【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案71 基本算法语句
【步步高】届高三数学北师大版(通用,理)总复习学案:学案任意角的三角函数
第四章三角函数与三角恒等变换学案17 任意角的三角函数导学目标: 1.了解任意角的概念.2. 了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.课前准备区回扣载材夯实基础_______________________________________________【自主梳理】1. 任意角的概念角可以看成平面内一条射线OA绕着端点从一个位置旋转到另一个位置0B所成的图形•旋转开始时的射线OA叫做角的____________ ,射线的端点0叫做角的__________ ,旋转终止位置的射线0B叫做角的__________ ,按_______ 时针方向旋转所形成的角叫做正角,按______ 时针方向旋转所形成的角叫做负角.若一条射线没作任何旋转,称它形成了一个________ 角.(1) 象限角使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是___________ 角.(2) 象限界角(即终边在坐标轴上的角)终边在x轴上的角表示为________________________ ;终边在y轴上的角表示为________________________________________________ ;终边落在坐标轴上的角可表示为_________________________________ .(3) 终边相同的角所有与角a终边相同的角,连同角a在内,可构成一个集合_________________________ 或____________________________ ,前者a用角度制表示,后者a用弧度制表示.(4) 弧度制把长度等于_________ 长的弧所对的 ____________ 叫1弧度的角.以弧度作为单位来度量角的单位制,叫做_________ ,它的单位符号是 ________ ,读作_________ ,通常略去不写.(5) 度与弧度的换算关系360 °=______ r ad; 180 °=___ rad; 1°= _________ rad;1rad = ________________ ~ 57.30 °(6) 弧长公式与扇形面积公式1 = ________ ,即弧长等于_______________________________________________________ .S 扇= ________ = _____________ .2•三角函数的定义任意角的三角函数定义:设a是一个任意角,它的终边与单位圆交于点P(x, y),那么① ___ 叫做a的正弦,记作sin a,即sin a= y;②_______ 叫做a的余弦,记作cos a,即cos a=x;③_________ 叫做a的正切,记作tan a,即tan a=0).x(1) 三角函数值的符号各象限的三角函数值的符号如下图所示,三角函数正值歌:一全正,二正弦,三正切,四余弦.【自我检测】1 a= f” 是“ COS2 a=的 ()6 2A .充分而不必要条件B •必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2. (2018 济宁模拟)点 P (tan2009 / cos2009 )位于 () A .第一象限B .第二象限 C .第三象限D .第四象限3. (2018 山东青岛高三教案质量检测)已知si n a <0且tano>0,则角a 是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2 n 2冗\ 4. 已知角a 的终边上一点的坐标为 Sin — , cos—,则角a 的最小正值为()课堂潘动惬究砒考点硏析热点探究点一角的概念【例1】(1)如果角a 是第三象限角,那么一 a, n — a, n+ a 角的终边落在第几象限;.J +y+ 0XJy)+ -4-OX 0+Xsin a cosa(2)三角函数线下图中有向线段MP , OM , AT 分别表示tana___________________ 和A. 5 n IB.47 47⑵写出终边落在直线y= 1 3x上的角的集合;⑶若0= 168 °+ k 360 °(k€ Z),求在[0 °, 360 °)内终边与f角的终边相同的角.变式迁移1若a是第二象限的角,试分别确定 2 a,扌的终边所在位置.探究点二弧长与扇形面积[例2(2018金华模拟)已知一个扇形的圆心角是a,0<a<2n,其所在圆的半径是R.(1)若a= 60 ° R= 10cm,求扇形的弧长及该弧所在弓形的面积;⑵若扇形的周长是一定值C(C>0),当a为多少弧度时,该扇形有最大面积?变式迁移2 (1)已知扇形的周长为10,面积为4,求扇形中心角的弧度数;(2)已知扇形的周长为40,当它的半径和中心角取何值时,才能使扇形的面积最大?最大面积是多少?探究点三三角函数的定义【例3】已知角a的终边在直线3x+ 4y= 0上,求sin a,cos a,tan a的值.变式迁移3已知角a的终边经过点P(- 4a,3a)(a* 0),求sin a,cos a,tan a的值.1. 角的度量由原来的角度制改换为弧度制,要养成用弧度表示角的习惯.象限角的判断,终边相同的角的表示,弧度、弧长公式和扇形面积公式的运用是学习三角函数的基础.2. 三角函数都是以角为自变量(用弧度表示),以比值为函数值的函数,是从实数集到实数集的映射,注意两种定义法,即坐标法和单位圆法.(满分:75分)一、选择题(每小题5分,共25分)1. (2018宣城模拟)点P从(1,0)出发,沿单位圆X2+ y2= 1逆时针方向运动f n弧长到达Q,则Q的坐标为()1 J3 爲1A . (-2,2)B .(-T,-2)1 12. 若0<x< n,则使sinx>2和cosx<2同时成立的x的取值范围是()n n n 5A.3<X<2B.3<X<6nn 5 n 2c.6<x<6 Q3<x<3n3. 已知a为第三象限的角,则扌所在的象限是()A.第一或第二象限B .第二或第三象限C.第一或第三象限 D .第二或第四象限4. 若1弧度的圆心角所对弦长等于2,则这个圆心角所对的弧长等于()1 nA. sin7B.72 61 1C. D. 2sin.1 2 sin 25. 已知卜^,扌且sin 0+ cos0= a,其中a € (0,1),则关于tan B的值,以下四个答案中,可能正确的是()亠1A . —3B. 3 或31 、1C . —3D. —3 或—3题号12345答案二、填空题(每、题4分,共12分)6 .已知点P(sin a—cos a, tan %)在第一象限,且 a € [0,2 n]则a的取值范围是(3n 3 nsin —, cos ■—落在角0的终边上,且值为_________ .&阅读下列命题:①若点P(a,2a)(a^ 0)为角a终边上一点,贝U si n a= 专;5-才的角有且只有一个;V5sin a=—5(0为象限角),则0在第一象限.___ .(将正确命题的序号填在横线上)三、解答题(共38分)9. (12分)已知扇形OAB的圆心角a为120 °半径长为6,(1)求AB的弧长;⑵求弓形OAB的面积.[0,2 n,则0的其中正确命题为1②同时满足sin a= 2,cos a=③设tan a= 2且n<a<3n,贝U④设cos(sin 0) tan(cos 0)>010. (12分)在单位圆中画出适合下列条件的角a的终边的范围,并由此写出角a的集合:(1)sin a i(2)COS a<— 211. (14分)(2018舟山月考)已知角a 终边经过点 P(x , — .2)(X M 0),且cos o=~^x.求1sin a+ 的值.tan a答案自主梳理1•始边顶点终边逆顺零(1)第几象限-1 k j(2){ a|a= k n, k € Z } *a| a= k 计 §, k € Z 广 a| a=才,k € Z 「(3){ 3 3= a + k 360° , k €的圆心角(弧度数)的绝对值与半径的积 弓厲曲勺•①y ②X ③丫 (2) a 的正弦线a 的余弦线 a 的2 2 X正切线自我检测1. A2.D3.C4.D 课堂活动区【例1】解题导引 ⑴一般地,角a 与—a 终边关于X 轴对称;角a 与n — a 终边关于y 轴对 称;角a 与n+ a 终边关于原点对称.⑵利用终边相同的角的集合S ={ 33= 2k n+ a, k 題}判断一个角3所在的象限时,只 需把这个角写成[0,2%)范围内的一角a 与2 n 的整数倍,然后判断角a 的象限.(3)利用终边相同的角的集合可以求适合某些条件的角,方法为先写出与这个角的终边 相同的所有角的集合,然后通过对集合参数k 赋值来求得所需角.3 n解(1) n+ 2k n<o <2 + 2ku(k €), 3 n-•—2 — 2k nJ a < — n — 2k ^(k ),n即 2+ 2k n< a <n+ 2k n (k €).①• —a 角终边在第二象限.3 n又由①各边都加上 n,得~2 + 2k n < — a <2 n+ 2k n (k €).•n— a 是第四象限角.同理可知,n+ a 是第一象限角.⑵在(0, n 内终边在直线 y = -3X 上的角是n , •终边在直线y = 3x 上的角的集合为 J n1Z }{ 3 3= a+ 2k n k € Z } (4)半径圆心角弧度制rad 弧度 (5)2冗命巴0 ° (6)| a| •-弧所对a a= 3+ k n k€ •(3) •••0= 168 °+ k 360 °k€),= 56°+ k -120° (k 題).3••0°< 56°+ k 120°<360°,, 0••k = 0,1,2 时,§q o ° 360° .故在[0 ° 360°内终边与3角的终边相同的角是56° 176°296° 变式迁移1解Ta是第二象限的角,• 360°+ 90° a<k 360°+ 180°(k 題).(1) '.2k 360 °+ 180 °2 a<2k 360 °+ 360 °(k^Z),••2 a的终边在第三或第四象限,或角的终边在y轴的非正半轴上.(2) --k 180 °+ 45 °2<k 180 °+ 90 ° (k^Z),当k = 2n (n®)时,an 360 °+ 45 °<^< n 360 °+ 90 °当k = 2n + 1 (n^Z)时,an 360 °+ 225 °<^< n 360 °+ 270 °a「2■是第一或第三象限的角.a•3的终边在第一或第三象限.【例2】解题导引本题主要考查弧长公式和扇形的面积公式,并与最值问题联系在一起.确定一个扇形需要两个基本条件,因此在解题中应依据题目条件确定出圆心角、半径、弧长三个基本量中的两个,然后再进行求解.解(1)设扇形的弧长为I,该弧所在弓形的面积为S,如图所示,n 当a= 60°= 3,R= 10cm 时,可知I = aR= fm.,. I I 2 刃而S= S 扇一S ZOAB= ?IR —?R sin§⑵已知2R+ l = C,即卩2R+ aR= C,1 2 1 1S 扇=aR = aR R= 4 aR 2R';R+2RZ = 1 f C x 2 = C 2 -^― ! = 4迈丿=活当且仅当 C 2.变式迁移2解设扇形半径为 R ,圆心角为 0所对的弧长为值就相应确定了.但若终边落在某条直线上时,这时终边实际上有两个,因此对应的函数 值有两组,要分别求解.解•••角a 的终边在直线3x + 4y = 0上,•••在角a 的终边上任取一点 P(4t ,— 3t) (t 丰0), 贝U x = 4t , y =— 3t , r = 'x 2+ y 2= ‘4t 2+ — 3t 2=5|t|,当 t>0 时,r = 5t ,y Sin a= r = 5t =x 4t 4 COS a= r =5t =5, tan = y == — 3; tan a= x = 4t = — 4; 当 t<0 时,r = — 5t ,y —3sin a= r = — 5t = 5,x 4tCOS a= _= =—2 0R= 4,(1)依题意,得」R+ 2R = 10,:2 0— 17 0+ 8 =0.「.0= 8 或 1.厶亠 1••8>2n,舍去,• 0= 2.⑵扇形的周长为 40,即0+ 2R = 40,1 1 7 1 八 * 1 0R+ 2R S = [R =2 0R= 4 0R 2R W 4 =100.2当且仅当0R= 2R ,即R = 10, 0= 2时扇形面积取得最大值, 【例3】解题导引某角的三角函数值只与该角终边所在位置有关,最大值为 100.当终边确定时三角函数aR= 2R ,即a= 2时,等号成立,即当 a 为2弧度时,该扇形有最大面积 l.35,4 5,r—5t伽=y=—=— 3 tan a= x= 4t =—4.3 4 3综上可知,t>0 时,sin a=—;, cos a= , tan a=—二;5 5 4z 3 4 3t<0 时,sin a= 5, COS a=—5, tan a= —4.变式迁移 3 解r =—4a 2+ 3a 2= 5RI.若a>0,则r = 5a , a 角在第二象限,y 3a 3 sin a=_=二=匚, r 5a 5—4a 4~5F = — 5,tan a= xy_ 3a =3 = —4.若 a<0, 则 r = — 5a , a 角在第四象限, sin 心 y3a —5a 35, x COS a= 一 r —4a 4 —5^ = 5, 3 —4a *课后练习区 1. A2.B3.D4.C5.C5 n冗,丁tan a= y3a6.解读由已知得sin a>cos a,tan a >0,n n • '4 + 2k n<<2 + 2k n 或 n+ 5 n 2k n<a <"4 +2k n, k^Z.n n 5 n••0< a< 2 n •••当 k = 0 时,;< a <o 或 n<<丁. 4247 7・4n解读由三角函数的定义,cos ‘y4tan 0= ==— 1.x 3 nsin ~43 n 3 n . 7 n 又-.sin[>0, cos_<0,「.P 在第四象限,• 0= _.&③ 解读①中,当a 在第三象限时, sin a=—今5,故①错.5 7n②中,同时满足 sin a= 2 , COs a=于的角为 a= 2k n+ - (k €Z),不只有 错•③正确•④0可能在第一象限或第四象限,故④错•综上选③ ” o 2n 9.解⑴-a= 120 = 3 , r = 6, • AB 的弧长为 I =ar 严>< 6 = 4n •: ................................................................... 1 1 (2) '-S 扇形 OAB =尹=4 n X 6=12 n, ............................................2' ,故②(4分) …(7S ZABO =扩 sin^62X 宁=9 3 , ........................................(10xCOS a=r11 / 9•'S 弓形 OAB = S 扇形 OAB — S ^ABO = 分) 10.解(1)作直线y =~2^交单位圆于A 、n 2n的集合为 1 a|2k n+ aW 2k n+ —, k ».1作直线x =— 2交单位圆于C 、D 两点,连结 OC 、OD ,贝y OC 与OD 围成的区域(图中 阴影部分)即为角a 终边的范围•故满足条件的角a 的集合为2 n 4 n* o|2k n+§三 aW 2k n+-3, k 題•- 11.解-.P (x , — ,2) (x 工 0), •••点P 到原点的距离 r = x 2+ 2.又 亚又 COS a= — X ,6 x V 3 I —「COS a= ------ = tT X.伙工 0 ,「X =± 10 ,V X 2^ 6 , •丫 = 2";.'3 ................................................ 当x = 10时,P 点坐标为(.10, — ,2), 由三角函数的定义, 6有 Sin a=——, (6分)1 • sin a+ =— tan a当 x =— .10时,盘一5, - 5 =-6 .' 5 + ■, 6;(10 分)同样可求得sin a+1 tan a(14 分)(12(6分)(12分)(2则0A 与0B 围成的区域即为角。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案14 导数在研究函数中的应用
学案14 导数在研究函数中的应用导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )>0的解集与定义域的交集的对应区间为______区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )<0的解集与定义域的交集的对应区间为______区间;(3)若在(a ,b )上,f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数,若在(a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数.2.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程________的根;③检查f ′(x )在方程________的根左右值的符号.如果左正右负,那么f (x )在这个根处取得________;如果左负右正,那么f (x )在这个根处取得________.自我检测1.已知f (x )的定义域为R ,f (x )的导函数f ′(x )的图象如图所示,则 ( )A .f (x )在x =1处取得极小值B .f (x )在x =1处取得极大值C .f (x )是R 上的增函数D .f (x )是(-∞,1)上的减函数,(1,+∞)上的增函数2.(2009·广东)函数f (x )=(x -3)e x 的单调递增区间是 ( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 3.(2011·济宁模拟)已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.(2011·福州模拟)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 (2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值 例3 (2011·六安模拟)已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间例 (12分)(2009·辽宁)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.多角度审题 (1)先求导,根据参数a 的值进行分类讨论;(2)若x 1>x 2,结论等价于f (x 1)+x 1>f (x 2)+x 2,若x 1<x 2,问题等价于f (x 1)+x 1<f (x 2)+x 2,故问题等价于y =f (x )+x 是单调增函数.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =(x -1)(x +1-a )x.[2分]①若a -1=1,即a =2时,f ′(x )=(x -1)2x.故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[6分](2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x .则g ′(x )=x -(a -1)+a -1x ≥2x ·a -1x-(a -1)=1-(a -1-1)2.由于1<a <5,故g ′(x )>0,即g (x )在(0,+∞)上单调递增,从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0,即f (x 1)-f (x 2)+x 1-x 2>0,故f (x 1)-f (x 2)x 1-x 2>-1.[10分]当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.[12分]当堂检测(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大连模拟)设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( )A .1个B .2个C .3个D .4个3.(2011·嘉兴模拟)若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <14.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则 ( ) A .a >-3 B .a <-3C .a >-1D .a <-16.(2009·辽宁)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(12分)(2011·秦皇岛模拟)已知a为实数,且函数f(x)=(x2-4)(x-a).(1)求导函数f′(x);(2)若f′(-1)=0,求函数f(x)在[-2,2]上的最大值、最小值.11.(14分)(2011·汕头模拟)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(1)求m,n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.。
【步步高】2015届高三数学北师大版(通用,理)总复习章末检测:第九章 解析几何
20. (12 分)设直线 l: y=k(x+1) (k≠0)与椭圆 x2+3y2=a2 (a>0)相交于两个不同的点 A、 B,与 x 轴相交于点 C,记 O 为坐标原点. 3k2 (1)证明:a2> ; 1+3k2 → → (2)若AC=2CB,求△OAB 的面积取得最大值时的椭圆方程.
第 3 页 共 9 页
第 4 页 共 9 页
10.A 11.D
12.C 14. 6 3
13.(x-1)2+y2=4
x2 y2 15. + =1 5 4 解析 由题意可得切点 A(1,0). 1 n- 2 m 切点 B(m,n)满足 m-1=- n ,
m +n =1,
2 2
3 4 解得 B( , ). 5 5
∴过切点 A,B 的直线方程为 2x+y-2=0. 令 y=0 得 x=1,即 c=1; 令 x=0 得 y=2,即 b=2. x2 y2 ∴a2=b2+c2=5,∴椭圆方程为 + =1. 5 4 16.② 17.解 (1)∵kAB=- 2,AB⊥BC,∴kCB= ∴lBC:y= 2 . 2
21.(12 分)(2011· 福建)已知直线 l:y=x+m,m∈R. (1)若以点 M(2,0)为圆心的圆与直线 l 相切于点 P,且点 P 在 y 轴上,求该圆的方程. (2)若直线 l 关于 x 轴对称的直线为 l′,问直线 l′与抛物线 C:x2=4y 是否相切?说明 理由.
x2 y2 22.(12 分)(2011· 山东)已知动直线 l 与椭圆 C: + =1 交于 P(x1,y1),Q(x2,y2)两不 3 2 6 同点,且△OPQ 的面积 S△OPQ= ,其中 O 为坐标原点. 2 2 2 2 (1)证明:x1 +x2 和 y + y 均为定值. 2 1 2 (2)设线段 PQ 的中点为 M,求|OM|· |PQ|的最大值. 6 (3)椭圆 C 上是否存在三点 D,E,G,使得 S△ODE=S△ODG=S△OEG= ?若存在,判断 2 △DEG 的形状;若不存在,请说明理由.
