2018版高考数学理科专题复习:专题4 三角函数、解三角形 第25练含解析
2018版高考数学(江苏专用理科)专题复习:专题专题4 三角函数、解三角形 第28绬 Word版含解析
1.(2016·隆化期中)在△ABC 中,如果sin A ∶sin B ∶sin C =2∶3∶4,那么cos C =________.2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________m.3.(2016·安庆检测)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-c 2=3bc ,sin B =23sin C ,则A =________.4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A=7tan B ,a 2-b 2c =3,则c =________.6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则B =________.7.(2016·南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO→=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为________. 9.△ABC 中,A 、B 、C 是其内角,若sin2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B=________. 11.(2016·佛山期中)如图,一艘船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.答案精析1.-14 2.502 3.π6 4.7 5.46.45°解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,∴sin C =1,C =90°.∴S =12ab =14(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263解析 在△ADC 中,AD =2,AC =10,DC =2,则cos ∠ADC =-22,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin ∠ADB ,即232=AB 22,解得AB =263. 8.23解析 设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO→=xAB →+yAC →,所以AO →=xAB →+2yAD →. 又x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理,得cos ∠BAC =32+42-322×3×4=23. 9.等腰或直角解析 因为sin2A +sin(A -C )-sin B=sin2A +sin(A -C )-sin(A +C )=2sin A cos A -2sin C cos A=2cos A (sin A -sin C )=0,所以cos A =0或sin A =sin C ,所以A =π2或A =C .故△ABC 为等腰或直角三角形.10.4解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B=4·sin (A +60°)sin B =4.11.30 2解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2.12.4 3解析 在△ACD 中,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,∴△ADC 的面积S =12AD ·DC ·sin ∠ADC =34AD ·DC ≤4 3.13.533解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3(舍),由余弦定理得c 2=82+102-2×8×10×12=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384,所以tan B =533. 14.(2,+∞)解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m=a c =sin A sin C =sin (120°-C )sin C =32tan C +12.而0<tan C <33,∴1tan C >3,则m >2.。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.4含解析
1.y=A sin(ωx+φ)的有关概念y=A sin(ωx +φ)(A〉0,ω〉0),x∈R 振幅周期频率相位初相A T=错误!f=错误!=错误!ωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x错误!错误!错误!错误!错误!ωx+φ0π2π错误!2πy=A sin(ωx+φ)0A0-A03.函数y=sin x的图象经变换得到y=A sin(ωx+φ) (A>0,ω>0)的图象的步骤如下:【知识拓展】1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ〉0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y=A sin(ωx+φ)的对称轴由ωx+φ=kπ+错误!,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)y=sin错误!的图象是由y=sin错误!的图象向右平移错误!个单位得到的.( √)(2)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象.(×)(3)利用图象变换作图时“先平移,后伸缩"与“先伸缩,后平移”中平移的长度一致.( ×)(4)函数y=A sin(ωx+φ)的最小正周期为T=错误!。
( ×) (5)把y=sin x的图象上各点纵坐标不变,横坐标缩短为原来的错误!,所得图象对应的函数解析式为y=sin 12x。
(×)(6)若函数y=A cos(ωx+φ)的最小正周期为T,则函数图象的两个相邻对称中心之间的距离为错误!.(√)1.(教材改编)y=2sin(错误!x-错误!)的振幅,频率和初相分别为( )A.2,4π,错误!B.2,错误!,错误!C.2,错误!,-错误!D.2,4π,-错误!答案C解析由题意知A=2,f=错误!=错误!=错误!,初相为-错误!. 2.(2015·山东)要得到函数y=sin错误!的图象,只需将函数y=sin 4x 的图象( )A.向左平移π12个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案B解析∵y=sin错误!=sin错误!,∴要得到y=sin错误!的图象,只需将函数y=sin 4x的图象向右平移错误!个单位.3.(2016·青岛模拟)将函数y=sin x的图象上所有的点向右平行移动错误!个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin(2x-错误!)B.y=sin(2x-错误!)C.y=sin(错误!x-错误!)D.y=sin(错误!x-错误!)答案C解析y=sin xπ10右移个单位−−−−−→y=sin(x-错误!)错误!y=sin(错误!x-错误!).4.(2016·临沂模拟)已知函数f(x)=A cos(ωx+θ)的图象如图所示,f(错误!)=-错误!,则f(-错误!)=________。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.1含解析
1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S={β|β=k·360°+α,k∈Z}.(3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°。
(3)扇形的弧长公式:l=|α|·r,扇形的面积公式:S=错误!lr=错误!|α|·r2。
3.任意角的三角函数任意角α的终边与单位圆交于点P(x,y)时,sin α=y,cos α=x,tan α=错误!(x≠0).三个三角函数的初步性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠kπ+错误!,k∈Z}+-+-4。
三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T。
三角函数线有向线段MP为正弦线;有向线段OM为余弦线;有向线段AT为正切线。
【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=错误!,cos α=错误!,tan α=错误!(x≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)终边相同的角的同一三角函数值相等.(√)(5)若α∈(0,错误!),则tan α>α〉sin α.(√)(6)若α为第一象限角,则sin α+cos α>1.(√)1.角-870°的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限.2.(教材改编)已知角α的终边与单位圆的交点为M(错误!,y),则sin α等于()A 。
2018版高考数学理一轮复习文档:第四章 三角函数、解三角形 4-2 含解析 精品
