数学:19.2.2菱形《(一)》课件(人教新课标八年级下)
合集下载
19.2.2_菱形的判定(公开课).......
好客山东活力泗水游
安 西侯幽谷 山 春 色
泗 水 圣 源
泉 林 泉 群
1.判断下列说法是否正确?为什么? 判断下列说法是否正确?为什么? 判断下列说法是否正确 (1)对角线互相垂直的四边形是菱形; ╳ 对角线互相垂直的四边形是菱形; 对角线互相垂直的四边形是菱形 (2)对角线互相垂直且平分的四边形是菱形; 对角线互相垂直且平分的四边形是菱形; 对角线互相垂直且平分的四边形是菱形 √ (3)对角线互相垂直,且有一组邻边相等 对角线互相垂直, 对角线互相垂直 的四边形是菱形; 的四边形是菱形; Байду номын сангаас4) 有一条对角线平分一组对角的 平行四边形是菱形. 平行四边形是菱形. A D
A D B C
A
D
F
B
E
C
期待你用勤奋和智慧 表达你的爱心
4.下列条件中, 下列条件中, 下列条件中 不能判定四边形ABCD为菱形的是(C) 不能判定四边形 为菱形的是( 为菱形的是 A.AC⊥BD,AC与BD互相平分 ⊥ 与 互相平分 B.AB=BC=CD=DA C.AB=BC,AD=CD,且AC⊥BD 且 ⊥ D.AB=CD,AD=BC,AC⊥BD ⊥
5.在平面直角坐标系中,四边形ABCD是菱形, 在平面直角坐标系中,四边形 是菱形, 在平面直角坐标系中 是菱形 , 且点A的坐标为 的坐标为( , ),则点B,C,D的 ),则点 ∠ABC=600, 且点 的坐标为(0,2),则点 的
坐标分别是B( 坐标分别是 提示: 提示: 12=2 3 ) ,C ( ) , D( )
菱形 四边形
平行四边形
作业
• 必做题 课本 课本102页第 题 页第6题 页第 • 选做题 课本 课本103页第 题 页第10题 页第
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x
…
-4
-2
0
2
4
…
y= 1 x 2
…
-2
-1
0
1
2
…
y=-1 x
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x
…
-4
-2
0
2
4
…
y= 1 x 2
…
-2
-1
0
1
2
…
y=-1 x
(人教版)菱形的定义、性质
二、探究菱形的性质。
动手做一做:将一张长方形的纸对折、再对 折,然后沿图中的虚线剪下,打开就可以得 到菱形.它会有什么性质呢?
(1)观察得到的菱形,它是中心 分组讨论:
A B C D
对称图形吗? 它是轴对称图 形吗?如果是,有几条对称 轴? 对称轴之间有什么位置关系? (2)从边、角、对角线等方 面来探讨,从图中你能得到 哪些结论?并说明理由.
(A)对角线相等(B)对角线互相垂直(C) 是轴对称图形(D)对角线平分
A
D
C
B
D
5.如图:在菱形ABCD中,AE⊥BC, B AF⊥CD,垂足分别为点E、F, 求证:△ABE ≌△ADF
E C F
【菱形的面积公式】
A
菱形
B
O E
C
D
S菱形=BC×AE
思考:计算菱形的面积除了上式方法外,利
用对角线能 计算菱形的面积吗? S菱形ABCD=S△ABD+S△BCD= 1 AC×BD
D
边
菱形的两组对边平行且相等 A
O B 数学语言
C
菱形的四条边相等
∵四边形ABCD是菱形
角 菱形的两组对角分别相等
∠DCA=∠BCA ∠ADC=∠ABC AB ∥ CD ∠ADB=∠CDB 菱形的 两条对角线互相平分 ∠ABD=∠CBD AC⊥BD 对角线
∴∴ ∠DAC=∠BAC AD ∥BC ∴OA=OC;OB=OD AB=BC=CD=DA ∴ ∴ ∠DAB=∠DCB =
三、应用新知
A
D
O
C
如图,在菱形ABCD中,对角线AC、BD 相交于点O. (1)图中有哪些线段是相等的?哪 些角是相等的? (2)有哪些特殊的三角形? (3)有哪些全等的三角形?