【步步高】2015届高考数学总复习 算法与程序框图学案 理 北师大版
第十二章算法初步、复数学案70算法与程序框图导学目标:1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.自主梳理1.算法通常是指按照一定规则解决某一类问题的________和________的步骤.这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图又称________,是一种用________、________及____________来准确、直观地表示算法的图形.通常程序框图由________和________组成,一个或几个程序框的组合表示算法中的一个步骤;________带方向箭头,按照算法进行的顺序将________连结起来.3.顺序结构是由________________________组成的,这是任何一个算法都离不开的基本结构.其结构形式为4.条件结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为5.循环结构是指__________________________________________________________.反复执行的步骤称为________.循环结构又分为________________和________________.其结构形式为6.算法的五个特征:概括性、逻辑性、有穷性、不惟一性、普遍性. 自我检测1.(2010·陕西)如图所示是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为( )A .S =S +x nB .S =S +x nnC .S =S +nD .S =S +1n第1题图 第2题图2.(2010·全国)如果执行如图所示的框图,输入N =5,则输出的数等于( ) A .54B .45C .65D .563.(2011·北京)执行如图所示的程序框图,输出的s 值为( ) A .-3B .-12C .13D .2第3题图第4题图4.(2011·山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是________.探究点一算法的顺序结构例1已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出程序框图.变式迁移1阅读如图的程序框图,若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是()A.75、21、32B.21、32、75C.32、21、75 D.75、32、21探究点二 算法的条件结构例2 (2011·杭州模拟)函数y =⎩⎪⎨⎪⎧-2 (x>0)0 (x =0)2 (x<0),写出求该函数的函数值的算法,并画出程序框图.变式迁移2 给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是( )A .1B .2C .3D .4探究点三 算法的循环结构例3 写出求1×2×3×4×…×100的一个算法并画出程序框图.变式迁移3 (2011·天津和平区模拟)在如图所示的程序框图中,当程序被执行后,输出s的结果是______.1.程序框图主要包括三部分:(1)表示相应操作的框;(2)带箭头的流程线;(3)框内外必要的文字说明,读懂程序框图要从这三个方面研究.流程线反映了流程执行的先后顺序,主要看箭头方向,框内外文字说明表明了操作内容.2.两种循环结构的区别:(1)执行情况不同:当型循环是先判断条件,当条件成立时才执行循环体,若循环条件一开始就不成立,则循环体一次也不执行.而直到型循环是先执行一次循环体,再判断循环条件,循环体至少要执行一次.(2)循环条件不同:当型循环是当条件成立时循环,条件不成立时停止循环,而直到型循环是当条件不成立时循环,直到条件成立时结束循环.(满分:75分)一、选择题(每小题5分,共25分)1.中山市的士收费办法如下:不超过2公里收7元(即起步价7元),超过2公里的里程每公里收2.6元,另每车次超过2公里收燃油附加费1元(不考虑其他因素).相应收费系统的程序框图如图所示,则①处应填()A.y=7+2.6x B.y=8+2.6xC.y=7+2.6(x-2) D.y=8+2.6(x-2)第1题图第2题图2.(2010·福建)阅读如图所示的程序框图,运行相应的程序,输出的i值等于() A.2 B.3 C.4 D.53.(2010·浙江)某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?第3题图第4题图4.(2010·辽宁)如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p等于() A.720 B.360 C.240 D.1205.阅读下面的程序框图,则输出的S等于()A.14 B.20 C.30 D.55二、填空题(每小题4分,共12分)6.(2011·浙江)若某程序框图如图所示,则该程序运行后输出的k的值是__________.第6题图第7题图7.执行如图所示的程序框图,输出的T=________.8.(2010·江苏改编)如图是一个程序框图,则输出的S的值是________.三、解答题(共38分)9.(12分)(2011·包头模拟)对一个作直线运动的质点的运动过程观测了8次,第i次观测得到的数据为a i,具体如下表所示:i 1 2 3 4 5 6 7 8a i40 41 43 43 44 46 47 48在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a是这8个数据的平均数),求输出的S的值.10.(12分)(2011·汕头模拟)已知数列{a n}的各项均为正数,观察程序框图,若k=5,k=10时,分别有S=511和S=1021.(1)试求数列{a n}的通项;(2)令b n=2a n,求b1+b2+…+b m的值.11.(14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y 2),…,(x n ,y n ),…,(1)若程序运行中输出一个数组是(9,t),求t 的值; (2)求程序结束时,共输出(x ,y)的组数; (3)求程序结束时,输出的最后一个数组.学案70 算法与程序框图自主梳理1.明确 有限 2.流程图 程序框 流程线 文字说明 程序框 流程线 流程线 程序框 3.若干个依次执行的步骤 5.从某处开始,按照一定的条件反复执行某些步骤的情况 循环体 当型(WHILE 型) 直到型(UNTIL 型)自我检测1.A [由循环结构的程序框图可知需添加的运算为S =x 1+x 2+…+x 10的累加求和.] 2.D [第一次运行N =5,k =1,S =0,S =0+11×2,1<5成立,进入第二次运行;k =2,S =11×2+12×3,2<5成立,进入第三次运行;k =3,S =11×2+12×3+13×4,3<5成立,进入第四次运行;k =4,S =11×2+12×3+13×4+14×5,4<5成立,进入第五次运行;k =5,S =11×2+12×3+13×4+14×5+15×6=1-16=56,5<5不成立,此时退出循环,输出S.]3.D [由框图可知i =0,s =2→i =1,s =13→i =2,s =-12→i =3,s =-3→i =4,s =2,循环终止,输出s ,故最终输出的s 值为2.]4.68解析 当输入l =2,m =3,n =5时,不满足l 2+m 2+n 2=0,因此执行:y =70l +21m +15n =70×2+21×3+15×5=278.由于278>105,故执行y =y -105,执行后y =278-105=173,再执行一次y=y-105后y的值为173-105=68,此时68>105不成立,故输出68.课堂活动区例1解题导引顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.程序框图中一定包含顺序结构.解算法如下:第一步,输入x0,y0及直线方程的系数A,B,C.第二步,计算Z1=Ax0+By0+C.第三步,计算Z2=A2+B2.第四步,计算d=|Z1|.Z2第五步,输出d.程序框图:变式迁移1A[由程序框图中的各个赋值语句可得x=21,a=75,c=32,b=21,故a、b、c分别是75、21、32.]例2解题导引求分段函数函数值的程序框图的画法,如果是分两段的函数,则需引入一个判断框;如果是分三段的函数,则需引入两个判断框.解算法如下:第一步,输入x;第二步,如果x>0,则y =-2;如果x =0,则y =0;如果x<0,则y =2;第三步,输出函数值y.相应的程序框图如图所示.变式迁移2 C [本问题即求函数y =⎩⎪⎨⎪⎧ x 2,x ≤2,2x -3,2<x ≤5,1x ,x>5的值.若x ≤2,由x 2=x 得,x =1或0;若2<x ≤5,由x =2x -3得,x =3;若x>5,由x =1x得,x =±1,不符合. 故符合要求的x 值有3个.] 例3 解题导引 数学中的累加、累乘、累差等重复性操作可以用循环结构来实现.循环结构分当型和直到型两种,二者的区别是:前者是,当满足条件时执行循环体,而后者是“直到”条件满足时结束循环.解 第一步,设S 的值为1.第二步,设i 的值为2.第三步,如果i ≤100执行第四步,否则转去执行第七步.第四步,计算S 乘i 并将结果赋给S.第五步,计数i 加1并将结果赋给i.第六步,转去执行第三步.第七步,输出S 的值并结束算法.根据自然语言描述,程序框图如下:变式迁移3 286 解析 数列{a n }:4,7,10,…为等差数列,令a n =4+(n -1)×3=40,得n =13,∴s =4+7+…+40=(4+40)×132=286. 课后练习区1.D [根据题意可知x>2时,收费应为起步价7元+超过2公里的里程收费2.6(x -2)元+燃油附加费1元=8+2.6(x -2).]2.C [由框图可知i =1,s =1×21=2;i =2,s =2+2×22=10;i =3,s =2+2×22+3×23>11,i =i +1=3+1=4.]3.A [当k =1时,k =k +1=2,S =2×1+2=4;当k =2时,k =k +1=3,S =2×4+3=11;当k =3时,k =k +1=4,S =2×11+4=26;当k =4时,k =k +1=5,S =2×26+5=57.此时S =57,循环结束,k =5,所以判断框中应为“k>4?”.]4.B [由框图可知:当n =6,m =4时,第一次循环:p =(6-4+1)×1=3,k =2.第二次循环:p =(6-4+2)×3=12,k =3.第三次循环:p =(6-4+3)×12=60,k =4.第四次循环:p =(6-4+4)×60=360,此时k =m ,终止循环.输出p =360.]5.C [第一次循环:S =12;第二次循环:S =12+22;第三次循环;S =12+22+32;第四次循环:S =12+22+32+42=30.]6.5解析 初始值:k =2,执行“k =k +1”得k =3,a =43=64,b =34=81,a>b 不成立; k =4,a =44=256,b =44=256,a>b 不成立;k =5,a =45=1 024,b =54=625,a>b 成立,此时输出k =5.7.30解析 按照程序框图依次执行为S =5,n =2,T =2;S =10,n =4,T =2+4=6;S =15,n =6,T =6+6=12;S =20,n =8,T =12+8=20;S =25,n =10,T =20+10=30>S ,输出T =30.8.63解析 当n =1时,S =1+21=3;当n =2时,S =3+22=7;当n =3时,S =7+23=15;当n =4时,S =15+24=31;当n =5时,S =31+25=63>33.故S =63.9.解 该程序框图即求这组数据的方差,∵a =44,(2分)∴S =18∑8i =1 (a i -a )2=18[(40-44)2+(41-44)2+…+(48-44)2]=7.(12分)10.解 由题中框图可知S =1a 1a 2+1a 2a 3+…+1a k a k +1, ∵数列{a n }是等差数列,设公差为d ,则有1a k a k +1=1d (1a k -1a k +1), ∴S =1d (1a 1-1a 2+1a 2-1a 3+…+1a k -1a k +1) =1d (1a 1-1a k +1).(4分) (1)由题意可知,k =5时,S =511;k =10时,S =1021. ∴⎩⎨⎧ 1d (1a 1-1a 6)=511,1d (1a 1-1a 11)=1021,解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=-1,d =-2(舍去). 故a n =a 1+(n -1)d =2n -1.(8分)(2)由(1)可得b n =2a n =22n -1,∴b 1+b 2+…+b m=21+23+…+22m -1=2(1-4m )1-4=23(4m -1). (12分)11.解 (1)循环体运行结果如下: 输出(1,0)n =3x =3y =-2n<2 011 输出(3,-2)n =5x =9y =-4n<2 011 输出(9,-4)n =7x =27y =-6n<2 011∴输出数组(9,t)中的t 值是-4.(4分)(2)计数变量n 的取值为:3,5,7,…,构成等差数列,由3+(m -1)×2=2 011.解得m =1 005,由于当m=1 005时,n=2 011,循环体还要执行一遍,会输出第1 006个数组,然后n=2 013>2 011,跳出循环体.故共输出1 006个数组.(8分)(3)程序输出的数组(x n,y n)按输出的先后顺序,横坐标x n组成一个等比数列{x n},首项x1=1,公比q=3.纵坐标组成一个等差数列{y n},首项y1=0,公差d=-2.∴x1 006=31 005,y1 006=-2×1 005=-2 010.故程序结束时,输出的最后一个数组是(31 005,-2 010).(14分)。
【步步高】2015届高考数学总复习 第十三章 13.1算法与算法框图课件 理 北师大版
故选 C.
题型分类·深度剖析
题型二 算法的条件结构
下图中 x1,
思维启迪 解析 答案 思维升华
【例 2】
x2,x3 为某次考试三 个评阅人对同一道题 的独立评分,p 为该 题的最终得分.当 x1 = 6 , x2 = 9 , p = 8.5 时,x3 等于 ( C ) A.11 C.8 B.10 D.7
题型分类·深度剖析
题型二 算法的条件结构
下图中 x1,
思维启迪 解析 答案 思维升华
【例 2】
x2,x3 为某次考试三 个评阅人对同一道题 的独立评分,p 为该 题的最终得分.当 x1 = 6 , x2 = 9 , p = 8.5 时,x3 等于 ( A.11 C.8 B.10 D.7 )
x1=6,x2=9,|x1-x2|=3<2 不 成立,即为“否”,所以再输 入 x3;
f(3)、 f(-5)、 f(5), 并计算 f(3) 注意: +f(-5)+f(5)的值. 设计出解
决该问题的一个算法, 并画出 (2)综合考虑此类问题中可能 算法框图.
题型分类·深度剖析
跟踪训练 1 分别是 A.75,21,32 C.32,21,75 B.21,32,75 D.75,32,21 阅读如图所示的算法框图,若输入 ( A )
解析
5π 由算法框图可知,当输入的 x 为 6 时,
5π 5π sin 6 >cos 6 成立, 5π 1 所以输出的 y1=sin = ; 6 2
题型分类·深度剖析
5π π 跟踪训练 2 如图, 若依次输入的 x 分别为 、 , 6 6 相应输出的 y 分别为 y1、y2,则 y1、y2 的大小关 系是 A.y1=y2 C.y1<y2 B.y1>y2 D.无法确定 ( C )
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案32 数列的综合应用
探究点一 等差、等比数列的综合问题 例 1 设{an}是公比大于 1 的等比数列,Sn 为数列{an}的前 n 项和.已知 S3=7,且 a1 +3,3a2,a3+4 构成等差数列. (1)求数列{an}的通项; (2)令 bn=ln a3n+1,n=1,2,…,求数列{bn}的前 n 项和 Tn.
Go the distance
学案 32
数列的综合应用
导学目标: 1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际 问题.2.对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、 生活中的应用.
自主梳理 1.数列的综合应用 数列的综合应用一是指综合运用数列的各种知识和方法求解问题, 二是数列与其他数学 内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会. (1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法. (2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等 差、等比数列或常见的特殊数列问题. (3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若 干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的. (4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由 Sn 求 an 时,要对______________进行分类讨论. 2.数列的实际应用 数列的应用问题是中学数学教学与研究的一个重要内容, 解答应用问题的核心是建立数 学模型. (1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是 求 an 还是求 Sn. (2)分期付款中的有关规定 ①在分期付款中,每月的利息均按复利计算; ②在分期付款中规定每期所付款额相同; ③在分期付款时, 商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增 值; ④各期付款连同在最后一次付款时所生的利息之和, 等于商品售价及从购买时到最后一 次付款的利息之和. 自我检测 1 . ( 原创 题 ) 若 Sn 是等差 数列 {an} 的前 n 项 和, 且 S8 - S3 = 10 , 则 S11 的 值 为 ( ) A.12 B.18 C.22 D.44 a6 2.(2011· 汕头模拟)在等比数列{an}中,an>an+1,且 a7· a11=6,a4+a14=5,则 等于 a16 ( ) 2 3 A. B. 3 2 1 5 C.- D.- 6 6 3.若{an}是首项为 1,公比为 3 的等比数列,把{an}的每一项都减去 2 后,得到一个新 数列{bn}, 设{bn}的前 n 项和为 Sn, 对于任意的 n∈N*, 下列结论正确的是 ( ) 1 n A.bn+1=3bn,且 Sn= (3 -1) 2 1 B.bn+1=3bn-2,且 Sn= (3n-1) 2 1 C.bn+1=3bn+4,且 Sn= (3n-1)-2n 2
【步步高】2015届高三数学北师大版(通用,理)总复习讲义:第七章 7.4-推荐下载
D.8 125
T4=a1a2a3a4,T8=a1a2…a8,T12=a1a2…a12,
T16=a1a2…a16,
T8
T12
因此T4=a5a6a7a8, T8 =a9a10a11a12,T12=a13a14a15a16,
T8 T12 T16
而 T4,T4,T8 ,T12的公比为 q16,
T8 T12 T16
1
1
1 3-1 3- 3 3
=1+ 3+3+ 3= 2 + 6 = 3 ,
1
3 同理可得:f(-1)+f(2)= 3 ,
3 f(-2)+f(3)= 3 ,并注意到在这三个特殊式子中,自变量之和均等于 1.
归纳猜想得:当 x1+x2=1 时,均为 f(x1)+f(x2)= 3 .
证明:设 x1+x2=1,
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案16 定积分及其简单的应用
函数思想的应用 例 (12 分)在区间[0,1]上给定曲线 y=x2.试在此区间内确定点 t 的值, 使图中的阴影部 分的面积 S1 与 S2 之和最小,并求最小值.
【答题模板】 解 S1 面积等于边长为 t 与 t2 的矩形面积去掉曲线 y=x2 与 x 轴、直线 x=t 所围成的面 2 积,即 S1=t· t2-ʃt0x2dx= t3.[2 分] 3 S2 的面积等于曲线 y=x2 与 x 轴,x=t,x=1 围成的面积去掉矩形面积,矩形边长分别 23 2 1 2 2 为 t2,1-t,即 S2=ʃ1 t x dx-t (1-t)= t -t + .[4 分] 3 3 43 2 1 所以阴影部分面积 S=S1+S2= t -t + (0≤t≤1).[6 分] 3 3 1 1 令 S′(t)=4t2-2t=4t t-2=0 时,得 t=0 或 t=2.[8 分] 1 1 1 2 t=0 时,S= ;t= 时,S= ;t=1 时,S= .[10 分] 3 2 4 3 1 1 所以当 t= 时,S 最小,且最小值为 .[12 分] 2 4 【突破思维障碍】 本题既不是直接求曲边梯形面积问题, 也不是直接求函数的最小值问题, 而是先利用定 积分求出面积的和, 然后利用导数的知识求面积和的最小值, 难点在于把用导数求函数最小 值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.
