2020高考数学必备30题百度文库版

合集下载

2020高考数学(理)必刷试题+参考答案+评分标准 (88)

2020高考数学(理)必刷试题+参考答案+评分标准 (88)

2020高考数学模拟试题(理科)一、选择题(本大题共12小题)1.已知集合A={x|-1<x<2},,则A∩B=()A. B. C. D.2.命题“∀x∈N*,x2∈N*且x2≥x”的否定形式是()A. ,且B. ,或C. ,且D. ,或3.已知数列{a n}中,“a n+12=a n•a n+2”是“数列{a n}为等比数列”的什么条件()A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要4.设函数,若,则b等于()A. 2B. 1C.D.5.已知,则cos2α=()A. B. C. D.6.设向量满足,且与的夹角为,则=()A. 2B. 4C. 12D.7.已知等差数列{a n}中,a3+a5=π,S n是其前n项和.则sin S7等于()A. 1B. 0C.D.8.△ABC的内角A,B,C的对边分别为a,b,c,已知,则C等于()A. B. C. 或 D. 或9.设f(x)是定义域为R的偶函数,且f(x+3)=f(x-1),若当x∈[-2,0]时,f(x)=2-x,记,,c=f(32),则a,b,c的大小关系为()A. B. C. D.10.已知函数f(x)=sin x-cos x,g(x)是f(x)的导函数,则下列结论中错误的是()A. 函数的值域与的值域相同B. 若是函数的极值点,则是函数的零点C. 把函数的图象向右平移个单位,就可以得到函数的图象D. 函数和在区间上都是增函数11.在△ABC中,AC⊥AB,AB=2,AC=1,点P是△ABC所在平面内一点,,且满足,若,则2λ+μ的最小值是()A. B. 5 C. 1 D.12.设函数,若存在f(x)的极值点x0满足,则m的取值范围是()A. B.C. D.二、填空题(本大题共4小题)13.已知曲线y=ax+ln x在点(1,a)处的切线过点(2,3),则a=______.14.已知函数f(x)=log a x+b(a>0,a≠1)的定义域、值域都是[1,2],则a+b= ______ .15.由曲线,直线y=2x,x=2所围成的封闭的图形面积为______.16.用g(n)表示自然数n的所有因数中最大的那个奇数,例如:6的因数有1,2,3,6,g(6)=3,9的因数有1,3,9,g(9)=9,那么g(1)+g(2)+g(3)+…+g (22019-1)=______.三、解答题(本大题共6小题)17.给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=x a-1在(0,+∞)内单调递减;如果p与q中有且仅有一个为真命题,求实数a的取值范围.18.已知函数.(Ⅰ)求f(x)的最小正周期及单调递减区间;(Ⅱ)若f(x)在区间上的最小值为1,求m的最小值.19.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S4=16.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)当d>1时,记,求数列{c n}的前n项和T n.20.已知函数,,(Ⅰ)若函数f(x)有两个零点,求实数a的取值范围;(Ⅱ)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.21.已知△ABC的内角A,B,C的对边分别为a,b,c,且,,.(Ⅰ)求角A的大小;(Ⅱ)若a=3,求△ABC的周长L的取值范围.22.已知函数,函数g(x)=-2x+3.(Ⅰ)当a=2时,求f(x)的极值;(Ⅱ)讨论函数的单调性;(Ⅲ)若-2≤a≤-1,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求实数t的最小值.答案和解析1.【答案】C【解析】解:∵集合A={x|-1<x<2},={x|x≥0},∴A∩B={x|0≤x<2}=[0,2).故选:C.分别求出集合A,B,由此能求出A∩B.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:命题的全称命题,则否定是特称命题,即∃x0∈N*,x02∉N*或x02<x0,故选:D.根据全称命题的否定是特称命题进行判断即可.本题主要考查含有量词的命题的否定,结合全称命题的否定是特称命题是解决本题的关键.比较基础.3.【答案】B【解析】解:若数列{a n}为等比数列,则满足a n+12=a n•a n+2,当数列a n=0时满足a n+12=a n•a n+2,但此时数列{a n}为等比数列不成立,即“a n+12=a n•a n+2”是“数列{a n}为等比数列”的必要不充分条件,故选:B.结合等比数列的性质,以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合等比数列的性质,利用特殊值法是解决本题的关键.比较基础.4.【答案】B【解析】解:根据题意,函数,则f()=4×-b=3-b,若b≤2,则3-b≥1,此时f(f())=f(3-b)=23-b=4,解可得b=1;若b>2,则3-b<1,此时f(f())=f(3-b)=4×(3-b)-b=12-5b=4,解可得b=,(舍)故b=1;故选:B.根据题意,由函数的解析式可得f()=4×-b=3-b,按b的范围分情况讨论,代入函数的解析式,求出b的值,综合可得答案.本题考查分段函数的解析式,涉及函数值的计算,属于基础题.5.【答案】A【解析】解:已知,所以,利用三角函数的定义,解得,故cos2α=1-2sin2α=.故选:A.本题考查的知识要点:三角函数关系式的恒等变换,同角三角函数关系式的变换,倍角公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.【答案】D【解析】解:,∴,∴=.故选:D.根据条件可求出,进而求出,并且,从而根据进行数量积的运算即可求出的值.本题考查了根据向量得到坐标求向量的长度的方法,向量数量积的运算及计算公式,向量长度的求法,考查了计算能力,属于基础题.7.【答案】C【解析】解:等差数列{a n}中,a3+a5=π,∴==,∴sin S7==sin(-)=-sin=-1.故选:C.由等差数列{a n}中,a3+a5=π,得==,由此能求出sin S7.本题考查等差数列中前7项和的正弦值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8.【答案】A【解析】解:由于,所以,解得A=,由于a=,c=1,所以,解得,由于c<a,所以.故选:A.直接利用正弦定理余弦定理的应用求出结果.本题考查的知识要点:正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:∵f(x+3)=f(x-1),∴f(x+4)=f(x),即函数f(x)是周期为4的周期函数,当x∈[-2,0]时,f(x)=2-x,则函数f(x)为减函数,即当x∈(0,2]时,f(x)为增函数,log2=-2,则=f(-2)=f(2),c=f(32)=f(9)=f(8+1)=f(1),∵1<<2,且当x∈(0,2]时,f(x)为增函数,∴f(1)<f()<f(2),∴a>b>c,故选:A.根据f(x+3)=f(x-1),得到函数是周期为4的周期函数,结合函数的奇偶性和单调性的关系进行转化求解即可.本题主要考查函数值的大小比较,结合条件求出函数的周期,结合函数的周期性,奇偶10.【答案】C【解析】解:函数f(x)=sin x-cos x,∴g(x)=f'(x)=cos x+sin x,对于A,f(x)=sin(x-),g(x)=sin(x+),两函数的值域相同,都是[-,],A正确;对于B,若x0是函数f(x)的极值点,则x0+=kπ,k∈Z;解得x0=kπ+,k∈Z;,g(x0)=sin(kπ+-)=0,∴x0也是函数g(x)的零点,B正确;对于C,把函数f(x)的图象向右平移个单位,得f(x-)=sin(x-)-cos(x-)=-cos x-sin x≠g(x),∴C错误;对于D,x∈,时,x-∈(-,0),f(x)是单调增函数,x+∈(0,),g(x)也是单调增函数,D正确.故选:C.求出函数f(x)的导函数g(x),再分别判断f(x)、g(x)的值域、极值点和零点,图象平移和单调性问题.本题考查了三角函数的图象与性质的应用问题,也考查了导数的应用问题,是中档题.11.