19.2.2 菱形的判定 数学华师大版八年级下册课件
如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是 什么四边形?
解:四边形EFGH是菱形. 理由如下:连接AC、BD
EB A
∵点E、F、G、H为各边中点,
EF GH 1 BD,FG EH 1 AC.
又∵AC=BD2,
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
F
A
D AB=BC=CD=DA
A
D
B
C
四边形ABCD
B
C
菱形ABCD
几何语言 ∵在四边形ABCD中,AB=BC=CD=DA ∴四边形ABCD是菱形
用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的 十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候 变成菱形?
猜想:对角线互相垂直的平行四边形是菱形.
O B
(4)若∠BAO=∠DAO,则□ABCD是 菱 形.
4.下列命题中正确的是( C )
A.一组邻边相等的四边形是菱形 C.四条边相等的四边形是菱形
B.三条边相等的四边形是菱形 D.四个角相等的四边形是菱形
5.对角线互相垂直且平分的四边形是( C )
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
例5 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边
形EFGH是菱形. 证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
EF GH 1 BD,FG EH 1 AC,
2
2
∴EF=FG=GH=HE,
F
19.2.1菱形的定义和性质
足AE+CF=a。
证明:不论E、F怎样移
E A
B
三、课堂练习(复习巩固) 1、菱形的两条对角线长分别是6cm和 8cm,则菱形 的周长 ,面积 。 2、菱形的面积为24cm2,一条对角线的 长为6cm,则另一条对角线长为 ;边 长为 。 3、已知菱形的两个邻角的比是1:5,高 是 8cm,则菱形的周长为 。 4、已知菱形的周长为40cm,两对角线的 比为3:4,则两对角线的长分别 是 。
3 12
F D C
B
例8、已知,菱形对角线长分别为12cm和 16cm,求菱形的高。
例9、如图,E为菱形ABCD边BC上一点, AB=AE,AE交BD于O,∠DAE=2∠BAE, 求证:EB=OA;
A
O D
B
E
C
例10、如图,边长为a的菱形ABCD中,∠DAB=60度,
E是异于A、D两点的动点,F是CD上的动点,满
3、菱形ABCD中,对角线AC、BD相交 于点O,E、F分别是AB、AD的中点,求证: OE=OF。
A E
F
D O C
B
4、如果菱形的一个角是1200,那么这个 角的顶点向两条对边所引的两条垂线分别平 分两边。
A
D
F E C
B
5、如图,菱形ABCD中,E、F分别是BC、CD 上的点,且∠B= ∠ EAF=60 , ∠ BAE=18, 求∠ CEF的度数.
A
D O
C
B
已知四边形ABCD是菱形
相等的线段: AB=CD=AD=BC
5
A
1 2
7
D
8
O
6 3 4
OA=OC OB=OD
B
C
∠DAB=∠BCD ∠ABC =∠CDA 相等的角:
证明:不论E、F怎样移
E A
B
三、课堂练习(复习巩固) 1、菱形的两条对角线长分别是6cm和 8cm,则菱形 的周长 ,面积 。 2、菱形的面积为24cm2,一条对角线的 长为6cm,则另一条对角线长为 ;边 长为 。 3、已知菱形的两个邻角的比是1:5,高 是 8cm,则菱形的周长为 。 4、已知菱形的周长为40cm,两对角线的 比为3:4,则两对角线的长分别 是 。
3 12
F D C
B
例8、已知,菱形对角线长分别为12cm和 16cm,求菱形的高。
例9、如图,E为菱形ABCD边BC上一点, AB=AE,AE交BD于O,∠DAE=2∠BAE, 求证:EB=OA;
A
O D
B
E
C
例10、如图,边长为a的菱形ABCD中,∠DAB=60度,
E是异于A、D两点的动点,F是CD上的动点,满
3、菱形ABCD中,对角线AC、BD相交 于点O,E、F分别是AB、AD的中点,求证: OE=OF。
A E
F
D O C
B
4、如果菱形的一个角是1200,那么这个 角的顶点向两条对边所引的两条垂线分别平 分两边。
A
D
F E C
B
5、如图,菱形ABCD中,E、F分别是BC、CD 上的点,且∠B= ∠ EAF=60 , ∠ BAE=18, 求∠ CEF的度数.