答案 自主梳理 1.x=a,x=b (a≠b),y=0 和曲线 y=f(x) 面积 b b 2.(1)kʃb (2)ʃb ʃa f2(x)dx (3)ʃc af(x)dx af1(x)dx± af(x)dx+ʃc f(x)dx(其中 a<c<b) b b b 3.微积分基本定理 F(x)|a 4.(1)ʃaf(x)dx (2)-ʃaf(x)dx (3)ʃb a[f(x)-g(x)]dx 5.(1)s=ʃb (2)ʃb av(t)dt aF(x)dx 自我检测 1.A 2.A 3.C 4.D 5.± 3
【步步高】2015届高考数学总复习 第十三章 选修系列章末检测 理 北师大版
第十三章选修系列4学案73几何证明选讲(一)相似三角形的判定及有关性质导学目标:1.了解平行线等分线段定理和平行线分线段成比例定理;2.掌握相似三角形的判定定理及性质定理;3.理解直角三角形射影定理.自主梳理1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.2.平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段__________.推论1平行于三角形一边的直线截其他两边(或________________),所得的对应线段__________.推论2平行于三角形的一边,并且和其他两边________的直线所截得的三角形的三边与原三角形的三边对应________.推论3三角形的一个内角平分线分对边所得的两条线段与这个角的两边对应成比例.3.相似三角形的判定判定定理1对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应________的两个三角形相似.判定定理2对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且____________相等的两个三角形相似.判定定理3对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例的两个三角形相似.4.相似三角形的性质(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方.5.直角三角形射影定理直角三角形一条直角边的平方等于该直角边在____________与斜边的______,斜边上的高的________等于两条直角边在斜边上的射影的乘积.自我检测1.如果梯形的中位线的长为6 cm,上底长为4 cm,那么下底长为________cm.2.如图,在△ABC中,ED∥BC,EF∥BD,则下列四个结论正确的是(填序号)________.①AFFD=EDBC;②AFFD=CDAD;③AFFD=ADDC;④AFFD=ABAE.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,BD=3,则AC=________.4.如图所示,在△ABC 中,AD 是∠BAC 的平分线,AB =5 cm ,AC =4 cm ,BC =7 cm ,则BD =________cm .第4题图 第5题图 5.(2011·某某)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.探究点一 确定线段的n 等分点例1 已知线段PQ ,在线段PQ 上求作一点D ,使PD ∶DQ =2∶1.变式迁移1 已知△ABC ,D 在AC 上,AD ∶DC =2∶1,能否在AB 上找到一点E ,使得线段EC 的中点在BD 上.探究点二 平行线分线段成比例定理的应用例2 在△ABC 的边AB 、AC 上分别取D 、E 两点,使BD =CE ,DE 的延长线交BC的延长线于点F.求证:DF EF =ACAB.变式迁移2 如图,已知AB ∥CD ∥EF ,AB =a ,CD =b(0<a<b),AE ∶EC =m ∶n(0<m<n),求EF.探究点三相似三角形的判定及性质的应用例3如图,已知梯形ABCD中,AB∥CD,过D与BC平行的直线交AB于点E,∠ACE=∠ABC,求证:AB·CE=AC·DE.变式迁移3 如图,已知▱ABCD中,G是DC延长线上一点,AG分别交BD和BC于E、F两点,证明AF·AD=AG·BF.1.用添加平行辅助线的方法构造使用平行线等分线段定理与平行线分线段成比例定理的条件.特别是在使用平行线分线段成比例定理及推论时,一定要注意对应线段,对应边.2.利用平行线等分线段定理将某线段任意等分,需要过线段的一个端点作辅助线,在作图时要注意保留作图痕迹.3.在证明两个或两个以上的比例式相等时,需要找第三个比例式与它们都相等,可考虑利用平行线分线段成比例定理或推论,也可以考虑用线段替换及等比定理,由相等的传递性得出结论.4.判定两个三角形相似,根据题设条件选择使用三角形相似的判定定理.(满分:75分)一、填空题(每小题5分,共40分)1.如图所示,l 1∥l 2∥l 3,下列比例式正确的有________(填序号). (1)AD DF =CE BC ;(2)AD BE =BC AF ;(3)CE DF =AD BC ;(4)AF DF =BE CE.2.如图所示,D 是△ABC 的边AB 上的一点,过D 点作DE ∥BC 交AC 于E.已知AD DB=23,则S △ADE S 四边形BCED=__________________________________________.3.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,则EF BC +FGAD=________.4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________.5.(2010·某某模拟)如图,在梯形ABCD 中,AD ∥BC ,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF ∥BC ,若AD =12,BC =20,则EF =________.6.如图所示,在△ABC 中,AD ⊥BC ,CE 是中线,DC =BE ,DG ⊥CE 于G ,EC 的长为4,则EG =________.7.(2010·某某武清一模)如图,在△ABC 中,AD 平分∠BAC ,DE ∥AC ,EF ∥BC ,AB =15,AF =4,则DE =________.8.如图所示,BD 、CE 是△ABC 的中线,P 、Q 分别是BD 、CE 的中点,则PQBC=________.二、解答题(共35分)9.(11分)如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F ,求证:DF AF =AEEC.10.(12分)如图,△ABC 中,D 是BC 的中点,M 是AD 上一点,BM 、CM 的延长线分别交AC 、AB 于F 、E.求证:EF ∥BC.11.(12分)(2010·某某模拟)如图,在四边形ABCD 中,AC 与BD 相交于O 点,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别相交于点M ,N ,R ,S 和P ,求证:PM·PN =PR·PS.学案73 几何证明选讲(一)相似三角形的判定及有关性质自主梳理2.成比例 两边的延长线 成比例 相交 成比例 3.相等 夹角 5.斜边上的射影 乘积 平方 自我检测 1.8 2.③ 3.2133解析 由射影定理:CD 2=AD·BD.∴AD =43,∴AC =CD 2+AD 2=4+169=2133.4.359解析 ∵AB AC =BD DC =54,∴BD =359cm .5.4 2解析 ∵AC =4,AD =12,∠ACD =90°, ∴CD 2=AD 2-AC 2=128, ∴CD =8 2.又∵AE ⊥BC ,∠B =∠D ,∴△ABE ∽△ADC ,∴AB AD =BECD,∴BE =AB·CD AD =6×8212=4 2.课堂活动区例1解题导引 利用平行线等分线段定理可对线段任意等分,其作图步骤为:首先作出辅助射线,然后在射线上依次截取任意相同长度的n 条线段,最后过辅助线上的各等分点作平行线,确定所求线段的n 等分点.解 在线段PQ 上求作点D ,使PD ∶DQ =2∶1,就是要作出线段PQ 上靠近Q 点的一个三等分点,通过线段PQ 的一个端点作辅助射线,并取线段的三等分点,利用平行线等分线段定理确定D 点的位置.作法:①作射线PN.②在射线PN 上截取PB =2a ,BC =a. ③连接CQ.④过点B 作CQ 的平行线,交PQ 于D. ∴点D 即为所求的点. 变式迁移1解 假设能找到,如图,设EC 交BD 于点F ,则F 为EC 的中点, 作EG ∥AC 交BD 于G. ∵EG ∥AC ,EF =FC ,∴△EGF ≌△CDF ,且EG =DC ,∴EG 綊12AD ,△BEG ∽△BAD ,∴BE BA =EG AD =12,∴E 为AB 的中点. ∴当E 为AB 的中点时,EC 的中点在BD 上.例2解题导引 证明线段成比例问题,一般有平行的条件可考虑用平行线分线段成比例定理或推论,也可以用三角形相似或考虑用线段替换等方法.证明 作EG ∥AB 交BC 于G ,如图所示,∵△CEG ∽△CAB , ∴EG AB =CE AC ,即AC AB =CE EG =DB EG , 又∵DB EG =DF EF ,∴DF EF =AC AB.变式迁移2解 如图,过点F 作FH ∥EC ,分别交BA ,DC 的延长线于点G ,H ,由EF ∥AB ∥CD 及FH ∥EC ,知AG =CH =EF ,FG =AE ,FH =EC.从而FG ∶FH =AE ∶EC =m ∶n.由BG ∥DH ,知BG ∶DH =FG ∶FH =m ∶n. 设EF =x ,则得(x +a)∶(x +b)=m ∶n. 解得x =mb -nan -m ,即EF =mb -nan -m. 例3解题导引 有关两线段的比值的问题,除了应用平行线分线段成比例定理外,也可利用相似三角形的判定和性质求解.解题中要注意观察图形特点,巧添辅助线,对解题可起到事半功倍的效果.证明 方法一 ∵AB ∥CD , ∴EA CD =AF CF ,即EA AF =CD CF .① ∵DE ∥BC , ∴AF AC =AE AB ,即EA AF =AB AC.② 由①②得CD CF =ABAC,③∵∠FDC =∠ECF ,∠DEC =∠FEC , ∴△EFC ∽△ECD. ∴CD CF =DE CE.④ 由③④得AB AC =DECE ,即AB·CE =AC·DE.方法二 ∵AB ∥CD ,DE ∥BC , ∴BEDC 是平行四边形. ∴DE =BC.∵∠ACE =∠ABC ,∠EAC =∠BAC ,∴△AEC ∽△ACB.∴BC CE =ABAC.∴AB AC =DECE,即AB·CE =AC·DE. 变式迁移3证明 因为四边形ABCD 为平行四边形, 所以AB ∥DC ,AD ∥BC.所以△ABF ∽△GCF ,△GCF ∽△GDA. 所以△ABF ∽△GDA.从而有AF AG =BFAD ,即AF·AD =AG·BF.课后练习区 1.(4)解析 由平行线分线段成比例定理可知(4)正确. 2.421解析 由AD DB =23知,AD AB =25,S △ADE S △ABC =425,故S △ADE S 四边形BCED =421.3.1解析 ∵EF ∥BC ,∴EF BC =AFAC ,又∵FG ∥AD ,∴FG AD =CFAC,∴EF BC +FG AD =AF AC +CF AC =AC AC =1. 4.562解析 设斜边上的两段的长分别为3t,2t ,由直角三角形中的射影定理知:62=3t·2t ,解得t =6(t>0,舍去负根),所以斜边的长为56,故斜边上的中线的长为562.5.15解析 ∵AD ∥BC ,∴OB OD =BC AD =2012=53,∴OB BD =58,∵OE ∥AD ,∴OE AD =OB BD =58,∴OE =58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF =OE +OF =15.6.2解析 连接DE ,因为AD ⊥BC ,所以△ADB 是直角三角形,则DE =12AB =BE =DC.又因为DG ⊥CE 于G ,所以DG 平分CE ,故EG =2.7.6解析 设DE =x ,∵DE ∥AC , ∴BE 15=x x +4,解得BE =15x x +4. ∴BD DC =BE EA =BE 15-BE =x 4. 又∵AD 平分∠BAC ,∴BD DC =BA AC =15x +4=x4,解得x =6. 8.14解析 连接DE ,延长QP 交AB 于N ,则⎩⎨⎧NP =12ED =14BC ,NP +PQ =12BC.得PQ =14BC.9.证明 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC ,②(3分)在Rt △ABC 中,由射影定理知,AB 2=BD·BC , 即BD AB =ABBC.③(6分) 由①③得:DF AF =ABBC ,④(9分)由②④得:DF AF =AEEC .(11分)10.证明 延长AD 至G ,使DG =MD ,连接BG 、CG . ∵BD =DC ,MD =DG ,∴四边形BGCM 为平行四边形.(4分) ∴EC ∥BG ,FB ∥CG , ∴AE AB =AM AG ,AF AC =AM AG , ∴AE AB =AFAC ,(8分) ∴EF ∥BC.(12分) 11.证明 ∵BO ∥PM , ∴PM BO =PAOA ,(2分) ∵DO ∥PS , ∴PS DO =PA OA ,∴PM BO =PSDO .(4分) 即PM PS =BODO,由BO ∥PR得PR BO =PCCO.(6分) 由DO ∥PN 得PN OD =PCCO.(8分)∴PR BO =PN DO ,即PR PN =BO DO , ∴PR PN =PMPS.∴PM·PN =PR·PS.(12分) 学案74 几何证明选讲 (二)直线与圆的位置关系导学目标: 1.理解圆周角定理,弦切角定理及其推论;2.理解圆的切线的判定及性质定理;3.理解相交弦定理,割线定理,切割线定理;4.理解圆内接四边形的性质定理及判定.自主梳理1.圆周角、弦切角及圆心角定理(1)__________的度数等于其的对______的度数的一半.推论1:________(或________)所对的圆周角相等;同圆或等圆中,相等的圆周角__________相等.推论2:半圆(或直径)所对的__________等于90°.反之,90°的圆周角所对的弧是________(或__________).(2)弦切角的度数等于其所夹孤的度数的____. (3)圆心角的度数等于它所对弧的度数. 2.圆中比例线段有关定理(1)相交弦定理:______的两条____________,每条弦被交点分成的____________的积相等.(2)切割线定理:从圆外一点引圆的一条割线和一条切线,切线长是这点到割线与圆的两个交点的线段长的____________.(3)割线定理:从圆外一点引圆的两条________,该点到每条割线与圆的交点的两条线段长的积相等.温馨提示 相交弦定理,切割线定理,割线定理揭示了与圆有关的线段间的比例关系,在与圆有关的比例线段问题的证明、计算以及证明线段或角相等等问题中应用甚广.3.切线长定理从________一点引圆的两条切线,__________相等. 4.圆内接四边形的性质与判定定理(1)性质定理:圆内接四边形的对角________.推论:圆内接四边形的任何一个外角都等于它的内角的________. (2)判定定理:如果四边形的__________,则四边形内接于____.推论:如果四边形的一个外角等于它的____________,那么这个四边形的四个顶点________.5.圆的切线的性质及判定定理(1)性质定理:圆的切线垂直于经过切点的________.推论1:经过________且________与垂直的直线必经过切点.推论2:经过________且切线与垂直的直线必经过______________________________. (2)判定定理:过半径________且与这条半径________的直线是圆的切线. 自我检测1.如图在Rt△ABC中,∠B=90°,D是AB上一点,且AD=2DB,以D为圆心,DB 为半径的圆与AC相切,则sin A=________.2.(2010·某某模拟)如图,AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为________.3.(2011·某某)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为________.4.如图所示,AB是⊙O的直径,BC是⊙O的切线,AC交⊙O于点D,若AD=32,CD=18,则AB=________.5.(2010·揭阳模拟)如图,已知P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,PF=12,PD=43,则圆O的半径长为________、∠EFD的度数为________.探究点一与圆有关的等角、等弧、等弦的判定例1如图,⊙O的两条弦AC,BD互相垂直,OE⊥AB,垂足为点E.求证:OE=12CD.变式迁移1 在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆O 交BC 于点N ;若AC =13AB ,求证:BN =3MN.探究点二 四点共圆的判定例2 如图,四边形ABCD 中,AB 、DC 的延长线交于点E ,AD ,BC 的延长线交于点F ,∠AED ,∠AFB 的角平分线交于点M ,且EM ⊥FM.求证:四边形ABCD 内接于圆.变式迁移2 如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C 两点,圆心O 在∠PAC 的内部,点M 是BC 的中点.(1)证明:A ,P ,O ,M 四点共圆; (2)求∠OAM +∠APM 的大小.探究点三与圆有关的比例线段的证明例3如图,PA切⊙O于点A,割线PBC交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E,求证:(1)AD=AE;(2)AD2=DB·EC.变式迁移3(2010·全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.1.圆周角定理与圆心角定理在证明角相等时有较普遍的应用,尤其是利用定理进行等角代换与传递.2.要注意一些常用的添加辅助线的方法,若证明直线与圆相切,则连结直线与圆的公共点和圆心证垂直;遇到直径时,一般要引直径所对的圆周角,利用直径所对的圆周角是直角解决有关问题.3.判断两线段是否相等,除一般方法(通过三角形全等)外,也可用等线段代换,或用圆心角定理及其推论证明.4.证明多点共圆的常用方法:(1)证明几个点与某个定点距离相等;(2)如果某两点在某条线段的同旁,证明这两点对这条线段的X角相等;(3)证明凸四边形内对角互补(或外角等于它的内角的对角).5.圆中比例线段有关定理常与圆周角、弦切角联合应用,要注意在题中找相等的角,找相似三角形,从而得到线段的比.(满分:75分)一、填空题(每小题5分,共40分)1.如图,已知AB,CD是⊙O的两条弦,且AB=CD,OE⊥AB,OF⊥CD,垂足分别是E,F,则结论①AB=CD,②∠AOB=∠COD,③OE=OF,④AD=BC中,正确的有________个.2.(2010·某某)如图所示,过⊙O外一点P作一条直线与⊙O交于A、B两点.已知PA =2,点P到⊙O的切线长PT=4,则弦AB的长为________.3.(2010·某某)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则BDDA=________.4.(2009·某某)如图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积为________.5.已知PA 是圆O 的切线,切点为A ,PA =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R =________.6.如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,CD =27,AB =3.则BD 的长为________.7.(2011·某某)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF =CF =2,AF ∶FB ∶BE =4∶2∶1.若CE 与圆相切,则线段CE 的长为________.8.(2010·某某)如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P.若PB PA =12,PC PD =13,则BCAD的值为________.二、解答题(共35分)9.(11分)如图,三角形ABC 中,AB =AC ,⊙O 经过点A ,与BC 相切于B ,与AC 相交于D ,若AD =CD =1,求⊙O 的半径r.10.(12分)(2009·某某)如图,在四边形ABCD 中,△ABC ≌△BAD.求证:AB ∥CD.11.(12分)(2011·某某)如图,圆O 1与圆O 2内切于点A ,其半径分别为r 1与r 2(r 1>r 2).圆O 1的弦AB 交圆O 2于点C(O 1不在AB 上).求证:AB ∶AC 为定值.学案74 几何证明选讲 (二)直线与圆的位置关系自主梳理1.(1)圆周角 弧 同弧 等弧 所对的弧 圆周角 半圆 弦为直径 (2)一半 2.(1)圆 相交弦 两条线段长(2)等比中项 (3)割线 3.圆外 切线长 4.(1)互补 对角 (2)对角互补 圆 内角的对角 共圆5.(1)半径 圆心 切线 切点 圆心 (2)外端 垂直 自我检测 1.12解析 设切点为T ,则DT ⊥AC ,AD =2DB =2DT ,∴∠A =30°,sin A =12.2.2 3解析 连接CB ,则∠DCA =∠CBA ,又∠ADC =∠ACB =90°, ∴△ADC ∽△ACB.∴AD AC =AC AB. ∴AC 2=AB·AD =2×6=12. ∴AC =2 3. 3.233解析 如图,连接CE ,AO ,AB.根据A ,E 是半圆周上的两个三等分点,BC 为直径,可得∠CEB =90°,∠CBE =30°,∠AOB =60°,故△AOB 为等边三角形,AD =3,OD =BD =1,∴DF =33,∴AF =AD -DF =233. 4.40解析 如图,连接BD ,则BD ⊥AC ,由射影定理知,AB 2=AD·AC =32×50=1 600,故AB =40.5.4 30° 解析 由切割线定理得PD 2=PE·PF ,∴PE =PD 2PF =16×312=4,∴EF =8,OD =4.又∵OD ⊥PD ,OD =12PO ,∠P =30°,∠POD =60°=2∠EFD ,∴∠EFD =30°. 课堂活动区例1解题导引 (1)借用等弦或等弧所对圆周角相等,所对的圆心角相等,进行角的等量代换;同时也可借在同圆或等圆中,相等的圆周角(或圆心角)所对的弧相等,进行弧(或弦)的等量代换.(2)本题的证法是证明一条线段等于另一条线段的一半的常用方法.证明 作直径AF ,连接BF ,CF ,则∠ABF =∠ACF =90°. 又OE ⊥AB ,O 为AF 的中点,则OE =12BF.∵AC ⊥BD ,∴∠DBC +∠ACB =90°,又∵AF 为直径,∠BAF +∠BFA =90°, ∵∠AFB =∠ACB ,∴∠DBC =∠BAF ,即有CD =BF.从而得OE =12CD.变式迁移1证明 ∵CM 是∠ACB 的平分线, ∴AC AM =BC BM, 即BC =AC·BMAM ,又由割线定理得BM·BA =BN·BC ,∴BN·AC·BMAM =BM·BA ,又∵AC =13AB ,∴BN =3AM ,∵在圆O 内∠ACM =∠M , ∴AM =MN ,∴BN =3MN.例2解题导引 证明多点共圆,当它们在一条线段同侧时,可证它们对此线段X 角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.证明 连接EF ,因为EM 是∠AEC 的角平分线, 所以∠FEC +∠FEA =2∠FEM. 同理,∠EFC +∠EFA =2∠EFM. 而∠BCD +∠BAD =∠ECF +∠BAD=(180°-∠FEC -∠EFC)+(180°-∠FEA -∠EFA) =360°-2(∠FEM +∠EFM)=360°-2(180°-∠EMF)=2∠EMF =180°, 即∠BCD 与∠BAD 互补. 所以四边形ABCD 内接于圆. 变式迁移2 (1)证明 连接OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP ⊥AP.因为M 是⊙O 的弦BC 的中点,所以OM ⊥BC. 于是∠OPA +∠OMA =180°,由圆心O 在∠PAC 的内部,可知四边形APOM 的对角互补, 所以A ,P ,O ,M 四点共圆.(2)解 由(1)得A ,P ,O ,M 四点共圆, 所以∠OAM =∠OPM. 由(1)得OP ⊥AP.由圆心O 在∠PAC 的内部, 可知∠OPM +∠APM =90°, 所以∠OAM +∠APM =90°.例3解题导引 寻找适当的相似三角形,把几条要证的线段集中到这些相似三角形中,再用圆中角、与圆有关的比例线段的定理找到需要的比例式,使问题得证.证明 (1)∠AED =∠EPC +∠C ,∠ADE =∠APD +∠PAB.因PE 是∠APC 的角平分线,故∠EPC =∠APD ,PA 是⊙O 的切线,故∠C =∠PAB. 所以∠AED =∠ADE.故AD =AE. (2)⎭⎪⎬⎪⎫∠PCE =∠PAD ∠CPE =∠APD ⇒△PCE ∽△PAD ⇒EC AD =PCPA ;⎭⎪⎬⎪⎫∠PEA =∠PDB ∠APE =∠BPD ⇒△PAE ∽△PBD ⇒AEDB =PAPB . 又PA 是切线,PBC 是割线⇒PA 2=PB·PC ⇒PA PB =PC PA.故EC AD =AEDB ,又AD =AE ,故AD 2=DB·EC. 变式迁移3证明 (1)因为AC =BD ,所以∠BCD =∠ABC. 又因为EC 与圆相切于点C ,故∠ACE =∠ABC , 所以∠ACE =∠BCD.(2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BC BE =CDBC,即BC 2=BE ×CD.课后练习区 1.4解析 ∵在同圆或等圆中,等弦所对的圆心角相等,所对的弧相等,所对弦心距相等,故①②③成立,又由AB =CD ,得AD =BC ,∴④正确.2.6解析 连接BT ,由切割线定理, 得PT 2=PA·PB ,所以PB =8,故AB =6. 