【答案】D【解析】解:以A为原点,AB,AC所在直线分别为x轴、y轴建立直角坐标系,则A(0,0),B(2,0),C(0,1),,,∴,∴点M满足:(x-1)2+(y-2)2=1,设M(1+cosθ,2+sinθ),则由得:(1+cosθ,2+sinθ)=(2λ,μ),∴,2λ+μ的最小值是3-.故选:D.建系,分别表示出,,进而表示出,再用参数方程,结合三角函数求出范围.本题考查平面向量基本定理,结合三角函数求范围是关键,属于中档题.12.【答案】B【解析】解:函数,可得f′(x)=-,∵x0是f(x)的极值点,∴f′(x0)=0,即,得,k∈Z,即x0=mk,k∈Z,∴可转化为:,即k2m2+3<m2,k∈Z,即,要使原问题成立,只需存在k∈Z,使成立即可,又k2的最小值为0,∴,解得或,故选:B.求出导函数f′(x)=-,利用f′(x0)=0,得到x0=mk,k∈Z,可转化为:k2m2+3<m2,k∈Z,即要使原问题成立,只需存在k∈Z,使成立即可,转化求解表达式的最值即可.本题考查函数的导数的应用,函数的极值,以及成立条件的转化,考查计算能力,是中档题.13.【答案】1【解析】解:∵y=ax+ln x,∴y′=a+,则y′|x=1=a+1,∴曲线y=y=ax+ln x在点(1,a)处的切线方程为y-a=(a+1)(x-1),∵曲线y=ax+ln x在点(1,a)处的切线过点(2,3),解得:a=1.故答案为:1.求导函数,然后确定切线的斜率,可得切线方程,利用曲线y=ax+ln x在点(1,a)处的切线过点(2,3),建立等式,解之即可求出所求.本题考查了利用导数研究在曲线某点处的切线方程,考查导数的几何意义,考查学生的计算能力,属于基础题.14.【答案】或3【解析】【分析】本题考查对数函数的性质以及分类讨论的思想方法.分类讨论函数的单调性是正确解决本题关键.属于易错题.分类讨论a的取值范围,得到函数单调性,代入数据即可求解.【解答】解:当0<a<1时,易知函数f(x)为减函数,由题意有解得:a=,b=2,符合题意,此时a+b=;当a>1时,易知函数为增函数,由题意有,解得:a=2,b=1,符合题意,此时a+b=3.综上可得:a+b的值为或3.故答案为:或3.15.【答案】3-2ln2【解析】解:依题意,由解得,∴封闭的图形面积为=(x2-2ln x)=3-2ln2.故答案为:3-2n2.求出曲线,直线y=2x的交点坐标,根据定积分的几何意义列式求解即可.本题考查了定积分的几何意义,定积分的求法,主要考查分析解决问题的能力和计算能力,属于基础题.16.【答案】【解析】解:由g(n)的定义易知g(n)=g(2n),且若n为奇数,则g(n)=n,令f(n)=g(1)+g(2)+g(3)+…+g(2n-1),则f(n+1)=g(1)+g(2)+g(3)+…+g(2n+1-1)=1+3+…+(2n+1-1)+g(2)+g(4)+…+g(2n+1-2)==4n+f(n),即f(n+1)-f(n)=4n,分别取n为1,2,…n,并累加得:,又f(1)=g(1)=1,所以,从而,令n=2019,则所求为:.故答案为:.据题中对g(n)的定义,判断出g(n)=g(2n),且若n为奇数则g(n)=n,利用等差数列的前n项和公式及逐差累加的方法及等比数列的前n项和公式求出g(1)+g(2)+g(3)+…+g(22019-1).本题考查等差数列的前n项和公式、等比数列的前n项和公式、逐差累加的方法,是中档题.17.【答案】解:对任意实数x都有x2+ax+1≥0恒成立⇔△=a2-4≤0⇔-2≤a≤2,幂函数y=x a-1在(0,+∞)内单调递减⇔a-1<0⇔a<1,当p真q假时,有-2≤a≤2且a≥1,得1≤a≤2,当p假q真时,有a<-2或a>2且a<1,得a<-2,综上,所求实数a的取值范围是(-∞,-2)∪[1,2].【解析】通过两个命题是真命题求出a的范围,然后通过当p真q假时,当p假q真时,求解即可.本题考查命题的真假的判断与应用,函数恒成立条件的转化,是基本知识的考查.18.【答案】解:(Ⅰ)由已知,有,=,=,所以f(x)的最小正周期:.由得f(x)的单调递减区间是.(Ⅱ)由(1)知,因为,所以.要使f(x)在区间上的最小值为1,即在区间上的最小值为-1.所以,即.所以m的最小值为.【解析】(Ⅰ)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.(Ⅱ)利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.【答案】解:(Ⅰ)由题意有,即:,解得:或.故或.(Ⅱ)由d>1,知a n=2n-1,,故.于是:①,②①-②得:,故.【解析】(Ⅰ)直接利用已知条件建立方程组,求出数列的通项公式.(Ⅱ)利用(Ⅰ)的结论,进一步利用乘公比错位相减法在数列求和中的应用求出结果.本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.20.【答案】解:(Ⅰ)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,∵,可知当t∈(1,2)时,h′(t)<0,可知当t∈(2,3)时,h′(t)>0,∴函数h(t)在(1,2)递减,(2,3)递增,从而h(t)min=h(2)=4,,h(1)=5,由图象可得,当时,y=h(t)与y=a有两个交点,∴函数f(x)有两个零点时实数a的范围为:.(Ⅱ)由(1)知f(x)∈[1,2],记A=[1,2],当m>0时,在[-1,2]上单调递增,∴,记,由题意得:B⊆A,∴且,解得:,当m<0时,在[-1,2]上单调递减,∴,∴且,得,综上,所求实数m的取值范围为.【解析】(Ⅰ)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,利用函数的导数判断函数的单调性求解函数的最小值然后求解实数a的范围.(Ⅱ)由(1)知f(x)∈[1,2],记A=[1,2],通过当m=0时,当m>0时,当m<0时,分类求实数m的取值范围,推出结果即可.本题考查函数的导数的应用,函数的最值的求法,考查转化思想以及计算能力,是中档题.21.【答案】解:(Ⅰ)由已知得:,再由正弦定理得:,∵B=π-(A+C),∴sin B=sin(A+C)=sin A cos C+cos A sin C②又C∈(0,π),由①②得,,又A∈(0,π),∴.(Ⅱ)法一:由余弦定理:a2=b2+c2-2bc cos A得b2+c2-bc=9即:(b+c)2-3bc=9,而(当且仅当b=c=3时等号成立)从而,得b+c≤6,又b+c>a=3,∴3<b+c≤6,从而周长L∈(6,9];法二:由正弦定理得:,∴,又,从而△ABC的周长L:=,,∴,∴,从而:L∈(6,9].【解析】(Ⅰ)由条件可得,再结合正弦定理及三个角之间的关系可得,进而求出A;(Ⅱ)利用余弦定理再结合基本不等式可得3<b+c≤6,则可求出周长L的范围.本题考查平面向量数量积的运算,设计到正、余弦定理,属于中档题.22.【答案】解:(Ⅰ)a=2时,f(x)=ln x-x2+x.∵.易知f(x)在(0,1)递增,(1,+∞)递减,∴f(x)极大值=f(1)=0,无极小值.(Ⅱ).∴.①a≤0时,F′(x)>0,恒成立,∴F(x)在(0,+∞)单调递增;②当a>0,由F′(x)>0得,F′(x)<0得,所以F(x)在单调递增,在单调递减.综上:当a≤0时,F(x)在(0,+∞)单调递增;当a>0时,F(x)在单调递增,在单调递减.(Ⅲ)由题知t≥0,.当-2≤a≤-1时,f′(x)>0,f(x)在(0,+∞)单调递增,不妨设1≤x1≤x2≤2.又g(x)单调递减,即f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,记,则h(x)在[1,2]递减.对任意a∈[-2,-1],x∈[1,2]恒成立.令.则在[1,2]上恒成立,则,而在[1,2]单调递增,∴,∴.【解析】(Ⅰ)当a=2时,f(x)=ln x-x2+x,求导得到增减区间,进而得到极值.(Ⅱ)..①a≤0时,②当a>0,讨论增减区间.(Ⅲ)当-2≤a≤-1时,f′(x)>0,f(x)在(0,+∞)单调递增,不妨设1≤x1≤x2≤2.不等式等价于f(x2)-f(x1)≤t[g(x1)-g(x2)].即:f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,记,则h(x)在[1,2]递减.对任意a∈[-2,-1],x∈[1,2]恒成立.转化变量研究H(a)最大值小于等于0,进而求出t的取值范围本题考查函数的单调性的判断,考查实数的最小值的求法,考查函数性质、导数性质、构造法等基础知识,考查运算求解能力,考查函数与方程思想,是难题.。