A
D O
C
B
已知四边形ABCD是菱形
相等的线段: AB=CD=AD=BC
5
A
1 2
7
D
8
O
6 3 4
OA=OC OB=OD
B
C
∠DAB=∠BCD ∠ABC =∠CDA 相等的角:
新课标人教版八年级下第十九章《19.2.2菱形的性质》.ppt
菱形ABCD中
AB=CD=AD=BC 相等的线段:
5 6
1 2
7 8
D
O
3
4
OA=OC
OB=OD
B
C
∠DAB=∠BCD ∠ABC =∠CDA 相等的角: ∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4
∠5=∠6=∠7=∠8
根据上面所得的结论,你能否从边、角、对角线、对称性四 个方面得出菱形的性质?
汲取着知识的养分,茁壮地成长
19.2特殊的平行四边形
19.2.2菱形
边
平行四边形的对边相等;
平行四 边形的 性质: 对角线 平行四边形的对角线互相平分; 角 平行四边形的对角相等;
活动一:
在平行四边形中,如果内角大小保持不 变仅改变边的长度,能否得到一个特殊 的平行四边形?
平行四边形
邻边相等
菱形
活动五:
1.菱形的定义: 是菱形 2.菱形的性质:①菱形的四条边 , ②菱形的对角线 ,并且每一条对角 线一组 对角. 3.下列说法不正确的有 (填番号) ①菱形的对边平行且相等.②菱形的对角线互相平分 ③菱形的对角线相等.④菱形的对角线互相垂直. ⑤菱形的一条对角线平分一组对角.⑥菱形的对角相 等. 4.菱形的面积公式:① ② . 5.菱形既是 图形,又是 图形.
A
B
O
C
解: 花坛ABCD是菱形 1 1 AC BD, ABO ABC 600 300 2 2 1 1 在RtOAB中,AO AB 10 5m 2 2 BO AB2 AO2 102 52 75m
花坛的两条小路长 AC 2 AO 10m BD 2 BO 17.32m 花坛的面积 S菱形ABCD 4 S AOB
华师大版19.2.2《菱形的判定》课件(共20张PPT)
华东师大版 八年级数学下册
19.2 菱形的判定
辉县市城北初级中学 李永霞
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
学习目标
拓展提升
1.如图,将矩形纸片ABCD沿EF折叠,使D与B重合,折痕为 EF,然后展开,连接DF,BE. 求证:四边形EBFD是菱形;
C
∴OA=OC
又∵AC⊥BD;
∴BA=BC ∴ 平行四边形ABCD是菱形
新课学习
菱形的判定3:
对角线互相垂直的平行四边形是菱形.
A
D
A
D
AC⊥BD
B
C
平行四边形ABCD
B
C
菱形ABCD
数学语言∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
新课学习
例4: 如图,平行四边形ABCD的对角线AC、BD相交
于点O,AB=5,AO=4,BO=3.求证: 平行四边形
ABCD是菱形.
D
A
O
C
B
知识巩固
1、判断题
1、掌握菱形的判定定理及证明方法。
2、学会运用菱形的判定解决一些问题; 进一步发展合情推理能力;逐步掌握说 理的基本方法。
19.2 菱形的判定
辉县市城北初级中学 李永霞
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
学习目标
拓展提升
1.如图,将矩形纸片ABCD沿EF折叠,使D与B重合,折痕为 EF,然后展开,连接DF,BE. 求证:四边形EBFD是菱形;
C
∴OA=OC
又∵AC⊥BD;
∴BA=BC ∴ 平行四边形ABCD是菱形
新课学习
菱形的判定3:
对角线互相垂直的平行四边形是菱形.
A
D
A
D
AC⊥BD
B
C
平行四边形ABCD
B
C
菱形ABCD
数学语言∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
动手操作
• 取两根长度不等的细纸条,将两根纸条的
中点重合并固定在一起,用笔和直尺画出
纸条四个端点的连线,则这四条线段组成
一个什么图形,若转动其中一根纸条,使
两根纸条之间的夹角等于 90° ,这时图形
的形状是什么图形
D
A
C
B
新课学习
例4: 如图,平行四边形ABCD的对角线AC、BD相交
于点O,AB=5,AO=4,BO=3.求证: 平行四边形
ABCD是菱形.
