一:不等式组表示不等关系例1.为了全面贯彻党的教育方针,落实“立德树人”的根本任务,切实改变边远地区孩子上学难的问题,某市政府准备投资1800万元兴办一所中学.经调查,班级数量以20至30个为宜,每个初、高中班硬件配置分别需要28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是___________.【答案】2030, 28581800,0,0,,x yx yx y x y N【详解】设该校有初中班x个,高中班y个,则有:2030, 28581800,0,0,,x yx yx y x y N故答案为:2030, 28581800,0,0,,x yx yx y x y N变式训练1:《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为________.【答案】 91110813x y y x x y【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得: 91110813x y y x x y 故答案为: 91110813x y y x x y 变式训练2:A 杯中有浓度为%a 的盐水x 克,B 杯中有浓度为%b 的盐水y 克,其中A 杯中的盐水更咸一些.若将A 、B 两杯盐水混合在一起,其咸淡的程度可用不等式表示为___________.【答案】ax by b a x y【详解】由题意,将A 、B 两杯盐水混合再一起后浓度为ax by x y, b a y ax by a x y x y ∵, a b x ax by b x y x y,∵A 杯中的盐水更咸一些,a b ,ax by b a x y,故答案为:ax by b a x y.变式训练3:已知b 克盐水中含有 0a b a 克盐,若给盐水加热,蒸发了 0m m b a 克水后盐水更咸了,请将这一事实表示为一个不等式:______.【答案】a ab m b 【详解】原来盐占盐水的比例为a b ,给盐水加热,蒸发了 0m m b a 克水后,盐占盐水的比例为a b m ,则a a b m b考点二:作差法比较大小(一)例2.比较231x x 与221x x 两个代数式的大小:;【答案】(1)223121x x x x ;【详解】(1) 2222312122110x x x x x x x ∵,因此,223121x x x x ;变式训练1:已知2253M x x ,242N x x ,则M ________N (用>,<,=填)【答案】>【详解】2253M x x ,242N x x ,222225342131024M N x x x x x x x ,故M N .故答案为: .变式训练2:试比较 15x x 与 23x 的大小.【答案】2(1)(5)(3)x x x 【详解】因为222153656940x x x x x x x ,2(1)(5)(3)x x x 变式训练3:比较3x 与21x x 的大小;【答案】详解见解析;【详解】作差得:323222(1)()(1)(1)(1)(1)(1)x x x x x x x x x x x (i)当1x 时,32(1)0x x x ,故321x x x ;(ii)当1x 时,32(1)0x x x ,故321x x x ;(iii)当1x 时,32(1)0x x x ,故321x x x .考点三:作差法比较大小(二)例3.证明不等式:(1)设0,0a b ,求证:3322a b ab a b ;(2)设,x y R ,求证:2252(2)x y x y .【答案】(1)证明见解析;(2)证明见解析.【详解】证明:(1)因为3322a b ab a b 3322a b ab a b 3232a ab b a b 2222a a b b b a 222a b a b a b a b ,因为00a b ,,所以 20a b a b ,所以33220a b ab a b ,所以3322a b ab a b ;(2)因为 22522x y x y 22542x y x y 22425x x y y22210x y ,所以 22522x y x y .变式训练1:若221a x ,22b x x ,3c x ,比较a ,b ,c 的大小.【答案】a b c .详解:∵221a x ,22b x x ,3c x ,∴22212a b x x x 222110x x x ,即a b , 223b c x x x 223333024x x x ,即b c ,综上可得:a b c .变式训练2:已知a,b R ,比较22a b 与245a b 的大小.【答案】22245a b a b .【详解】a ∵,b R ,22245a b a b 222144a ab b 22(1)(2)0a b ,22245a b a b ,当且仅当1a ,2b 时,等号成立,两式相等.变式训练3:已知0a b ,比较22a b b a 与11a b 的大小.【答案】2211a b b a a b【详解】解:222211a b a b b a b a a b b a2211()a b b a222()()a b a b a b.∵0a b ,2()0a b ,∴222()()0a b a b a b ,当且仅当a b 时,取等号,∴2211a b b a a b.考点四:作商法比较大小例4.设 121p a a ,21q a a ,则()A.p qB.p q C.p qD.p q 【答案】D【详解】 1222110132411p a a a a a,22131024q a a a ,则222121111a a a a a a a q a p 222222111a a a a .故p q ,当且仅当0a 时,取等号,故选:D变式训练1:2211,,()1P a a Q a R a a ,则,P Q 的大小关系为_______.【答案】≥【详解】因为22131024P a a a ,22131024a a a 则0Q 由 222224211111P a a a a a a a a Q所以P Q故答案为:变式训练2:已知0a ,0b,试比较a b 时取等号)【详解】a b2211,当且仅当ab 时等号成立,a b 时取等号).变式训练3:设0a b ,比较2222a b a b与a b a b 的大小【答案】2222a b a b a b a b【详解】220,0,a b a b a b ∵,22220,0a b a b a b a b,.两数作商 222222a b a b a b a b a b a b a b a b a b22222211a b ab a b a b,2222a b a b a b a b.【过关检测】1、已知,a b R ,则2252a b _______42ab a .(用“>”或“<”填空)【答案】>【详解】因为225242a b ab a 22(2)(1)1a b a ,又2(2)0a b ≥,2(1)0a ,所以2252420a b ab a ,所以225242a b ab a ,故答案为:>.2、已知0x ,则 221x 与421x x 的大小关系为_______.【答案】 221x 421x x 【详解】因为 221x 421x x 42422211x x x x x ,又0x ,所以20x .所以221x 421x x .故答案为: 221x 421x x .3、设222m a a , 21n a ,则m ,n 的大小关系是______.【答案】m n .【详解】因为 2222110m n a a a ,所以m n .故答案为:m n .4、已知241Ma a ,122N a ,则M ________N .(填“>”或“<”)【答案】 【详解】22312(1)022M N a a a,∴M N .故答案为: .5、已知231M a a ,122N a,则M________N.(填“>”或“<”)【答案】 【详解】22111()0224M N a a a,∴M N .故答案为: .6、设x R ,231Mx x ,21N x x ,则M 与N 的大小关系为________.【答案】M N【详解】22311M N x x x x ∵222132222(1)2[(]024x x x x x ,M N故答案为:M N .7、已知a ,b 为实数,则221214a b______2ab a .(填“>”、“<”、“≥”或“≤”)【答案】≥【详解】2222112121042a b ab a a b a ,当且仅当1a ,2b 取等号.故答案为:≥8、设2,1M x N x ,则M 与N 的大小关系是________.【答案】M N【详解】由作差比较法,可得22213(1)1(024M N x x x x x,所以M N .故答案为:M N .9、若 23x a a , 34y a a ,则x 与y 的大小关系是__________.【答案】x y【详解】22233461260x y a a a a a a a a ,因此,x y .故答案为:x y .10、已知1x ,比较36x x 与26x 的大小.【答案】3266x x x .【详解】解: 32226616161x x x xx x x x ∵1x ,∴ 2610x x ∴3266x x x .11、若0x ,试比较251x 和2331x x 的大小;【答案】答案见解析;【详解】作差得: 22251331232212x x x x x x x ;所以当2x 时,2251331x x x ;当2x 时,2251331x x x ;当02x 时,2251331x x x ;12、设a 、b 为实数,比较22a b 与448a b 的值的大小.【答案】22448a b a b 【详解】由于a 、b 为实数,则 2222224484444220a ba b a a b b a b ,当且仅当22a b时,等号成立.因此,22448a b a b .13、比较221x y 与 21x y 的大小;【答案】 22121x y x y ;【详解】因为 2222211111x y x y x y ,又 2210,10x y ,所以222101x y x y ,所以 22121x y x y ;14、x R ,比较2(1)(1)2x x x 与 2(112x x x 的大小.【答案】 22111122x x x x x x【详解】由22(1)(1)(1212x x x x x x 323233331110222222x x x x x x所以 22111122x x x x x x15、设a ,b 为实数,比较22a b 与1ab a b 的大小.【答案】见解析详解:解:22(1)a b ab a b 221(222222)2a b ab a b22221[(2)(21)(21)]2a b ab a a b b 2221[()(1)(1)]2a b a b 222()0,(1)0,(1)0a b a b ∵,当且仅当1a b 时同时取等号22(1)0a b ab a b ,当且仅当1a b 时取等221a b ab a b 16、已知0a ,0b ,试比较11a b M a b 与11b a N a b的大小.【答案】当a b 时,M N =;当a b ¹时,M N .【详解】11111111a b b a a b a b M N a b a b a a b b Q 211111111a b a b a b a b a b a b a b .因为0a ,0b ,所以 110a b , 20a b ,得0M N 当a b 时,M N =;当a b ¹时,M N .17、已知,R a b的大小.【详解】a ba ba b2,显然成立, ,当且仅当a b 时取等号.18、若0a b ,0c d ,0e ,试比较 2e a c 与 2e b d 的大小.【答案】22e e a c b d 【详解】 22ee a c b d2222e b d a c a c b d22e a b c d b a c d a c b d ∵0a b ,0c d ,0a b ,0c d ,0b a ,0c d ,0a b c d , 0b a c d .∵0e , 0e a b c d b a c d 又 220a c b d , 220eea cb d ,即 22e ea cb d .19、先后两次购买同一种物品,可采取两种不同的方式,第一种是不考虑物品价格的升降,每次购买该物品的数量一定;第二种是不考虑物品价格的升降,每次购买该物品所花的钱数一定.甲、乙二人先后两次结伴购买同一种物品,其中甲在两次购物时采用第一种方式,乙在两次购物时采用第二种方式.已知第一次购物时该物品单价为1p ,第二次购物时该物品单价为2p (12p p ).甲两次购物的平均价格记为1Q ,乙两次购物的平均价格记为2Q .(1)求1Q ,2Q 的表达式(用12p p ,表示);(2)通过比较1Q ,2Q 的大小,说明哪种购物方式比较划算.【答案】(1)1212121222p p p p Q Q p p,;(2)第二种购物方式比较划算.【详解】解:(1)设甲两次购物时购物量均为m,则两次购物总花费为1p m+2p m,购物总量为2m,平均价格为1212122p m p m p p Q m .设乙两次购物时用去钱数均为n,则两次购物总花费2n,购物总量为12n n p p ,平均价格为122121222p p n Q n n p p p p =综上,1212121222p p p p Q Q p p (2)∵12p p ,∴ 2212121212121212121242022()2()p p p p p p p p p p Q Q p p p p p p 12Q Q 由此可知,第二种购物方式比较划算.20、甲、乙两位消费者同时两次购买同一种物品,分别采用两种不同的策略,甲的策略是不考虑物品价格的升降,每次购买这种物品的数量一定;乙的策略是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.(1)若两次购买这种物品的价格分别为6元,4元,求甲两次购买这种物品平均价格和乙两次购买这种物品平均价格分别为多少;(2)设两次购买这种物品的价格分别为a 元,b 元(0,0)a b ,问甲、乙谁的购物比较经济合算.【答案】(1)5,245;(2)乙的购物比较经济合算.【详解】(1)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,645m m m m ,乙两次购买这种物品平均价格为,224564n n n .(2)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,2am bm a b m m ,乙两次购买这种物品平均价格为22n ab n n a b a b ,22222()42()022()2()2()a b ab a b ab a b ab a b a b a b a b a b ,所以乙的购物比较经济合算.。