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.【答案】(1)1 2;(2)分布列见解析,1.【分析】(1)根据组合知识求得取球的方法数,然后由概率公式计算概率;(2)确定X的所有可能取值为0,1,2,然后分别计算概率得分布列,再由期望公式计算出期望.【详解】(1)设事件A=“取出的2个小球上的数字不同”,则P A=C12C12+C12C12C14C14=12.(2)X的所有可能取值为0,1,2.①当相邻小球上的数字都不同时,如1212,有2×A22×A22种,则P X=0=2×A22×A22A44=13.②当相邻小球上的数字只有1对相同时,如1221,有2×A22×A22种,则P X=1=2×A22×A22A44=13.③当相邻小球上的数字有2对相同时,如1122,有2×A22×A22种,则P X=2=2×A22×A22A44=13.所以X的分布列为X012P 131313所以X的数学期望E X=0×13+1×13+2×13=1.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.【答案】(1)7 27;(2)分布列见解析,31781.【分析】(1)写出所有可能情形,利用互斥事件的概率和公式即可求出;(2)算出X为不同值时对应的概率并填写分布列,之后求出数学期望即可.【详解】(1)设“三局比赛后,甲得3分”为事件A,甲得3分包含以下情形:三局均为平局,三局中甲一胜一平一负,所以P A=133+A3313 3=727,故三局比赛甲得3分的概率为7 27 .(2)依题意知X的可能取值为2,3,4,5,P X=2=2×132=29,P X=3=2×C12133=427,P X=4=2×C12134+C1313 4=1081,P X=5=1-P X=2-P X=3-P X=4=1-29-427-1081=4181,故其分布列为:X2345P2942710814181期望E X=2×29+3×427+4×1081+5×4181=31781.3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?【答案】(1)9种(2)349.【分析】(1)法一,利用分步乘法计数原理集合组合数的计算,即可求得答案;法二,利用间接法,即用不考虑队长人选对甲的限制的所有选法,减去甲担任队长的选法,即可得答案;(2)考虑第一次传球,老师传给了甲还是传给乙、丙、丁中的任一位,继而确定第二次以及第三次传球后球回到老师手中的情况,结合乘法公式以及互斥事件的概率求法,即可求得答案.【详解】(1)法一,先选出队长,由于甲不担任队长,方法数为C13;再选出副队长,方法数也是C13,故共有方法数为C13×C13=9(种).方法二先不考虑队长人选对甲的限制,共有方法数为A 24=4×3=12(种);若甲任队长,方法数为C 13,故甲不担任队长的选法种数为12-3=9(种)答:从甲、乙、丙、丁中任选两人分别担任队长和副队长,甲不担任队长的选法共有9种.(2)①若第一次传球,老师传给了甲,其概率为14;第二次传球甲只能传给乙、丙、丁中的任一位同学,其概率为67;第三次传球,乙、丙、丁中的一位传球给老师,其概率为17,故这种传球方式,三次传球后球回到老师手中的概率为:14×67×17=398.②若第一次传球,老师传给乙、丙、丁中的任一位,其概率为34,第二次传球,乙、丙、丁中的一位传球给甲,其概率为27,第三次传球,甲将球传给老师,其概率为17,这种传球方式,三次传球后球回到老师手中的概率为34×27×17=398,所以,前三次传球中满足题意的概率为:398+398=349.答:前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是349.4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO 问界M 7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望E ξ .【答案】(1)73.3分(2)分布列见解析;期望为35【分析】(1)根据频率分布直方图求解中位数的方法可得答案;(2)确定抽取的“问界粉”人数,再确定ξ的取值,求解分布列,利用期望公式求解期望.【详解】(1)由频率分布直方图可知:打分低于70分的客户所占比例为40%,打分低于80分的客户的所占比例为70%,所以本次调查客户打分的中位数在[70,80)内,由70+10×0.50-0.400.70-0.40=2203≈73.3,所以本次调查客户打分的中位数约为73.3分;(2)根据按比例的分层抽样:抽取的“问界粉”客户3人,“非问界粉”客户7人,则ξ的所有可能取值分别为0,1,2,其中:P (ξ=0)=C 03C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 07C 210=115,所以ξ的分布列为:ξ012P715715115所以数学期望E (ξ)=0×715+1×715+2×115=35.5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.【答案】(1)35(2)4411000【分析】(1)利用全概率公式,即可求得答案;(2)求出乙答对的概率,设每一轮比赛中甲得分为X ,求出X 的每个值对应的概率,即可求得三轮比赛后,甲总得分为Y 的每个值相应的概率,即可得答案.【详解】(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件A i i =1,2,3 ,记随机任选1题,甲答对为事件B ,则P A 1 =14,P A 2 =14,P A 3 =12,P B |A 1 =25,P B |A 2 =25,P B |A 3 =45,则P B =P A1 P B |A 1 +P A2 P B |A 2 +P A3 P B |A 3=14×25+14×25+12×45=35;(2)设乙答对记为事件C ,则P C =P A 1 P C |A 1 +P A 2 P C |A 2 +P A 3 P C |A 3 =14×12+14×12+12×12=12,设每一轮比赛中甲得分为X ,则P X =1 =P BC =P B P C =35×1-12 =310,P X =0 =P BC ∪BC =P BC +P CB=35×12+1-35 ×1-12 =12,P (X =-1)=P B C =1-35 ×12=15,三轮比赛后,设甲总得分为Y ,则P Y =3 =3103=271000,P Y =2 =C 23310 2×12=27200,P Y =1 =C 13×310×122+C 23×3102×15=2791000,所以甲最终获得奖品的概率为P =P Y =3 +P Y =2 +P Y =1 =271000+27200+2791000=4411000.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .【答案】(1)X 的分布列见解析,期望E (X )=95(2)y=7x +17;预测广告费支出10万元时的销售额为87万元.【分析】(1)根据超几何分布的概率公式求解分布列,进而可求解期望,(2)利用最小二乘法求解线性回归方程即可.【详解】(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市有C ,D ,E 这3家超市,则随机变量X 的可能取值为1,2,3P (X =1)=C 13C 22C 35=310,P (X =2)=C 23C 12C 35=35,P (X =3)=C 33C 35=110,∴X 的分布列为:X123P31035110数学期望E (X )=1×310+2×35+3×110=95.(2)x =2+4+5+6+85=5,y =30+40+60+60+705=52,b=ni =1x i y i -nx yni =1x 2i -nx2=60+160+300+360+560-5×5×524+16+25+36+64-5×52=7,a=52-7×5=17.∴y 关于x 的线性回归方程为y=7x +17;在y =7x +17中,取x =10,得y =7×10+17=87.∴预测广告费支出10万元时的销售额为87万元.7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i =1,第i 局乙当裁判0,第i 局甲或丙当裁判, i =1,2,⋅⋅⋅,n ,p i =P X i =1 ,X 表示前n 局中乙当裁判的次数.(1)求事件“n =3且X =1”的概率;(2)求p i ;(3)求E X ,并根据你的理解,说明当n 充分大时E X 的实际含义.附:设X ,Y 都是离散型随机变量,则E X +Y =E X +E Y .【答案】(1)34;(2)p i =-13 ×-12i -1+13;(3)p i ,答案见解析。

2020年中学数学30 排列、组合(原卷版)

2020年中学数学30 排列、组合(原卷版)