D
A
O
C
B
知识巩固
1、判断题
1、掌握菱形的判定定理及证明方法。
2、学会运用菱形的判定解决一些问题; 进一步发展合情推理能力;逐步掌握说 理的基本方法。
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件
5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.
人教版八年级下册数学 19.2.2 一次函数(2)一次函数的图像与性质 课件 (共26张PPT)
y Ox
y随x的增大而减小
函数的图象随着x的增大从左到右 下降
图象与y轴相交 于正半轴,图 象只经过一、 二、四象限, 不经过第三象 限。
图象与y轴相交 于负半轴,图象 只经过二、三、 四象限,不经过 第一象限。
*k越小直线相对于x轴越陡峭。
y
y
Ox
Ox
根据图象确定k,b的取值
K> 0 b= 0
K <0 b= 0
?
k>0
k<0
y
y
Ox
Ox
?
性质:k>0,y 随x 的增大 而增大;k<0,y 随 x 的 增大而减小.
针对函数 y =kx+b,大家想研 究什么?应该怎样研究?
画一画
y =2x
画一次函数 y =2x-3 的图象.
x … -2 -1 0 1 2 … y=2x-3 … -7 -5 -3 -1 1 … y
求一次函数y=kx+b(k≠0)的图象与两坐标轴的交点的方法是; 令x=0,则得y=b,而得与y轴的交点坐标为(0,b); 令y=0,则得x=-b/k,而得与x轴的交点坐标为(-b/k,0)
K:决定直线倾斜的方向。 |k|越大,函数图象越靠近 y轴。
b: 决定直线与y轴相交的 交点的位置。当b>0时,交 点在y轴正半轴;当b˂0时, 交点在y轴负半轴。
2 1
得 x=1.
-2 -1 O
过点(0,3)、(1,0)画一条直线,
-1 -2
123
x
这条直线就是函数y=-3x+3的图像.
-3
-4 y=-3x+3
思思思考考考1:23::画画把一一直次次线函函y数=数y-=y3=2xx怎-3样1x-的平3 图移像得的选到图取函像哪数选两y=取点-哪比3两较x+点方3比便的较?图方像便?? 2
19.2.2菱形(1)
对角线
A
D
O B
C
角
菱形的两条对角线互相垂直,每 一条对角线平分一组对角。
1.动手设计一幅有关菱形 的图案。
2.课本113-114页 第5、11 、12题
如图,菱形花坛ABCD的边长为20m, ∠ABC=60度,沿着菱形的对角线修建了 两条小路AC和BD,求两条小路的长和花 坛的面积(分别精确到0.01m和0.01m2 )
A B
O
D
C
例1 如图,菱形花坛ABCD的边长为20m, ∠ABC=60度, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路 的长和花坛的面积(分别精确到0.01m和0.01m2 )
三菱越野汽车欣赏
“法兰西巡逻兵”飞行表演队称得上是世界最著名、同时也是世界 最古老的飞行特技小组之一,他们的飞行秉承法国文化中固有的优 雅风范,编排巧妙,它的飞行表演也并不在意是否雷霆万钧气势迫 人,而是专注于芭蕾般的优美与法国击剑一样的敏捷和灵活。
菱形是轴对称图形吗?
(1)菱形是轴对称图形吗?如果是,那 么它有几条对称轴?对称轴之间有什么位置 关系?
【菱形的面积公式】A B来自菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
菱形
O E
C
D
S菱形=BC. AE
思考:计算菱形的面积除了上式方法外,利用对 角线能 计算菱形的面积公式吗?
S菱形ABCD = S△ABD+S△BCD
=
1 2
为 什 么
?