高考数学复习第六单元第31讲不等关系与不等式课件理新人教A版3

高考数学复习第六单元第31讲不等关系与不等式课件理新人教A版3
5
Sn,则 与 的大小关系
3 5

.
3 5
(2) <
3 5
(1)D
[解析] (1)c=
2
3
3
2
1
3
2
3
3
2
2
3
=3 ,a=3 ,根据指数函数的单调性,可得
2
3
c<a.a=3 ,b=2 ,根据函数 y= 的单调性,可得 b<a,又因为 c<1,b>1,
所以 c<b,所以 c<b<a,故选 D.
a +b 的取值范围为 (
2
)
本性质可得结果;(2)该问题是已
A.(3,6) B.(2,6)
C.(3,8) D.(4,8)
知不等关系求范围的问题,可以
(2)[2018·安徽六安一中月考] 已知 α,β 满足
-1 ≤ + ≤ 1,
则 α+3β 的取值范围是 (
1 ≤ + 2 ≤ 3,
A.[1,7] B.[-5,13]
课前双基巩固
3.[教材改编] 已知 a,b,c∈R,则“a>b”是“ac >bc ”的
2
2
条件.(从“充分不必要”“必要不充分”“充要”“既不充
分也不必要”中选一个填在横线上)
[答案] 必要不充分
[解析] ∵当 c =0
2
时,ac =bc ,∴a>b⇒/ ac >bc ;反
2
2
2
2
之,ac >bc ⇒a>b.∴“a>b”是
(
)
乘性.
(3)只有当 b>0 时,结论才成立.

高中数学3.1 不等关系与不等式讲新人教A版必修五含解析

高中数学3.1 不等关系与不等式讲新人教A版必修五含解析

☆学习目标☆1.了解现实世界和日常生活中存在的不等关系,掌握用不等式(组)表示实际问题中的不等关系的方法。

2.掌握不等式的有关性质。

3.会利用不等式的性质比较两个数或代数式的大小;会利用不等式的性质证明简单的不等式。

☆学习重点☆1.熟练掌握不等式的性质,并会正确理解和应用;2.对含参数的不等式,要把握分类讨论的标准和技巧.☆学习难点☆1 .合理正确地应用不等式性质比较大小、求代数式的范围。

2.对含参数的不等式,要把握分类讨论的标准和技巧.☆基础回扣☆1.比较两个实数大小的法则若a,b ∈R,则(1)a >b ⇔a -b >0;(2)a =b ⇔a -b =0;(3)a <b ⇔a -b <0. 2.不等式的基本性质(1)a >b ⇔b <a ;(2)a >b,b >c ⇒a >c ;(3)a >b ⇔a +c >b +c ;(4)a >b,c >0⇒ac >bc ;a >b,c <0⇒ac <bc ;(5)a >b,c >d ⇒a +c >b +d ;(6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0⇒nn b a >(n ∈N,且n ≥2);(8)a >b >0⇒n nb a >(n ∈N,且n ≥2).3.不等式的一些常用性质(1)a >b ,ab >0⇒1a <1b . (2)a >b >0,0<c <d ⇒a c >bd.(3)0<a <x <b ,或a <x <b <0⇒1b <1x <1a.☆问题探讨与解题研究☆类型一: 用不等式(组)表示不等关系【例1】 例1 某人上午7时乘摩托艇以v 海里/h(4≤v ≤20)的速度从A 港匀速出发,向距A 港50海里的B 港驶去,到达B 港后马上乘汽车以w km/h(30≤w ≤100)的速度从B 港匀速出发,向距B 港300 km 的C 市驶去,应在同一天下午4时至9时到达C 市,试表示关于时间的不等关系.【解】 设汽车用x h,摩托艇用y h,由题意,得⎩⎪⎨⎪⎧x +y ≥9,x +y ≤14,3≤x ≤10,52≤y ≤252.【名师点评】 用不等式表示实际问题中的不等关系时,应首先读懂题意,设出未知量,寻找不等关系的根源,将不等关系用未知量表示出来,即得到不等式或不等式组,这是应用不等式解决实际问题的最基本 的一步. 【练习】1.(1)一桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使货车总重量T不超过40吨,用不等式表示为________.(2)某火腿肠的质量检查规定,每100克火腿肠中,淀粉含量d 不能超过20克,防腐剂f 含量不能超过0.5克.用不等式组表示为________.答案:(1)T ≤40 (2)⎩⎪⎨⎪⎧d ≤20,f ≤0.5类型二、比较大小【例2】 已知x<1,比较x 3-1与2x 2-2x 的大小.【解】 (x 3-1)-(2x 2-2x )=(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -122+34.∵x <1,∴x -1<0,又⎝ ⎛⎭⎪⎫x -122+34>0.∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .【练习】比较32m -m +1与22m +m -3的大小.【小结】作差法比较大小的方法步骤①作差:有的可直接作差,有的需转化后才可作差;②变形:目的是判断差的符号,通常进行通分、因式分解、配方、分子(分母)有理化等变形,有时还要根据字母取值范围进行讨论以判断差的符号; ③定号:若a-b>0,则a>b ;若a-b<0,则a<b 等; ④得结论.类型三:根据不等式性质求数(式)的取值范围【例3】如果二次函数f(x)的图象过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的取值范围. 【分析】若求f(-2)的取值范围,则f(-2)应用f(-1)、f(1) 表示,利用不等式的性质确定其取值范围.【小结】本类题与用待定系数法解决,其关键在于寻找系数m,n.注意不等式作加法时须保证同向相加.本题也可用线性规划的方法求解.【练习】设f(x)=ax 2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________. 解 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1, ∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.法二 由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 类型四:不等式的性质及其应用【例4】设a>b>1,c<0,给出下列三个结论:①bca c >;②ac <bc ;③logb(a-c)>loga(b-c),则所有的正确结论的序号是( )(A)① (B)①② (C)②③ (D)①②③【分析】可直接利用不等式的性质以及幂函数和对数函数的单调性进行比较,也可以采用特殊值方法进行比较. 【解析】由不等式a>b>1知b a 11<,又c<0,所以bca c >,①正确;根据幂函数y=xc 在(0,+∞)上的单调性知②正确;由a>b>1,c<0知a-c>b-c>1-c>1,由对数函数的图象与单调性知③正确.故选D.【小结】涉及“取倒数求范围”等问题时,注意倒数法则的正确运用.一般地:①若x>a,a>0,则ax 110<<, ②若x>a,a<0,则a x 11<或x 10<③若x<a,a<0,则011<<xa , ④若x<a,a>0,则a x 11>或x 10>。