考点30 排列、组合1、掌握分布计数原理和分类计数原理;2、能运用计数原理解决简单的排列与组合问题;1、从2020年高考情况看,考题难度以中档题目为主,主要以选择题、填空题的形式出现,分值为5分;2、本章内容在高考中以排列组合的综合应用为主;1、从2020年高考情况来看,考查的方式及题目的难度与往年变化不大,延伸以前的考试风格;2、考查内容主要体现以下几个方面:利用排列组合解决实际问题;利用排列着解决概率有关的问题;1、【2020年新高考全国Ⅰ卷】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种2、【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.1183、【2020年高考全国II 卷理数】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.4、【2018年高考全国Ⅰ卷理数】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种.(用数字填写答案)5、【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.5、【2018年高考浙江卷】从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成__________个没有重复数字的四位数.(用数字作答)题型一 排列组合的简单运用1、(2020届浙江省嘉兴市3月模拟)用2与0两个数字排成7位的数码,其中“20”和“02”各至少...出现两次(如0020020、2020200、0220220等),则这样的数码的个数是( )A .54B .44C .32D .222、(2020届北京市通州区高三第一学期期末考试数学试题)甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为( )A .24B .12C .8D .63、(2020届北京市昌平区新学道临川学校高三上学期第三次月考数学(理)试题)七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A .3600种B .1440种C .4820种D .4800种4、(2020届北京市通州区高三第一学期期末)某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有( )A .80种B .90种C .120种D .150种5、(2020·浙江省温州市新力量联盟高三上期末)若用0,1,2,3,4,5这6个数字组成无重复数字且奇数数字互不相邻的六位数,则这样的六位数共有( )个A .120B .132C .144D .1566、(2020·浙江温州中学3月高考模拟)本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( )A .72种B .144种C .288种D .360种7、(2020届浙江省嘉兴市高三5月模拟)将,,,,,A B C D E F 六个字母排成一排,若,,A B C 均互不相邻且,A B 在C 的同一侧,则不同的排法有________种.(用数字作答)8、(2020届浙江省绍兴市高三4月一模)某地区有3个不同值班地点,每个值班地点需配一名医务人员和两名警察,现将3名医务人员(1男2女)和6名警察(4男2女)分配到这3个地点去值班,要求每个值班地点至少有一名女性,则共有______种不同分配方案.(用具体数字作答)9、(2020届浙江省十校联盟高三下学期开学)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)题型二、排列组合的综合运用1、(2020·浙江高三)从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85 B .95 C .2040 D .22802、(2020届北京市陈经纶高三上学期开学)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )A .46B .44C .42D .403、(2020届浙江省杭州市第二中学高三3月月考)如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有_____个.4、(2020届浙江省杭州市高三3月模拟)从0,1,2,3,4,5这6个数中随机抽取5个数构成一个五位数abcde ,则满足条件“a b c d e <<>>”的五位数的个数有____.5、(2020届北京市东城区五中高三开学)某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是_________________(用数字作答).6、(2019年北京市清华大学附属中学高三月考)对于各数互不相等的整数数组()12,,,n i i i (其中n 是不小于3的正整数),若{},1,2,,p q n ∀∈⋅⋅⋅,当p q <时,有p q i i >,则称p i ,q i 为该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组()2,3,1的逆序数等于2. (1)数组()5,2,4,3,1的逆序数等于______.(2)若数组()12,,,n i i i 的逆序数为n ,则数组()11,,,n n i i i -的逆序数为______.7、(2019年清华大学附属中学高三月考)《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)题型三、运用排列组合解决概率问题1、(2020届山东省德州市高三上期末)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( )A .166B .155C .566D .5112、(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .3203、(2020届浙江省宁波市余姚中学高考模拟)将1,2,3,4,5,6随机排成一列,记为a ,b ,c ,d ,e ,f ,则abc def +是偶数的概率为______4、(2020·浙江温州中学高三3月月考)海面上漂浮着A 、B 、C 、D 、E 、F 、G 七个岛屿,岛与岛之间都没有桥连接,小昊住在A 岛,小皓住在B 岛.现政府计划在这七个岛之间建造n 座桥(每两个岛之间至多建造一座桥).若1n =,则桥建完后,小吴和小皓可以往来的概率为______;若3n =,则桥建完后,小昊和小皓可以往来的概率为______.5、(2020·浙江镇海中学高三3月模拟)小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.6、(2020届浙江省杭州市建人高复高三4月模拟)将字母,,,,,a a b b c c 放入32⨯的方表格,每个格子各放一个字母,则每一行的字母互不相同,每一列的字母也互不相同的概率为_______;若共有k 行字母相同,则得k 分,则所得分数ξ的数学期望为______;(注:横的为行,竖的为列;比如以下填法第二行的两个字母相同,第1,3行字母不同,该情况下1ξ=)。

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

答案解析
1. 答案为: A. 解析:函数的定义域是
1 x-1 (0 ,+∞ ) ,且 f ′(x) =1- x= x ,
令 f ′(x) < 0,解得 0<x< 1,所以函数 f(x) 的单调递减区间是
(0 , 1) .
2. 答案为: B; 解析: B 中, y ′ =(xe x) ′ =ex+ xex=ex(x + 1)>0 在 (0 ,+∞ ) 上恒成立,∴ y=xex 在 (0 ,+∞ )
10. 答案为: D. 解析:不妨设导函数 y=f ′(x) 的零点依次为 x 1, x 2, x 3,其中 x1< 0<x 2< x 3, 由导函数图象可知, y=f(x) 在 (- ∞, x 1) 上为减函数,在 (x 1, x 2) 上为增函数, 在 (x 2, x 3) 上为减函数,在 (x 3,+∞ ) 上为增函数,从而排除 A, C. y=f(x) 在 x=x 1,x=x3 处取到极小值,在 x=x 2 处取到极大值,又 x2> 0,排除 B,故选 D.
上为增函数 .
对于 A、 C、 D 都存在 x>0,使 y′<0 的情况 .
3. 答案为: B;
解析:由题意知,函数的定义域为
1 (0 ,+∞ ) ,由 y′=x- ≤0,得 0<x≤1,
x
所以函数的单调递减区间为 (0,1] .
4. 答案为: B; 解析:∵ f(x)=x 3-ax ,∴ f ′(x) =3x2-a. 又 f(x) 在 (-1,1) 上单调递减, ∴ 3x2- a≤0在 (-1,1) 上恒成立,∴ a≥3,故选 B.
函数 f(x) 的单调递增区间是 ( )
A. (-1 , 1) , (3 ,+∞ )
B . (- ∞, -1) , (1 , 3)