3.169解析 AD AC =AC AB ⇒AD 3=35⇒AD =95⇒BD =165(cm ),BD DA =169.4.8π解析 连接OA ,OB , ∵∠BCA =45°, ∴∠AOB =90°.设圆O 的半径为R ,在Rt △AOB 中,R 2+R 2=AB 2=16,∴R 2=8.∴圆O 的面积为8π.5. 3解析 如图,依题意,AO ⊥PA ,AB ⊥PC ,PA =2,PB =1,∠P =60°, 在Rt △CAP 中,有2OA =2R =2tan 60°=23, ∴R = 3. 6.4解析 由切割线定理得:DB·DA =DC 2,即DB(DB +BA)=DC 2,∴DB 2+3DB -28=0,∴DB =4.7.72解析 设BE =a ,则AF =4a ,FB =2a.∵AF·FB =DF·FC ,∴8a 2=2,∴a =12,∴AF =2,FB =1,BE =12,∴AE =72.又∵CE 为圆的切线,∴CE 2=EB·EA =12×72=74.∴CE =72.8.66 解析 ∵∠P =∠P ,∠PCB =∠PAD ,∴△PCB ∽△PAD.∴PB PD =PC PA =BCAD.∵PB PA =12,PC PD =13,∴BC AD =66. 9.解 过B 点作BE ∥AC 交圆于点E ,连接AE ,BO 并延长交AE 于F , 由题意∠ABC =∠ACB =∠AEB ,(2分)又BE ∥AC ,∴∠CAB =∠ABE ,则AB =AC 知,∠ABC =∠ACB =∠AEB =∠BAE ,(4分)则AE ∥BC ,四边形ACBE 为平行四边形. ∴BF ⊥AE.又BC 2=CD ×AC =2, ∴BC =2,BF =AB 2-AF 2=142.(8分) 设OF =x ,则⎩⎨⎧x +r =142,x 2+(22)2=r 2,解得r =2147.(11分)10.证明 由△ABC ≌△BAD 得∠ACB =∠BDA ,(3分) 故A 、B 、C 、D 四点共圆,(5分) 从而∠CAB =∠CDB.(7分)再由△ABC ≌△BAD 得∠CAB =∠DBA , 因此∠DBA =∠CDB ,(10分) 所以AB ∥CD.(12分) 11.证明 如图,连接AO 1并延长,分别交两圆于点E 和点D.连接BD ,CE.因为圆O 1与圆O 2内切于点A ,所以点O 2在AD 上,故AD ,AE 分别为圆O 1,圆O 2的直径.(5分)从而∠ABD =∠ACE =π2.(7分)所以BD ∥CE ,于是AB AC =AD AE =2r 12r 2=r 1r 2.(10分)所以AB ∶AC 为定值.(12分)学案75 坐标系与参数方程导学目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用.自主梳理1.极坐标系的概念在平面上取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做________;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个____________.设M 是平面上任一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的________,记为θ.有序数对(ρ,θ)叫做点M 的__________,记作(ρ,θ).2.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标为(ρ,θ),则它们之间的关系为x =__________,y =__________.另一种关系为:ρ2=__________,tan θ=______________.3.简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程φ(ρ,θ)=0,并且坐标适合方程φ(ρ,θ)=0的点都在曲线上,那么方程φ(ρ,θ)=0叫做曲线的____________.(2)常见曲线的极坐标方程 ①圆的极坐标方程____________表示圆心在(r,0)半径为|r|的圆;____________表示圆心在(r ,π2)半径为|r|的圆;________表示圆心在极点,半径为|r|的圆. ②直线的极坐标方程____________表示过极点且与极轴成α角的直线; ____________表示过(a,0)且垂直于极轴的直线;____________表示过(b ,π2)且平行于极轴的直线;ρsin (θ-α)=ρ0sin (θ0-α)表示过(ρ0,θ0)且与极轴成α角的直线方程. 4.常见曲线的参数方程 (1)直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α.这是直线的参数方程,其中参数l 有明显的几何意义.(2)圆的参数方程若圆心在点M(a ,b),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,0≤α<2π.(3)椭圆的参数方程中心在坐标原点的椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数).(4)抛物线的参数方程抛物线y 2=2px(p>0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt.自我检测1.(2010·)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线C .一个圆和一条射线D .一条直线和一条射线2.(2010·某某)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线3.(2010·某某)直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ∈[0,2π))交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .76πB .54πC .43πD .53π 4.(2011·某某一模)在极坐标系中,直线ρsin (θ+π4)=2被圆ρ=4截得的弦长为________.5.(2010·某某)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.探究点一 求曲线的极坐标方程例1 在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程为________.变式迁移1 如图,求经过点A(a,0)(a>0),且与极轴垂直的直线l 的极坐标方程.探究点二 极坐标方程与直角坐标方程的互化 例2(2009·某某)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.变式迁移2(2010·东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.探究点三 参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1)⎩⎨⎧x =3k 1+k 2y =6k21+k2;(2)⎩⎪⎨⎪⎧x =1-sin 2θy =sin θ+cos θ;(3)⎩⎪⎨⎪⎧x =1-t 21+t 2y =t 1+t2.变式迁移3 化下列参数方程为普通方程,并作出曲线的草图.(1)⎩⎪⎨⎪⎧x =12sin 2θy =sin θ+cos θ(θ为参数);(2)⎩⎨⎧x =1ty =1tt 2-1(t 为参数).探究点四 参数方程与极坐标的综合应用例4 求圆ρ=3cos θ被直线⎩⎪⎨⎪⎧x =2+2ty =1+4t (t 是参数)截得的弦长.变式迁移4(2011·课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数)M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB|.本节内容要注意以下两点:一、简单曲线的极坐标方程可结合极坐标系中ρ和θ的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出.同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同.在没有充分理解极坐标的前提下,可先化成直角坐标解决问题.二、在普通方程中,有些F(x ,y)=0不易得到,这时可借助于一个中间变量(即参数)来找到变量x ,y 之间的关系.同时,在直角坐标系中,很多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量.将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x ,y(它们都是参数的函数)的取值X 围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.参数方程化普通方程常用的消参技巧有:代入消元、加减消元、平方后相加减消元等.同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题.(满分:75分)一、选择题(每小题5分,共25分)1.在极坐标系中,与点(3,-π3)关于极轴所在直线对称的点的极坐标是( )A .(3,23π)B .(3,π3)C .(3,43π)D .(3,56π)2.曲线的极坐标方程为ρ=2cos 2θ2-1的直角坐标方程为( )A .x 2+(y -12)2=14B .(x -12)2+y 2=14C .x 2+y 2=14D .x 2+y 2=13.(2010·某某模拟)在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π6)作曲线C的切线,则切线长为( )A .4B .7C .22D .2 34.(2010·某某模拟)已知动圆方程x 2+y 2-x sin 2θ+22·y sin (θ+π4)=0(θ为参数),那么圆心的轨迹是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分5.(2010·某某)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x-3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共12分)6.(2010·某某)已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =t ,y =1+t (t 为参数)与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.7.(2011·某某)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.8.(2010·某某某某高级中学一模)在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为________.三、解答题(共38分)9.(12分)(2011·某某)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.10.(12分)(2010·某某)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |.。
【步步高】2015届高三数学北师大版(通用,理)总复习强化训练+专题检测第八章 8.6
§8.6 立体几何中的向量方法(一)——证明平行与垂直1. 直线的方向向量:在空间直线l 上任取两点A ,B ,则称AB →为直线l 的方向向量.平面的法向量:如果直线l 垂直于平面α,那么把直线l 的方向向量叫作平面α的法向量. 2. 用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3. 用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的. ( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( × ) (4)若两直线的方向向量不平行,则两直线不平行. ( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行. ( × ) 2. 若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( )A .l 1∥l 2B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确答案 B解析 a ·b =-12+36-24=0,故a ⊥b ,即l 1⊥l 2选B.3. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P中,在平面α内的是 ( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n , ∴点P 在平面α内,同理可验证其他三个点不在平面α内.4. 若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α内的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________. 答案 2∶3∶(-4)5. 已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________. 答案407,-157,4 解析 由题意知,BP →⊥AB →,BP →⊥BC →.所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+(-2)×z =0,(x -1)+5y +(-2)×(-3)=0,3(x -1)+y -3z =0,解得,x =407,y =-157,z =4.题型一 证明平行问题例1 (2013·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点, 点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD.思维启迪 证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量. 证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知, A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,所以Q ⎝⎛⎭⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝⎛⎭⎫0,0,12, 所以PQ →=⎝⎛⎭⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ 平面BCD ,所以PQ ∥平面BCD .方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设F 点坐标系(x ,y,0)则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0)∴⎩⎨⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由证法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →,∴PQ ∥OF .又PQ 平面BCD ,OF 平面BCD , ∴PQ ∥平面BCD .思维升华 用向量证明线面平行的方法有(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、 CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直 角坐标系Axyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、 E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB 平面EFG ,∴PB ∥平面EFG . 题型二 证明垂直问题例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .思维启迪 证明线面垂直可以利用线面垂直的定义,即证线与平 面内的任意一条直线垂直;也可以证线与面的法向量平行.证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0. 故AB 1→⊥m ,结论得证.方法二 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →为x 轴,y 轴, z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .思维升华 用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角. (1)求证:CM ∥平面P AD ; (2)求证:平面P AB ⊥平面P AD .证明 以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (32,0,32),∴DP →=(0,-1,2),DA →=(23,3,0), CM →=(32,0,32),(1)令n =(x ,y ,z )为平面P AD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,∴⎩⎨⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM 平面P AD , ∴CM ∥平面P AD .(2)取AP 的中点E ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE 平面P AB ,∴平面P AB ⊥平面P AD . 题型三 解决探索性问题例3 (2012·福建)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求 AP 的长;若不存在,说明理由.思维启迪 利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图). 设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1), E ⎝⎛⎭⎫a2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC . 若存在,求SE ∶EC 的值;若不存在,试说明理由. (1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0, B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at , 而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .利用向量法解决立体几何问题典例:(12分)(2012·湖南)如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.思维启迪 本题中的(1)有两种证明思路:(1)利用常规方法,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之; (2)将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积. 规范解答方法一 (1)证明 如图,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5. [1分] 又AD =5,E 是CD 的中点,所以CD ⊥AE .[2分]因为P A ⊥平面ABCD ,CD 平面ABCD ,所以P A ⊥CD .[4分] 而P A ,AE 是平面P AE 内的两条相交直线, 所以CD ⊥平面P AE .[5分](2)解 过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE . 于是∠BPF 为直线PB 与平面P AE 所成的角, [6分]且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. [7分]由题意得∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形. 故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以 BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 V =13×S ×P A =13×16×855=128515.[12分]方法二 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分 别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0), P (0,0,h ).[2分](1)证明 易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ). 因为CD →·AE →=-8+8+0=0,CD →·AP →=0,[4分]所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线, 所以CD ⊥平面P AE .[5分] (2)解 由题设和(1)知,CD →,P A →分别是平面P AE ,平面ABCD 的法向量. [6分]而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等, 所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|, 即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|.[8分]由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ), 又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为 V =13×S ×P A =13×16×855=128515.[12分]温馨提醒 (1)利用向量法证明立体几何问题,可以建立坐标系或利用基底表示向量;(2)建立空间直角坐标系时要根据题中条件找出三条互相垂直的直线; (3)对于和平面有关的垂直问题,也可利用平面的法向量.方法与技巧用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.A组专项基础训练(时间:40分钟)一、选择题1.若直线l的一个方向向量为a=(2,5,7),平面α的一个法向量为u=(1,1,-1),则() A.l∥α或lαB.l⊥αC.lαD.l与α斜交答案 A2.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是() A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案 D解析若l∥α,则a·n=0,D中,a·n=1×0+(-1)×3+3×1=0,∴a⊥n.3.设平面α的法向量为a=(1,2,-2),平面β的法向量b=(-2,h,k),若α∥β,则h+k的值为() A.-2 B.-8 C.0 D.-6答案 C解析 由α∥β得a ∥b ,∴-21=h 2=k -2, ∴h =-4,k =4,∴h +k =0.4. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607 D.657答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ5=-t +4μλ=3t -2μ,∴⎩⎪⎨⎪⎧t =337μ=177λ=657.5. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( ) A .60° B .45°C .90°D .以上都不正确答案 C解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系Dxyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0), M (2,2,0).∴PM →=(2,1,-3), AM →=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0, 即PM →⊥AM →,∴AM ⊥PM . 二、填空题6. 已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.答案 -4解析 ∵a·b =x -2+6=0,∴x =-4.7. 设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________. 答案16解析 P A →=(-1,-3,2),PB →=(6,-1,4). 根据共面向量定理,设PC →=xP A →+yPB →(x 、y ∈R ), 则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4) =(-x +6y ,-3x -y,2x +4y ), ∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.8. 如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系 是________. 答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →,∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量, ∴MN →·CD →=⎝⎛⎭⎫23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →.又∵MN 平面B 1BCC 1, ∴MN ∥平面B 1BCC 1. 三、解答题9. 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射 线DA 为x 轴的正半轴建立空间直角坐标系Dxyz .依题意有 Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ , 又PQ 平面PQC ,∴平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ACBD 中,P A ⊥底面ABCD ,E ,F分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴, AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0), B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB 平面P AB ,EF 平面P AB , ∴EF ∥平面P AB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,∴DC ⊥平面P AD . ∵DC 平面PDC ,∴平面P AD ⊥平面PDC .B 组 专项能力提升 (时间:30分钟)1. 已知a =(1,1,1),b =(0,2,-1),c =m a +n b +(4,-4,1).若c 与a 及b 都垂直,则m ,n 的值分别为 ( )A .-1,2B .1,-2C .1,2D .-1,-2答案 A解析 由已知得c =(m +4,m +2n -4,m -n +1), 故a·c =3m +n +1=0,b·c =m +5n -9=0.解得⎩⎪⎨⎪⎧m =-1,n =2.2. 已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D.3. 在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的有________个. 答案 2解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2), O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.4. 如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的 中点.求证: (1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 (1)如图建立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →,∴DE ∥NC ,又∵NC 平面ABC ,DE 平面ABC . 故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .5. 在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴 建立空间直角坐标系, 设AD =a ,则D (0,0,0)、 A (a,0,0)、B (a ,a,0)、 C (0,a,0)、E ⎝⎛⎭⎫a ,a2,0、 P (0,0,a )、F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则由FG →·CB →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(a,0,0) =a ⎝⎛⎭⎫x -a2=0, 得x =a 2;由FG →·CP →=⎝⎛⎭⎫x -a2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. ∴G 点坐标为⎝⎛⎭⎫a2,0,0,即G 点为AD 的中点.。