2020版高考数学新增分大一轮新高考专用讲义:第七章 7.1 不等关系与不等式含解析

2020版高考数学新增分大一轮新高考专用讲义:第七章 7.1 不等关系与不等式含解析

§7.1 不等关系与不等式最新考纲 1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系.2.了解不等式(组)的实际背景.1.两个实数比较大小的方法(1)作差法Error! (a,b∈R)(2)作商法Error! (a∈R,b>0)2.不等式的基本性质性质性质内容特别提醒对称性a>b⇔b<a⇔传递性a>b,b>c⇒a>c⇒可加性a>b⇔a+c>b+c⇔可乘性Error!⇒ac>bc注意c的符号Error!⇒ac <bc同向可加性Error!⇒a +c >b +d ⇒同向同正可乘性Error!⇒ac >bd ⇒可乘方性a >b >0⇒a n >b n(n ∈N ,n ≥1)a ,b 同为正数概念方法微思考1.若a >b ,且a 与b 都不为0,则与的大小关系确定吗?1a 1b提示 不确定.若a >b ,ab >0,则<,即若a 与b 同号,则分子相同,分母大的反而小;1a 1b若a >0>b ,则 >,即正数大于负数.1a 1b2.两个同向不等式可以相加和相乘吗?提示 可以相加但不一定能相乘,例如2>-1,-1>-3.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若>1,则a >b .( × )a b(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒>.( √ )a d b c(5)ab >0,a >b ⇔<.( √ )1a 1b题组二 教材改编2.若a ,b 都是实数,则“->0”是“a 2-b 2>0”的( )a b A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A 解析 ->0⇒>⇒a >b ⇒a 2>b 2,a b a b 但由a 2-b 2>0⇏->0.a b 3.设b <a ,d <c ,则下列不等式中一定成立的是( )A .a -c <b -dB .ac <bdC .a +c >b +dD .a +d >b +c 答案 C解析 由同向不等式具有可加性可知C 正确.题组三 易错自纠4.若a >b >0,c <d <0,则一定有( )A.->0B.-<0a c b d a c b dC.>D.<a d b ca dbc 答案 D解析 ∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac ,又∵cd >0,∴>,即>.bd cd ac cd b c a d5.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =.所以“a >2且b >1”是“a +b >312且ab >2”的充分不必要条件.故选A.6.若-<α<β<,则α-β的取值范围是__________.π2π2答案 (-π,0)解析 由-<α<,-<-β<,α<β,π2π2π2π2得-π<α-β<0.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =+与q =a +b 的大小关系为( )b 2a a 2bA .p <qB .p ≤qC .p >qD .p ≥q解析 (作差法)p -q =+-a -b b 2a a 2b=+=(b 2-a 2)·b 2-a 2a a 2-b 2b (1a -1b )==,(b 2-a 2)(b -a )ab (b -a )2(b +a )ab因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小.解 ∵==a -b ,a ab b a b b a a a -b b a -b (a b )又a >b >0,故>1,a -b >0,a b∴a -b >1,即>1,(a b )a a b ba b b a又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为:a a b b >a b b a .思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法.跟踪训练1 (1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________.解析 因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则( )A .77a a <7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a 与7a a 7的大小不确定答案 C解析 =77-a a a -7=7-a ,77a a7a a 7(7a )则当a >7时,0<<1,7-a <0,7a 则7-a >1,∴77a a >7a a 7;(7a )当0<a <7时,>1,7-a >0,7a 则7-a >1,∴77a a >7a a 7.(7a )综上,77a a >7a a 7.题型二 不等式的性质例2 (1)对于任意实数a ,b ,c ,d ,下列命题中正确的是( )A .若a >b ,c ≠0,则ac >bcB .若a >b ,则ac 2>bc 2C .若ac 2>bc 2,则a >bD .若a >b ,则<1a 1b答案 C解析 对于选项A ,当c <0时,不正确;对于选项B ,当c =0时,不正确;对于选项C ,∵ac 2>bc 2,∴c ≠0,∴c 2>0,∴一定有a >b .故选项C 正确;对于选项D ,当a >0,b <0时,不正确.(2)已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出<的是________.(填序号)1a 1b答案 ①②④解析 运用倒数法则,a >b ,ab >0⇒<,②④正确.又正数大于负数,所以①正确.1a 1b思维升华 常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( )A .ab >acB .c (b -a )<0C .cb 2<ab 2D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0,知c <0且a >0.由b >c ,得ab >ac 一定成立.(2)若<<0,则下列不等式:1a 1b①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有________.(填序号)答案 ①④解析 因为<<0,所以b <a <0,a +b <0,ab >0,1a 1b所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b ,因为b <0,所以ab <b 2.因此正确的是①④.题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立例3 已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③>-;④a 3+b 3>2a 2b .a -b a b 其中一定成立的不等式为( )A .①②③B .①②④C .①③④D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x 在R 上是增函数,∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴>,a b ∴()2-(-)2a -b a b =2-2b =2(-)>0,ab b a b ∴>-,③成立;a -b a b 若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④不成立.故选A.方法二 令a =3,b =2,可以得到①a 2>b 2,②2a >2b -1,③>-均成立,而④a 3+b 3>2a 2b 不成立,故选A.a -b a b 命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________.答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.引申探究若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则Error!∴Error!即3x +2y =(x +y )+(x -y ),5212又∵-1<x +y <4,2<x -y <3,∴-<(x +y )<10,1<(x -y )<,52521232∴-<(x +y )+(x -y )<,325212232即-<3x +2y <,32232∴3x +2y 的取值范围为.(-32,232)思维升华 (1)判断不等式是否成立的方法①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)若a <b <0,则下列不等式一定成立的是( )A.> B .a 2<ab1a -b 1b C.< D .a n >b n|b ||a ||b |+1|a |+1答案 C 解析 (特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,<⇔|b |(|a |+1)<|a |(|b |+1)|b ||a ||b |+1|a |+1⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________.答案 (-4,0)解析 ∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).一、选择题1.下列命题中,正确的是( )A .若a >b ,c >d ,则ac >bdB .若ac >bc ,则a >bC .若<,则a <b a c 2b c 2D .若a >b ,c >d ,则a -c >b -d答案 C解析 A 项,取a =2,b =1,c =-1,d =-2,可知A 错误;B 项,当c <0时,ac >bc ⇒a <b ,所以B 错误;C 项,因为<,所以c ≠0,a c 2b c 2又c 2>0,所以a <b ,C 正确;D 项,取a =c =2,b =d =1,可知D 错误,故选C.2.若<<0,则下列结论正确的是( )1a 1bA .a 2>b 2B .1>b >a(12)(12)C.+<2 D .a e b >b e a b a a b答案 D解析 由题意知,b <a <0,则a 2<b 2,b >a >1,+>2,(12)(12)b a a b∵b <a <0,∴e a >e b >0,-b >-a >0∴-b e a >-a e b ,∴a e b >b e a ,故选D.3.若a >b >0,则下列不等式中一定成立的是( )A .a +>b + B.>1b 1ab a b +1a +1C .a ->b - D.>1b 1a2a +b a +2b a b答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -是(0,+∞)上的增函数,但函1x数g (x )=x +在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )1x必定成立,即a ->b -⇔a +>b +,但g (a )>g (b )未必成立,故选A.1a 1b 1b 1a4.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0,∴3x >x +y +z =0,3z <x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .5.设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则( )A .P >QB .P <QC .P ≤QD .P ≥Q答案 A 解析 因为2x +2-x ≥2=2(当且仅当x =0时等号成立),而x >0,所以P >2;2x ·2-x 又(sin x +cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.6.若α,β满足-<α<β<,则2α-β的取值范围是( )π2π2A .-π<2α-β<0B .-π<2α-β<πC .-<2α-β<D .0<2α-β<π3π2π2答案 C解析 ∵-<α<,∴-π<2α<π.π2π2∵-<β<,∴-<-β<,π2π2π2π2∴-<2α-β<.3π23π2又α-β<0,α<,∴2α-β<.π2π2故-<2α-β<.3π2π27.已知a +b >0,则+与+的大小关系是________.a b 2b a 21a 1b 答案 +≥+a b 2b a 21a 1b解析 +-=+a b 2b a 2(1a +1b )a -b b 2b -a a 2=(a -b )·=.(1b 2-1a 2)(a +b )(a -b )2a 2b 2∵a +b >0,(a -b )2≥0,∴≥0.∴+≥+.(a +b )(a -b )2a 2b 2a b 2b a 21a 1b 8.已知有三个条件:①ac 2>bc 2;②>;③a 2>b 2,其中能成为a >b 的充分条件的是________.a c b c答案 ①解析 由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则->0;c a d b②若ab >0,->0,则bc -ad >0;c a d b③若bc -ad >0,->0,则ab >0.c a d b其中正确的命题是________.(填序号)答案 ①②③解析 ∵ab >0,bc -ad >0,∴-=>0,∴①正确;c a d b bc -ad ab∵ab >0,又->0,即>0,c a d b bc -ad ab∴bc -ad >0,∴②正确;∵bc -ad >0,又->0,即>0,c a d b bc -ad ab∴ab >0,∴③正确.故①②③都正确.10.设α∈,T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.(0,12)答案 T 1<T 2解析 T 1-T 2=(cos 1cos α-sin 1sin α)-(cos 1cos α+sin 1sin α)=-2sin 1sin α<0.故T 1<T 2.11.(1)若bc -ad ≥0,bd >0,求证:≤;a +b b c +d d(2)已知c >a >b >0,求证:>.a c -a b c -b证明 (1)∵bc ≥ad ,bd >0,∴≥,c d a b∴+1≥+1,∴≤.c d a b a +b b c +d d(2)∵c >a >b >0,∴c -a >0,c -b >0.Error!⇒<c a c b ⇒Error!⇒>.a c -a b c -b12.已知1<a <4,2<b <8,试求a -b 与的取值范围.a b解 因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为<<,181b 12所以<<=2,18a b 42即<<2.18a b13.设0<b <a <1,则下列不等式成立的是( )A .ab <b 2<1B . < <012log b 12log a C .2b <2a <2D .a 2<ab <1答案 C 解析 方法一 (特殊值法):取b =,a =.1412方法二 (单调性法):0<b <a ⇒b 2<ab ,A 不对;y =x 在(0,+∞)上为减函数,12log ∴b >a ,B 不对;12log 12log a >b >0⇒a 2>ab ,D 不对,故选C.14.若a =,b =,c =,则( )ln 33ln 44ln 55A .a <b <cB .c <b <aC .c <a <bD .b <a <c 答案 B解析 方法一 对于函数y =f (x )=(x >e),y ′=,ln x x 1-ln x x 2易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二 易知a ,b ,c 都是正数,==log 8164<1,b a 3ln 44ln 3所以a >b ;==log 6251 024>1,b c 5ln 44ln 5所以b >c .即c <b <a .15.已知实数x ,y 满足a x >a y (0<a <1),则下列关系式恒成立的是( )A .ln(x 2+1)>ln(y 2+1)B .sin x >sin yC .x 3<y 3D.>1x 2+11y 2+1答案 C解析 方法一 因为实数x ,y 满足a x >a y (0<a <1),所以x <y .对于A ,取x =0,y =3,不成立;对于B ,取x =-π,y =π,不成立;对于C ,由于f (x )=x 3在R 上单调递增,故x 3<y 3成立;对于D ,取x =-2,y =1,不成立.故选C.方法二 根据指数函数的性质得x <y ,此时x 2,y 2的大小不确定,故选项A ,D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立.16.设0<b <a <1,则下列不等式成立的是( )A .a ln b >b ln aB .a ln b <b ln aC .a e b <b e aD .a e b =b e a 答案 B解析 观察A ,B 两项,实际上是在比较和的大小,引入函数y =,0<x <1.则y ′=ln b b ln a a ln x x,可见函数y =在(0,1)上单调递增.所以<,B 正确.对于C ,D 两项,1-ln x x 2ln x x ln b b ln a a引入函数f (x )=,0<x <1,则f ′(x )==<0,所以函数f (x )=在(0,1)上单调e x x x e x -e x x 2(x -1)e x x 2e x xe a a e b b递减,又因为0<b<a<1,所以f(a)<f(b),即<,所以a e b>b e a,故选B.。