高考数学专题30条件概率与全概率公式解析版

高考数学专题30条件概率与全概率公式解析版

专题30 条件概率与全概率公式一、单选题1.(2020·河南南阳高二二模(理))根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在下雨条件下吹东风的概率为()A.25B.89C.811D.911【答案】C【解析】分析:在下雨条件下吹东风的概率=既吹东风又下雨的概率÷下雨的概率详解:在下雨条件下吹东风的概率为8830=111130,选C2.(2020·安徽省六安中学高二期中(理))根据以往数据统计,某酒店一商务房间1天有客人入住的概率为45,连续2天有客人入住的概率为35,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为()A.13B.12C.35D.34【答案】D 【解析】设第二天也有客人入住的概率为P,根据题意有43=55P⋅,解得34P=,故选D.3.(2020·河南开封高三二模(理))已知正方形ABCD,其内切圆I与各边分别切于点E,F,G、H,连接EF,FG,GH,HE.现向正方形ABCD内随机抛掷一枚豆子,记事件A:豆子落在圆I内,事件B:豆子落在四边形EFGH外,则()P B A=()A.2πB.21π-C.12D.π142-【答案】B 【解析】由题意,设正方形ABCD 的边长为2a ,则圆I 的半径为r a =,面积为2a π; 正方形EFGH 2a ,面积为22a ;∴所求的概率为22222(|)1a a P B A a πππ-==-. 故选:B .4.(2020·河南高二期末(理))把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则()P B A =( ) A .12B .14C .16D .18【答案】A 【解析】“第一次出现正面”:2(1)P A =, “两次出现正面”: 111()=224P AB =⨯,则()1()14|==1()22P AB P B A P A =故选A5.(2020·陕西临渭高二期末(文))已知()1P B|A 2=,()35P A =,()P AB 等于( ) A .56B .910C .310D .110【答案】C 【解析】根据条件概率的定义和计算公式:()()0(|),()P AB P A P B A P A >=当时,把公式进行变形,就得到()0()(|)()P A P AB P B A P A >=当时,,故选C.6.(2020·黑龙江南岗哈师大附中高二期末(理))从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( ) A .38B .1340C .1345D .34【答案】B 【解析】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯ 由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B7.(2020·西夏宁夏大学附属中学高二月考(理))将两颗骰子各掷一次,设事件A =“两个点数不相同”,B =“至少出现一个6点”,则概率()|P A B 等于( )A .1011B .511C .518D .536【答案】A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=10118.(2020·广东东莞高二期末)一个袋中装有大小相同的3个白球和3个黑球,若不放回地依次取两个球,设事件A 为“第一次取出白球”,事件B 为“第二次取出黑球”,则概率()P B A =( ) A .56B .35C .12D .25【答案】B 【解析】设事件A 为“第一次取出白球”,事件B 为“第二次取出黑球”,()()31333==,==626510P A P AB ⨯, 第一次取出白球的前提下,第二次取出黑球的概率为:()()3()5P AB P B A P A ==.故选:B.二、多选题9.(2020·大名中学高二月考)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( ) A .()()()P A P B P C == B .()()()P BC P AC P AB == C .1()8P ABC = D .1()()()8P A P B P C ⋅⋅=【答案】ABD 【解析】由已知22221()44442P A =⨯+⨯=,21()()42P B P C ===, 由已知有1()()()4P AB P A P B ==,1()4P AC =,1()4P BC =,所以()()()P A P B P C ==,则A 正确;()()()P BC P AC P AB ==,则B 正确;事件A 、B 、C 不相互独立,故1()8P ABC =错误,即C 错误 1()()()8P A P B P C ⋅⋅=,则D 正确;综上可知正确的为ABD. 故选:ABD .10.(2020·江苏海安高级中学高二期中)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A ,2A ,3A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( ) A .2()5P B =B .15()11P B A =C .事件B 与事件1A 相互独立D .1A 、2A 、3A 两两互斥【答案】BD 【解析】因为每次取一球,所以1A ,2A ,3A 是两两互斥的事件,故D 正确;因为()()()123523,,101010p A p A p A ===, 所以11155()51011()5()1110P BA P B A P A ⨯===,故B 正确; 同理3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ⨯⨯======, 所以1235524349()()()()10111011101122P B P BA P BA P BA =++=⨯+⨯+⨯=,故AC 错误; 故选:BD11.(2020·江苏海安高级中学高一期中)以下对各事件发生的概率判断正确的是( ) A .连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为13B .每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为115C .将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是536D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12【答案】BCD 【解析】A.连续抛两枚质地均匀的硬币,有4个基本事件,包含两正,两反,先反再正,先正再反,出现一正一反的概率2142P ==,故A 不正确;B.不超过15的素数包含2,3,5,7,11,13,共6个数字,随机选取两个不同的数字,和等于14的包含()3,11,则概率为261115P C ==,故B 正确; C.将一个质地均匀的骰子先后抛掷2次,共36种情况,点数之和为6包含()()()()()1,5,2,4,3,3,4,2,5,1,共5种,所以点数之和为6的概率536P =,故C 正确; D.由题意可知取出的产品全是正品的概率232412C P C ==,故D 正确.12.(2020·山东昌乐二中高二月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为80243;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 则其中正确命题的序号是( ) A .① B .② C .③ D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是21423635C C p C ==故正确; ②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为2163p ==,则恰好有两次白球的概率为4226218033243p C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故正确; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为1143114535C C C C =,故错误; ④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为4263p ==:则至少有一次取到红球的概率为3031261327p C ⎛⎫=-= ⎪⎝⎭,故正确.故选:ABD. 三、填空题13.(2020·全国高三课时练习(理))一个口袋中装有6个小球,其中红球4个,白球2个.如果不放回地依次摸出2个小球,则在第1次摸出红球的条件下,第2次摸出红球的概率为________. 【答案】35【解析】()()235(|)253P AB P B A P A ===故答案为:3514.(2020·邢台市第二中学高二期末)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________. 【答案】14【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”, 对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一 个给甲,再将余下的4个人全排列有1444C A ⋅种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有2444A A ⋅种,故总的有()14244444n A C A A A =⋅+⋅.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有1444C A ⋅种故()()()14441424444414n AB C A P B A n A C A A A ⋅===⋅+⋅. 故答案为:1415.(2020·湖南天心长郡中学高三其他(理))甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________. ①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件 【答案】②④ 【解析】因为每次取一球,所以1A ,2A ,3A 是两两互斥的事件,故④正确;因为()()()123523,,101010P A P A P A ===, 所以11155()51011()5()1110P BA P B A P A ⨯===,故②正确; 同理3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ⨯⨯======, 所以1235524349()()()()10111011101122P B P BA P BA P BA =++=⨯+⨯+⨯=, 故①③错误. 故答案为:②④16.(2018·全国高二课时练习)某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =_______, ()P A B =__________【答案】3438【解析】 由已知()415P A =,()215P B =,()110P AB =, ∴ ()()()3|8P AB P B A P A ==,()()()3|4P AB P A B P B == 故答案为34,38求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.四、解答题17.(2020·甘肃省静宁县第一中学高二月考(理))有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:(1)第一次抽到次品的概率; (2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率. 【答案】(1)14;(2)119;(3)419.【解析】(1)因为有5件是次品,第一次抽到次品,有5中可能,产品共有20件,不考虑限制,任意抽一件,有20中可能,所以概率为两者相除.(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可. (3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为41918.(2020·阜新市第二高级中学高二月考)甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少 【答案】(1)0.67(2)0.60 【解析】(1)设A = “甲地为雨天”, B = “乙地为雨天”,则根据题意有()0.20P A =,()0.18P B =,()0.12P AB =.所以乙地为雨天时甲地也为雨天的概率是()()0.12|0.67()0.18P AB P A B P B ==≈. (2)甲地为雨天时乙地也为雨天的概率是()()0.12|0.60()0.20P AB P B A P A ===.19.(2020·山东平邑高二期中)已知口袋中有2个白球和4个红球,现从中随机抽取两次,每次抽取1个. (1)若采取放回的方法连续抽取两次,求两次都取得白球的概率;(2)若采取不放回的方法连续抽取两次,求在第一次取出红球的条件下,第二次取出的是红球的概率. 【答案】(1)19(2)35【解析】(1)两次都取得白球的概率221669P =⨯=; (2)记事件A :第一次取出的是红球;事件B :第二次取出的是红球, 则452()653P A ⨯==⨯, 432()655P AB ⨯==⨯, 利用条件概率的计算公式,可得()233(|)()525P AB P B A P A ==⨯=.20.(2019·攀枝花市第十五中学校高二期中(理))先后抛掷一枚骰子两次,将出现的点数分别记为,a b . (1)设向量(,)m a b =,(2,1)n =-,求1m n ⋅=的概率;(2)求在点数,a b 之和不大于5的条件下,,a b 中至少有一个为2的概率. 【答案】(1)112;(2)12【解析】先后抛掷一枚骰子两次,“将出现的点数分别记为,a b ”包含的基本事件有:(1,1),(1,2),(1,3), (1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个. (1)记“向量(,)m a b =,(2,1)n =-,且1m n ⋅=”为事件A , 由1m n ⋅=得:21a b -=,从而事件B 包含(1,1),(2,3),(3,5)共3个基本事件, 故31()3612P A ==. (2)设“点数,a b 之和不大于5”为事件B ,包含(1,1),(1,2),(1,3),(1,4),(2,1),(2,2), (2,3),(3,1),(3,2),(4,1),共10个基本事件;设“,a b 中至少有一个为2”为事件C ,包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数,a b 之和不大于5的条件下,,a b 中至少有一个为2” 的概率:()51()102n BC P n B ===. 21.(2020·延安市第一中学高二月考(文))10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.【答案】(1)310;(2)310;(3)13 【解析】(1)设“甲中奖”为事件A ,则()310P A = (2)设“乙中奖”为事件B ,则()()()()P B P AB AB P AB P AB =+=+ 又()32110915P AB =⨯=,()73710930P AB =⨯= 所以()()()179315303010P B P AB P AB =+=+== (3)因为()710P A =,()730P AB = 所以()()()7130|7310P AB P B A P A=== 22.(2020·河南南阳高二期中(文))某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.【答案】(1)13;(2)15;(3)12.【解析】(1)记4名男生为A,B,C,D,2名女生为a,b,从6名成员中挑选2名成员,有AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,Ca,Cb,Da,Db,ab共有15种情况,,记“男生甲被选中”为事件M,不妨假设男生甲为A事件M所包含的基本事件数为AB,AC,AD,Aa,Ab共有5种,故()51 153P M==.(2)记“男生甲被选中”为事件M,“女生乙被选中”为事件N,不妨设女生乙为b,则()1 15P MN=,又由(1)知()13P M=,故()() ()15 P MNP N MP M==.(3)记“挑选的2人一男一女”为事件S,则()8 15P S=,“女生乙被选中”为事件N,()415P SN=,故()() ()12 P SNP N SP S==.。