AC×BD
菱形的面积=底×高=对角线乘积的一半
∵BO=DO B ∴AC⊥BD,AC平分∠BAD 同理: AC平分∠BCD; BD平分∠ABC和∠ADC
A
D
O B
C
角
菱形的两条对角线互相垂直,每 一条对角线平分一组对角。
1.动手设计一幅有关菱形 的图案。
2.课本113-114页 第5、11 、12题
如图,菱形花坛ABCD的边长为20m, ∠ABC=60度,沿着菱形的对角线修建了 两条小路AC和BD,求两条小路的长和花 坛的面积(分别精确到0.01m和0.01m2 )
A B
O
D
C
例1 如图,菱形花坛ABCD的边长为20m, ∠ABC=60度, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路 的长和花坛的面积(分别精确到0.01m和0.01m2 )
三菱越野汽车欣赏
“法兰西巡逻兵”飞行表演队称得上是世界最著名、同时也是世界 最古老的飞行特技小组之一,他们的飞行秉承法国文化中固有的优 雅风范,编排巧妙,它的飞行表演也并不在意是否雷霆万钧气势迫 人,而是专注于芭蕾般的优美与法国击剑一样的敏捷和灵活。
菱形是轴对称图形吗?
(1)菱形是轴对称图形吗?如果是,那 么它有几条对称轴?对称轴之间有什么位置 关系?
【菱形的面积公式】A B来自菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
菱形
O E
C
D
S菱形=BC. AE
思考:计算菱形的面积除了上式方法外,利用对 角线能 计算菱形的面积公式吗?
S菱形ABCD = S△ABD+S△BCD
=
1 2
为 什 么
?
AC×BD
菱形的面积=底×高=对角线乘积的一半
∵BO=DO B ∴AC⊥BD,AC平分∠BAD 同理: AC平分∠BCD; BD平分∠ABC和∠ADC
人教版数学八年级下册第十九章19.2.2《含两个一次函数的应用》课件
例1 “黄金1号”玉米种子的价格为5元/kg.如果一次
购买2 kg以上的种子,超过2 kg部分的种子价格打8
折.
(1购)填买写量/表kg. 0.5 1 1.5 2 2.5 3 3.5 4 …
付款金额/元
…
(2)写出付款金额关于购买量的函数解析式,并画 出
函数图象.
分析:付款金额与种子价格相关. 问题中种子价格不是固 定不变的,它与购买量有关. 设购买x kg种子,当 0≤x≤2时,种子价格为5元/kg;当x>2时,其中有 2kg种子按5元/kg计价,其余的(x-2)kg(即超出2 kg 部分) 种子按4元/kg (即8折)计价,因此,写函数解析 式与画函数图象时,应对 0≤x≤2和x>2分段讨论.
次性返还现金4元,则购买盒子所需要最少费用为
___2_9____元.
型号 单个盒子容量/升
单价/元
AB 23 56
合作探究
知识点 2 从图像中获取信息的应用
例3 游泳池常需进行换水清洗,图中的折线表示的是游泳池 换水清洗过程“排水——清洗——灌水”中 水量y(m3) 与时间t(min)之的函数图象. (1)根据图中提供的信息,求排水阶段和 清洗阶段游泳池中的水量y(m3)与时间 t(min)之间的函数关系式(不必写出t的 取值范围); (2)问:排水、清洗各花多少时间?
y=
___1_8_0_x___(x=1,2,…,10), ___1_8_0_x_+__7_2_0__ (x>10,且x为整数).
3 【中考·黄石】一食堂需要购买盒子存放食物,盒子
有A,B两种型号,单个盒子的容量和价格如表.现
有15升食物需要存放且要求每个盒子要装满,由于A
型号盒子正做促销活动:购买三个及三个以上可一
人教版八年级下册19.2.2一次函数图像与性质课件(共52张ppt)
B.第10天销售一件
C.第12天与第30天这两天的日销售利润相等 D.第30天的 日销售利润是750元
函数应用
【答案】D 【解析】 根据图可知第24天的销售量为200件,故A正确; 设当0≤t<20,一件产品的销量利润与时间的函数关系,最终 求出函数表达式,B正确; C答案方法同上; 第30天的日销售利润为:150×5=750元,故正确。
知识回顾
3. 函数的定义: 一般地,在某个变化过程中,设有两个变量x,y,如果对于x的每一个 确定的值,y都有唯一确定的值与之对应,那么就说y是x的函数, x叫做自变量。 简单理解: (1)有两个变量; (2)一个变量的数值随着另一个变量的数值的变化而发生变化; (3)对于自变量的每一个确定的值,函数值有且只有一个值与之对 应。
如图3,连接AP,
∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=12 AB•PD,
S△ACP= 1AC•PE,S△ABC= 1AB•CF,
2
2
∵S△ABP﹣S△ACP=S△ABC,∴ 12AB•PD﹣ 12AC•PE= 12AB•CF,
又∵AB=AC,∴PD﹣PE=CF;
【结论运用】
由题意可求得A(﹣4,0),B(3,0),C(0,1),
函数应用
变式4.(中)如图是本地区一种产品30天的销售图象,图①是 产品日销售量y(单位:件)与时间t(单位;天)的函数关 系,图②是一件产品的销售利润z(单位:元)与时间t(单 位:天)的函数关系,已知日销售利润=日销售量×一件产 品的销售利润,下列结论错误的是( )
A.第24天的销售量为200件 产品的利润是15元
一次函数 的大致图象可能是( )
A.