1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.各角的终边与角α的终边的关系3.六组诱导公式【知识拓展】1.诱导公式的记忆口诀:奇变偶不变,符号看象限. 2.同角三角函数基本关系式的常用变形: (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ )1.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 答案 D解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.2.(教材改编)已知sin(π+α)=12,则cos α的值为( )A .±12B.12C.32D .±32答案 D解析 ∵sin(π+α)=-sin α=12.∴sin α=-12,cos α=±1-sin 2α=±32.3.(2016·东营模拟)计算:sin 116π+cos 103π等于( ) A .-1 B .1 C .0 D.12-32答案 A 解析 ∵sin 116π=sin(π+56π)=-sin 5π6=-12, cos103π=cos(2π+4π3)=cos 4π3=-12, ∴sin116π+cos 103π=-1. 4.(教材改编)若tan α=2,则sin α+4cos α5sin α-2cos α= .答案 34解析sin α+4cos α5sin α-2cos α=tan α+45tan α-2=2+45×2-2=34. 5.已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x ,x ≤2 000,x -18,x >2 000,则f (f (2 018))= .答案 -1解析 ∵f (f (2 018))=f (2 018-18)=f (2 000), ∴f (2 000)=2cos 2 000π3=2cos 23π=-1.题型一 同角三角函数关系式的应用例1 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D.34(2)化简:(1+tan 2α)(1-sin 2α)= . 答案 (1)B (2)1 解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (2)(1+tan 2α)(1-sin 2α)=(1+sin 2αcos 2α)·cos 2α=cos 2α+sin 2αcos 2α·cos 2α=1. 思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.已知sin α-cos α=2,α∈(0,π),则tan α等于( )A .-1B .-22C.22D .1答案 A解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π), ∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)(2016·长春模拟)已知f (x )=sin (2π-x )·cos (32π+x )cos (3π-x )·sin (112π-x ),则f (-21π4)= .(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 (1)-1 (2)C解析 (1)f (x )=-sin x ·sin x-cos x ·(-cos x )=-tan 2x ,f (-21π4)=-tan 2(-21π4)=-tan 234π=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.(1)化简:tan (π+α)cos (2π+α)sin (α-3π2)cos (-α-3π)sin (-3π-α)= .(2)已知角α终边上一点P (-4,3),则cos (π2+α)·sin (-π-α)cos (11π2-α)·sin (9π2+α)的值为 .答案 (1)-1 (2)-34解析 (1)原式=tan αcos αsin[-2π+(α+π2)]cos (3π+α)[-sin (3π+α)]=tan αcos αsin (π2+α)(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义得tan α=-34.题型三 同角三角函数关系式、诱导公式的综合应用例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13答案 C解析 2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,① tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.由-π<x <0,知sin x <0, 又sin x +cos x >0, ∴cos x >0,sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.引申探究本例(2)中若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425,∴sin x >0,cos x <0,∴sin x -cos x >0,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.已知sin ⎝⎛⎭⎫π2+α=35,α∈⎝⎛⎭⎫0,π2,则sin(π+α)等于( ) A.35 B .-35C.45 D .-45答案 D解析 由已知sin ⎝⎛⎭⎫π2+α=35, 得cos α=35,∵α∈⎝⎛⎭⎫0,π2, ∴sin α=45,∴sin(π+α)=-sin α=-45.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α= .(2)(2016·湛江模拟)已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)= .思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)∵sin α=255>0,∴α为第一或第二象限角. tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2 α=55, 原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综上①②知,原式=52或-52.(2)当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α) =sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 (1)52或-52(2)-11.(2016·西安模拟)已知cos α=45,α∈(0,π),则tan α的值等于( )A.43B.34 C .-43D .-34答案 B解析 ∵α∈(0,π), ∴sin α=1-cos 2α=1-(45)2=35,由tan α=sin αcos α,得tan α=34. 2.已知tan(α-π)=34,且α∈(π2,3π2),则sin(α+π2)等于( )A.45 B .-45C.35 D .-35答案 B解析 由tan(α-π)=34,得tan α=34,∴α∈(π,3π2),由⎩⎪⎨⎪⎧tan α=34,sin 2α+cos 2α=1及α∈(π,3π2),得cos α=-45,而sin(α+π2)=cos α=-45.3.若角α的终边落在第三象限,则cos α1-sin 2 α+2sin α1-cos 2 α的值为( )A .3B .-3C .1D .-1答案 B解析 由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.若sin(π-α)=-2sin(π2+α),则sin α·cos α的值等于( )A .-25B .-15C.25或-25D.25答案 A解析 由sin(π-α)=-2sin(π2+α),可得sin α=-2cos α,则tan α=-2,sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为( ) A .-1 B .1 C .3 D .-3答案 D解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.*6.(2016·揭阳模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A .1+ 5 B .1- 5 C .1±5 D .-1- 5答案 B解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2, 解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= . 答案 -74解析 因为α为钝角,所以cos(π4+α)=-74, 所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74. 8.若f (cos x )=cos 2x ,则f (sin 15°)= .答案 -32解析 f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-cos 30°=-32. 9.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则sin (3π2+θ)+cos (π-θ)sin (π2-θ)-sin (π-θ)= . 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 10.(2016·长春模拟)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α= . 答案 0解析 原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 11.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16. (2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知在△ABC 中,sin A +cos A =15. (1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵(sin A +cos A )2=125, ∴1+2sin A cos A =125, ∴sin A cos A =-1225. (2)∵sin A cos A <0,又0<A <π,∴cos A <0,∴A 为钝角,∴△ABC 为钝角三角形.(3)(sin A -cos A )2=1-2sin A cos A =4925. 又sin A -cos A >0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, 故tan A =-43. *13.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π).求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=(sin θ+cos θ)2, 得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θ·cos θ=34, 知⎩⎨⎧ sin θ=32,cos θ=12或⎩⎨⎧ sin θ=12,cos θ=32. 又θ∈(0,2π),故θ=π3或θ=π6.。
人教版2018最新高中数学高考三角函数重点题型解析及常见试题、答案Word版
的,而
3
决. 解 析: 由 0
1 2sin x cos x ,换元解
x
3
,令 t
sin x
cos x
2 sin( x
4
), 而
4
x
7 4 12
,得
1 t
又t
2
2.