2020年高考数学押题:三角函数与解三角形综合经典题30道(含详解答案)

2020年高考数学押题:三角函数与解三角形综合经典题30道(含详解答案)

2020年高考数学押题:三角函数与解三角形综合经典30道。

1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =,332ABC S ∆=,求ABC ∆的周长. 2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边的长,cos 2cos a B b A =,3cos 3A =. (1)求角B 的值; (2)若6a =,求ABC ∆的面积.3.如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(Ⅰ) 若34ADC π∠=,求AD 的长; (Ⅱ) 若2BD DC =,ACD ∆的面积为23,求sin sin BAD CAD ∠∠的值.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 3sin A cos B b a =. (1)求角B ;(2)若3b =,sin C 3A =,求a ,c .5.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin 2cos cos 02B C B C π⎛⎫+++= ⎪⎝⎭,(1)求证:B C =; (2)若3cos 5A =,ABC ∆的外接圆面积为254π,求ABC ∆的周长. 6.在锐角△ABC 中,2sin sin sin()sin()44A B B B ππ=++-.(1)求角A 的值;(2)若12AB AC ⋅=,求△ABC 的面积.7.如图,在ABC 中,已知点D 在边BC 上,且DAC 90∠=,22sin BAC 3∠=,AB 32=,AD 3=.()1求BD 长; ()2求cosC8.在ABC 中,内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a cC a b--=+. (1)求角B 的大小;(2)若6b =,且AC 边上的中线长为4,求ABC 的面积. 9.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若5sin 5CAD ∠=,4=AD ,求CD 的长. 10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=. (1)求cos B 的值;(2)若2c =,△ABC 的面积为22b 的值.11.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.12.在平面四边形ABCD 中,已知26AB =3AD =,2ADB ABD ∠=∠,3BCD π∠=.(1)求BD ;(2)求BCD ∆周长的最大值.13.在平面四边形ABCD 中,ABD △中边BD 所对的角为A ,BCD 中边BD 所对的角为C ,已知2AB BC CD ===,23AD =.(13cos A C -是否是定值,若是定值请求出;若不是请说明理由;(2)记ABD △与BCD 的面积分别为1S 和2S ,求出2212S S +的最大值.14.ABC 的内角A 、B 、C 所对的边分别是a 、b 、c ,向量3sin ,3m B ⎛⎫= ⎪ ⎪⎝⎭与(,cos )n a A =垂直. (1)求角A ; (2)若2a =b c +的最大值.15.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=,3c =.(1)求角C ;(2)延长线段AC 到点D ,使CD CB =,求ABD ∆周长的取值范围. 17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2sin 4sin 2B AC +=. (1)求tan B ;(2)若1b =,求a c +的取值范围.。

2020年高考数学(理)一轮复习30考点必刷题含解析

2020年高考数学(理)一轮复习30考点必刷题含解析
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】试题分析:若 ,则直线 与直线 平行,充分性成立;若直线 与直线 平行,则 或 ,必要性不成立.
8.“x为无理数”是“x2为无理数”的
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分又不必要条件
【答案】B
【解析】 为无理数,不能推出 为无理数,例如 ,反过来, 是无理数,那么 一定是无理数,故 为无理数是 为无理数必要不充分条件,故选B.
A.{2}B.{1,2}
C.{-2,1,2}D.{-2,-1,0}
【答案】C
【解析】∵A,B为两个非空集合,定义集合A-B={x|x∈A且x∉B},A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0}={x|-2<x<1},∴A-B={-2,1,2}.故选C.
20.对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B-A),记A={y|y≥0},B={x|-3≤x≤3},则A*B=________.
A. 甲是乙的充分不必要条件
B. 甲是乙的必要不充分条件
C. 甲是乙的充要条件
D. 甲既不是乙的充分条件,也不是乙的必要条件
【答案】B
【解析】“甲⇒乙”的逆否命题为“若x+y=5,则x=2且y=3”显然不正确,而“乙⇒甲”的逆否命题为“若x=2且y=3,则x+y=5”是真命题,因此甲是乙的必要不充分条件.故选 B.
A. B. C. D.
【答案】A
【解析】因为集合 , ,所以A∩B={0,1}.
故答案为:A.
6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )
A.M=NB.M⊆N

2020高考数学(理)必刷试题+参考答案+评分标准 (26)

2020高考数学(理)必刷试题+参考答案+评分标准 (26)