【步步高】2015届高考数学总复习 随机事件的概率学案 理 北师大版
学案60随机事件的概率导学目标: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.自主梳理1.事件的分类(1)一般地,我们把在条件S下,____________的事件,叫做相对于条件S的必然事件,简称____________.(2)在条件S下,____________的事件,叫做相对于条件S的不可能事件,简称____________.(3)在条件S下可能发生也可能不发生的事件,叫做________________________________,简称随机事件.事件一般用大写字母A,B,C…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称____________________为事件A出现的频数,称事件A出现的比例________________为事件A出现的频率.(2)在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个________附近摆动,即随机事件A发生的频率具有________,这个常数叫事件A的概率.3.事件的关系与运算定义符号表示包含关系如果事件A________,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B)______ (或______)相等关系若B⊇A且______,那么称事件A与事件B相等______并事件(和事件) 若某事件发生________________________,则称此事件为事件A与事件B的并事件(或和事件)______(或______)交事件(积事件) 若某事件发生________________________,则称此事件为事件A与事件B的交事件(或积事件)________(或______)互斥事件若A∩B为________事件,那么称事件A与事件B互斥A∩B=____对立事件若A∩B为________事件,A∪B为________事件,那么称事件A与事件B互为对立事件B=______ (或A=____)4.概率的几个基本性质(1)概率的取值范围:________.(2)必然事件的概率:P(E)=____.(3)不可能事件的概率:P(F)=____.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=________.(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=____,P(A)=________.自我检测1.(2011·台州月考)下列说法正确的是()A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的2.(2011·中山期末)如果把必然事件和不可能事件看做随机事件的极端情形,随机事件A的概率取值范围是()A.P(A)>0 B.P(A)≥0C.0<P(A)<1 D.0≤P(A)≤13.(2011·中山期末)从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品4.袋中装有白球3个,黑球4个,从中任取3个,①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A.①B.②C.③D.④5.(2011·广州调研)关于互斥事件的理解,错误的是()A.若A发生,则B不发生;若B发生,则A不发生B.若A发生,则B不发生,若B发生,则A不发生,二者必具其一C.A发生,B不发生;B发生,A不发生;A、B都不发生D.若A、B又是对立事件,则A、B中有且只有一个发生探究点一随机事件的概念例1一个口袋内装有5个白球和3个黑球,从中任意取出一只球.(1)“取出的球是红球”是什么事件,它的概率是多少?(2)“取出的球是黑球”是什么事件,它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件,它的概率是多少?变式迁移1某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二 随机事件的频率与概率例2 某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式迁移2 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n 8 10 15 20 30 40 50 进球次数m 6 8 12 17 25 32 38 进球频率mn(1)(2)这位运动员投篮一次,进球的概率约是多少?探究点三 互斥事件与对立事件的概率例3 (2011·新乡模拟)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.变式迁移3 一个箱子内有9张票,其号数分别为1,2,…,9,从中任取2张,其号数至少有一个为奇数的概率是多少?1.随机事件在相同条件下进行大量试验时,呈现规律性,且频率mn 总是接近于常数P(A),称P(A)为事件A 的概率.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A 的对立事件A 的概率,然后利用P(A)=1-P(A )可得解.(满分:75分)一、选择题(每小题5分,共25分)1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品; ②至少有1件次品和全是次品; ③至少有1件正品和至少有1件次品; ④至少1件次品和全是正品. A .①②B .①③C .③④D .①④2.(2011·广州模拟)下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n 就是事件A 发生的概率;③百分率是频率,但不是概率;④频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值. 其中正确的是( ) A .①②③④B .①④⑤C .①②③④⑤D .②③3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件4.(2011·平顶山月考)某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )A .至多有1次中靶B .2次都中靶C .2次都不中靶D .只有1次中靶5.(2009·安徽)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13D .0二、填空题(每小题4分,共12分)6.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.7.(2011·福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.8.(2011·上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为________(默认每个月的天数相同,结果精确到0.001).三、解答题(共38分)9.(12分)(2011·南京模拟)某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.10.(12分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.(14分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.学案60 随机事件的概率自主梳理1.(1)一定会发生 必然事件 (2)一定不会发生 不可能事件 (3)相对于条件S 的随机事件 2.(1)n 次试验中事件A 出现的次数n A f n (A)=n An(2)常数 稳定性3.发生 一定发生 B ⊇A A ⊆B A ⊇B A =B 当且仅当事件A 发生或事件B 发生 A ∪B A +B 当且仅当事件A 发生且事件B 发生 A ∩B AB 不可能 ∅ 不可能 必然 A B 4.(1)0≤P(A)≤1 (2)1 (3)0 (4)P(A)+P(B) (5)1 1-P(B)自我检测1.B 2.D 3.D 4.B 5.B课堂活动区例1解题导引解决这类问题的方法主要是弄清每次试验的意义及每个基本事件的含义,正确把握各个事件的相互关系,判断一个事件是必然事件、不可能事件、随机事件,主要是依据在一定条件下,所要求的结果是否一定出现、不可能出现(可能出现、可能不出现),它们的概率(范围)分别为1,0,(0,1).解(1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率是0.(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是38.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或是黑球”是必然事件,它的概率是1.变式迁移1解(1)由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B 与E是互斥事件.由于事件B发生可导致事件E一定不发生,且事件E发生也会导致事件B一定不发生,故B与E还是对立事件.(3)事件B“至少订一种报纸”中有可能“只订乙报纸”,即有可能“不订甲报纸”,即事件B发生,事件D也可能发生,故B与D不是互斥事件.(4)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件.(5)由(4)的分析,事件E“一种报纸也不订”是事件C的一种可能,故事件C与事件E有可能同时发生,故C 与E 不是互斥事件.例2 解题导引 本题利用直方图求出获奖的频率,作为概率的近似值.通过大量的重复试验,用这个事件发生的频率近似地作为它的概率是求一个事件的概率的基本方法.注意频率是随机的、变化的,而概率是一个常数,频率在其附近摆动.解 (1)由频数分布直方图可知,参加本次数学竞赛的学生有4+6+8+7+5+2=32(人).(2)90分以上的人数为7+5+2=14(人), ∴获奖的频率为1432=716,即本次竞赛获奖的概率大约是716.变式迁移2 解 (1)频率是在试验中事件发生的次数与试验总次数的比值,由此得,进球频率依次是68,810,1215,1720,2530,3240,3850,即0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)因为频率是概率的近似值,所以这位运动员投篮一次,进球的概率约是0.8. 例3 解题导引 用互斥事件和对立事件的概率公式解题,关键是分清所求事件是由哪些事件组成的,然后结合互斥事件与对立事件的定义分析出是否是互斥事件与对立事件,再决定用哪一个公式.利用互斥事件求概率体现了分类讨论的思想,利用对立事件求概率体现了“正难则反”的策略.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P(A 1)=512,P(A 2)=412,P(A 3)=212,P(A 4)=112,根据题意知,事件A 1、A 2、A 3、A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为 P(A 1∪A 2)=P(A 1)+P(A 2)=512+412=34. (2)取出1球为红球或黑球或白球的概率为P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3)=512+412+212=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P(A 1∪A 2)=1-P(A 3∪A 4)=1-P(A 3)-P(A 4)=1-212-112=34. (2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P(A 1∪A 2∪A 3)=1-P(A 4)=1-112=1112. 变式迁移3 解 方法一 从9张任取2张共有36种,记为(1,2),(1,3),…,(8,9),记事件A 为任取2张,号数至少有一个为奇数,则A ={(1,2),…,(1,9),(2,3),(2,5),(2,7),(2,9),(3,4),…,(3,9),…,(8,9)}.共有8+4+6+3+4+2+2+1=30.∴P(A)=3036=56. 方法二 事件A 的对立事件为任取2张,号数都为偶数,∴A ={(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)}共6种.∴P(A)=1-P(A )=1-636=56. 课后练习区1.D2.B [由概率的相关定义知①④⑤正确.]3.B [由互斥事件、对立事件的定义可知互斥不一定对立,对立一定互斥,即甲是乙的必要条件但不是充分条件.]4.C [由互斥事件定义可知,如果两事件互斥,两个事件不能同时发生.“至少有一次中靶”包括“恰有一次中靶”或“两次都中靶”.故A 、B 、D 都能同时发生.]5.A [由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.]6.0.257.35解析 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35. 8.0.985解析 9位同学出生月份的所有可能种数为129,9人出生月份不同的所有可能种数为A 912,故P =1-A 912129≈1-0.015 47≈0.985. 9.解 (1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P(A)=1220=35.(6分) (2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P(B)=1-220=910.(12分)10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”,则由已知得P(A)=13,(3分)P(B ∪C)=P(B)+P(C)=512, P(C ∪D)=P(C)+P(D)=512, P(B ∪C ∪D)=1-P(A)=P(B)+P(C)+P(D)=1-13=23.(10分) 解得P(B)=14,P(C)=16,P(D)=14. 故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.(12分) 11.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}共18个基本事件组成.(4分)由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)},事件M 由6个基本事件组成,因而P(M)=618=13.(8分) (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成,(10分)所以P(N )=318=16,由对立事件的概率公式得: P(N)=1-P(N )=1-16=56.(14分)。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案11 函数与方程
学案11 函数与方程导学目标: 1.结合二次函数的图象,了解函数的零点与方程根的联系,会判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似值.自主梳理1.函数零点的定义(1)对于函数y =f (x ) (x ∈D ),把使________成立的实数x 叫做函数y =f (x ) (x ∈D )的零点. (2)方程f (x )=0有实根⇔函数y =f (x )的图象与____有交点⇔函数y =f (x )有________. 2.函数零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有____________,那么函数y =f (x )在区间________内有零点,即存在c ∈(a ,b ),使得________,这个____也就是f (x )=0的根.我们不妨把这一结论称为零点存在性定理.2第一步,确定区间[a ,b ],验证________________,给定精确度ε; 第二步,求区间(a ,b )的中点c ; 第三步,计算______:①若________,则c 就是函数的零点;②若________,则令b =c [此时零点x 0∈(a ,c )]; ③若________,则令a =c [此时零点x 0∈(c ,b )];第四步,判断是否达到精确度ε:即若|a -b |<ε,则得到零点近似值a (或b );否则重复第二、三、四步.自我检测1.(2010·福建)f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x x >0的零点个数为 ( )A .0B .1C .2D .3 2.若函数y =f (x )在R 上递增,则函数y =f (x )的零点 ( ) A .至少有一个 B .至多有一个 C .有且只有一个 D .可能有无数个3.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①②B .①③C .①④D .③④4.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在的区间是 ( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定 5.(2011·福州模拟)若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是 ( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x -1D .f (x )=ln(x -0.5)探究点一 函数零点的判断例1 判断函数y =ln x +2x -6的零点个数.变式迁移1 (2011·烟台模拟)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是 ( )A .多于4个B .4个C .3个D .2个 探究点二 用二分法求方程的近似解例2 求方程2x 3+3x -3=0的一个近似解(精确度0.1).变式迁移2 (2011·淮北模拟)用二分法研究函数f (x )=x 3+ln ⎝⎛⎭⎫x +12的零点时,第一次经计算f (0)<0,⎪⎭⎫⎝⎛21f >0,可得其中一个零点x 0∈________,第二次应计算________.以上横线上应填的内容为( )A.⎝⎛⎭⎫0,12 ⎪⎭⎫ ⎝⎛21f B .(0,1) f ⎝⎛⎭⎫12 C.⎝⎛⎭⎫12,1 ⎪⎭⎫ ⎝⎛43fD.⎝⎛⎭⎫0,12 ⎪⎭⎫ ⎝⎛41f 探究点三 利用函数的零点确定参数例3 已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有第 3 页 共 9 页零点,求a 的取值范围.变式迁移3 若函数f (x )=4x +a ·2x +a +1在(-∞,+∞)上存在零点,求实数a 的取值范围.1.全面认识深刻理解函数零点:(1)从“数”的角度看:即是使f (x )=0的实数x ;(2)从“形”的角度看:即是函数f (x )的图象与x 轴交点的横坐标;(3)若函数f (x )的图象在x =x 0处与x 轴相切,则零点x 0通常称为不变号零点; (4)若函数f (x )的图象在x =x 0处与x 轴相交,则零点x 0通常称为变号零点. 2.求函数y =f (x )的零点的方法:(1)(代数法)求方程f (x )=0的实数根(常用公式法、因式分解法、直接求解法等); (2)(几何法)对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点;(3)(二分法)主要用于求函数零点的近似值,二分法的条件f (a )·f (b )<0表明:用二分法求函数的近似零点都是指变号零点.3.有关函数零点的重要结论:(1)若连续不间断的函数f (x )是定义域上的单调函数,则f (x )至多有一个零点; (2)连续不间断的函数,其相邻两个零点之间的所有函数值保持同号; (3)连续不间断的函数图象通过零点时,函数值符号可能不变.(满分:75分)一、选择题(每小题5分,共25分) 1.(2010·天津)函数f (x )=2x +3x 的零点所在的一个区间是 ( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)2.(2011·福州质检)已知函数f (x )=log 2x -⎝⎛⎭⎫13x,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值 ( )A .恒为负B .等于零C .恒为正D .不小于零3.下列函数图象与x 轴均有公共点,其中能用二分法求零点的是 ( )4.函数f (x )=(x -2)(x -5)-1有两个零点x 1、x 2,且x 1<x 2,则 ( ) A .x 1<2,2<x 2<5 B .x 1>2,x 2>5 C .x 1<2,x 2>5 D .2<x 1<5,x 2>55.(2011·厦门月考)设函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1x 2-4x +3,x >1,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是 ( )6.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 006x +log 2 006x ,则在R 上,函数f (x )零点的个数为________.7.(2011·深圳模拟)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是______________.8.(2009·山东)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.三、解答题(共38分)9.(12分)已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.10.(12分)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个实数c ,使f (c )>0,求实数p 的取值范围.11.(14分)(2011·杭州调研)设函数f (x )=ax 2+bx +c ,且f (1)=-a2,3a >2c >2b ,求证:(1)a >0且-3<b a <-34;(2)函数f (x )在区间(0,2)内至少有一个零点;(3)设x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.第 5 页 共 9 页答案 自主梳理1.(1)f (x )=0 (2)x 轴 零点 2.f (a )·f (b )<0 (a ,b ) f (c )=0 c 3.