1 2sin x cos x ,得 sin x cos x
2
t
2
1 2
,
得 y
t
t
1 2
1 2
( t 1)
2
1 ,有 1 0
y
2
( 2)
2
即 x
( 2) f ( x ) 故当 2 x
4
8sin(2 x (k
2
6
)
4,
6
2
k a
2
6
Z ) 时,函数 f x 取得最大值为 12 .
是三角函数中的一个重要公式, 它在
点评: 结论 a sin 解决三角函数的图象、 点内容.
b cos
b sin
单调性、 最值、 周期以及化简求值恒等式的证明中有着广泛应用,
更多资料请加三好网小好师弟微信: sanhao1001
高考三角函数重点题型解析及常见试题
三角函数的图象,三角恒等变换(主要是求值) 用,平面向量的基本问题及其应用.
( 附参考答案 )
,
三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值) ,三角函数模型的应用,正余弦定理及其应 其主要方法是利用正余
B
10) 函数
y
tan x sin x
tan x sin x 在区间 (
2
,
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.3含解析
1.用五点法作正弦函数和余弦函数的简图正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(错误!,1),(π,0),(错误!,-1),(2π,0).余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(错误!,0),(π,-1),(错误!,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质函数y=sin x y=cos x y=tan x图象定义域R R {x|x∈R 且x≠错误!+kπ,k∈Z}值域[-1,1][-1,1]R【知识拓展】1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.奇偶性若f(x)=A sin(ωx+φ)(A,ω≠0),则(1)f(x)为偶函数的充要条件是φ=错误!+kπ(k∈Z);(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.(√)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.(×)(5)y=sin |x|是偶函数.( √)(6)若sin x>错误!,则x>错误!.(×)1.函数f(x)=cos(2x-错误!)的最小正周期是( )A.错误!B.πC.2π D.4π答案B解析最小正周期为T=错误!=错误!=π.故选B.2.(教材改编)函数f(x)=3sin(2x-错误!)在区间[0,错误!]上的值域为( )A.[-错误!,错误!] B.[-错误!,3]C.[-错误!,错误!]D.[-错误!,3]答案B解析当x∈[0,错误!]时,2x-错误!∈[-错误!,错误!],sin(2x-错误!)∈[-错误!,1],故3sin(2x-错误!)∈[-错误!,3],即f(x)的值域为[-32,3].3.函数y=tan 2x的定义域是() A。
[推荐学习]天津专用2018版高考数学总复习专题04三角函数与解三角形分项练习含解析文
[推荐学习]天津专用2018版高考数学总复习专题04三角函数与解三角形分项练习含解析文专题04 三角函数与解三角形一.基础题组1.【2005天津,文8】函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图像如图所示,则函数表达式为( ) (A )4sin()84y x ππ=-+ (B )4sin()84y x ππ=- (C )4sin()84y x ππ=-- (D )4sin()84y x ππ=+【答案】A解法2:由函数图象可知,函数过点(2,0),(6,0)-,振幅||4A =,周期16T =,频率28T ππω==,这时4sin()8y x πφ=±+,又因为图象过点(2,4)-,代入得,sin()14πφ+=±.当sin()14πφ+=时,2,2()424k k k Z πππφπφπ+=+=+∈,而||,24ππφφ<∴=,当sin()14πφ+=-时,32,2()424k k k Z πππφπφπ+=-=-∈,而||2πφ<,无解. ∴33sin(2)4sin()4sin()848484y x k x x πππππππ=+-=-=-+.选A.解法3:可将点的坐标分别代入进行筛选得到.选【答案】A【解析】解:函数f(x)=|sin(x+)|(x∈R)图象如图所示:由图可知函数f(x)=|sin(x+)|(x∈R)在区间上是增函数 故选A4.【2008天津,文6】把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是(A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R∈【答案】C【解析】132sin sin()sin(2)33y x y x y x πππ=−−−−−−→=+−−−−−−−→=+向左平移个单位横坐标缩短到原来的倍.5.【2009天津,文7】已知函数f(x)=sin(ωx+4π)(x∈R ,ω>0)的最小正周期为π.将y =f(x)的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是( )A.2πB.83π C.4π D.8π 【答案】D6.【2010天津,文8】下图是函数y =A sin(ωx+φ)(x ∈R)在区间6π-,56π]上的图象.为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 【答案】A【解析】由图象知T =π,∴ω=2. 又A =1,∴y=sin(2x +φ).又图象过点(12π,1),∴sin(6π+φ)=1. ∴φ=2kπ+3π,k∈Z.∴y=sin(2x +3π),故A 项满足条件. 7.【2011天津,文7】已知函数()2sin(),,f x x x R ωϕ=+∈其中0,.ωπϕπ>-<≤若()f x 的最小正周期为6π,且当2x π=时, ()f x 取得最大值,则A. ()f x 在区间[2,0]π-上是增函数B. ()f x 在区间[3,]ππ--上是增函数C. ()f x 在区间[3,5]ππ上是减函数D. ()f x 在区间[4,6]ππ上是减函数8.【2012天津,文7】将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( )A .13B .1C .53D .2 【答案】D【解析】 f(x)=sinωx 的图象向右平移π4个单位长度得:y=sinω(x-π4)]. 又所得图象过点(3π4,0), ∴3ππsin ()044ω=[-].∴πsin2ω=.∴ππ2k ω=(k∈Z).∴ω=2k(k∈Z).∵ω>0,∴ω的最小值为2.9.【2013天津,文6】函数()πsin 24f x x ⎛⎫=- ⎪⎝⎭在区间π0,2⎡⎤⎢⎥⎣⎦上的最小值为( ).A .-1B .22-C .22D .0【答案】B 【解析】因为x∈π0,2⎡⎤⎢⎥⎣⎦,所以ππ3π2,444x ⎡⎤--⎢⎥⎣⎦,当ππ244x -=-,即x =0时,f(x)取得最小值22-.10. 【2015高考天津,文14】已知函数()()sin cos 0f x x x ωωω=+>,x ∈R ,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【答案】π【考点定位】本题主要考查三角函数的性质. 11.【2017天津,文7】设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ== (B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k∈Z,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由||πϕ<得12ϕπ=,故选A .【考点】三角函数的图象与性质【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等. 12. 【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC的面积为12,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+ ⎪⎝⎭的值. 【答案】(I )a=8,sin C =(II.【解析】(II))2πππ3cos 2cos 2cos sin 2sin 2cos 1sin cos 6662A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,157316=【考点定位】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力. 13. 【2015高考天津,文16】(本小题满分13分)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为1512,cos ,4b c A -==- (I )求a 和sin C 的值;(II )求πcos 26A ⎛⎫+ ⎪⎝⎭的值. 