2020高考数学模拟试题(理科)一、填空题(本大题共12小题)1.已知全集0,1,2,,集合1,,0,,则______.2.已知复数是虚数单位,则______3.关于x,y的二元一次方程组无解,则______4.直线的一个方向向量,直线的一个法向量,则直线与直线的夹角是______5.已知为钝角三角形,边长,,则边长______6.设常数,展开式中的系数为4,则______ .7.已知,则此函数的值域是______8.若函数的值域为,则的最小值为______9.已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为,则直线PC与平面PAB所成角的余弦值是______.10.在直角坐标系xOy中,曲线C的参数方程为,为参数,直线l的参数方程为,若C上的点到l距离的最大值为,则______11.已知a、b、c都是实数,若函数的反函数的定义域是,则c的所有取值构成的集合是______.12.已知双曲线的左、右焦点分别为,,过的直线与C的两条渐近线分别交于A、B两点,若,则双曲线C的渐近线方程为______二、选择题(本大题共4小题)13.设点不共线,则“与的夹角是锐角”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件14.若,,则A. B. C. D.15.定义“规范01数列”如下:共有2m项,其中m项为0,m项为1,且对任意,,,,中0的个数不少于1的个数,若,则不同的“规范01数列”共有A. 18个B. 16个C. 14个D. 12个16.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数,存在一个正数M,使得函数的值域包含于区间,例如,当时,,,则下命题为假命题的是A. 函数的定义域为D,则“的充要条件是“对任意的,存在,满足”B. 若函数,的定义域相同,且,,则C. 若函数有最大值,则D. 函数的充要条件是有最大值和最小值三、解答题(本大题共5小题)17.关于x的不等式的解集为.求实数a,b的值;若,,且为纯虚数,求的值.18.如图,在四棱锥中,平面ABCD,,,,,E为PD的中点,点F在PC上,且.求证:平面PAD;应是平面AEF与直线PB交于点G在平面AEF内,求的值.19.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧为圆弧的中点和线段MN构成,已知圆O的半径为40米,点P到MN的距离为50米,现规范在此农田修建两个温室大棚,大棚Ⅰ内的地块形状为梯形MNBA,其中,且,大棚Ⅱ内的地块形状为,要求A、B均在圆弧上,设OB与MN所成的角为.用表示多边形MAPBN的面积,并确定的取值范围;若分别在两个大棚内种植两种不同的蔬菜,且这两种蔬菜单位面积的年产值相等,求当为何值时,能使种植蔬菜的收益最大.20.已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点.求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l 的方程;若不存在,请说明两点.21.若定义在R上的函数满足:对于任意实数x、y,总有恒成立,我们称为“类余弦型”函数.已知为“类余弦型”函数,且,求和的值;在的条件下,定义数列2,3,求的值.若为“类余弦型”函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数,满足,判断和的大小关系,并证明你的结论.答案和解析1.【答案】【解析】解:全集0,1,2,,集合1,,0,,则故答案为.根据集合的基本运算即可求和结果;本题主要考查集合的基本运算,比较基础.2.【答案】5【解析】解:,,.故答案为:5.由商的模等于模的商求得,再由求解.本题考查复数模的求法,是基础的计算题.3.【答案】0【解析】解:时,方程组化为:,无解,舍去.时,两条直线平行时,可得:,无解.综上可得:.故答案为:0.对m分类讨论,利用两条直线平行时无解,即可得出.本题考查了两条直线平行的条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.4.【答案】【解析】解:直线的一个方向向量,直线的一个法向量,故直线的一个方向向量,设直线与直线的夹角是,则,,故答案为:.先求得直线的一个方向向量,两用两个向量的数量积的定义,求得直线与直线的夹角的余弦值,可得直线与直线的夹角.本题主要考查两个向量的数量积的定义,直线的方向向量和法向量,属于基础题.5.【答案】【解析】解:若c是最大边,则.,,又,,若b是最大边,必有,有,解可得,,综合可得.故答案为:.根据余弦定理和钝角的余弦函数小于0可求得c的范围,进而利用两边之差和小大于第三边,求得c的另一个范围,最后取交集,即可得解.本题主要考查了余弦定理的运用.余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.6.【答案】【解析】解:常数,展开式中的系数为4,,当时,,,解得,,.故答案为:.由,根据的系数为4,求出,从而,解得,由此能求出的值.本题考查数列的前n项和极限的求法,是中档题,解题时要认真审题,注意二项式定理、极限性质的合理运用.7.【答案】【解析】解:令,,,则原函数化为,.,.原函数的值域为故答案为:令,由x的范围求得t的范围,再由二次函数求值域.本题考查利用换元法求函数的值域,是基础题.8.【答案】【解析】解:函数数,,,,根据正弦函数的性质:当时可得,,则则的最小值为.故答案为:根据x在上,求解内层函数的范围,即可由三角函数的性质可得答案.本题考查三角函数的性质的应用.属于基础题.9.【答案】【解析】解:在PC上任取一点D并作平面APB,则就是直线PC与平面PAB所成的角.过点O作,,因为平面APB,则,.≌,,≌,因为,所以点O在的平分线上,即.在直角中,,,则.在直角中,,则.即直线PC与平面PAB所成角的余弦值是.过PC上一点D作平面APB,则就是直线PC与平面PAB所成的角.能证明点O在的平分线上,通过解直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.本题考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力、转化能力.10.【答案】12【解析】解:曲线C的参数方程为,为参数,直线l的参数方程为,设曲线C上的点的坐标为,则P到直线l的距离:,,C上的点到l距离的最大值为,,解得.故答案为:12.设曲线C上的点的坐标为,则P到直线l的距离,由C上的点到l距离的最大值为,能求出a的值.本题考查实数值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.11.【答案】【解析】解:函数的反函数的定义域是,即函数的值域为,若,显然不合题意,则,此时的值域为;则需的值域包含,结合函数在内有意义,则.的所有取值构成的集合是.故答案为:.由题意可得,函数的值域为,当,显然不合题意,则,此时的值域为;然后结合反比例函数的图象及函数在内有意义,可得,则答案可求.本题考查互为反函数的两个函数特性间的关系,考查逻辑思维能力与推理运算能力,是中档题.12.【答案】.【解析】解:如图,,,则:,联立,解得,整理得:,,双曲线C的渐近线方程:.故答案为:.由题意画出图形,结合已知可得,写出的方程,与联立求得B点坐标,再由斜边的中线等于斜边的一半求解.求解渐近线方程即可.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.13.【答案】C【解析】【分析】本题考查充分条件、必要条件、充要条件的判断,考查向量等基础知识,考查推理能力与计算能力,属于中档题.“与的夹角为锐角”“”,“”“与的夹角为锐角”,由此能求出结果.【解答】解:点A,B,C不共线,若“与的夹角为锐角”,则,,“与的夹角为锐角”“”,若,则,化简得,即与的夹角为锐角,“”“与的夹角为锐角”,设点A,B,C不共线,则“与的夹角为锐角”是“”的充分必要条件.故选C.14.【答案】B【解析】解:,,则,,,故选:B.利用指数函数、对数函数、幂函数的单调性即可得出.本题考查了指数函数、对数函数、幂函数的单调性,考查了推理能力与计算能力,属于基础题.15.【答案】C【解析】【分析】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,共14个.故选C.16.【答案】D【解析】解:对于A,“的充要条件是“对任意的,存在,满足”“的值域为R”,故A正确;对于B,依题意,,,则,即,故B正确;对于C,若函数有最大值,则,此时,,,显然,即C成立;对于D,当,时,既无最大值又无最小值,但是,故D为假命题.故选:D.根据题目给出的定义,结合函数的定义域,值域情况逐个选项判断即可得到结论.本题考查新定义的理解和应用,考查了函数的值域,主要考查推理能力和计算能力,属于中档题.17.【答案】解:不等式即的解集为.,b是方程的两个实数根,,,解得,.为纯虚数,,,解得.【解析】由题意可得:,b是方程的两个实数根,利用根与系数的关系即可得出.为纯虚数,利用纯虚数的定义即可得出.本题考查了复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.18.【答案】解:证明:平面ABCD,,,,平面PAD.解:平面ABCD,,,,,E为PD的中点,点F在PC上,且.过A作,交BC于M,以A为原点,AM,AD,AP所在直线为x,y,z轴,建立空间直角坐标系,0,,2,,2,,0,,,1,,0,,,1,,,设平面AEF的法向量y,,则,取,得1,,设b,,,,则,b,,,,解得,,,,平面AEF与直线PB交于点G在平面AEF内,,解得,故的值为.【解析】推导出,,由此能证明平面PAD.以A为原点,AM,AD,AP所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出的值.本题考查线面垂直的证明,考查两线段的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:等腰梯形MNBA的高为,,,等腰梯形MNBA的面积为,等腰三角形PAB中,P到AB的距离为,故等腰三角形PAB的面积为,多边形MAPBN的面积为.,,即,.令,.其中,,即.当即时,取得最大值,此时种植蔬菜的收益最大.【解析】计算AB,梯形和三角形的高度,分别求出梯形和三角形的面积即可得出答案,根据求出的范围;根据和角公式求出面积最大值及其对应的的值即可.本题考查了解析式求解,三角函数恒等变换,函数最值的计算,属于中档题.20.【答案】解:由题意可知,,则;所以椭圆C的方程为:;由题意可知,,设,则,;所以的取值范围是;假设存在满足条件的直线l,根据题意直线l的斜率存在;设直线l的方程为:;有:;,则;;设,则CD的中点为;,;,则;,即;即,无解;故满足条件的直线不存在;【解析】根据条件直接求出a,b;设,表示出,求出其范围;设CD的中点为;由,则;得到其斜率的积为,再方程联立计算;本题考查椭圆的简单几何性质,向量的数量积,直线的垂直,设而不求的思想方法,关键在于将几何条件进行适当的转化,属于中档题.21.【答案】解:令,,则,所以.令,,则,所以.令,,其中n是大于1的整数,则,所以,即.又因为,所以数列是首项为3,公比为2的等比数列,所以,则.所以原式.证明:令,,则,所以.令,y为任意实数,则,即,所以是偶函数.令N为,分母的最小公倍数,并且,,a、b都是自然数,并且.令数列满足,,1,下证:数列单调递增.,所以;若,n是正整数,即;令,,则,即.所以.综上,数列单调递增,所以,又因为是偶函数,所以【解析】是抽象函数基础题,代入特定的数值即可;对于此数列,需要求其通项,而求通项又需要递推公式,所以代入合理的数值,得到递推公式;属于难题,因为的铺垫,证明偶函数需要代入特定的数,证明与的大小关系需要定义新的数列,又因为题目中的有理数条件,要充分利用分数的特点.本题涉及抽象函数、数列求通项求和等知识,使用了赋值法、数学归纳法等方法,属于难题.。

2020年高考数学必刷题《30 基本不等式及其应用》(解析版)

2020年高考数学必刷题《30 基本不等式及其应用》(解析版)