考点25 高中数学-不等关系与不等关系-考点总结及练习题

考点25 高中数学-不等关系与不等关系-考点总结及练习题

考点25不等式与不等关系【命题趋势】解不等式一直贯穿于其他知识点的考查中,比如一元二次不等式的求解常与集合结合考查,以及函数式的大小比较,在导数的应用中都常有体现,要密切关注:【重要考向】一、比较大小二、求范围的问题比较大小(1)作差法的一般步骤是:作差,变形,定号,得出结论.注意:只需要判断差的符号,至于差的值究竟是什么无关紧要,通常将差化为完全平方式的形式或者多个因式的积的形式.(2)作商法的一般步骤是:作商,变形,判断商与1的大小,得出结论.注意:作商时各式的符号为正,若都为负,则结果相反.(3)介值比较法:①介值比较法的理论根据是:若a >b ,b >c ,则a >c ,其中b 是a 与c 的中介值.②介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.(4)利用单调性比较大小.(5)函数法,即把要比较的数值通过构造函数转化为该函数的函数值,然后利用函数的单调性将其进一步转化为自变量的大小问题来解决.(1)实数的大小顺序与运算性质的关系①a >b ⇔0a b ->;②0a b a b =⇔-=;③a <b ⇔0a b -<.(2)不等式的性质①对称性:a b b a >⇔<;(双向性)②传递性:a >b ,b >c ⇒a c >;(单向性)③可加性:a >b ⇔a +c >b +c ;(双向性)④a >b ,c >d ⇒a c b d +>+;(单向性)⑤可乘性:,0a b c ac bc >>⇒>;(单向性)a >b ,c <0⇒ac <bc ;(单向性)⑥a >b >0,c >d >0⇒ac bd >;(单向性)⑦乘方法则:()0,1nna b a b n n >>⇒>∈≥N ;(单向性)⑧开方法则:a >b >0>n ∈N ,n ≥2).(单向性)注意:(1)应用传递性时,若两个不等式中有一个带等号而另一个不带等号,则等号无法传递.(2)可乘性中,要特别注意“乘数c ”的符号.【巧学妙记】1.若=22+1,=2+2,=−−3,试比较,,的大小.【解析】∵=22+1,=2+2,=−−3,∴−=(22+1)−(2+2p =2−2+1=(−1)2≥0,即≥,−=(2+2p −(−−3)=2+3+3=(+32)2+34>0,即>,综上可得:≥>.2.已知,,a b c ∈R ,给出下列条件:①22a b >;②11a b<;③22ac bc >,则使得a b >成立的充分而不必要条件的是A .①B .②C .③D .①②③【答案】C【解析】对于①,由22a b >,得||||a b >,不一定有a b >成立,不符合题意;对于②,当1,1a b =-=时,有11a b<,但a b >不成立,所以不符合题意;对于③,由22ac bc >,知c ≠0,所以有a b >成立,当a b >成立时,不一定有22ac bc >,因为c 可以为0,符合题意.3.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │【答案】C【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.求范围的问题求范围的问题需用到不等式的性质,熟记不等式性质中的条件与结论是基础,灵活运用是关键.在使用不等式的性质时,一定要注意不等式成立的前提条件,特别是不等式两端同时乘以或同时除以一个数、两个不等式相乘、一个不等式两端同时求n 次方时,一定要注意其成立的前提条件,如果忽视前提条件就可能出现错误.【巧学妙记】4.设实数x ,y 满足212xy ≤≤,223x y ≤≤,则47x y的取值范围是______.【答案】[]2,27【解析】因为()324272x y x y xy ⎛⎫⎪⎝⎭=,()322282714x xy y ⎛⎫≤≤≤≤ ⎪⎝⎭,,所以47827[,][2,27]41x y ∈=.5.若二次函数y =f (x )的图象过原点,且)12(1f -≤≤,()314f ≤≤,求f (-2)的取值范围.【解析】方法一:∵二次函数y =f (x )的图象过原点,∴可设2(0())f x ax bx a =+≠.易知()()11f a b f a b =+⎧⎪⎨-=-⎪⎩,∴()()()()11121112a f f b f f ⎧=+-⎡⎤⎣⎦⎪⎪⎨⎪=--⎡⎤⎣⎦⎪⎩.则()2423)()11(f a b f f =---=+.∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤.方法二:由题意设2(0())f x ax bx a =+≠,则f (1)=a +b ,f (-1)=a -b .令m (a +b )+n (a -b )=f (-2)=4a -2b ,∴42m n m n +=⎧⎨-=-⎩,∴13m n =⎧⎨=⎩.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1).∵)12(1f -≤≤,()314f ≤≤,∴62()10f -≤≤.6.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-,则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,∵13x y ≤-≤,∴()226x y ≤-≤,①又11x y -≤+≤,②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .一、单选题1.下列结论正确的是()A .若a b >,则ac bc >B .若a b >,则11a b<C .若22ac bc >,则a b>D .若a b >,则22a b >2.已知a >b ,c >d ,则下列关系式正确的是()A .ac +bd >ad +bcB .ac +bd <ad +bcC .ac >bdD .ac <bd3.若0a b <<,则下列不等式中,不能成立的是()A .11a b>B .11a b a>-C .a b>D .22a b >4.已知a >c ,b >d ,则下列结论正确的是()A .ab >cd B .a -b >c -d C .ab +cd >ad +bcD .||||a b c d +>+二、多选题5.下列推导过程,正确的为()A .因为a 、b 为正实数,所以2b a a b +≥=B .因为x ∈R ,所以2111x >+C .0a <,所以44a a +≥=D .因为x 、y R ∈,0xy <,所以2x yx y y x y x ⎡⎤⎛⎫⎛⎫+=--+-≤-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦6.已知两个不为零的实数x ,y 满足x y <,则下列说法中正确的有()A .31x y ->B .2xy y <C .x x y y<D .11x y>7.已知0a b c <<<,且lg lg a c =,则()A .2a c +>B .a acb bc >C .log log a a c b b c <D .e ea c <8.已知实数a ,b ,c ,则下列命题为真命题的是()A .若0a b >>,则11a b>B .若0,0,21a b a b >>+=,则21a b+的最小值为8C .若0a b >>,1ab =,则12a b a b<+D .若0a b >>,则sin sin a b>9.已知ln ln 0x y >>,则下列结论正确的是()A .11x y<B .1133xy⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .log log y x x y>D .()248x y x y +≥-10.已知a ,b ,c 为正数,且满足abc =1,则下列结论正确的是()A .(2a b +≥B .222111a b c a b c++≤++C .若0<c ≤1,则(a +1)(b +1)<4D .22223a b c b+≥三、双空题11.已知13a b <<<,则a b +的取值范围是_________,ab的取值范围是________.12.已知14x y -<+<,23x y <-<,则x 的范围是_________,32x y +的范围是________.四、解答题13.已知0a b c >>>,比较a b c a b c 与()3a b c abc ++的大小一、单选题1.(2018·全国高考真题(理))设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab+<<D .0ab a b<<+2.(2008·江西高考真题(理))若121212120,0,1a a b b a a b b <<<<+=+=且,则下列代数式中值最大的是A .1122a b a b +B .1212a ab b +C .1221a b a b +D .123.(2014·山东高考真题(文))已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是A .33x y >B .sin sin x y >C .22ln(1)ln(1)x y +>+D .221111x y >++4.(2008·广东高考真题(文))设,a b ∈R ,若0a b ->,则下列不等式中正确的是()A .0b a ->B .330a b +<C .220a b -<D .0b a +>5.(2012·北京高考真题(文))已知{}n a 为等比数列,下面结论中正确的是A .1322a a a +≥B .2221322a a a +≥C .若13a a =,则12a a =D .若31a a >,则42a a >6.(2014·四川高考真题(文))若0,0,abcd >><<则一定有A .a bc d>B .a b c d<C .a b d c>D .a b d c<7.(2015·浙江高考真题(文))设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.(2016·北京高考真题(理))已知,x y R ∈,且0x y >>,则A .110x y->B .sin sin 0x y ->C .11()()022xy-<D .ln ln 0x y +>9.(2016·浙江高考真题(文))已知a ,b >0,且a≠1,b≠1.若log >1a b ,则A .(1)(1)0a b --<B .(1)()0a a b -->C .D .(1)()0b b a -->10.(2007·上海高考真题(理))已知,a b 为非零实数,且a b <,则下列命题成立的是A .22a b <B .22ab a b<C .2211ab a b<D .b a a b<11.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz++12.(2016·全国高考真题(理))若1a b >>,01c <<,则A .cc a b <B .c cab ba <C .log log b a a c b c <D .log log a b c c<13.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .21log ()2a ba ab b +<<+B .21log ()2a b a b a b<+<+C .21log ()2aba ab b +<+<D .21log ()2aba b a b +<+<二、填空题13.(2017·北京高考真题(文))能够说明“设,,a b c 是任意实数,若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为__________.14.(2011·江西高考真题(理))对于实数x ,y ,若,,则的最大值为___________.一、单选题1.(2021·浙江高一期末)已知,,a b c ∈R ,且a b >,那么下列各式中正确的是()A .1ab>B .11a b<C .22ac bc >D .33a b >2.(2021·浙江嘉兴市·高三其他模拟)若0a >,0b >,且11a b+=,则下列不等式错误的是()A .122ab+≥B+≤C .26b a+≥D .22log log 2a b -≤-3.(2021·浙江高二期末)已知0a b >>,给出下列命题:①若1a b -=,则1->;②若1a b -=,则331a b ->;③若1a b -=,则1a b e e ->;④若1a b -=,则ln ln 1a b ->.其中真命题的个数是()A .1B .2C .3D .44.(2021·黑龙江佳木斯市·佳木斯一中高三三模(文))已知x ,y ∈R ,且x y >,则下列说法是正确的是()A .11x y<B .--+<+x y y xe e e e C .11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .22x y >5.