(x 1,0) (x 2,0) (x 1,0) 两个 一个 无 4.f (a )·f (b )<0 f (c ) ①f (c )=0 ②f (a )·f (c )<0 ③f (c )·f (b )<0自我检测1.C [当x ≤0时,令x 2+2x -3=0, 解得x =-3;当x >0时,令-2+ln x =0,解得x =e 2, 所以已知函数有两个零点.] 2.B 3.B 4.B 5.A 课堂活动区例1 解题导引 判断函数零点个数最常用的方法是令f (x )=0,转化为方程根的个数,解出方程有几个根,函数y =f (x )就有几个零点,如果方程的根解不出,还有两种方法判断:方法一是基本方法,是利用零点的存在性原理,要注意参考单调性可判定零点的唯一性;方法二是数形结合法,要注意作图技巧.解 方法一 设f (x )=ln x +2x -6, ∵y =ln x 和y =2x -6均为增函数, ∴f (x )也是增函数.又∵f (1)=0+2-6=-4<0,f (3)=ln 3>0, ∴f (x )在(1,3)上存在零点.又f (x )为增函数,∴函数在(1,3)上存在唯一零点. 方法二 在同一坐标系画出y =ln x 与y =6-2x 的图象,由图可知两图象只有一个交点,故函数y =ln x +2x -6只有一个零点.变式迁移1 B [由题意知f (x )是偶函数并且周期为2.由f (x )-log 3|x |=0,得f (x )=log 3|x |,令y =f (x ),y =log 3|x |,这两个函数都是偶函数,画两函数y 轴右边的图象如图,两函数有两个交点,因此零点个数在x ≠0,x ∈R 的范围内共4个.] 例2 解题导引 ①用二分法求函数的零点时,最好是利用表格,将计算过程所得的各个区间、中点坐标、区间中点的函数值等置于表格中,可清楚地表示出逐步缩小零点所在区间的过程,有时也可利用数轴来表示这一过程;②在确定方程近似解所在的区间时,转化为求方程对应函数的零点所在的区间,找出的区间[a ,b ]长度尽可能小,且满足f (a )·f (b )<0;③求方程的近似解,所要求的精确度不同得到的结果也不同,精确度ε,是指在计算过程中得到某个区间(a ,b )后,直到|a -b |<ε时,可停止计算,其结果可以是满足精确度的最后小区间的端点或区间内的任一实数,结果不唯一.解 设f (x )=2x 3+3x -3.经计算,f (0)=-3<0,f (1)=2>0, 所以函数在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解. 取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0,所以方程2x 3+3x -3=0在(0.5,1)内有解,点0.687 5作为函数f (x )零点的近似值.因此0.687 5是方程2x 3+3x -3=0精确度0.1的一个近似解.变式迁移2 D [由于f (0)<0,f ⎝⎛⎭⎫12>0,而f (x )=x 3+ln ⎝⎛⎭⎫x +12中的x 3及ln ⎝⎛⎭⎫x +12在⎝⎛⎭⎫-12,+∞上是增函数,故f (x )在⎝⎛⎭⎫-12,+∞上也是增函数, 故f (x )在⎝⎛⎭⎫0,12上存在零点,所以x 0∈⎝⎛⎭⎫0,12, 第二次计算应计算0和12在数轴上对应的中点x 1=0+122=14.]例3 解 若a =0,f (x )=2x -3,显然在[-1,1]上没有零点,所以a ≠0. 令Δ=4+8a (3+a )=8a 2+24a +4=0, 解得a =-3±72.①当a =-3-72时,f (x )=0的重根x =3-72∈[-1,1],当a =-3+72时,f (x )=0的重根x =3+72∉[-1,1],∴y =f (x )恰有一个零点在[-1,1]上; ②当f (-1)·f (1)=(a -1)(a -5)<0,即1<a <5时,y =f (x )在[-1,1]上也恰有一个零点.第 7 页 共 9 页③当y =f (x )在[-1,1]上有两个零点时,则⎩⎪⎨⎪⎧a >0Δ=8a 2+24a +4>0-1<-12a <1f (1)≥0f (-1)≥0,或⎩⎪⎨⎪⎧a <0Δ=8a 2+24a +4>0-1<-12a <1f (1)≤0f (-1)≤0,解得a ≥5或a <-3-72.综上所述实数a 的取值范围是a >1或a ≤-3-72.变式迁移3 解 方法一 (换元)设2x =t ,则函数f (x )=4x +a ·2x +a +1化为g (t )=t 2+at +a +1 (t ∈(0,+∞)). 函数f (x )=4x +a ·2x +a +1在(-∞,+∞)上存在零点,等价于方程t 2+at +a +1=0,①有正实数根.(1)当方程①有两个正实根时,a 应满足⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0t 1+t 2=-a >0t 1·t 2=a +1>0,解得:-1<a ≤2-22;(2)当方程①有一正根一负根时,只需t 1·t 2=a +1<0, 即a <-1;(3)当方程①有一根为0时,a =-1,此时方程①的另一根为1. 综上可知a ≤2-2 2.方法二 令g (t )=t 2+at +a +1 (t ∈(0,+∞)). (1)当函数g (t )在(0,+∞)上存在两个零点时,实数a 应满足⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0-a2>0g (0)=a +1>0,解得-1<a ≤2-22; (2)当函数g (t )在(0,+∞)上存在一个零点,另一个零点在(-∞,0)时,实数a 应满足g (0)=a +1<0,解得a <-1;(3)当函数g (t )的一个零点是0时,g (0)=a +1=0,a =-1,此时可以求得函数g (t )的另一个零点是1.综上(1)(2)(3)知a ≤2-2 2.课后练习区1.B [因为f (-1)=12-3<0,f (0)=1>0,所以f (x )在区间(-1,0)上存在零点.] 2.A3.C [能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )·f (b )<0.A 、B 中不存在f (x )<0,D 中函数不连续.] 4.C5.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]6.3解析 函数f (x )为R 上的奇函数,因此f (0)=0,当x >0时,f (x )=2 006x +log 2 006x 在区间(0,12 006)内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数在R 上的零点的个数为3.7.x 1<x 2<x 3解析 令x +2x =0,即2x =-x ,设y =2x ,y =-x ; 令x +ln x =0,即ln x =-x , 设y =ln x ,y =-x .在同一坐标系内画出y =2x ,y =ln x ,y =-x ,如图:x 1<0<x 2<1,令x -x -1=0,则(x )2-x -1=0,∴x =1+52,即x 3=3+52>1,所以x 1<x 2<x 3.8.a >1解析 设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,就是函数y =a x(a >0,且a ≠1)与函数y =x +a 有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 所过的点一定在点(0,1)的上方,所以一定有两个交点,所以实数a 的取值范围是a >1.9.证明 令g (x )=f (x )-x .………………………………………………………………(2分)∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.……………………………………………………………………………(8分)又函数g (x )在(0,12)上连续,…………………………………………………………(10分)所以存在x 0∈(0,12),使g (x 0)=0.第 9 页 共 9 页即f (x 0)=x 0.………………………………………………………………………………(12分) 10.解 二次函数f (x )在区间[-1,1]内至少存在一个实数c ,使f (c )>0的否定是:对于区间[-1,1]内的任意一个x 都有f (x )≤0.……………………(4分)此时⎩⎨⎧f (1)≤0f (-1)≤0,即⎩⎪⎨⎪⎧2p 2+3p -9≥02p 2-p -1≥0,解得:p ≥32或p ≤-3.…………………………………………………………………………(10分) ∴二次函数f (x )在区间[-1,1]内至少存在一个实数c ,使f (c )>0的实数p 的取值范围是-3<p <32.…………………………………………………………………………………(12分)11.证明 (1)∵f (1)=a +b +c =-a2,∴3a +2b +2c =0.又3a >2c >2b ,∴3a >0,2b <0, ∴a >0,b <0.又2c =-3a -2b ,由3a >2c >2b ,∴3a >-3a -2b >2b .∵a >0,∴-3<b a <-34.……………………………………………………………………(4分)(2)∵f (0)=c ,f (2)=4a +2b +c =a -c . ①当c >0时,∵a >0, ∴f (0)=c >0且f (1)=-a2<0,∴函数f (x )在区间(0,1)内至少有一个零点.……………………………………………(7分) ②当c ≤0时, ∵a >0,∴f (1)=-a2<0且f (2)=a -c >0,∴函数f (x )在区间(1,2)内至少有一个零点.综合①②得f (x )在(0,2)内至少有一个零点.……………………………………………(10分) (3)∵x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2+bx +c =0的两根.∴x 1+x 2=-b a ,x 1x 2=c a =-32-ba .∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=(-b a )2-4(-32-b a ) =(ba +2)2+2.(12分)∵-3<b a <-34,∴2≤|x 1-x 2|<574.……………………………………………………………………(14分)。
【步步高】2015届高三数学北师大版(通用,理)总复习强化训练+专题检测第八章 8.1【步步高】20
§8.1 空间几何体的三视图、直观图、表面积与体积1.空间几何体的结构特征多面体(1)棱柱的侧棱都平行且相等,上、下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.旋转体(1)圆柱可以由矩形绕一边所在直线旋转得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线旋转得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆或圆绕直径所在直线旋转得到.2(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.、感悟人生化学4.柱、锥、台和球的表面积和体积名称几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × )(4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × )(5)圆柱的侧面展开图是矩形.( √ )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3.(2013·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图像如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3.目前孩子的教育消费化学教案过半网友认为偏高了化学教案增加了家庭的经济负担化学教案同时认可放养式教育的家长寥4.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,所以原三角形的面积为62.成长为正直法官不可或缺的品质试卷试题5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一空间几何体的结构特征例1(1)下列说法正确的是() A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是() A.0 B.1 C.2 D.3思维启迪从多面体、旋转体的定义入手,可以借助实例或几何模型理解几何体的结构特征.答案(1)B(2)A解析(1)A错,如图1;B正确,如图2,其中底面ABCD是矩形,可证明∠P AB,∠PCB 都是直角,这样四个侧面都是直角三角形;C错,如图3;D错,由棱台的定义知,其侧棱必相交于同一点.(2)①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.思维升华 (1)有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱.(2)既然棱台是由棱锥定义的,所以在解决棱台问题时,要注意“还台为锥”的解题策略.(3)旋转体的形成不仅要看由何种图形旋转得到,还要看旋转轴是哪条直线. 如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如图所示,连接AB ,BC ,AC ,可得△ABC 是正三角形,则∠ABC =60°.题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )(2)正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.思维启迪 (1)由主视图和左视图可知该几何体的高是1,由体积是12B.可求出底面积.由底面积的大小可判断其俯视图是哪一个.(2)按照直观图画法规则确定平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,故选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB ,∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系. (1)(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A .1B. 2C.2-12D.2+12和(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形答案(1)C(2)C解析(1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.改善地表水质、处理含重(2)如图,在原图形OABC中,应有OD=2O′D′=2×2 2=4 2 cm,CD=C′D′=2 cm.∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.题型三空间几何体的表面积与体积例3(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)已知某几何体的三视图如图所示,其中主视图、左视图均由直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得几何体的体积为( )A.2π3+12B.4π3+16缺化学教案应在“妻子苦心相劝”前加“不顾”试卷试题C.2π6+16D.2π3+12① 一定条件下化学教案思维启迪:先由三视图确定几何体的构成及度量,然后求表面积或体积.答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确定该几何体是一个半球体与三棱锥构成的组合体, 如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1, 故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,所以三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt △ABC 是半球底面的内接三角形,所以球的直径2R =BC =2, 解得R =22, 所以半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.嚣尘上化学教案严重损害政府的公信力试卷试题思维升华 解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积. (2012·课标全国)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36案却使人感到徒具虚名试卷试题赭红色的水化学教案几乎看不见流动化学教案细小到无法与河C.23D.22“而”连词化学教案表修饰试卷试题答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.唯独挂念几位好友化学教案只能远隔异地化学教案也不知何时才能相见化学教案梦中转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC ′到M 的最短路线长为29,设这条最短路线与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长; (3)三棱锥C —MNP 的体积.思维启迪 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现怎样的形式; (3)三棱锥以谁做底好. 规范解答解 (1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如下图,设PC =x ,则MP 2=MA 2+(AC +x )2.∵MP =29,MA =2,AC =3, ∴x =2,即PC =2.又NC ∥AM ,故PC P A =NC AM ,即25=NC2.化学教案但是刺猬则只知道一件大事”的一种发挥试卷试题它用以比喻两种相反的思想格:“∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离,即h =32×3=332.乙醚-∴V C —MNP =V M —PCN =13·h ·S △PCN =13×332×45=235.[12分]温馨提醒 (1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.(3)本题的易错点是,不知道从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. 3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”. 4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时间:40分钟)一、选择题1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱答案 D解析考虑选项中几何体的三视图的形状、大小,分析可得.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都不会完全相同, 故答案选D.3.(2013·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C .200D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200.4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32πB .π+3生是一只狐狸化学教案却以为自己是刺猬试卷试题毫无疑问化学教案伯林不欣赏甚至厌恶大体C.32π+ 3D.52π+315.答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.化学教案多于市人之言语试卷试题二、填空题6.如图所示,E 、F 分别为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的投影为②:B 在面DCC 1D 1上的投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7.已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________.答案 3π解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,所以正方体ANDM —FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球就是正方体ANDM —FBEC 的外接球,所以三棱锥A —BCD 的外接球的半径为32.所以三棱锥A —BCD 的外接球的表面积为S 球=4π⎝⎛⎭⎫322=3π.8.(2013·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝⎛⎭⎫12AD ·AE ·sin ∠DAE (2h )12(2AD )(2AE )sin ∠DAE什么话也没说化学教案一副马上就要哭出来的样子试卷试题小伙子走后化学教案这件事情成了老板教育=124. 三、解答题9.一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.解 这个几何体是一个圆台被轴截面割出来的一半.根据图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故这个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高. 由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302),解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43,所以棱台的高为4 3 cm.B 组 专项能力提升 (时间:30分钟)1.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为 ( )A.25VB.13V C.23VD.310V答案 D解析设点B到平面EMC的距离为h1,点D到平面EMC的距离为h2.连接MD.因为M是AE的中点,所以V M—ABCD=12V.所以V E—MBC=12V-V E—MDC.而V E—MBC=V B—EMC,V E—MDC=V D—EMC,所以V E—MBCV E—MDC =V B—EMCV D—EMC=h1h2.了近代化学教案潮菜融合了海内外更多饮食文化的长处化学教案使传统的饮食文化得以发扬、因为B,D到平面EMC的距离即为到平面EAC的距离,而AB∥CD,且2AB=3CD,所以h1h2=3 2.13.所以V E—MBC=V M-EBC=310V.2.已知四棱锥P-ABCD的三视图如下图所示,则四棱锥P-ABCD的四个侧面中的最大的面积是()A.3 B.2 5 C.6 D.8答案 C解析因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为32-22=5,所以后面三角形的面积为12×4×5=25,两个侧面面积为12×2×3=3,后面三角形的面积为12×4×(5)2+22=6,四棱锥P -ABCD 的四个侧面中面积最大的是前面三角形的面积:6.故选C.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .则12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2. (2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD , 所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=6 3 cm.5.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大? 解 (1)作圆锥的轴截面,如图所示.因为r R =H -x H ,所以r =R -R Hx ,所以S 圆柱侧=2πrx=2πRx -2πR H x 2(0<x <H ).(2)因为-2πRH<0,所以当x =2πR 4πR H =H2时,S 圆柱侧最大.故当x =H2,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案75 坐标系与参数方程
Go the distance x=2pt , 抛物线 y2=2px(p>0)的参数方程为 y=2pt. 自我检测 1.(2010· 北京)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A.两个圆 B.两条直线 C.一个圆和一条射线 D.一条直线和一条射线 x=-1-t, 2.(2010· 湖南)极坐标方程 ρ=cos θ 和参数方程 (t 为参数)所表示的图形 y=2+3t 分别是( ) A.圆、直线 B.直线、圆 C.圆、圆 D.直线、直线
x=1+tcos α, x=cos θ, 11. (14 分)(2010· 课标全国)已知直线 C1: (t 为参数), 圆 C2: y=tsin α y=sin θ (θ 为参数). π (1)当 α= 时,求 C1 与 C2 的交点坐标; 3 (2)过坐标原点 O 作 C1 的垂线,垂足为 A,P 为 OA 的中点,当 α 变化时,求 P 点轨迹 的参数方程,并指出它是什么曲线.
1 x=2sin 2θ (1) (θ 为参数); y=sin θ+cos θ
x= t (2) 1 y= t
1 (t 为参数). t -1
2
探究点四 参数方程与极坐标的综合应用 x=2+2t 例 4 求圆 ρ=3cos θ 被直线 (t 是参数)截得的弦长. y=1+4t
x=2cos α, 变式迁移 4 (2011· 课标全国)在直角坐标系 xOy 中, 曲线 C1 的参数方程为 y=2+2sin α. (α 为参数) → → M 是 C1 上的动点,P 点满足OP=2OM,P 点的轨迹为曲线 C2. (1)求 C2 的方程; π (2)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 θ= 与 C1 的异于极点的交 3 点为 A,与 C2 的异于极点的交点为 B,求|AB|.