【答案】(I )a =8,15sin 8C =;(II )15316.【解析】(I )由面积公式可得24,bc =结合2,b c -=可求得解得6, 4.b c ==再由余弦定理求得a =8.最后由正弦定理求sin C 的值;(II )直接展开求值. 试题解析:(I )△ABC 中,由1cos ,4A =-得15sin A =由1sin 3152bc A =,得24,bc = 又由2,b c -=解得6, 4.b c == 由2222cos a b c bc A=+- ,可得a =8.由sin sin a cA C=,得15sin C =. (II)()2πππ3cos 2cos 2cos sin 2sin 2cos 1sin cos 6662A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,157316-=【考点定位】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力. 14. 【2017天津,文15】(本小题满分13分) 在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B=,2225()ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值. 【答案】(Ⅰ)55-;(Ⅱ)255-.由2225()ac a b c =--及余弦定理,得222555cos 2b c aA bcac +-===(Ⅱ)由(Ⅰ)可得25sin A =sin 4sin a A b B =,得sin sin 45a A Bb ==.由(Ⅰ)知A 为钝角,所以cos 5B ==.于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55555B A B A B A -=-=⨯--⨯=-.【考点】正弦定理、余弦定理、二倍角公式、两角差的正弦公式【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题. 二.能力题组1.【2005天津,文17】已知7sin()241025παα-==,求sin α及tan()3πα+.【答案】A因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==,解得 259sin 2=α,即53sin ±=α 由1027)4sin(=-πα可得57cos sin =-αα由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限于是53sin =α,从而5457sin cos -=-=αα以下同解法一2.【2006天津,文17】已知5tan cot ,(,),242ππααα+=∈求cos2α和sin(2)4πα+的值。
2018届高考数学总复习作业 25解三角形的综合应用含答案(理科)
配餐作业(二十五) 解三角形的综合应用(时间:40分钟)1.(2016·江苏高考)在△ABC 中,AC =6,cos B =45,C =π4。
(1)求AB 的长;(2)求cos ⎝⎛⎭⎪⎫A -π6的值。
解析 (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫452=35。
由正弦定理知AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=52。
(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎪⎫B +π4=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210。
因为0<A <π,所以sin A =1-cos 2A =7210。
因此,cos ⎝ ⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620。
答案 (1)5 2 (2)72-6202.(2016·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 。
已知2(tan A +tan B )=tan A cos B +tan Bcos A。
(1)证明:a +b =2c ; (2)求cos C 的最小值。
解析 (1)由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B ,因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C 。
2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
I 2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C 1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6II A . B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,III 则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值. 4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.IV 6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求c osβ的值. 7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =-()ππ-[,]上的解. 参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==. (2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴sinB==12-V 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7=,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A =.因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. 4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-VI (2)因为为锐角,所以. 又因为,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则si nθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2).,αβ(0,π)αβ+∈cos()αβ+=sin()αβ+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+VII 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a , 当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。
(完整版)2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解
2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C =1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A .B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 . 6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,(1)求cos ADB ∠; (2)若22DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (△)求∠A ; (△)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值.4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cosβ的值.7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解.参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin 5ADB ∠=. 由题设知,90ADB ∠<︒,所以cos ADB ∠== (2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=. 所以5BC =.12-2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴. 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B =,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B .又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A .因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2). 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a ,1)2cos()2sin()(+-+-=-x x a x f 12cos 2sin ++-=x x a当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。