B.
C.
D.
最新人教版八年级下册数学《菱形》精品ppt教学课件
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 个人简历:/jianli/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
◆课堂小结
本节课我们主要学习了哪些内容?你 有什么收获?还有什么困惑?大胆地说 说自己的体会、感受或想法。
?
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
课后反思
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
教师寄语 1、和同桌说说你今天学习有什么收获?
2、老师我们引在导生学活生中归要纳站本得挺课拔知,识坐重得点端。正,
读得响亮,说得大方。要做一个有精神的 小学生!
D
A
C
B
(3)对角线:菱形的对角线互相垂直,并且每一条对角线平分一组对角.
几何语言:∵四边形ABCD是菱形 ∴AC⊥BD, AC平分∠BAD,∠BCD, BD平分∠ABC,∠ADC
命题2:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
已知:∵四边形ABCD是菱形 求证:∴AC⊥BD, AC平分∠BAD,∠BCD, BD平分∠ABC,∠ADC
菱形的判定 公开课课件
B
C
A D 返回
老师说下列三个图形都是菱形,你相信吗?
5
35
44 3
3 44
3
┍
有一组邻边相等的平
对角线互相垂直的平行
行四边形叫做菱形
5 四边形是菱形
5
5
5
有四条边相等的四边形是菱形。
返回
如图,在等边三角形ABC中,D,E,F 分别是各边的中点。连结DE、EF、FD 图中有菱形吗?如果有,请你把它们找出来。
A
D
E
B FC
返回
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
C
A D 返回
老师说下列三个图形都是菱形,你相信吗?
5
35
44 3
3 44
3
┍
有一组邻边相等的平
对角线互相垂直的平行
行四边形叫做菱形
5 四边形是菱形
5
5
5
有四条边相等的四边形是菱形。
返回
如图,在等边三角形ABC中,D,E,F 分别是各边的中点。连结DE、EF、FD 图中有菱形吗?如果有,请你把它们找出来。
A
D
E
B FC
返回
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
人教版数学八年级下册19.2.2求一次函数的解析式课件
∵图象过点_(2_,__5_), _(_1_,__3)
因为一次函数的一般形式
∴
2 k +b = 5 1 k+b = 3
是y你=kx能+b归(k纳≠0)出,:要求
出一次函数的解析式,关
求一次函数解析式
键是要确定 k 和 b 的值.
解得 k=_2__ b=__1_
的基本步骤吗?
因为图象过(2,5)
把k=1,b=2 代入 y = kx+b 中,
k的值
一个条件
确定一次函数的解析式y=kx+b,需求哪个值?需 要几个条件?
K、b的值 两个条件
总结:在确定函数解析式时,要求几个系数 就需要知道几个条件。
整理归纳
No
从数到形
Imag
函数解 选取 析式: y=kx+b (k≠0) 求出
满足条件 画出
的两点: (x1,y1)与 (x2,y2) 选取
两点法——两点确定一条直线
解析式的方法,叫做待定系数法. 新人教版 • 八年 级 《 数 学 ( 下) 》
两点法——两点确定一条直线
例:已知一次函数的图象经过点(3,5) 与点(-4,-9).求这个一次函数的
解析式. 解:设这个一次函数的解析式为y=kx+b. 设
∵ 图象过点(3,5)与 点(-4,-9)
得一次函数解析式为__y__=__2_x_+_1_.