【步步高】2015届高考数学总复习 正弦定理和余弦定理学案 理 北师大版
第五章解三角形与平面向量学案23正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.自主梳理1.三角形的有关性质(1)在△ABC中,A+B+C=________;(2)a+b____c,a-b<c;(3)a>b⇔sin A____sin B⇔A____B;(4)三角形面积公式:S△ABC=12ah=12ab sin C=12ac sin B=_________________;(5)在三角形中有:sin 2A=sin 2B⇔A=B或________________⇔三角形为等腰或直角三角形;sin(A+B)=sin C,sin A+B2=cosC2.2.正弦定理和余弦定理定理正弦定理余弦定理内容________________=2Ra2=____________,b2=____________,c2=____________.变形形式①a=__________,b=__________,c=__________;②sin A=________,sin B=________,sin C=________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin Acos A=________________;cos B=________________;cos C=_______________.解决①已知两角和任一边,求另一角和其他①已知三边,求各角;的问题 两条边.②已知两边和其中一边的对角,求另一边和其他两角.②已知两边和它们的夹角,求第三边和其他两个角.自我检测1.(2010·上海)若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形2.(2010·天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C=23sinB,则A等于( )A .30°B .60°C .120°D .150°3.(2011·烟台模拟)在△ABC 中,A =60°,b =1,△ABC 的面积为3,则边a 的值为( ) A .27 B.21 C.13D .34.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________.5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3,则a =________.探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c .变式迁移1 (1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac .(1)求角B 的大小;(2)若c =3a ,求tan A 的值.变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .探究点三 正、余弦定理的综合应用例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状.变式迁移3 (2010·天津)在△ABC 中,AC AB =cos Bcos C .(1)证明:B =C ;(2)若cos A =-13,求sin ⎝⎛⎭⎫4B +π3的值.1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用.2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.3.在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法.“化繁为简”“化异为同”是解此类问题的突破口.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·湖北)在△ABC 中,a =15,b =10,A =60°,则cos B 等于 ( ) A .-223B.223C .-63D.632.在△ABC 中AB =3,AC =2,BC 10则AB → AC →等于 ( ) A .-32B .-23C.23D.323.在△ABC 中,sin 2A 2=c -b2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形4.(2011·聊城模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( ) A .30° B .45° C .135°D .45°或135°5.(2010·湖南)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定题号 1 2 3 4 5 答案6.在△ABC 中,B =60°,b 2=ac ,则△ABC 的形状为________________.7.(2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C =________.8.(2011·龙岩模拟)在锐角△ABC 中,AD ⊥BC ,垂足为D ,且BD ∶DC ∶AD =2∶3∶6,则∠BAC 的大小为________.三、解答题(共38分)9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 25A =,AB →AC →=3. (1)求△ABC 的面积; (2)若b +c =6,求a 的值.10.(12分)(2010·陕西)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.11.(14分)(2010·重庆)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且3b 2+3c 2-3a 2=42bc .(1)求sin A 的值;(2)求2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫B +C +π41-cos 2A的值.答案 自主梳理1.(1)π (2)> (3)> > (4)12bc sin A (5)A +B =π2 2.a sin A =b sin B =csin C b 2+c 2-2bc cos A a 2+c 2-2ac cos B a 2+b 2-2ab cos C ①2R sin A 2R sin B 2R sin C ②a 2R b2Rc2R ③sin A ∶sin B ∶sin C b 2+c 2-a 22bc a 2+c 2-b 22ac a 2+b 2-c 22ab自我检测 1.C 2.A 3.C4.π6 5.1 课堂活动区例1 解题导引 已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况.具体判断方法如下:在△ABC 中.已知a 、b 和A ,求B .若A 为锐角,①当a ≥b 时,有一解;②当a =b sin A 时,有一解;③当b sin A <a <b 时,有两解;④当a <b sin A 时,无解.若A 为直角或钝角,①当a >b 时,有一解;②当a ≤b 时,无解.解 (1)由正弦定理a sin A =b sin B 得,sin A =32. ∵a >b ,∴A >B ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.综上,A =60°,C =75°,c =6+22,或A =120°,C =15°,c =6-22. (2)∵B =60°,C =75°,∴A =45°. 由正弦定理a sin A =b sin B =c sin C,得b =a ·sin B sin A =46,c =a ·sin C sin A =43+4.∴b =46,c =43+4. 变式迁移1 (1)102(2)60°或120°解析 (1)∵在△ABC 中,tan A =13,C =150°,∴A 为锐角,∴sin A =110. 又∵BC =1.∴根据正弦定理得AB =BC ·sin C sin A =102.(2)由b >a ,得B >A ,由a sin A =bsin B ,得sin B =b sin A a =25650×22=32,∵0°<B <180° ∴B =60°或B =120°.例2 解 (1)∵a 2+c 2-b 2=ac , ∴cos B =a 2+c 2-b 22ac =12.∵0<B <π,∴B =π3.(2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a . 由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A <π, ∴sin A =1-cos 2A =2114, ∴tan A =sin A cos A =35.方法二 将c =3a 代入a 2+c 2-b 2=ac , 得b =7a .由正弦定理,得sin B =7sin A . 由(1)知,B =π3,∴sin A =2114.又b =7a >a ,∴B >A , ∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.方法三 ∵c =3a ,由正弦定理,得sin C =3sin A . ∵B =π3,∴C =π-(A +B )=2π3-A ,∴sin(2π3-A )=3sin A ,∴sin2π3cos A -cos 2π3sin A =3sin A , ∴32cos A +12sin A =3sin A , ∴5sin A =3cos A , ∴tan A =sin A cos A =35.变式迁移2 解 由余弦定理得,b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac . 又∵a +c =4,b =13,∴ac =3,联立⎩⎪⎨⎪⎧a +c =4ac =3,解得a =1,c =3,或a =3,c =1.∴a 等于1或3.例3 解题导引 利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系.解 方法一 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ) ⇔a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )], ∴2a 2cos A sin B =2b 2cos B sin A , 由正弦定理,得sin 2A cos A sin B =sin 2B cos B sin A , ∴sin A sin B (sin A cos A -sin B cos B )=0, ∴sin 2A =sin 2B ,由0<2A <2π,0<2B <2π, 得2A =2B 或2A =π-2B ,即△ABC 是等腰三角形或直角三角形.方法二 同方法一可得2a 2cos A sin B =2b 2cos B sin A , 由正、余弦定理,即得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac, ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 即(a 2-b 2)(c 2-a 2-b 2)=0, ∴a =b 或c 2=a 2+b 2,∴三角形为等腰三角形或直角三角形.变式迁移3 解题导引 在正弦定理a sin A =b sin B =csin C =2R 中,2R 是指什么?a =2R sinA ,b =2R sinB ,c =2R sinC 的作用是什么?(1)证明 在△ABC 中,由正弦定理及已知得 sin B sin C =cos Bcos C. 于是sin B cos C -cos B sin C =0, 即sin(B -C )=0.因为-π<B -C <π,从而B -C =0.所以B =C .(2)解 由A +B +C =π和(1)得A =π-2B , 故cos 2B =-cos(π-2B )=-cos A =13.又0<2B <π,于是sin 2B =1-cos 22B =223.从而sin 4B =2sin 2B cos 2B =429, cos 4B =cos 22B -sin 22B =-79.所以sin ⎝⎛⎭⎫4B +π3 =sin 4B cos π3+cos 4B sin π3=42-7318.课后练习区1.D 2.D 3.B 4.B 5.A 6.等边三角形解析 ∵b 2=a 2+c 2-2ac cos B , ∴ac =a 2+c 2-ac , ∴(a -c )2=0, ∴a =c ,又B =60°, ∴△ABC 为等边三角形. 7.1解析 由A +C =2B 及A +B +C =180°知,B =60°. 由正弦定理知,1sin A =3sin 60°,即sin A =12.由a <b 知,A <B ,∴A =30°,C =180°-A -B =180°-30°-60°=90°,∴sin C =sin 90°=1. 8.π4 解析 设∠BAD =α,∠DAC =β,则tan α=13,tan β=12, ∴tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=13+121-13×12=1. ∵∠BAC 为锐角,∴∠BAC 的大小为π4. 9.解 (1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45.……………………………………………………(4分) 又由AB →·AC →=3得bc cos A =3,所以bc =5,因此S △ABC =12bc sin A =2.…………………………………………………………………(8分) (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-165bc =20,所以a =2 5.………(12分) 10.解在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,…………………………………………………………………(6分) ∴∠ADC =120°,∠ADB =60°.…………………………………………………………(8分) 在△ABD 中,AD =10,B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.…………………………………………………………………………(12分) 11.解 (1)∵3b 2+3c 2-3a 2=42bc ,∴b 2+c 2-a 2=423bc . 由余弦定理得,cos A =b 2+c 2-a 22bc =223,……………………………………………(4分) 又0<A <π,故sin A =1-cos 2A =13.……………………………………………………(6分) (2)原式=2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫π-A +π41-cos 2A………………………………………………………(8分) =2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫A -π42sin 2A=2⎝⎛⎭⎫22sin A +22cos A ⎝⎛⎭⎫22sin A -22cos A 2sin 2A …………………………………………(11分) =sin 2A -cos 2A 2sin 2A =-72. 所以2sin (A +π4)sin (B +C +π4)1-cos 2A=-72.……………………………………………………(14分)。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案2 命题及其关系、充分条件与必要条件
学案2命题及其关系、充分条件与必要条件导学目标:1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.自主梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q(p⇒q);逆命题:若q则p(q⇒p);否命题:若綈p则綈q(綈p⇒綈q);逆否命题:若綈q则綈p(綈q⇒綈p).(2)四种命题间的关系(3)四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p 叫做q的充要条件.自我检测1.(2010·湖南)下列命题中的假命题是()A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x>0答案 C解析对于C选项,当x=0时,03=0,因此∀x∈R,x3>0是假命题.2.(2010·陕西)“a>0”是“|a|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0 a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.(2009·浙江)“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题答案 C解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.(2011·宜昌模拟)与命题“若a∈M,则b∉M”等价的命题是()A.若a∉M,则b∉MB.若b∉M,则a∈MC.若a∉M,则b∈MD.若b∈M,则a∉M答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二 充要条件的判断例2 给出下列命题,试分别指出p 是q 的什么条件.(1)p :x -2=0;q :(x -2)(x -3)=0.(2)p :两个三角形相似;q :两个三角形全等.(3)p :m <-2;q :方程x 2-x -m =0无实根.(4)p :一个四边形是矩形;q :四边形的对角线相等.解 (1)∵x -2=0⇒(x -2)(x -3)=0;而(x -2)(x -3)=0x -2=0.∴p 是q 的充分不必要条件.(2)∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p 是q 的必要不充分条件.(3)∵m <-2⇒方程x 2-x -m =0无实根;方程x 2-x -m =0无实根m <-2.∴p 是q 的充分不必要条件.(4)∵矩形的对角线相等,∴p ⇒q ;而对角线相等的四边形不一定是矩形,∴q p .∴p 是q 的充分不必要条件.变式迁移2 (2011·邯郸月考)下列各小题中,p 是q 的充要条件的是( )①p :m <-2或m >6;q :y =x 2+mx +m +3有两个不同的零点;②p :f (-x )f (x )=1;q :y =f (x )是偶函数; ③p :cos α=cos β;q :tan α=tan β;④p :A ∩B =A ;q :∁U B ⊆∁U A .A .①②B .②③C .③④D .①④答案 D解析 ①q :y =x 2+mx +m +3有两个不同的零点⇔q :Δ=m 2-4(m +3)>0⇔q :m <-2或m >6⇔p ;②当f (x )=0时,由q p ;③若α,β=k π+π2,k ∈Z 时,显然cos α=cos β,但tan α≠tan β;④p :A ∩B =A ⇔p :A ⊆B ⇔q :∁U A ⊇∁U B .故①④符合题意.探究点三 充要条件的证明例3 设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.解题导引 有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明 (1)必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0,则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0,两式相减可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0, 可得b 2+c 2=a 2,故∠A =90°,(2)充分性:∵∠A =90°,∴b 2+c 2=a 2,b 2=a 2-c 2.①将①代入方程x 2+2ax +b 2=0,可得x 2+2ax +a 2-c 2=0,即(x +a -c )(x +a +c )=0.将①代入方程x 2+2cx -b 2=0,可得x 2+2cx +c 2-a 2=0,即(x +c -a )(x +c +a )=0.故两方程有公共根x =-(a +c ).所以方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.变式迁移3 已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.证明 (1)必要性:∵a +b =1,∴a +b -1=0.∴a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)=0.(2)充分性:∵a 3+b 3+ab -a 2-b 2=0,即(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,∴a ≠0且b ≠0.∵a 2-ab +b 2=(a -b 2)2+34b 2>0. ∴a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.转化与化归思想的应用 例 (12分)已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,且m ∈Z .求两方程的根都是整数的充要条件.【答题模板】解 ∵mx 2-4x +4=0是一元二次方程,∴m ≠0. [2分] 另一方程为x 2-4mx +4m 2-4m -5=0,两方程都要有实根,∴⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0, 解得m ∈[-54,1]. [6分] ∵两根为整数,故和与积也为整数, ∴⎩⎪⎨⎪⎧ 4m ∈Z4m ∈Z 4m 2-4m -5∈Z ,∴m 为4的约数, [8分]∴m =-1或1,当m =-1时,第一个方程x 2+4x -4=0的根为非整数,而当m =1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m =1. [12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m 的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m ≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数.1.研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p与q是否可以相互推出的两次判断,同时还要弄清是p对q而言,还是q对p而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·天津模拟)给出以下四个命题:①若ab ≤0,则a ≤0或b ≤0;②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A .①B .②C .③D .④答案 C解析 对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.(2010·浙江)设0<x <π2,则“x sin 2x <1”是“x sin x <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 ∵0<x <π2,∴0<sin x <1. ∴x sin x <1⇒x sin 2x <1,而x sin 2x <1x sin x <1.故 选B.3.(2009·北京)“α=π6+2k π(k ∈Z )”是“cos 2α=12”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由α=π6+2k π(k ∈Z )可得到cos 2α=12. 由cos 2α=12得2α=2k π±π3(k ∈Z ). ∴α=k π±π6(k ∈Z ). 所以cos 2α=12不一定得到α=π6+2k π(k ∈Z ). 4.(2011·威海模拟)关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真答案 D解析 本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上.因此否命题也是假命题.5.(2011·枣庄模拟)集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 A ={x |-4≤x ≤4},若A ⊆B ,则a >4,a >4a >5,但a >5⇒a >4.故选B.二、填空题(每小题4分,共12分)6.“x 1>0且x 2>0”是“x 1+x 2>0且x 1x 2>0”的________条件.答案 充要7.(2011·惠州模拟)已知p :(x -1)(y -2)=0,q :(x -1)2+(y -2)2=0,则p 是q 的 ____________条件.答案 必要不充分解析 由(x -1)(y -2)=0得x =1或y =2,由(x -1)2+(y -2)2 =0得x =1且y =2,所以由q 能推出p ,由p 推不出q, 所以填必要不充分条件.8.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.答案 [3,8)解析 因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又因为p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是3≤m <8.三、解答题(共38分)9.(12分)(2011·许昌月考)分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)若q <1,则方程x 2+2x +q =0有实根;(2)若ab =0,则a =0或b =0;(3)若x 2+y 2=0,则x 、y 全为零.解 (1)逆命题:若方程x 2+2x +q =0有实根,则q <1,为假命题.否命题:若q ≥1,则方程x 2+2x +q =0无实根,为假命题.逆否命题:若方程x 2+2x +q =0无实根,则q ≥1,为真命题.(4分)(2)逆命题:若a =0或b =0,则ab =0,为真命题.否命题:若ab ≠0,则a ≠0且b ≠0,为真命题.逆否命题:若a ≠0且b ≠0,则ab ≠0,为真命题.(8分)(3)逆命题:若x 、y 全为零,则x 2+y 2=0,为真命题.否命题:若x 2+y 2≠0,则x 、y 不全为零,为真命题.逆否命题:若x 、y 不全为零,则x 2+y 2≠0,为真命题.(12分)10.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分)B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p 綈q .则{x |綈q }Ø{x |綈p },(6分)而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0},∴{x |-4≤x <-2}Ø{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)11.(14分)已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.(2分)当n ≥2时,a n =S n -S n -1=p n -1(p -1).当n =1时也成立.(4分)于是a n +1a n =p n (p -1)p n -1(p -1)=p (n ∈N *), 即数列{a n }为等比数列.(6分)必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1).∵p ≠0,p ≠1,∴a n +1a n =p n (p -1)p n 1(p -1)=p .(10分) ∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,即p (p -1)p +q=p , 即p -1=p +q .∴q =-1.(13分)综上所述,q =-1是数列{a n }为等比数列的充要条件.(14分)。
【步步高】2015届高考数学总复习 第七章 7.5综合法与分析法、反证法课件 理 北师大版
∴f(x)=2x, (x∈[0,1] )不是理想函数. (2)试判断函数 f(x)=2x(x∈[0,1]), 对于 f(x)=x2, x∈[0,1] , 显然 f(x)≥0, 2 f(x) = x (x∈[0,1]) , f(x) = x 且 f(1)=1. (x∈[0,1])是否是理想函数.
题型分类·深度剖析
题型一 综合法的应用
思维启迪 解析 思维升华
【例 1】 对于定义域为[0,1]的函数 f(x),如果同时满足: ① 对 任 意 的 x∈[0,1] , 总 有 f(x)≥0;②f(1)=1;③若 x1≥0, x2≥0 , x1 + x2≤1 , 都 有 f(x1 + f(x)为理想函数. (1)若函数 f(x)为理想函数,证明: f(0)=0; f(x) = x2(x∈[0,1]) , f(x) = (x∈[0,1])是否是理想函数.
1 2
即 f2(x1+x2)≤[ f(x1)+f(x2)] 2.
∴f(x1+x2)≤f(x1)+f(x2), 不满足条件
③. (1)若函数 f(x)为理想函数,证明: ∴f(x)= x(x∈[0,1] )不是理想函数. f(0)=0; 综上, f(x)=x2(x∈[0,1] )是理想函数, (2)试判断函数 f(x)=2x(x∈[0,1]), f(x) = 2x(x∈[0,1] ) 与 f(x) = x 2 f(x) = x (x∈[0,1]) , f(x) = x (x∈[0,1] )不是理想函数. (x∈[0,1])是否是理想函数.