(2021·惠来县第一中学高三月考)古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理,它是使用天平秤物品的理论基础,当天平平衡时,左臂长与左盘物品质量的乘积等于右臀长与右盘物品质量的乘积,某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金()A .大于10gB .小于10gC .大于等于10gD .小于等于10g6.(2021·四川省绵阳南山中学高一期中)实数x 、y 、z 满足244x x z y =+--且220x y ++=,则下列关系成立的是()A .y x z >≥B .z x y ≥>C .y z x>≥D .z y x≥>7.(2021·河南郑州市·高二期末(文))已知bg 糖水中含有ag 糖()0b a >>,若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大).根据这个事实,下列不等式中一定成立的是()A .a a m b b m+>+B .22m ma m ab m b ++<++C .()()()()22a m b m a m b m ++<++D .121313b a ->-8.(2021·全国高三其他模拟)已知:0a b >>,且333()a b a b -=-,有以下4个结论:①1a >,②1ab <,③2a b +>,④log log 2a b b a +>中,其中正确结论的个数是()A .1B .2C .3D .4二、多选题9.(2021·江苏盐城市·盐城中学高三其他模拟)下列命题为真命题的是()A .若0a b >>,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b >>,且0c <,则22c ca b >D .若a b >,则11a b<10.(2021·福建上杭一中高三其他模拟)已知1x <-,那么下列不等式中,成立的是()A .210x ->B .12x x+<-C .sin 0x x ->D .cos 0x x +>11.(2021·江苏高三其他模拟)已知g b 糖水中含有g a 糖(0b a >>),若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有()A .a a m b b m+<+B .22m ma m ab m b ++<++C .()()()()22a m b m a m b m ++<++D .121313b a -<-12.(2021·山东烟台市·高三其他模拟)下列命题正确的是()A .若0a b >>,0c <,则c ca b>B .若0a >,0b >,0c >,则a a cb b c+≤+C .若0a b >>,则2+<D .若1a >-,0b >,22a b +=,则121a b++的最小值为313.(2021·山东高三其他模拟)已知0a >,0b >,且1a b -=,则()A .e e 1a b ->B .e e 1a b -<C .914a b-≤D .222log log 2a b -≥14.(2021·江苏泰州市·高三其他模拟)已知c a >,若函数2()2f x x x b =-+有两个零点,c d ,()|ln |g x x d =-有两个零点,a b ,则下列选项正确的有()A .1d b <<B .2a b cd+>C .ad bc>D .log log a b c d>15.(2021·河北高三其他模拟)已知,0,1a b a b >+=,则()A .22a b ->B .12log ()2ab ≥C .(2)b ba a >-D .234a b +≥参考答案跟踪训练1.C 【分析】根据不等式的性质,对四个选项一一验证:对于A :利用不等式的可乘性的性质进行判断;对于B :取1,1a b ==-进行否定;对于C :利用不等式的可乘性的性质进行证明;对于D :取1,1a b ==-进行否定.【详解】对于A :当a b >时,若取0c ≤,则有ac bc ≤.故A 不正确;对于B :当a b >时,取1,1a b ==-时,有11a b>.故B 不正确;对于C :当22ac bc >,两边同乘以21c ,则a b >.故C 正确;对于D :当a b >,取1,1a b ==-时,有22=a b .故D 不正确.故选:C.【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)判断不等式成立的解题思路:①取特殊值进行否定;②利用不等式的性质直接判断.2.A 【分析】利用作差法可判断A 、B ,利用特值法可判断C 、D .【详解】解:对于A 、B :a >b ,c >d ,∴ac +bd -(ad +bc )=(a -b )(c -d )>0,故A 正确,B 错误;对于C :当b =0,c <0时,ac <0,bd =0,故C 错误;对于D :当a >b >0,c >d >0时,ac >bd ,故D 错误;故选:A.3.B 【分析】利用基本不等关系判断数的大小即可.【详解】若0a b <<,则110b aa b ab --=>,即11a b>,A 成立;11()0()()a a b b a b a a a b a a b ---==<---,即11a b a<-,B 不成立;a b >,C 成立;22a b >,D 成立;故选:B 4.C 【分析】取2,1,1,2a c b d ===-=-,则可判断A 、B 、D 错误.则可选出答案.【详解】若2,1,1,2a c b d ===-=-,此时2ab cd ==-,3a b c d -=-=,1a b c d +=+=.A 、因为b d >,所以0b d ->,又因为a c >,所以()()a b d c b d ab cd ad bc ->-⇒+>+,C 正确.故选C.5.AD 【分析】利用基本不等式可判断ACD 选项的正误,利用不等式的性质可判断B 选项的正误.【详解】对于A 选项,因为a 、b 为正实数,则b a 、ab为正实数,由基本不等式可得2b a a b +≥=,当且仅当a b =时,等号成立,A 选项正确;对于B 选项,211x +≥ ,所以,21011x <≤+,B 选项错误;对于C 选项,当0a <时,()444a a a a ⎡⎤⎛⎫+=--+-≤-- ⎪⎢⎥⎝⎭⎣⎦,当且仅当2a =-时,等号成立,C 选项错误;对于D 选项,因为x 、y R ∈,0xy <,则y x、xy 均为负数,由基本不等式可得2x yx y y x y x ⎡⎤⎛⎫⎛⎫+=--+-≤-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,当且仅当x y =时,等号成立,D 选项正确.故选:AD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.AC对四个选项一一验证:对于A :利用=3x y 为增函数直接证明;对于B :取特殊值判断;对于C :若0x y <<时,利用同向不等式相乘判断;若0x y <<时,有0x x <y y <,直接判断;若0x y <<时,利用不等式的乘法性质进行判断对于D :取特殊值判断;【详解】对于A :因为两个不为零的实数x ,y 满足x y <,所以0x y ->,而=3x y 为增函数,所以033=1x y ->,即31x y ->;故A 正确;对于B :可以取2,1x y =-=-,则有22,1xyy ==,所以2xy y >;故B 不正确;对于C :若0x y <<时,则有0,0,x y x y ->->>>根据同向不等式相乘得:x x y y ->-,即x x y y <成立;若0x y <<时,有0x x <y y <,故x x y y <成立;若0x y <<时,则有2=x x x ,2=y y y ,因为0x y <<,所以22y x >,即x x y y <成立;故C 正确;对于D :可以取2,1x y =-=,则有111,12x y=-=,所以11x y <;故D 不正确;故选:AC 【点睛】(1)判断不等式是否成立:①利用不等式的性质或定理直接证明;②取特殊值进行否定,用排除法;(2)多项选择题是2020年高考新题型,需要要对选项一一验证.(3)要证明一个命题是真命题,需要严格的证明;要判断一个命题是假命题,只需要举一个反例否定就看可以了.【分析】由于已知得1ac =,即1a c a a +=+利用基本不等式可判断A ;由1111aa a a a cbc c bc b b ---⎛⎫==> ⎪⎝⎭,可判断B ;令12a =,2c =,1b =,可判断C ,D .【详解】由于0a b c <<<,且lg lg a c =,所以1lg lg lga c c=-=,所以1ac =,且1c >,01a <<,12a c a a+=+>,A 正确;因为1111aa a a a cbc c bc b b ---⎛⎫==> ⎪⎝⎭,即a a cb bc >,B 正确;令12a =,2c =,1b =,则log 0log a a c b b c =>,e e a c =>,C ,D 错误.故选;AB .【点睛】本题考查了比较大小,解题的关键点是由已知得出1ac =,考查了学生分析问题、解决问题的能力和计算能力.8.ABC 【分析】作差法可判断A ;由基本不等式1的代换可判断B ;由已知可得11122,222a ab a a b a +=>=<⋅,从而可判断C ;举出反例可判断D .【详解】选项A 中110b a a b ab --=>,则A 正确;B ,214(2)48b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==时,等号成立,则B 正确;选项C 中,因为1,0ab a b =>>,所以10>>>a b ,则11122,222a ab a a b a +=>=<⋅,所以12a b a b <+,则C 正确;若,2a b ππ==,满足0a b >>,而sin sin a b <,D 不正确,故选:ABC .【点睛】方法点睛:判断不等式是否成立常用方法:1、举反例可说明其不成立;2、利用基本不等式可判断;3、作差、作商法;4、利用函数的单调性;5、放缩法.9.ACD 【分析】由ln ln 0x y >>,得到1x y >>,根据不等式的性质,可判定A 正确;根据1(3xy =的单调性,可判定B 错误;根据对数的运算性质,可判定C 项正确;结合基本不等式,可判定D 正确.【详解】因为ln ln 0x y >>,可得1x y >>,所以11x y<,所以A 正确;又由函数1()3x y =为单调递减函数,所以1133xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以B 错误;由log log 1y y x y >=,log log 1x x y x <=,所以log log y x x y >,所以C 项正确;由()()2224y x y x y x y +-⎡⎤-≤=⎢⎣⎦,所以()2224168x x y x y x +≥+≥-,当且仅当2x =,1y =时等号成立,所以D 项正确.故选:ACD.10.ABD 【分析】对于A ,根据a b +≥可得A 正确;对于B ,利用1abc =以及基本不等式可得B 正确;对于C ,利用11ab c=≥和基本不等式可得C 错误;对于D ,利用22222222121a a b a a b b c b b a b b a ⎛⎫⎛⎫+=+=-++- ⎪ ⎪⎝⎭⎝⎭和基本不等式可得D 正确.【详解】因为0,0,0a b c >>>,1abc =,对于A,因为a b +≥,所以(2a b +≥=,故A 正确;对于B ,222222222111222b c a c a b bc ac ab a b c a b c +++++=++≤+=++,故B 正确;对于C ,由01c <≤,得11ab c=≥,所以(1)(1)114a b ab a b ab ++=+++≥+≥,故C 错误;对于D,22222222121021a a b a a b b c b b a b b a ⎛⎫⎛⎫+=+=-++-≥+⨯ ⎪ ⎪⎝⎭⎝⎭3=,故D正确.故选:ABD 11.()2,61,13⎛⎫⎪⎝⎭【分析】由不等式的性质运算即可求得结果.【详解】13a b <<< ,即1a b <<,3a b <<,13a a b b ∴+<+<+,又12a +>,36b +<,26a b ∴<+<;又1113b a <<,13a a b ∴<<,又133a >,113a b∴<<.综上所述:a b +的取值范围为()2,6;a b 的取值范围为1,13⎛⎫⎪⎝⎭.故答案为:()2,6;1,13⎛⎫⎪⎝⎭.12.17,22⎛⎫⎪⎝⎭323,22⎛⎫- ⎪⎝⎭【分析】利用不等式的基本性质可求得x 的取值范围,利用待定系数法可得()()513222+=++-x y x y x y ,利用不等式的基本性质可求得32x y +的取值范围.