与(1,3)两点, 所以这两点的坐标必
适合解析式
解题的基本步骤: 1、已知一次函数y=kx+b,当x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.
函数解析式:y=kx+b(k≠0)
八年级数学下册第19章矩形菱形正方形19、2菱形19、2、1菱形的性质教学课件新版华东师大版
O
C
D
课程讲授
1 菱形的性质
练一练: 如图,在菱形ABCD中,对角线AC,BD相交于点O, H为AD边中点,菱形ABCD的周长为28,则OH的长为 (A ) A.3.5 B.4 C.7 D.14
课程讲授
2 菱形的面积
想一想:比较菱形的对角线和平行四边形的对角线,我 们发现菱形的对角线将菱形分成四个全等的直角三角 形,而平行四边形通常只被分成两对全等的三角形.
2 菱形的面积
练一练: 如图,菱形ABCD的周长是120 cm,对角线AC的 长度为36 cm.求: (1)另一条对角线的长度; (2)这个菱形的面积.
课程讲授
2 菱形的面积
练一练:
解:(1)∵四边形ABCD是菱形且周长为
120 cm,∴AB=30 cm,AO=
1 2
AC=18
cm,
在Rt△ABO中,BO= AB2-AO2 =24 cm,
平分一组对角.
B
数学表达式:
AO
C
在菱形ABCD中,对角线AC与BD相交于点O. D
则AC⊥BD, ∠DAC=∠BAC,∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
课程讲授
1 菱形的性质
做一做:把图中的菱形ABCD沿直线BD对折
(1)点A的对应点是 点C ;(2)点C的对应点
是 点A ;(3)点D的对应点是 点B ;
已知菱形两条 对角线的长, 你能求出它的
面积吗?
课程讲授
2 菱形的面积
问题1:菱形是特殊的平行四边形,那么能否利用平行四 边形面积公式计算菱形ABCD的面积?
能.如图,过点A作AE⊥BC于点E,则S菱形ABCD=底×高
华东师大版数学八年级下册19.菱形的判定课件
二.探究新知 (一)探究:菱形的判定1(四边相等的四边形是菱形)
已知:如图,四边形ABCD的边长,AB=BC=CD=AD
求证:四边形ABCD是菱形
A
证明: ∵AB=BC=CD=AD 即AB=DC,BC=AD
∴ 四边形ABCD是平行四边形
BБайду номын сангаас
D
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)
2
2
4
三.课堂小结
菱形的判定:间接判定
有一组邻边相等的平行四边形为菱形 对角线互相垂直的平行四边形为菱形
直接判定
四条边相等的四边形为矩形
对角线互相垂直、平分的四边形为菱形(简答题不能直接使用)
解: ∵AD的垂直平分线交AB于点E,交AC于点F
A
∴AE=DE ,AF=DF 即∠EAD= ∠EDA, ∠FAD =∠ FDA
又∵AD平分∠BAC
E
∴ ∠EAD= ∠FAD, ∠EDA =∠ FDA
F
∴△AED全等于△AFD(ASA)
∴AE=AF=DF=DE
B
D
C ∴四边形ABED为菱形(四条边相等的四边形为菱形)
∵AC+BD=q
O
∴ AO+DO=0.5q
C
A
∴ 有勾股定理得:( AO DO)2 AO2 DO 2 2AO • DO AD2 2AO • DO p2 2AO • DO q2
4
4
即2 AO • DO q2 - p2
B
4
∴ S菱形 1 AC • BD 1 2AO 2DO 2AO • DO q2 - p2
第19章 矩形、菱形与正方形
19.2.2 菱形的判定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
1.已知菱形的周长是12cm,那 3cm 么它的边长是______. 2.菱形ABCD中∠ABC=60度, 60度 则∠BAC=_______. B
A
D O C
3.菱形ABCD中,O是两条对角线的 交点,已知AB=5cm,AO=4cm,求 两对角线AC、BD的长。 4.菱形ABCD中两条对角线的长分别是 6cm和8cm,求菱形的周长和面积.