2018版高考数学全国理科专题复习:专题4 三角函数、解三角形第27练 含解析 精品
一、选择题1.(2016·韶关调研)函数y =1-2sin 2⎝⎛⎭⎫x -3π4是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数2.(2016·三明月考)y =cos ⎝⎛⎭⎫x 2-π6(-π≤x ≤π)的值域为( ) A.⎣⎡⎦⎤-12,12 B .-1,1] C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,32 3.(2017·临川月考)若f (x )=tan ⎝⎛⎭⎫x +π4,则( ) A .f (0)>f (-1)>f (1) B .f (0)>f (1)>f (-1) C .f (1)>f (0)>f (-1)D .f (-1)>f (0)>f (1)4.已知函数f (x )=3cos(2x -π3),则下列结论正确的是( )A .导函数为f ′(x )=-3sin(2x -π3)B .函数f (x )的图象关于直线x =2π3对称C .函数f (x )在区间(-π12,5π12)上是增函数D .函数f (x )的图象可由函数y =3cos 2x 的图象向右平移π3个单位长度得到5.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π2对称且f (3π8)=1,f (x )在区间-3π8,-π4]上单调,则ω可取数值的个数为( ) A .1 B .2 C .3D .46.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( ) A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =sin ⎝⎛⎭⎫2x -π6 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin |x |7.(2017·沈阳质检)已知函数f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎡⎦⎤0,π2,则x 0等于( ) A.π12 B.π6 C.π3D.5π128.函数y =sin(π3-12x ),x ∈-2π,2π]的单调递增区间是( )A .-π3,5π3]B .-2π,-π3]C .5π3,2π]D .-2π,-π3]和5π3,2π]二、填空题9.比较大小:sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10. 10.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________________. 11.函数y =2sin ⎝⎛⎭⎫2x +π3-1,x ∈⎣⎡⎦⎤0,π3的值域为________,并且取最大值时x 的值为________.12.函数y =sin 2x +2cos x 在区间⎣⎡⎦⎤-2π3,θ上的最小值为-14,则θ的取值范围是____________.答案精析1.A y =1-2sin 2⎝⎛⎭⎫x -3π4=cos 2⎝⎛⎭⎫x -3π4=-sin 2x , 所以f (x )是最小正周期为π的奇函数,故选A.]2.C 由-π≤x ≤π,可知-π2≤x 2≤π2,-2π3≤x 2-π6≤π3,函数y =cos x 在区间⎣⎡⎦⎤-2π3,0内单调递增,在区间⎣⎡⎦⎤0,π3内单调递减,且cos ⎝⎛⎭⎫-2π3=-12,cos π3=12,cos 0=1,因此所求值域为⎣⎡⎦⎤-12,1,故选C.]3.A 由-π2<x +π4<π2,得-3π4<x <π4,可知函数f (x )在区间⎝⎛⎭⎫-3π4,π4上是增函数, 因此f (0)>f (-1),又函数f (x )=tan ⎝⎛⎭⎫x +π4的周期为π,因此f (1)=f (1-π),又1-π<-1<0,知f (1)<f (-1)<f (0),故选A.]4.B 对于A ,函数f ′(x )=-3sin(2x -π3)·2=-6sin(2x -π3),A 错误;对于B ,当x =2π3时,f (2π3)=3cos(2×2π3-π3)=-3取得最小值,所以函数f (x )的图象关于直线x =2π3对称,B 正确;对于C ,当x ∈(-π12,5π12)时,2x -π3∈(-π2,π2),函数f (x )=3cos(2x -π3)不是单调函数,C 错误;对于D ,函数y =3cos 2x 的图象向右平移π3个单位长度,得到函数y =3cos2(x -π3)]=3cos(2x-2π3)的图象,这不是函数f (x )的图象,D 错误.故选B.] 5.B 由题设可知π2ω+φ=π2+2k π,3π8ω+φ=π4+2m π,k ,m ∈Z ,或π2ω+φ=3π2+2k π,3π8ω+φ=3π4+2m π,k ,m ∈Z ,由此可得π8ω=π4或π8ω=3π4,解得ω=2或ω=6,经验证均符合题意,故应选B.]6.B 注意到函数y =sin ⎝⎛⎭⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎫2×π3-π6=1,因此该函数同时具有性质①②.]7.C 由题意可知f (x )=2sin ⎝⎛⎭⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ), ∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎡⎦⎤0,π2,∴k =1,x 0=π3,故选C.]8.D 由题意得y =-sin(12x -π3),要求其单调递增区间,则π2+2k π≤12x -π3≤3π2+2k π,k ∈Z ,解得5π3+4k π≤x ≤11π3+4k π,k ∈Z .当k =0时,递增区间为5π3,11π3];当k =-1时,递增区间为-7π3,-π3].因为x ∈-2π,2π],所以递增区间为-2π,-π3]和5π3,2π],故选D.]9.>解析 因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数,且-π18>-π10, 所以sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. 10.⎝⎛⎭⎫k π2-π8,0(k ∈Z )解析 由2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0(k ∈Z ). 11.-1,1]π12解析 ∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎫2x +π3≤1, ∴-1≤2sin ⎝⎛⎭⎫2x +π3-1≤1,即值域为-1,1],且当sin ⎝⎛⎭⎫2x +π3=1,即x =π12时,y 取最大值. 12.⎝⎛⎦⎤-2π3,2π3 解析 由题意知y =sin 2x +2cos x =-cos 2x +2cos x +1,设t =cos x , 则函数y =-t 2+2t +1=-(t -1)2+2, 令-(t -1)2+2=-14,解得t =-12或t =52,∵cos x ≤1,∴t =-12,即cos x =-12,则要使函数y 在⎣⎡⎦⎤-2π3,θ上的最小值为-14, 则需cos θ≥-12,根据余弦函数的图象可知θ∈⎝⎛⎦⎤-2π3,2π3.。
2018版高考数学一轮专题练习专题4 三角函数、解三角形 第25练 Word版含解析
训练目标()同角三角函数基本关系式的应用;()诱导公式的应用.训练题型()利用公式进行三角函数式的求值;()化简三角函数式.
解题策略()寻找角和式子之间的联系,结合公式转化;()诱导公式的记忆口诀:奇变偶不变,符号看象限.
一、选择题
.(·鹤岗期末)已知角α的终边上有一点(),则的值为()
.-.-
.-.-
.(·黑龙江哈三十二中期中)已知α是第二象限角,α=-,则α等于() .-
.-
.(·铜川月考)化简的结果是()
.-.-
.±( - ) .以上都不对
.(·安徽太和中学月考)已知=,则的值为()
.-
.-
.设= °,= °,= °,则()
.>>.>>
.>>.>>
.(·山东实验二诊)已知θ+θ=,则θ-θ的值为()
.-
.-
.(·宜昌测试)已知=+(∈),则构成的集合是()
.{-,-} .{,-}
.{,-} .{-,-}
.(·南安期中)已知α=,则等于()
二、填空题
.(·安庆期中)已知角θ的顶点在坐标原点,始边与轴正半轴重合,终边在直线-=上,则=.
.(·牡丹江期末)已知α为第二象限角,则α+α=.
.若=,则-=.
.化简:·(∈)=.
答案精析
.[∵点在角α的终边上,则α=,
∴=
==-,故选.]
.[∵α==-,∴α=-α.
∵α+α=,∴α=.