【详解】14x y -<+< ,23x y <-<,两个不等式相加可得127x <<,解得1722x <<,设()()()()32+=++-=++-x y m x y n x y m n x m n y ,所以,32m n m n +=⎧⎨-=⎩,解得52m =,12n =,因为()551022x y -<+<,()13122x y <-<,由不等式的基本性质可得3233222x y -<+<.故答案为:17,22⎛⎫ ⎪⎝⎭;323,22⎛⎫- ⎪⎝⎭.【点睛】易错点点睛:本题考查利用不等式的基本性质求代数式的取值范围,一般而言,不等式次数用得越多,所得代数式的取值范围越不准确,本题在求32x y +的取值范围时,可充分利用待定系数法得出()()513222+=++-x y x y x y ,进而利用不等式的基本性质求解.13.()3a b ca b ca b c abc ++>【分析】利用作商法比大小.【详解】()3333333333a b a c b c a b a cb c b ac a c ba b ca b ca b ca ab abcb c c abc ---------+++++⎛⎫⎛⎫⎛⎫=⨯⨯=⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1,03a a b b ->> 31a ba b -⎛⎫∴> ⎪⎝⎭同理31a c a c -⎛⎫> ⎪⎝⎭,31b c b c -⎛⎫> ⎪⎝⎭,从而()31a b ca b c a b c abc ++>,即a b c a b c >()3a b c abc ++.真题再现1.B 【详解】分析:求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果.详解:.0.30.3log0.2,2a b log == 0.2211log0.3,0.3log a b ∴==0.3110.4log a b ∴+=1101a b ∴<+<,即01a b ab +<<又a 0,b 0>< ab 0∴<即ab a b 0<+<故选B.点睛:本题主要考查对数的运算和不等式,属于中档题.2.A 【详解】因为121212120,0,1a ab b a a b b <<<<+=+=22121212121()(222a ab b a a b b +++<+=112212************()()()()()0a b a b a b a b a a b a a b a a b b +-+=-+-=-->11221221()a b a b a b a b +>+12121122112112221()()2()a a b b a b a b a b a b a b a b =++=+++<+112212a b a b +>,综上可得1122a b a b +最大,故选A.3.A 【详解】由(01)x y a a a <<<知,,x y >所以,33x y >,选A.考点:指数函数的性质,不等式的性质.4.D【详解】解析】利用赋值法:令1,0a b ==排除A,B,C,选D.5.B【详解】设{a n }的首项为a 1,公比为q ,当a 1<0,q <0时,可知a 1<0,a 3<0,a 2>0,所以A 不正确;当q =-1时,C 选项错误;当q <0时,a 3>a 1⇒a 3q <a 1q ⇒a 4<a 2,与D 选项矛盾.因此根据基本不等式可知B 选项正确.6.D【详解】本题主要考查不等关系.已知0,0a b c d >><<,所以110d c->->,所以a b d c ->-,故a b d c<.故选D 7.D【详解】本题采用特殊值法:当3,1a b ==-时,0a b +>,但0ab <,故是不充分条件;当3,1a b =-=-时,0ab >,但0a b +<,故是不必要条件.所以“0a b +>”是“0ab >”的既不充分也不必要条件.故选D.考点:1.充分条件、必要条件;2.不等式的性质.8.C【详解】试题分析:A :由,得,即,A 不正确;B :由及正弦函数的单调性,可知不一定成立;C :由,,得,故,C 正确;D :由,得,但xy 的值不一定大于1,故ln ln =ln 0x y xy +>不一定成立,故选C.【考点】函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.9.D【详解】试题分析:log log 1a a b a >=,当1a >时,1b a >>,10,010,0a b a b a b ∴->->->-<,,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->----当01a <<时,01b a ∴<<<,10,010,0,a b a b a b ∴-<-<--,(1)(1)0,(1)()0,(1)()0.a b a a b b b a ∴-->----观察各选项可知选D.【考点】对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.10.C【详解】若a <b <0,则a 2>b 2,A 不成立;若220{,ab a b ab a b >⇒<<B 不成立;若a =1,b=2,则12,2b a b a a b a b==⇒>,所以D 不成立,故选C.11.B【详解】由x y z <<,a b c <<,所以()()()ax by cz az by cx a x z c z x ++-++=-+-()()0x z a c =-->,故ax by cz az by cx ++>++;同理,()ay bz cx ay bx cz ++-++()()()()0b z x c x z x z c b =-+-=--<,故ay bz cx ay bx cz ++<++.因为()az by cx ay bz cx ++-++()()()()0a z y b y z a b z y =-+-=--<,故az by cx ay bz cx ++<++.故最低费用为az by cx ++.故选B.12.C【详解】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,3211log log 22>,选项D 错误,因为lg lg log log lg ()lg (11lg lg lg lg a b b b a b a a b a b a c b c c c a b b a a b a b a--=⋅-=⋅>>∴<<< lg lg 001lg 0log log lg lg a bb a a bc c a c b c b a-∴><<∴<∴< 选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.13.B【详解】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2ab a b a b ><<∴+=12112log ()a b a a b a a b b b+>+>+⇒+>+,所以选B.【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.14.1,2,3---【解析】试题分析:()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.15.5【解析】此题,看似很难,但其实不难,首先解出x 的范围,,再解出y 的范围,,最后综合解出x-2y+1的范围,那么绝对值最大,就去5模拟检测1.D【分析】对于A ,B ,C 三项通过已知条件举反例即可排除,D 选项则通过作差法因式分解即可判断.【详解】对于A 选项:举反例1,1a b ==-,则11a b=-<,则A 不成立;对于B 选项:举反例1,1a b ==-,则,1111a b ==-,所以11a b >,则B 不成立;对于C 选项:举反例0c =,则220,0a c b c ==,所以22a c b c =,则C 不成立;对于D 选项:()()()2332221324a b a b a ab b a b a b b ⎡⎤⎛⎫-=-++=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∵a b >,∴0a b ->又∵2213024a b b ⎛⎫++> ⎪⎝⎭∴330a b ->,即33a b >.则D 成立故选:D.2.C【分析】A 利用基本不等式结合已知即可判断正误,B 完全平方公式得21+=+已知构造二次函数确定a b 的范围,即可判断正误,C 应用基本不等式“1”的代换求最值即可,D 根据B 中a b 的范围,结合对数的运算性质可判断正误.【详解】A :122b a =+≥,当且仅当1a b =时等号成立,正确;B :211ab =++=+,由11a b =-,则22111111()244a b b b b =-=--+≤,即22+≤,又0a >,0b >≤,当12a =,2b =时等号成立,正确;C :2212()()333b b a aba ab ab +=++=++≥+=+当且仅当ab =时等号成立,而36+<,错误;D :由B 知14a b ≤,故22221log log log log 24a ab b -=≤=-,当12a =,2b =时等号成立,正确;故选:C3.B举反例可以说明①④不正确,利用立方差公式可以证明②正确,利用指数函数的性质可以证明③正确.【详解】对于①,若1a b -=,取4,3a b ==21-=-<,①错误;对于②,因为1a b -=,0a b >>,所以1a >,()()()()()2222331131+11a b a b a ab b a a a a a a =-++=+-+-=-->,②正确;对于③,因为0b >,所以1b e >,即有()111b b a b b e e e e e e +--=->=,③正确;对于④,若1a b -=,取,1a e b e ==-,则()ln ln 1ln 11a b e -=--<,④错误.所以真命题的个数是2.故选:B .4.C【分析】选项A,D 举反例即可判断,选项B ,设x x y e e -=-,由其单调性可判断,选项C.由12x y ⎛⎫= ⎪⎝⎭为R 上的减函数,可判断.【详解】解:A :当2x =,3y =-时,11x y>,∴A 错误,B :设x x y e e -=-,则函数为R 上的增函数,∵x y >,∴x x y y e e e e --->-,即y x y x e e e e --+>+,∴B 错误.C :∵12x y ⎛⎫= ⎪⎝⎭为R 上的减函数,x y >,∴1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,∴C 正确,D :当2x =,3y =-时,22x y <,∴D 错误.故选:C .5.A设天平左臂长为a ,右臂长为b (不妨设a b >),先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m .根据天平平衡,列出等式,可得12,m m 表达式,利用作差法比较12m m +与10的大小,即可得答案.【详解】解:由于天平的两臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >),先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m .由杠杆的平衡原理:15bm a =⨯,25am b =⨯.解得15a m b =,25b m a=,则1255b a m m a b +=+.下面比较12m m +与10的大小:(作差比较法)因为()()2125551010b a b a m m a b ab-+-=+-=,因为a b ¹,所以()250b a ab ->,即1210m m +>.所以这样可知称出的黄金质量大于10g .故选:A6.D【分析】分别把两个等式转化,写成2244(2)0z y x x x -=-+=-≥及2(2)x y =-+的形式,从而比较数的大小.【详解】由244x x z y =+--知,2244(2)0z y x x x -=-+=-≥,即z y ≥;由220x y ++=知,2(2)x y =-+,则22172()024y x y y y -=++=++>,即y x >;综上,z y x≥>故选:D7.B【分析】利用已知的事实以及作差法、特殊值法可判断各选项中不等式的正误.【详解】对于A 选项,由题意可知a a m b b m+<+,A 选项错误;对于B 选项,作出函数2x y =与y x =的图象如下图所示:由图可知,当0x >时,2x x >,0m > ,则2m m >,所以,()()()()()()()()()()22220222m m m m m m m a b m a m b a b m a a m b b m b b m b b m ++-++--++-==>++++++,即22mm a m a b m b ++<++,B 选项正确;对于C 选项,()()()()()220a m b m a m b m m b a ++-++=->,所以,()()()()22a m b m a m b m ++>++,C 选项错误;对于D 选项,取1a =,2b =,则121113143b a -=<=-,D 选项错误.