(1)菱形具有平行四边形的一切性质;
(2)菱形的四条边都相等;
(3)菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角;
(4)菱形是轴对称图形;也是中心对称图形;
命题:菱形的对角线互相垂直平分, 并且每一条对角线平分一组对角;
已知:菱形ABCD的对角线AC和BD相交于点O,如下图,
求证:AC⊥BD ;
AC平分∠BAD和∠BCD ;BD平分∠ABC和∠ADC
证明:∵四边形ABCD是菱形 ∴AB=AD(菱形的四条边都相等) 在△ABD中,
A
D
O
又∵BO=DO ∴AC⊥BD,AC平分∠BAD B 同理: AC平分∠BCD; BD平分∠ABC和∠ADC
已知四边形ABCD是菱形
相等的线段:AB=CD=AD=BC
3 12
F D C
B
6、在菱形ABCD中,AE⊥BC,AF⊥CD,E、 F分别为BC,CD的中点,那么∠EAF的度 数是( ) B
A
A.75°B.60° B C.45°D.30°
E C F
D
1.定义:
2.性质:
矩形和菱形常利用图中 的RT△进行计算和证明
3.面积:S菱形=底×高=对角线乘积的一半
如图,菱形花坛ABCD的周长为20m, ∠ABC=60度,沿着菱形的对角线修建了 两条小路AC和BD,求两条小路的长和花 坛的面积(分别精确到0.01m和0.01m2 )
A B
O
C
D
3、已知菱形ABCD中,E是AB的中点,且 DE⊥AB,AB=4. 求:⑴∠ABC的度数 ⑵对角线AC的长 ⑶菱形ABCD的面积
4、如图,E为菱形ABCD边BC上一点, 且AB=AE,AE交BD于O,且 ∠DAE=2∠BAE, 求证:EB=OA;
A O D
B
E
C
5、已知,菱形对角线长分别为12cm和16cm, 求菱形的高。
已知:如图,AD平分∠BAC,DE∥AC 交AB于E,DF∥AB交AC于F. 求证:EF⊥AD;
A E
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA △ABD≌△BCD △ABC≌△ACD Rt△DOA
边
菱形的两组对边平行且相等
D O B C
菱形的四条边相等
菱形的两组对角分别相等
A
角
菱形的邻角互补
菱形的 两条对角线互相平分
对角线
菱形的两条对角线互相垂直平分,每一 条对角线平分一组对角.
成功就是99%的血汗,加上1%的灵感。
——爱迪生
如图,边长为a的菱形ABCD中,∠DAB=60 度,E是异于A、D两点的动点,F是CD上的动 点,满足AE+CF=a.
证明:不论E、F怎样移动,三角形BEF总是正 三角形.
D
E A
F
C
5 6
A
1 2
7 8
D
O
3
4
OA=OC
OB=OD
B
相等的角: ∠DAB=∠BCD ∠ABC =∠CDA
∠1=∠2=∠3=∠4
C
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠5=∠6=∠7=∠8
等腰三角形有:△ABC △ DBC △ACD △ABD 直角三角形有:Rt△AOB Rt△BOC Rt△COD
19.2.2 菱 形(1)
三菱越野汽车欣赏
情 景 创 设
我们已经知道平行四边形是特殊的四边 形,因此平行四边形除具有四边形的性 质外,还有它的特殊性质,同样对于平 行四边形来说有特殊情况即特殊的平行 四边形,我们已经研究了一种特殊的平 行四边形——矩形 ;这堂课还要研究另 一种特殊的平行四边形——菱形
矩形
两组对边
分别平行
平行 四边形
菱形
有一组邻边相等的平行四边形叫做菱形;
AB=BC
四边形ABCD是菱形
ABCD
如何利用折纸、剪切的方法,既快又准 确地剪出一个菱形的纸片?
他是这样做的:将一张长方形的纸 对折、再对折,然后沿图中的虚线剪下, 打开即可.你知道其中的道理吗?
D
O
A
C B
菱形的性质:
【菱形的面积公式】
A
菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
菱形
B
O E
C
D
S菱形=BC. AE
为 什 么
思考:计算菱形的面积除了上式方法外,利用对 角线能 计算菱形的面积公式吗?
S菱形ABCD = S△ABD+S△BCD
1
=
2
AC×BD
菱形的面积=底×高=对角线乘积的一半