又α是第二象限角,∴α>,。
2018版高考数学全国理科专题复习:专题4 三角函数、解
一、选择题1.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5等于( )A .1B .2C .3D .42.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34D .-433.已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π64.在△ABC 中,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形5.(2016·全国乙卷)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7 D .5二、填空题6.已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2.7.当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________. 8.若cos α=17,cos(α+β)=-1114,α∈⎝⎛⎭⎫0,π2,α+β∈⎝⎛⎭⎫π2,π,则β=________. 9.如图,某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217 s .在A 地测得该仪器至最高点H 时的仰角为30°,则该仪器的垂直弹射高度CH =________ m .(声音在空气中的传播速度为340 m/s)三、解答题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A -sin C (cos B +33sin B )=0.(1)求角C 的大小;(2)若c =2,且△ABC 的面积为3,求a ,b 的值.答案精析1.C cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫π2+α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.]2.C ∵sin α+2cos α=102, ∴sin 2α+4sin α·cos α+4cos 2α=52.用降幂公式化简得4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.]3.A 因为A ⎝⎛⎭⎫-π6,0,B 与D 关于点E 对称,CD →在x 轴上的投影为π12, 所以T =4×⎝⎛⎭⎫π12+π6=π,所以ω=2. 因为A ⎝⎛⎭⎫-π6,0,所以0=sin ⎝⎛⎭⎫-π3+φ, 所以-π3+φ=2k π,k ∈Z ,解得φ=π3+2k π,k ∈Z .又因为0<φ<π2,所以φ=π3.故选A.]4.B 由正弦定理,得2sin A cos B =sin C . 在△ABC 中,A +B +C =π,∴sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , 整理得sin A cos B =cos A sin B , ∴tan A =tan B .又∵A ,B ∈(0,π),∴A =B . ∵sin A sin B (2-cos C )=sin 2C 2+12,∴sin A sin B ⎣⎡⎦⎤2-⎝⎛⎭⎫1-2sin 2C 2=sin 2C 2+12, ∴sin A sin B ⎝⎛⎭⎫1+2sin 2C 2=12⎝⎛⎭⎫1+2sin 2C 2, ∴sin A sin B =12.∵A =B ,∴sin A =sin B =22. ∵A ,B ∈(0,π),∴A =B =π4.∵A +B +C =π,∴C =π2,∴△ABC 是等腰直角三角形.]5.B 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT , 即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N *),又因为f (x )在⎝⎛⎭⎫π18,5π36上单调, 所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9,故选B.]6.1 2 1解析 设扇形的圆心角为α,半径为r cm ,则2r +|α|r =4,∴|α|=4r -2,∴S 扇形=12|α|·r 2=2r -r 2=-(r -1)2+1,∴当r =1时,(S 扇形)max =1,此时|α|=2.7.782 解析 ∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又∵y =3-sin x -2cos 2x =3-sin x - 2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78, ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.8.π3解析 ∵cos α=17,α∈⎝⎛⎭⎫0,π2, ∴sin α=437.又∵cos(α+β)=-1114,α+β∈⎝⎛⎭⎫π2,π, ∴sin(α+β)=5314,∴cos β=cos(α+β)-α]=cos(α+β)cos α+sin(α+β)·sin α=12.又∵α∈⎝⎛⎭⎫0,π2,α+β∈⎝⎛⎭⎫π2,π, ∴β∈(0,π),∴β=π3.9.140 3解析 由题意,设AC =x m ,则BC =x -217×340=(x -40) m .在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC ,即(x -40)2=10 000+x 2-100x ,解得x =420. 在△ACH 中,AC =420 m ,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =1403(m). 故该仪器的垂直弹射高度CH 为140 3 m. 10.解 (1)由题意得,∵A +B +C =π, ∴sin A =sin(π-B -C )=sin(B +C ), ∴sin B cos C +sin C cos B -sin C cos B -33sin B sin C =0, 即sin B (cos C -33sin C )=0, ∵0<B <π,∴sin B ≠0,∴tan C =3, 又0<C <π,故C =π3.(2)∵S △ABC =12ab ×32=3,∴ab =4,又c =2,由余弦定理得a 2+b 2-2ab ×(12)=4,∴a 2+b 2=8.则⎩⎪⎨⎪⎧ab =4,a 2+b 2=8, 解得a =2,b =2.。
2018版高考数学理一轮复习文档:第四章 三角函数、解三角形 4-5 第2课时 含解析 精品
第2课时 简单的三角恒等变换题型一 三角函数式的化简例1 (1)化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x = .(2)已知cos ⎝⎛⎭⎫θ+π4=1010,θ∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫2θ-π3= . 答案 (1)12cos 2x (2)4-3310解析 (1)原式=12(4cos 4x -4cos 2x +1)2×sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=(2cos 2x -1)24sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=cos 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . (2)由题意可得,cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=110,cos ⎝⎛⎭⎫2θ+π2=-sin 2θ=-45,即sin 2θ=45. 因为cos ⎝⎛⎭⎫θ+π4=1010>0,θ∈⎝⎛⎭⎫0,π2, 所以0<θ<π4,2θ∈⎝⎛⎭⎫0,π2, 根据同角三角函数基本关系式可得cos 2θ=35,由两角差的正弦公式可得sin ⎝⎛⎭⎫2θ-π3=sin 2θcos π3-cos 2θsin π3=4-3310. 思维升华 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(1)已知cos(x -π6)=-33,则cos x +cos(x -π3)= .(2)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718答案 (1)-1 (2)D 解析 (1)cos x +cos(x -π3)=cos x +12cos x +32sin x=32cos x +32sin x =3cos(x -π6) =3×(-33)=-1. (2)cos 2α=sin ⎝⎛⎭⎫π2-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α =2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α 代入原式,得6sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α, ∵α∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫π4-α=16, ∴sin 2α=cos ⎝⎛⎭⎫π2-2α =2cos 2⎝⎛⎭⎫π4-α-1=-1718. 