故选:B.8.B【分析】由已知可得223a ab b ++=,则结合0a b >>可得1a >,再根据222a b ab +>可得1ab <,由()222234a b a ab b ab +=++=+<可判断③,根据,a b 范围得出log 0,log 0a b b a <<.【详解】由立方差公式可得()()33223()a b a b a ab b a b -=-++=-,则223a ab b ++=,又0a b >>,222223a a a a ab b ∴++>++=,即21a >,1a >,故①正确;222a b ab +≥Q ,当a b =时取等号,则222a b ab +>,则223a ab b ab ++>,即1ab <,故②正确;()222234a b a ab b ab +=++=+<,2a b ∴+<,故③错误;1a >Q ,1ab <,01b ∴<<,则log 0,log 0a b b a <<,则log log 0a b b a +<,故④错误.综上,正确的有2个.故选:B.【点睛】关键点睛:解题的关键是得出223a ab b ++=,进而得出1a >,1ab <.9.BC【分析】利用不等式的性质逐一判断即可求解.【详解】选项A :当0c =时,不等式不成立,故本命题是假命题;选项B:22,00a b a b a ab ab b a b ⎧<<⎧⇒>⇒>⎨⎨<<⎩⎩,22a ab b ∴>>,所以本命题是真命题;选项C:222211000a b a b a b >>⇒>>⇒<<,220,c c c a b<∴> ,所以本命题是真命题;选项D:若0,0a b ><时,11a b<显然不成立,所以本命题是假命题;故选:BC .10.ABC【分析】根据不等式性质及基本不等式,以及三角函数的值域,逐个分析判断即可得解.【详解】对A ,由1x <-可得21x >,所以210x ->,A 正确,对B ,由1x <-,可得1x ->,所以11(2x x x x +=---<-=-,B 正确,对C ,1sin 1x -≤≤,1x ->,所以sin 0x x ->,C 正确,对D ,当取2x =-时,而1cos 1x -≤≤,显然cos 0x x +>错误,故选:ABC.11.ABD【分析】依题意得到a a mb b m +<+,再根据不等式的性质一一判断即可;【详解】对于A ,由题意可知a a m b b m+<+,正确;对于B ,因为2mm <,所以2222m mm m a m a m m a b m b m m b +++-+<=+++-+,正确;对于C ,22a m a m m a m b m b m m b m ++++<=++++即()()()()22a m b m a m b m ++<++,错误;对于D ,1122131131311333b b b b a --+<==<--+,正确.故选:ABD12.ACD【分析】对选项A ,利用不等式性质即可判断A 正确;对选项B ,利用特值法即可判断B 错误;对选项C ,利用基本不等式性质求解即可;对选项D ,首先根据题意得到123a b ++=,从而得到()1122112131a b a a b b ⎡⎤⎛⎫+=+ ⎪⎢⎥++⎝⎭⎣+⎦+,再展开利用基本不等式求解即可.【详解】对选项A ,因为0a b >>,所以11a b <,又因为0c <,所以c c a b>,故A 正确;对选项B ,因为0a >,0b >,0c >,设2a =,1b =,1c =,则2a b =,32a c b c +=+,a a c b b c+>+,故B 错误;对选项C ,因为0a b >>,所以()22a b a b <+⇒<+2422a b +⇒<⇒C 正确;对选项D ,因为22a b +=,所以123a b ++=,所以()()(211211212155311313231a b a b a b a b a b +⎡⎤⎡⎤⎛⎫+=+=++≥+=⎢⎥ ⎪⎢⎥+++⎝⎭⎣⎦+⎦+⎣,当且仅当()2121a b a b+=+,即0a =,1b =时,取等号.故D 正确.故选:ACD13.ACD【分析】对A ,化简可得()1a b b e e e e =--可判断;对B ,取特殊值可判断;对C ,由()9191a b a b a b ⎛⎫-=-- ⎪⎝⎭展开根据基本不等式可得;对C ,化简可得2222log log log 12b b a b ⎛⎫++ ⎪⎝=⎭-利用基本不等式可解.【详解】对A ,由0a >,0b >,且1a b -=可得0a b >>,则()()11b a a b b b e e e e e e -=-=--,0b > ,1b e ∴>,又11e ->,()11b e e ∴->,即e e 1a b ->,故A 正确;对B ,令2,1a b ==,则e e 211e a b =-->,故B 错误;对C ,()9191910104b a a b a b a b a b ⎛⎫⎛⎫-=--=-+≤- ⎪ ⎝⎭⎝⎭,当且仅当9b a a b =时等号成立,故C 正确;对D ,()22222222112log log log log lo 2g 22log b a b b b b a b ⎛⎫+⎛⎫==++≥+= ⎪ ⎪ ⎪⎝⎭⎭-⎝=,当且仅当1b b=,即1b =时等号成立,故D 正确.故选:ACD.【点睛】关键点睛:解题的关键是巧妙利用已知条件1a b -=转化.14.AB【分析】由已知分析得选项A 正确,利用基本不等式证明选项B 正确;利用不等式性质得到选项C 错误,利用作差法得到选出D 错误.【详解】因为函数2()2f x x x b =-+有两个零点,c d ,所以440,1b b ∆=->∴<,所以2,1c d cd b +==<,令()|ln |g x x d =-=0,所|ln |x d =有两个零点,a b ,所以0,|ln ||ln |d a b d >==,所以1a >,因为,1c a c >∴>,所以01d <<,因为b d b c=<,所以选项A 正确;因为ln ,ln ,ln ln 0,ln()0,1b d a d a b ab ab -==∴+=∴=∴=,所以2,a b +>=因为1,22cd b cd =<∴<,所以2a b cd +>,所以选项B 正确;因为0,0,c a b d bc ad >>>>∴>,所以选项C 错误;11log log log log log log log log 0a b a a aa a a c d c d c cdb d-=-=-==<,所以log log a b c d <,所以选项D 错误.故选:AB【点睛】关键点睛:解答本题的关键在于证明10c a b d >>>>>.15.BD【分析】对AC 选择,只需要举反例说明即可;对于BD 选项需要借助于不等式的性质以及函数的图像与性质进行证明.【详解】对A :当12a b ==时,02221a b -==<,即22a b -<,故A 错误;对B :因为1a b +=,a b +≥1≥,即104ab <≤,由于12log y x =在R 上单调递减,所以()12log 2ab ≥,故B 正确;对C :当12a b ==时,1212b a ⎛⎫= ⎪⎝⎭,()1122132(222b a ⎛⎫-=-= ⎪⎝⎭,又由于12y x =在R 上单调递增,所以11221322⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即(2)b b a a <-,故C 错误;对D :()22213124431a a a a a ⎛⎫=-+=-+ ⎪⎝⎭+-≥,故D 正确.故选:BD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 不等式、推理与证明 第32讲 不等关系与不等式考纲要求考情分析命题趋势1.两个实数比较大小的方法 (1)作差法:⎩⎪⎨⎪⎧a -b >0⇔a __>__b ,a -b =0⇔a __=__b ,a -b <0⇔a __<__b .(2)作商法:⎩⎪⎨⎪⎧ab>1⇔a __>__b (a ∈R ,b >0),ab =1⇔a __=__b (a ∈R ,b >0),a b <1⇔a __<__b (a ∈R ,b >0).2.不等式的基本性质(1)倒数的性质①a >b ,ab >0⇒1a __<__1b .②a <0<b ⇒1a __<__1b .③a >b >0,0<c <d ⇒a c __>__bd.④0<a <x <b 或a <x <b <0⇒1b __<__1x __<__1a .(2)有关分数的性质 若a >b >0,m >0,则: ①b a <b +m a +m ;b a >b -ma -m (b -m >0). ②a b >a +m b +m ;a b <a -m b -m(b -m >0).1.思维辨析(在括号内打“√”或“×”).(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (3)一个非零实数越大,则其倒数就越小.( × ) (4)同向不等式具有可加和可乘性.( × )(5)两个数的比值大于1,则分子不一定大于分母.( √ ) 解析 (1)正确.两个实数a ,b 之间的大小关系只有三种. (2)错误.同乘以一个负数或0时不等号改变. (3)错误.如-2<2,而-12<12.(4)错误.同向不等式具有可加性,但不一定具有可乘性,如1<2,-3<-2,但-3>-4.(5)正确.当这个比值中的分母小于零时,分子小于分母,当这个比值中的分母大于零时,分子大于分母.2.下列四个结论,正确的是( D ) ①a >b ,c <d ⇒a -c >b -d ; ②a >b >0,c <d <0⇒ac >bd ; ③a >b >0⇒3a >3b ; ④a >b >0⇒1a 2>1b 2.A .①②B .②③C .①④D .①③解析 利用不等式的同向可加性可知①正确;对②根据不等式的性质可知ac <bd ,故②不正确;因为函数y =x 13是单调递增的,所以③正确;对④由a >b >0可知a 2>b 2>0,所以1a 2<1b2,所以④不正确,故选D . 3.若a >b >0,c <d <0,则一定有( D ) A .a c >bdB .a c <b dC .a d >bcD .a d <b c解析 因为c <d <0,所以-c >-d >0.即得1-d >1-c >0,又a >b >0,得a -d >b-c,从而有a d <bc.4.设a ,b ,c ∈R ,且a >b ,则( D ) A .ac >bc B .1a <1bC .a 2>b 2D .a 3>b 3解析 y =x 3在(-∞,+∞)上为增函数,所以a 3>b 3. 5.下列各组代数式的判断正确的是__①③④__. ①x 2+5x +6<2x 2+5x +9; ② (x -3)2<(x -2)(x -4); ③当x >1时,x 3>x 2-x +1; ④x 2+y 2+1>2(x +y -1).解析 ①2x 2+5x +9-x 2-5x -6=x 2+3>0; 所以x 2+5x +6<2x 2+5x +9,故①正确. ②(x -3)2-(x -2)(x -4)=1,所以(x -3)2>(x -2)(x -4),故②错误.③当x >1时,x 3-(x 2-x +1)=(x -1)(x 2+1)>0, 所以当x >1时, x 3>x 2-x +1,故③正确. ④x 2+y 2+1-2(x +y -1)=(x -1)2+(y -1)2+1>0, 所以x 2+y 2+1>2(x +y -1),故④正确.一 比较两个数(式)的大小比较大小的常用方法(1)作差法:其基本步骤为作差、变形、判断符号、得出结论.用作差法比较大小的关键是变形,将差式变成乘积的形式,常采用配方、因式分解、分子(分母)有理化等变形方法.(2)作商法:即判断商与1的关系,得出结论.要特别注意当商与1的大小确定后必须对商式分子分母的正负进行判断,这是用作商法比较大小时最容易漏掉的关键步骤.(3)单调性法:利用有关函数的单调性比较大小.(4)特殊值验证法:对于一些题目,有的给出取值范围,可采用特殊值验证法比较大小. 【例1】 (1)已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( B ) A .M <N B .M >N C .M =ND .不确定(2)对于0<a <1,给出下列四个不等式:①log a (1+a )<log a ⎝⎛⎭⎫1+1a ;②log a (1+a )>log a ⎝⎛⎭⎫1+1a ;③a 1+a <a 1+1a ;④a 1+a >a 1+1a .其中成立的是( D )A .①与③B .①与④C .②与③D .②与④ (3)若a =ln 33,b =ln 22,则a 与b 的大小关系为__a >b __.