题型分类·深度剖析
题型一 综合法的应用
思维启迪 解析 思维升华
【例 1】 对于定义域为[0,1]的函数 f(x),如果同时满足:
【步步高】2015届高考数学总复习 抛物线学案 理 北师大版
学案53 抛物线导学目标: 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.自主梳理 1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )距离______的点的轨迹叫做抛物线.点F 叫做抛物线的__________,直线l 叫做抛物线的________.2.抛物线的标准方程与几何性质标准方程y 2=2px(p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F (p2,0) F (-p2,0)F (0,p 2)F (0,-p2)离心率 e =1准线方程x =-p2x =p2 y =-p 2y =p 2 范围x ≥0,y ∈Rx ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右向左向上向下自我检测1.(2010·四川)抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4D .82.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .43.(2011·陕西)设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=8x C .y 2=-4xD .y 2=4x4.已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3|5.(2011·佛山模拟)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能探究点一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.变式迁移1 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A.⎝⎛⎭⎫14,-1B.⎝⎛⎭⎫14,1 C .(1,2)D .(1,-2)探究点二 求抛物线的标准方程例2 (2011·芜湖调研)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程: (1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1|AF |+1|BF |为定值.分类讨论思想的应用例 (12分)过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于A 、B 两点,过B 点作其准线的垂线,垂足为D ,设O 为坐标原点,问:是否存在实数λ,使AO →=λOD →?多角度审题 这是一道探索存在性问题,应先假设存在,设出A 、B 两点坐标,从而得到D 点坐标,再设出直线AB 的方程,利用方程组和向量条件求出λ.【答题模板】解 假设存在实数λ,使AO →=λOD →. 抛物线方程为y 2=2px (p >0), 则F ⎝⎛⎭⎫p 2,0,准线l :x =-p 2, (1)当直线AB 的斜率不存在,即AB ⊥x 轴时, 交点A 、B 坐标不妨设为:A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p2,-p . ∵BD ⊥l ,∴D ⎝⎛⎭⎫-p2,-p , ∴AO →=⎝⎛⎭⎫-p 2,-p ,OD →=⎝⎛⎭⎫-p 2,-p ,∴存在λ=1使AO →=λOD →.[4分] (2)当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0),设A (x 1,y 1),B (x 2,y 2),则D ⎝⎛⎭⎫-p 2,y 2,x 1=y 212p ,x 2=y 222p, 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px 得ky 2-2py -kp 2=0,∴y 1y 2=-p 2,∴y 2=-p 2y 1,[8分]AO →=(-x 1,-y 1)=⎝⎛⎭⎫-y 212p ,-y 1,OD →=⎝⎛⎭⎫-p 2,y 2=⎝⎛⎭⎫-p 2,-p 2y 1,假设存在实数λ,使AO →=λOD →,则⎩⎨⎧-y 212p =-p 2λ-y 1=-p 2y1λ,解得λ=y 21p 2,∴存在实数λ=y 21p2,使AO →=λOD →.综上所述,存在实数λ,使AO →=λOD →.[12分] 【突破思维障碍】由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A 、D 两点坐标关系,求出AO →和OD →的坐标,判断λ是否存在.【易错点剖析】解答本题易漏掉讨论直线AB 的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足.1.关于抛物线的定义要注意点F 不在定直线l 上,否则轨迹不是抛物线,而是一条直线. 2.关于抛物线的标准方程抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于: (1)p 的几何意义:参数p 是焦点到准线的距离,所以p 恒为正数.(2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向.3.关于抛物线的几何性质抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 的倾斜角),y 1y 2=-p 2,x 1x 2=p 24等.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·大纲全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于( )A.45B.35 C .-35D .-452.(2011·湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥33.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交 C .相切 D .不确定4.(2011·泉州月考)已知点A (-2,1),y 2=-4x 的焦点是F ,P 是y 2=-4x 上的点,为使|P A |+|PF |取得最小值,则P 点的坐标是( )A.⎝⎛⎭⎫-14,1B .(-2,22) C.⎝⎛⎭⎫-14,-1D .(-2,-22)5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±2)B .(1,±2)C .(1,2)D .(2,2)二、填空题(每小题4分,共12分)6.(2011·重庆)设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.(2011·济宁期末)已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则|AB |=________.8.(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.三、解答题(共38分)9.(12分)已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.(12分)(2011·韶关模拟)已知抛物线C :x 2=8y .AB 是抛物线C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .11.(14分)(2011·济南模拟)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹C 于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值.学案53 抛物线自主梳理1.相等 焦点 准线 自我检测 1.C2.B [因为抛物线的准线方程为x =-2,所以p2=2,所以p =4,所以抛物线的方程是y 2=8x .所以选B.]3.B 4.C 5.B 课堂活动区例1 解题导引 重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.解将x =3代入抛物线方程 y 2=2x ,得y =±6.∵6>2,∴A 在抛物线内部. 设抛物线上点P 到准线l : x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d ,当P A ⊥l 时,|P A |+d 最小,最小值为72,即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2, ∴点P 坐标为(2,2). 变式迁移1 A [点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图,|PF |+|PQ |=|PS |+|PQ |,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,点P 的坐标为⎝⎛⎭⎫14,-1.]例2 解题导引 (1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p 的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;(3)解决抛物线相关问题时,要善于用定义解题,即把|PF |转化为点P 到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.解 方法一 设抛物线方程为 x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎫0,-p 2,准线方程为y =p2. ∵M (m ,-3)在抛物线上,且|MF |=5,∴⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎫-3+p22=5, 解得⎩⎪⎨⎪⎧p =4,m =±2 6.∴抛物线方程为x 2=-8y ,m =±26, 准线方程为y =2. 方法二 如图所示,设抛物线方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎫0,-p2, 准线l :y =p2,作MN ⊥l ,垂足为N .则|MN |=|MF |=5,而|MN |=3+p2,∴3+p2=5,∴p =4.∴抛物线方程为x 2=-8y ,准线方程为y =2.由m 2=(-8)×(-3),得m =±2 6. 变式迁移2 解 (1)双曲线方程化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6.∴方程为y 2=-12x .(2)由于P (2,-4)在第四象限且对称轴为坐标轴,可设方程为y 2=mx (m >0)或x 2=ny (n <0),代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .例3 解题导引 解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB 为焦点弦,以y 2=2px (p >0)为例):①y 1y 2=-p 2,x 1x 2=p 24; ②|AB |=x 1+x 2+p .证明 (1)方法一 由抛物线的方程可得焦点坐标为F ⎝⎛⎭⎫p 2,0.设过焦点F 的直线交抛物线于A ,B 两点的坐标分别为(x 1,y 1)、(x 2,y 2).①当斜率存在时,过焦点的直线方程可设为y =k ⎝⎛⎭⎫x -p 2,由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,得ky 2-2py -kp 2=0.(*)当k =0时,方程(*)只有一解,∴k ≠0,由韦达定理,得y 1y 2=-p 2;②当斜率不存在时,得两交点坐标为 ⎝⎛⎭⎫p 2,p ,⎝⎛⎭⎫p 2,-p ,∴y 1y 2=-p 2. 综合两种情况,总有y 1y 2=-p 2.方法二 由抛物线方程可得焦点F ⎝⎛⎭⎫p 2,0,设直线AB 的方程为x =ky +p 2,并设A (x 1,y 1),B (x 2,y 2),则A 、B 坐标满足⎩⎪⎨⎪⎧x =ky +p 2,y 2=2px ,消去x ,可得y 2=2p ⎝⎛⎭⎫ky +p 2, 整理,得y 2-2pky -p 2=0,∴y 1y 2=-p 2.(2)直线AC 的方程为y =y 1x 1x , ∴点C 坐标为⎝⎛⎭⎫-p 2,-py 12x 1,y C =-py 12x 1=-p 2y 12px 1.∵点A (x 1,y 1)在抛物线上,∴y 21=2px 1.又由(1)知,y 1y 2=-p 2,∴y C =y 1y 2·y 1y 21=y 2,∴BC ∥x 轴. 变式迁移3 证明 (1)∵y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,设直线方程为y =k ⎝⎛⎭⎫x -p 2 (k ≠0),由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px,消去x ,得ky 2-2py -kp 2=0. ∴y 1y 2=-p 2,x 1x 2=(y 1y 2)24p 2=p 24, 当k 不存在时,直线方程为x =p 2,这时x 1x 2=p 24. 因此,x 1x 2=p 24恒成立. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 又∵x 1x 2=p 24,代入上式得1|AF |+1|BF |=2p=常数, 所以1|AF |+1|BF |为定值. 课后练习区1.D [方法一 由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4. 令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5.∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45. 方法二 由方法一得A (4,4),B (1,-2),F (1,0),∴F A →=(3,4),FB →=(0,-2),∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.] 2.C [如图所示,A ,B 两点关于x 轴对称,F 点坐标为(p 2,0),设A (m ,2pm )(m >0),则由抛物线定义,|AF |=|AA 1|,即m +p 2=|AF |. 又|AF |=|AB |=22pm ,∴m +p 2=22pm ,整理,得m 2-7pm +p 24=0,① ∴Δ=(-7p )2-4×p 24=48p 2>0, ∴方程①有两相异实根,记为m 1,m 2,且m 1+m 2=7p >0,m 1·m 2=p 24>0, ∴m 1>0,m 2>0,∴n =2.]3.C4.A [过P 作PK ⊥l (l 为抛物线的准线)于K ,则|PF |=|PK |,∴|P A |+|PF |=|P A |+|PK |.∴当P 点的纵坐标与A 点的纵坐标相同时,|P A |+|PK |最小,此时P 点的纵坐标为1,把y =1代入y 2=-4x ,得x =-14,即当P 点的坐标为⎝⎛⎭⎫-14,1时,|P A |+|PF |最小.] 5.B6.6-1解析 如图所示,若圆C 的半径取到最大值,需圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),则圆的方程为(x -a )2+y 2=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.7.4 2解析 由题意可设AB 的方程为y =kx +m ,与抛物线方程联立得x 2-4kx -4m =0,线段AB 中点坐标为(2,2),x 1+x 2=4k =4,得k =1.又∵y 1+y 2=k (x 1+x 2)+2m =4,∴m =0.从而直线AB :y =x ,|AB |=2|OM |=4 2.8.324解析 抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p 4,1,代入抛物线方程得1=2p ×p 4,解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 9.解 设直线和抛物线交于点A (x 1,y 1),B (x 2,y 2),(1)当抛物线开口向右时,设抛物线方程为y 2=2px (p >0),则⎩⎪⎨⎪⎧y 2=2px y =2x +1,消去y 得,4x 2-(2p -4)x +1=0,∴x 1+x 2=p -22,x 1x 2=14,(4分) ∴|AB |=1+k 2|x 1-x 2| =5·(x 1+x 2)2-4x 1x 2 =5·⎝ ⎛⎭⎪⎫p -222-4×14=15,(7分) 则 p 24-p =3,p 2-4p -12=0,解得p =6(p =-2舍去), 抛物线方程为y 2=12x .(9分)(2)当抛物线开口向左时,设抛物线方程为y 2=-2px (p >0),仿(1)不难求出p =2, 此时抛物线方程为y 2=-4x .(11分)综上可得,所求的抛物线方程为y 2=-4x 或y 2=12x .(12分)10.证明 因为直线AB 与x 轴不垂直, 设直线AB 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.(4分)抛物线方程为y =18x 2,求导得y ′=14x .(7分) 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2 =116x 1·x 2=-1.(10分) 所以AQ ⊥BQ .(12分)11.解 (1)由题设点C 到点F 的距离等于它到l 1的距离,所以点C 的轨迹是以F 为焦点,l 1为准线的抛物线,∴所求轨迹的方程为x 2=4y .(5分)(2)由题意直线l 2的方程为y =kx +1,与抛物线方程联立消去y 得x 2-4kx -4=0. 记P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.(8分)因为直线PQ 的斜率k ≠0,易得点R 的坐标为⎝⎛⎭⎫-2k ,-1.(9分) RP →·RQ →=⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k 2+4 =-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8,(11分) ∵k 2+1k 2≥2,当且仅当k 2=1时取到等号. RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16. (14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究点一 输入、输出和赋值语句的应用 例 1 写出下列语句描述的算法的输出结果: (1) a=5 b=3 c=a+b/2 d=c*c PRINT “d=”;d a=1 b=2 (2) c=a+b b=a+c-b PRINT “a=,b=,c=”;a,b,c
变式迁移 1 请写出下面运算输出的结果__________. a=10 b=20 c=30 a=b b=c c=a PRINT “a=,b=,c=”;a,b,c 探究点二 条件语句的应用 例 2 阅读下面的程序, 当分别输入 x=2, x=1, x=0 时, 输出的 y 值分别为________、 ________、________.
第 7 页 共 11 页
Go the distance
学案 71
基本算法语句
自主梳理 1.INPUT “提示内容”;变量 PRINT “提示内容”;表达式 2.变量=表达式 自我检测 1.D [由赋值语句知选 D.] 2.C [∵1<3,∴x=1+3=4.] 3.C [当 x=2 时,i=1≤4,s=0×2+1=1; i=1+1=2≤4,s=1×2+1=3; i=2+1=3≤4,s=3×2+1=7; i=3+1=4≤4,s=7×2+1=15; i=4+1=5>4,输出 s=15.] 4.990 解析 由题意 s=11×10×9=990. 课堂活动区 例 1 解题导引 (1)赋值语句左边只能是变量名字,而不是表达式,右边可以是一个 常量、变量或含变量的运算式.(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边 的表达式的值赋给赋值号左边的变量.如“A=B”和“B=A”的运行结果是不同的. a+b 解 (1)∵a=5,b=3,c= =4, 2 ∴d=c2=16,即输出 d=16. (2)∵a=1,b=2,c=a+b,∴c=3,又∵b=a+c-b, 即 b=1+3-2=2,∴a=1,b=2,c=3, 即输出 a=1,b=2,c=3. 变式迁移 1 a=20,b=30,c=20 解析 经过语句 a=b,b=c 后,b 的值赋给 a,c 的值赋给 b,即 a=20,b=30,再经 过语句 c=a 后,a 的当前值 20 赋给 c,∴c=20.故输出结果 a=20,b=30,c=20. 例 2 解题导引 计算机执行这种形式的条件语句时, 是首先对 IF 后的条件进行判断, 如果条件符合,就执行 THEN 后的语句;如果条件不符合,则直接结束该条件语句,转而 执行其他语句,嵌套时注意内外分层,避免逻辑混乱. 1,1,-1 解析 由程序可知分段函数是: x<1 y=x , x=1 1 , x>1 x- 1
Go the distance
学案 71
基本算法语句
导学目标: 理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、 循环语句的含义.
自主梳理 1.输入、输出语句 输入语句的格式为____________________. 输出语句的格式为____________________. 2.赋值语句的格式为______________,赋值语句中“=”叫做赋值号,计算机执行赋 值语句时,先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量.一个赋值 语句只能给一个变量赋值. 3.条件语句表达算法中的条件结构.条件语句的一般格式是 IF 条件 THEN 语句体1 ELSE 语句体2 END IF 或 IF—THEN 语句的一般格式是 IF 条件 THEN 语句体 END IF 4.算法中的循环结构是由循环语句来实现的,包括 WHILE 语句和 UNTIL 语句两种语 句结构. WHILE 条件 WHILE 语句的一般格式是 循环体 , WEND DO UNTIL 语句的一般格式是 循环体 LOOP UNTIL 条件 自我检测 1.(2011· 汉沽模拟)已知变量 a,b 已被赋值,要交换 a、b 的值,采用的算法是( A.a=b,b=a B.a=c,b=a,c=b C.a=c,b=a,c=a D.c=a,a=b,b=c 2.当 a=1,b=3 时,执行完如下的一段程序后 x 的值是( ) IF a<b THEN x=a+b ELSE x=a-b END IF A.1 B.3 C.4 D.-2 3.(2011· 淄博月考)当 x=2 时,下面的程序运行结果是( )
第 8 页 共 11 页
Go the distance
由框图可知,该程序的功能是计算 s=5+4+…+n 到首次不小于 14 的 n-1 的值,即 (s,n)由以下运算得:(0,5)→(0+5,5-1)→(5+4,4-1)→(9+3,3-1)→(12+2,2-1),所以输 出 n=1.] 变式迁移 3 1,110;2,120;3,130;4,140;5,150;6,160;7,170;8,180;9,190;10,200 课后练习区 1.D [程序中存在语法错误,应为 LOOP UNTIL,考查程序的严密性.] 2.C [该程序中关键是循环语句, 第一次输出的数是 1, 1 3 第二次输出的数是 x=1+ = , 2 2 1 1 第三次输出的数是 x=1+ + =2.] 2 2 100 3. A [该程序的功能是求 S=1+2+…+100 的值. 由等差数列求和公式得, S= ×(1 2 +100)=5 050.] 4.C [程序功能是求使 i2≥2 000 成立的最小 i 值,输出结果为 i-1.∵442=1 936,452= 2 025>2 000,∴输出结果为 44.] 5.B [因为算术运算符“\”和“MOD”分别用来取商和余数,所以 a=5,b=1,x=10×1 +5=15.] 6.k>99 解析 循环体执行到 k=99. 7.-6 或 6 x+12,x<0 解析 程序对应的函数是 y= . 2 x-1 ,x≥0
第 2 页 共 11 页
Go the distance
INPUT “x=”;x IF x>1 THEN y=1/x-1 ELSE IF x=1 THEN y=x^2 ELSE y=x^2+1/x-1 END IF END IF PRINT y END 变式迁移 2 阅读下面的程序,写出程序运行的结果. (1)若 x=6,则 P=______;(2)若 x=20,则 P=______.
第 4 页 共 11 页
Go the distance
x=-1 DO x=x*x UNTIL x>10 PRINT x END A.不能执行 B.能执行一次 C.能执行十次 D.有语法错误 2.下面的程序运行后第 3 个输出的数是(
)
3 B. 2 5 C.2 D. 2 3.(2011· 银川模拟)下面程序运行的结果是( A.1 i=1 S=0 WHILE i<=100 S=S+i i=i+1 WEND PRINT S END A.5 050 B.5 049 4.下面程序运行后,输出的值是( i=0 DO i=i+1 LOOP UNTIL i*i>=2 000 i=i-1 PRINT i END A.42 5.程序 B.43 C.44 D.45 C.3 )
x<0 x≥0 由题意得, ,或 , 2 2 x+1 =25 x-1 =25 解得 x=-6 或 x=6. 8.a=b 9.解 ①i=i+1 ②S=S+1/(2](4 分) 程序如下:
第 9 页 共 11 页
Go the distance
(12 分) 10.解 方法一 (当型语句) 程序为: s=1 i=3 WHILE i<=99 s=s*i i=i+2 WEND PRINT s END (5 分) 程序框图如图所示,
2
1 x2+ , x-1
∴输入 x=2,输出 1; 输入 x=1,输出 1; 输入 x=0,输出-1. 变式迁移 2 (1)2.1 (2)10.5 例 3 解题导引 解答这类问题的关键是认真阅读程序,理解程序功能.必要时,根 据程序画出框图辅助分析. C [由程序画出对应的程序框图,这是一个当型循环语句.
)
D.2
INPUT x IF x>0 AND a=x[ST0
第 5 页 共 11 页
x<100 THEN
Go the distance
b=x MOD 10 x=10]PRINT x END IF END 上述程序如果输入的值是 51,则运行结果是( ) A.51 B.15 C.105 D.501 二、填空题(每小题 4 分,共 12 分) 1 1 1 1 6.利用计算机计算:s= + + +…+ ,某同学编写的程序语句中, 1×2 2×3 3×4 99×100 ①处应填________. s=0 k=1 DO s=s+1/k*k+1 k=k+1 LOOP UNTIL ① PRINT “s=”;s END 7.为了在运行下面的程序之后得到 y=25,键盘输入的 x 应该是________. INPUT x IF x<0 THEN y=x+1*x+1 ELSE y=x-1*x-1 END IF PRINT y END 8.(2011· 南通模拟)有一列数:1,1,2,3,5,8,13,21,…,这列数有下面的特点:前两个数 都是 1, 从第三个数开始, 每个数都是前两个数的和, 这样的一列数一般称为斐波那契数. 图 中程序所描述的算法功能是输出前 10 个斐波那契数.请把这个算法填写完整. a=1 b=1 n=2 WHILE n<10 c=a+b PRINT c b=c n=n+1 WEND END 三、解答题(共 38 分)
第 3 页 共 11 页
Go the distance
1.条件语句一般有两种:IF—THEN 语句;IF—THEN—ELSE 语句.语句格式及框图 如下. (1)IF—THEN—ELSE 格式
当计算机执行这种形式的条件语句时,首先对 IF 后的条件进行判断,如果条件符合, 就执行 THEN 后的语句体 1,否则执行 ELSE 后6 页 共 11 页
Go the distance
1 1 1 9.(12 分)现欲求 1+ + +…+ 的和(其中 n 的值由键盘输入),已给出了其程序 3 5 2n-1 框图,请将其补充完整并设计出程序.