题型二 三角函数的求值 命题点1 给值求值问题例2 (1)(2017·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β= .答案 12解析 ∵α为锐角, ∴sin α=1-(17)2=437.∵α,β∈(0,π2),∴0<α+β<π.又∵sin(α+β)<sin α,∴α+β>π2,∴cos(α+β)=-1114.cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-1114×17+5314×437=4998=12.(2)(2015·广东)已知tan α=2. ①求tan(α+π4)的值;②求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解 ①tan(α+π4)=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3.②sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α =2tan αtan 2α+tan α-2=2×24+2-2=1. 命题点2 给值求角问题例3 (1)设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4D.5π4或7π4(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为 .答案 (1)C (2)-3π4解析 (1)∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈(3π2,2π),∴α+β=7π4.(2)∵tan α=tan [(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β =12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2×131-(13)2=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.引申探究本例(1)中,若α,β为锐角,sin α=55,cos β=31010,则α+β= . 答案 π4解析 ∵α,β为锐角,∴cos α=255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010=22.又0<α+β<π,∴α+β=π4.思维升华 (1)给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法; (2)给值求角问题:先求角的某一三角函数值,再求角的范围确定角.(1)已知α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1= .(2)(2016·成都检测)若sin 2α=55,sin(β-α)=1010,且α∈[π4,π],β∈[π,3π2],则α+β的值是( ) A.7π4 B.5π4 C.5π4或7π4 D.3π2答案 (1)268(2)A 解析 (1)∵α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则(2sin α-3cos α)·(sin α+cos α)=0,∴2sin α=3cos α, 又sin 2α+cos 2α=1, ∴cos α=213,sin α=313, ∴sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=268. (2)因为α∈[π4,π],sin 2α=55>0,所以2α∈[π2,π],所以cos 2α=-255且α∈[π4,π2],又因为sin(β-α)=1010>0,β∈[π,3π2], 所以β-α∈[π2,π],所以cos(β-α)=-31010,因此sin(α+β)=sin [(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α =1010×(-255)+(-31010)×55 =-22, cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =(-31010)×(-255)-1010×55=22,又α+β∈[5π4,2π],所以α+β=7π4,故选A.题型三 三角恒等变换的应用例4 (2016·天津)已知函数f (x )=4tan x sin ⎝⎛⎭⎫π2-x ·cos ⎝⎛⎭⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎡⎦⎤-π4,π4上的单调性. 解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z }.f (x )=4tan x cos x cos ⎝⎛⎭⎫x -π3- 3 =4sin x cos ⎝⎛⎭⎫x -π3- 3 =4sin x ⎝⎛⎭⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 所以f (x )的最小正周期T =2π2=π.(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z .由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎡⎦⎤-π4,π4,B ={x |-π12+k π≤x ≤5π12+k π,k ∈Z },易知A ∩B =⎣⎡⎦⎤-π12,π4.所以当x ∈⎣⎡⎦⎤-π4,π4时,f (x )在区间⎣⎡⎦⎤-π12,π4上单调递增,在区间⎣⎡⎦⎤-π4,-π12上单调递减. 思维升华 三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)把形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期、单调性、最值与对称性.(1)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为 .(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案 (1)1 (2)π解析 (1)因为f (x )=sin(x +φ)-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ), -1≤sin(x -φ)≤1,所以f (x )的最大值为1. (2)f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π.9.化归思想和整体代换思想在三角函数中的应用典例 (12分)(2015·重庆)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.思想方法指导 (1)讨论形如y =a sin ωx +b cos ωx 型函数的性质,一律化成y =a 2+b 2sin(ωx +φ)型的函数.(2)研究y =A sin(ωx +φ)型函数的最值、单调性,可将ωx +φ视为一个整体,换元后结合y =sin x 的图象解决. 规范解答解 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32,[4分] 因此f (x )的最小正周期为π,最大值为2-32.[6分](2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,[7分] 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,[9分] 当π2≤2x -π3≤π, 即5π12≤x ≤2π3时,f (x )单调递减.[11分] 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减.[12分]1.(2016·青岛模拟)设tan(α-π4)=14,则tan(α+π4)等于( )A .-2B .2C .-4D .4 答案 C解析 因为tan(α-π4)=tan α-11+tan α=14,所以tan α=53,故tan(α+π4)=tan α+11-tan α=-4,故选C.2.(2016·全国甲卷)若cos ⎝⎛⎭⎫π4-α=35,则sin 2α等于( ) A.725 B.15 C .-15 D .-725 答案 D解析 因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又因为cos ⎝⎛⎭⎫π4-α=35,所以sin 2α=2×925-1=-725,故选D.3.(2016·福州模拟)已知tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6答案 D解析sin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 4.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( )A .-255B .-3510C .-31010D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.5.设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2答案 B解析 由tan α=1+sin βcos β,得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.6.