解析 (1)M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1 =a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0. ∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .(2)当0<a <1时,(1+a )-⎝⎛⎭⎫1+1a =(a +1)(a -1)a <0, 则1+a <1+1a ,因此②④成立.(3)∵a =ln 33>0,b =ln 22>0,∴a b =ln 33·2ln 2=2ln 33ln 2=ln 9ln 8>1,∴a >b . 二 不等式的性质及应用(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.【例2】 (1)已知a ,b ,c ,d 为实数,则“a >b 且c >d ”是“ac +bd >bc +ad ”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)若1a <1b <0,则下列不等式:①a +b <ab ;②||a >||b ;③a <b ;④ab <b 2中,正确的不等式有( C )A .①②B .②③C .①④D .③④解析 (1)因为c >d ,所以c -d >0.又a >b ,所以两边同时乘以(c -d ),得a (c -d )>b (c -d ),即ac +bd >bc +ad .若ac +bd >bc +ad ,则a (c -d )>b (c -d ),所以可能a >b 且c >d ,也可能a <b 且c <d ,所以“a >b 且c >d ”是“ac +bd >bc +ad ”的充分不必要条件.(2)因为1a <1b <0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,||a <||b ,在b <a两边同时乘以b ,因为b <0,所以ab <b 2.因此正确的是①④.三 利用不等式的性质求范围应用不等式性质求范围问题的注意点应用不等式的性质求某些代数式的取值范围应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.此外,这类问题还可以用线性规划的知识求解.【例3】 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围. 解析 f (-1)=a -b ,f (1)=a +b ,f (-2)=4a -2b .由题意,得⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.设m (a -b )+n (a +b )=4a -2b ,则⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.故f (-2)=3(a -b )+(a +b ). ∵3≤3(a -b )≤6,2≤a +b ≤4,∴5≤3(a -b )+(a +b )≤10, 即5≤f (-2)≤10,∴f (-2)的取值范围是 [5,10].1.若a ,b ∈R 且a >b ,则下列不等式恒成立的是( C ) A .a 2>b 2 B .ab >1C .2a >2bD .lg(a -b )>0解析 A 项,当a =-1且b =-2时,显然满足a >b ,但不满足a 2>b 2,故错误;B 项,当a =-1且b =-2时,显然满足a >b ,但a b =12,故错误;C 项,由指数函数的单调性可知当a >b 时,2a >2b ,故正确;D 项,当a =-1且b =-2时,显然满足a >b ,但lg(a -b )=lg 1=0,故错误,故选C .2.已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则ca 的取值范围为( B )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)解析 由已知及三角形的三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >b a,∴⎩⎨⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加得,0<2×c a <4,∴ca 的取值范围为(0,2),故选B .3.下列命题中正确的是( C ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<bc2,则a <bD .若a >b ,c >d ,则a -c >b -d解析 由不等式的性质知C 项正确,故选C .4.已知30°≤α+β≤45°,-30°≤α-2β≤30°,求5α-4β的取值范围.解析 易求得5α-4β=2(α+β)+3(α-2β), ∵30°≤α+β≤45°,-30°≤α-2β≤30°, ∴-30°≤5α-4β≤180°.易错点 不等式的变形不等价错因分析:①乱去分母;②忘掉分母可正、可负、不可以为零.【例1】 若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧x ⎪⎪⎭⎬⎫1x ≤1,则A ∩B =________. 解析 A ={x |-1≤x ≤1}.由1x ≤1得1-x x≤0,∴⎩⎪⎨⎪⎧x (1-x )≤0,x ≠0,解得x <0或x ≥1,∴B ={x |x <0或x ≥1}.因此A ∩B ={x |-1≤x <0或x =1}.答案 {x |-1≤x <0或x =1}【跟踪训练1】 已知a ,b ,c ∈R ,那么下列命题中正确的是( C ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析 当c =0时,可知A 项不正确;当c <0时,可知B 项不正确;对于C 项,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b 成立,C 项正确;当a <0且b <0时,可知D 项不正确.课时达标 第32讲[解密考纲]主要考查不等式及其性质,以选择题或填空题的形式出现,位于选择题或填空题的中间位置,难度较易或中等.一、选择题1.设a ,b 为实数,则“a <1b 或b <1a ”是“0<ab <1”的( D )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 可通过举反例说明,当a =b =-10时,a <1b ,b <1a ,但ab =100>1,所以不是充分条件;反之,当a =-1,b =-12时,0<ab <1,但a >1b ,b >1a ,所以不是必要条件.综上可知“a <1b 或b <1a”是“0<ab <1”的既不充分也不必要条件.2.若1a <1b <0,则下列结论不正确的是( D )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析 令a =-1,b =-2代入选项验证可知D 项错误,故选D .3.(2018·浙江富阳模拟)如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( C )A .ab >acB .bc >acC .cb 2<ab 2D .ac (a -c )<0解析 因为c <b <a ,且ac <0,所以a >0,c <0,所以ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,所以A ,B ,D 项均正确.因为b 可能等于0,也可能不等于0,所以cb 2<ab 2不一定成立.4.(2016·北京卷)已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .⎝⎛⎭⎫12x -⎝⎛⎭⎫12y<0D .ln x +ln y >0解析 函数y =⎝⎛⎭⎫12x 在(0,+∞)上为减函数,∴当x >y >0时,⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故C 项正确;函数y =1x 在(0,+∞)上为减函数,∴x >y >0⇒1x <1y ⇒1x -1y <0,故A 项错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 项错误;x >y >0⇒xy >1⇔ln(xy )>0⇔ln x +ln y >0,故D 项错误.5.(2016·浙江卷)已知a >0,b >0且a ≠1,b ≠1,若log a b >1,则( D ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0解析 讨论a 的取值范围,可以利用指数式、对数式的互化将条件转化为a 与b 的关系,再判断即可.∵a >0,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为log a b >log a a , ∴b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为log a b >log a a ,即0<b <a <1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.故选D .6.(2018·陕西西安检测)设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( D ) A .⎝⎛⎭⎫0,5π6 B .⎝⎛⎭⎫-π6,5π6 C .(0,π)D .⎝⎛⎭⎫-π6,π 解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.二、填空题7.(2018·山西四校联考)已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是__a b 2+b a 2≥1a +1b __.解析a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -aa2 =(a -b )⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. 因为a +b >0,(a -b )2≥0,所以(a +b )(a -b )2a 2b 2≥0,所以a b 2+b a 2≥1a +1b. 8.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是__27__.解析 由4≤x 2y ≤9,得16≤x 4y 2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.∴x 3y 4的最大值是27.9.(2018·贵州遵义模拟)已知下列结论: ①若a >|b |,则a 2>b 2;②若a >b ,则1a <1b;③若 a >b ,则a 3>b 3;④若a <0,-1<b <0,则ab 2>a . 其中正确的是__①③④__(只填序号即可).解析 对于①,因为a >|b |≥0,所以a 2>b 2,即①正确; 对于②,当a =2,b =-1时,显然不正确;对于③,显然正确;对于④,因为a <0,-1<b <0, ab 2-a =a (b 2-1)>0,所以ab 2>a ,即④正确. 三、解答题10.若实数a ≠1,比较a +2与31-a 的大小.解析 ∵a +2-31-a =-a 2-a -11-a =a 2+a +1a -1,a 2+a +1=⎝⎛⎭⎫a +122+34>0, ∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a.11.已知x ,y 为正实数,满足1≤lg xy ≤2,3≤lg xy ≤4,求lg(x 4y 2)的取值范围.解析 设a =lg x ,b =lg y ,则lg xy =a +b ,lg xy=a -b ,lg x 4y 2=4a +2b ,设4a +2b =m (a +b )+n (a -b ), ∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1.∴lg x 4y 2=3lg xy +lg x y .∵3≤3lg xy ≤6,3≤lg xy≤4,∴6≤lg(x 4y 2)≤10,即lg(x 4y 2)的取值范围是[6,10].12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解析 ∵f (1)=0,∴a +b +c =0,∴b =-(a +c ). 又a >b >c ,∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca ,即-2<c a <-12,故ca 的取值范围是⎝⎛⎭⎫-2,-12.。

相关文档
最新文档