函数f (x )=sin(2x +θ)+3cos(2x +θ)⎝⎛⎭⎫|θ|<π2的图象关于点⎝⎛⎭⎫π6,0对称,则f (x )的单调递增区间为( )A.⎣⎡⎦⎤π3+k π,5π6+k π,k ∈Z B.⎣⎡⎦⎤-π6+k π,π3+k π,k ∈Z C.⎣⎡⎦⎤-7π12+k π,-π12+k π,k ∈Z D.⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z 答案 C解析 ∵f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +θ+π3, 由题意知2×π6+θ+π3=k π(k ∈Z ),∴θ=k π-23π(k ∈Z ).∵|θ|<π2,∴θ=π3.∴f (x )=2sin ⎝⎛⎭⎫2x +23π. 由2k π-π2≤2x +23π≤2k π+π2(k ∈Z ),得k π-712π≤x ≤k π-π12(k ∈Z ).故选C.7.若f (x )=2tan x -2sin 2 x2-1sin x 2cosx2,则f ⎝⎛⎭⎫π12的值为 . 答案 8解析 ∵f (x )=2tan x +1-2sin 2x 212sin x=2tan x +2cos x sin x =2sin x cos x =4sin 2x ,∴f ⎝⎛⎭⎫π12=4sinπ6=8. 8.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β= . 答案 π3解析 由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),∴α+β=π3. 9.化简:3tan 12°-3(4cos 212°-2)sin 12°= . 答案 -4 3解析 原式=3·sin 12°cos 12°-32(2cos 212°-1)sin 12°=23(12sin 12°-32cos 12°)cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3. 10.函数f (x )=3sin 23x -2sin 213x (π2≤x ≤3π4)的最小值是 . 答案 3-1 解析 f (x )=3sin 23x -(1-cos 23x ) =2sin(23x +π6)-1, 又π2≤x ≤3π4,∴π2≤23x +π6≤23π, ∴f (x )min =2sin 23π-1=3-1. 11.已知函数f (x )=cos 2x +sin x cos x ,x ∈R .(1)求f (π6)的值; (2)若sin α=35,且α∈(π2,π),求f (α2+π24). 解 (1)f (π6)=cos 2π6+sin π6cos π6=(32)2+12×32=3+34. (2)因为f (x )=cos 2x +sin x cos x =1+cos 2x 2+12sin 2x =12+12(sin 2x +cos 2x )=12+22sin(2x +π4),所以f (α2+π24)=12+22sin(α+π12+π4) =12+22sin(α+π3)=12+22(12sin α+32cos α). 又因为sin α=35,且α∈(π2,π), 所以cos α=-45, 所以f (α2+π24)=12+22(12×35-32×45) =10+32-4620. 12.(2015·安徽)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期为T =2π2=π. (2)由(1)的计算结果知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4, 由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1; 当2x +π4=5π4,即x =π2时,f (x )取最小值0. 综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0. *13.已知函数f (x )=2cos 2ωx -1+23cos ωx sin ωx (0<ω<1),直线x =π3是f (x )图象的一条对称轴.(1)求ω的值;(2)已知函数y =g (x )的图象是由y =f (x )图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值. 解 (1)f (x )=2cos 2ωx -1+23cos ωx sin ωx=cos 2ωx +3sin 2ωx=2sin ⎝⎛⎭⎫2ωx +π6. 由于直线x =π3是函数f (x )=2sin ⎝⎛⎭⎫2ωx +π6图象的一条对称轴, ∴sin ⎝⎛⎭⎫2π3ω+π6=±1. ∴2π3ω+π6=k π+π2(k ∈Z ), ∴ω=32k +12(k ∈Z ). 又0<ω<1,∴-13<k <13. 又∵k ∈Z ,从而k =0,∴ω=12. (2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π6, 由题意可得g (x )=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +2π3+π6, 即g (x )=2cos 12x . ∵g ⎝⎛⎭⎫2α+π3=2cos ⎝⎛⎭⎫α+π6=65, ∴cos ⎝⎛⎭⎫α+π6=35. 又α∈⎝⎛⎭⎫0,π2, ∴π6<α+π6<2π3, ∴sin ⎝⎛⎭⎫α+π6=45. ∴sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6 =sin ⎝⎛⎭⎫α+π6cos π6-cos ⎝⎛⎭⎫α+π6sin π6 =45×32-35×12=43-310.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2016·扬州中学开学考试)角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则cos(π-α)的值是________.
2.(2016·南通一模)已知sin(x +π6)=13,则sin(x -5π6)+sin 2(π3-x )的值是________.
3.(2016·鹤岗期末)已知角α的终边上有一点P (1,3),始边是x 轴正半轴,则
sin (π-α)-sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭
⎪⎫3π2-α+2cos (-π+α)的值为________. 4.(2016·黑龙江哈三十二中期中)已知α是第二象限角,tan α=-815,则sin α=________.
5.(2016·盐城模拟)若点P (cos α,sin α)在直线y =-2x 上,则cos(2α+3π2)的值等于________.
6.(2016·安徽太和中学月考)已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭
⎪⎫3π4-α的值为________. 7.(2016·陕西洛南高中第二次模拟)在平面直角坐标系中,已知函数y =log a (x -3)+2(a >0,且a ≠1)过定点P ,且角α的终边过点P ,始边是x 轴正半轴,则3sin 2α+cos2α的值为________.
8.若sin x ·cos x =18,且π4<x <π2,则cos x -sin x 的值是________.
9.(2016·南京模拟)已知函数f (x )=a sin(πx +α)+b cos(πx +β)+4(其中a ,b ,α,β为非零实数),若f (2015)=5,则f (2016)=________.
10.若tan α=12,则sin 4α-cos 4α的值为________.
11.(2016·安庆期中)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin θ+cos (π-θ)sin ⎝ ⎛⎭
⎪⎫π2-θ-sin (π+θ)=________.
12.(2016·大理模拟)已知α为第二象限角,则cos α·1+tan 2α+sin α
1+1tan 2α=________.
13.若cos ⎝ ⎛⎭⎪⎫π6-θ=33,则cos ⎝ ⎛⎭⎪⎫5π6+θ-sin 2⎝ ⎛⎭
⎪⎫θ-π6=____________. 14.化简:sin ⎝ ⎛⎭⎪⎫2k π+2π3·cos ⎝ ⎛⎭⎪⎫k π+43π(k ∈Z )=____________.
答案精析
1.-55 2.59 3.-254.817 5.-45 6.32 7.65
解析 令x -3=1,则x =4,y =log a 1+2=2,故P 点坐标为(4,2),则sin α=55,∴3sin 2α+cos2α
=3sin 2α+2cos 2α-1=1+sin 2α=65.
8.-32
解析 ∵π4<x <π2,
∴cos x -sin x <0,
∴(cos x -sin x )2=1-2sin x cos x
=1-2×18=34,
∴cos x -sin x =-32.
9.3
解析 ∵f (2015)=a sin(2015π+α)+b cos(2015π+β)+4 =-a sin α-b cos β+4=5,
∴-a sin α-b cos β=1,
即a sin α+b cos β=-1,
∴f (2016)=a sin(2016π+α)+
b cos(2016π+β)+4=a sin α+b cos β+4=-1+4=3.
10.-35。