专题七 不等式30 基本不等式及其应用1.已知正数x 、y 满足41x y +=,则11x y+的最小值为A .8B .12C .10D .9【答案】D【解析】正数x 、y 满足41x y +=,根据基本不等式得到:()11114444415529.x y x y x y x y x y x y y x y x y x⎛⎫+=++=+++=++≥+⋅= ⎪⎝⎭ 等号成立的条件为4x y y x =,即11,63x y ==. 故答案为D.【名师点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2.下列正确的是 A .若a ,b ∈R ,则b a +a b≥2 B .若x <0,则x +4x ≥-24x x⨯=-4 C .若ab ≠0,则2b a +2a b≥a +bD .若x <0,则2x +2-x >2【答案】D【解析】对于A,当ab <0时不成立;对于B,若x <0,则x +4x =-(-x +4x-)≤-2()4·x x--=-4,当且仅当x =-2时,等号成立,因此B 选项不成立; 对于C,取a =-1,b =-2,2b a +2a b=-92<a +b =-3,所以C 选项不成立; 对于D,若x <0,则2x +2-x>2成立.故选D .3.已知1(0,)4x ∈,则(14)x x -取最大值时x 的值是A .14B .16 C .18D .110【答案】C【解析】因为1(0,)4x ∈,所以40,140x x >->,所以2114141(14)=4(14)44216x x x x x x +-⎛⎫-⋅-≤= ⎪⎝⎭, 当且仅当414x x =-,即18x =时等号成立. 故选C.【名师点睛】本题主要考查了基本不等式的应用,属于基础题.利用基本不等式求最值时,一定要注意是否符合适用条件,以及等号成立的条件.对于本题,利用基本不等式的变形22a b ab +⎛⎫≤ ⎪⎝⎭即可求出其最大值,并得到其取最大值时x 的值. 4.若241x y+=,则2x y +的取值范围为 A .(]02, B .[]02, C .[)2-+∞, D .(]2-∞-,【答案】D【解析】由基本不等式,得222242222222xyxyx y x y ++=+≥⋅=(当且仅当x =2y =-1时等号成立),所以22x y +≤-.故选D .5.已知0,0,,a b a b >>的等比中项为2,则11a b b a+++的最小值为 A .3B .4C .5D .42【答案】C【解析】由等比中项得:4ab =.11155()()(1)()2544a b a b a b a b a b ab b a ab ab ++++=++=++=+≥⋅=,等号成立当且仅当2a b ==,∴原式的最小值为5.故选C.【名师点睛】利用基本不等式求最小值时,注意验证等号成立的条件.求解本题时,目标式子变形为5()4a b +,再利用基本不等式求最小值. 6.已知0,0,0x y z >>>,且411y z x+=+,则x y z ++的最小值为 A .8 B .9 C .12D .16【答案】B【解析】因为0,0,0x y z >>>,且411y z x +=+,所以()41x y z x y z y z x ⎛⎫⎡⎤++=+++ ⎪⎣⎦+⎝⎭=445529x y z x y zy z x y z x++++≥+⋅=++, 当且仅当4x y zy z x+=+,即26y z x +==时取等号.故选B . 7.已知(0,),a b ∈+∞,函数2()log f x a x b =+的图象经过点(4,1),则12a b+的最小值为 A .622- B .6 C .422+D .8【答案】D【解析】因为函数2()log f x a x b =+的图象经过点(4,1),所以有2log 4121a b a b +=⇒+=,因为(0,),a b ∈+∞,所以有((2)4121244)1)(428a b a b aa b a b a a bb b +=++⋅=++≥+⋅=(当且仅当2b a =,即11,42a b ==时取等号),故本题选D. 【名师点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键.由函数2()log f x a x b =+的图象经过点(4,1),可以得到一个等式,利用这个等式结合已知的等式,根据基本不等式,可以求12a b+的最小值.8.已知函数2y x x =+,1(,)3x ∈+∞,则y 的最小值是______________. 【答案】22【解析】因为1(,)3x ∈+∞,所以22222y x x x x=+≥⋅=, 当且仅当2x x=,即2x =时等号成立, 故y 的最小值是22. 故填22.9.已知关于x 的不等式()225200x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______________. 【答案】10【解析】由于0a >,故一元二次方程22520x ax a -+=的判别式:2222542170a a a ∆=-⋅=>,由根与系数的关系有:1221252x x a x x a+=⎧⎨=⎩,则1221211552510222a a x x a a a x x a a a ++=+=+≥⨯=, 当且仅当1105,210a a a ==时等号成立. 综上可得:1212ax x x x ++的最小值是10. 【名师点睛】本题主要考查根与系数的关系的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力. 10.若当2x >时,不等式12a x x ≤+-恒成立,则实数a的取值范围是______________.【答案】(],4-∞【解析】因为2x >,所以11224,22x x x x +=-++≥-- 当且仅当 时取等号,所以11.“a >0,b >0”是“ab <(2a b +)2”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D【解析】当a >0,b >0时,2a b +≥ab ,即ab ≤(2a b +)2,当a =b 时,ab <(2a b +)2不成立,故“a >0,b >0”不是“ab <(2a b +)2”的充分条件; 当ab <(2a b +)2时,a ,b 可以异号,故a >0,b >0不一定成立,故“a >0,b >0”不是“ab <(2a b +)2”的必要条件. 故“a >0,b >0”是“ab <(2a b +)2”的既不充分也不必要条件,故选D . 12.已知向量(,1), (21,3)(0, 0)a b a b =-=->>m n ,若 ∥m n ,则21a b+的最小值为A .12B .1023+C .15D .843+【答案】D【解析】因为 ∥m n ,所以3a +2b =1, 所以212143(32)88212843()b a a b a b a b a b+=++=++≥+=+. 当且仅当3331,64a b --==时取到最小值. 【名师点睛】本题主要考查向量平行的坐标表示和利用基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.13.已知函数()lg ,0f x x a b =>>,()()f a f b =,则22a b a b+-的最小值等于A .22B .5C .23+D .23【答案】A【解析】因为()lg ,0f x x a b =>>,()()f a f b =,所以()()lg lg f a a b f b ==-=, 即lg lg lg()0a b ab +==,解得1ab =.因为0a b ->,所以22a b a b +-=()22a b aba b-+-=()222a b a b -+≥-(当且仅当2a b -=时等号成立),所以22a b a b+-的最小值等于22.选A .14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 A .8 B .9 C .10D .7【答案】B【解析】由题意,因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,所以111sin120sin 60sin 60222ac a BD c BD =⨯+⨯, 整理得ac a c =+,即111a c+=,则11444(4)()5529c a c a a c a c a c a c a c+=++=++≥+⋅=, 当且仅当4c aa c=,即2c a =时取等号, 所以4a c +的最小值为9,故选B.【名师点睛】本题主要考查了基本不等式的应用,其中合理利用1的代换,结合基本不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知0x >,0y >,2x y xy ++=,则x y +的取值范围是______________.【答案】[4,2)3【解析】因为2x y xy ++=,且0x >,0y >,所以2x y +<,又22x y x y x y xy +++≥++=,所以43x y +≥, 当且仅当x y =,即2=3x y =时,等号成立,故x y +的取值范围是[4,2)3. 故填[4,2)3.16.已知0,0,0a b c >>>,若点(),P a b 在直线2x y c ++=上,则4a b a b c+++的最小值为___________. 【答案】222+ 【解析】(),P a b 在2x y c ++=上,2a b c ∴++=,20a b c +=->,∴4422a b c a b c c c +-+=++-4212c c=+--, 设2c m c n-=⎧⎨=⎩,则2m n +=, 42424222m n c c m n m n +⎛⎫+=+=⨯+ ⎪-⎝⎭22332322n m n m m n m n=++≥+⋅=+, 当222m n =,即222c =-时,“=”成立,42132212222c c ∴+-≥+-=+-, 即4a b a b c+++的最小值为222+,故答案为222+. 【名师点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正、二定、三相等”的内涵:一正,首先要判断参数是否为正;二定,其次要看和或积是否为定值(和定积最大,积定和最小);三相等,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).17.若,a b ∈R ,0ab >,则4441a b ab++的最小值为______________.【答案】4【解析】44224141114244a b a b ab ab ab ab ab ab+++≥=+≥⋅=,前一个等号成立的条件是222a b =, 后一个等号成立的条件是12ab =, 两个等号可以同时成立,当且仅当2222,24a b ==时取等号. 故填4.【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,2a b ab +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.18.某工厂建造一个无盖的长方体贮水池,其容积为34800m ,深度为3m .如果池底每21m 的造价为150元,池壁每21m 的造价为120元,要使水池总造价最低,那么水池底部的周长为______m . 【答案】160【解析】设水池底面一边的长度为m x ,则另一边的长度为4800m 3x, 由题意可得水池总造价()48004800150120232333f x x x x x ⎛⎫=⋅⋅+⨯+⨯⨯ ⎪⎝⎭()16002400007200x x x ⎛⎫=++> ⎪⎝⎭,则()160016007202400007202240000f x x x x x⎛⎫=++≥⨯⋅+ ⎪⎝⎭720240240000297600=⨯⨯+=, 当且仅当1600x x=,即40x =时,()f x 有最小值297600, 此时另一边的长度为480040m 3x=, 因此,当水池的底面周长为160m 时,水池的总造价最低,最低总造价是297600元, 故答案为160.【名师点睛】本题考查函数模型的构建,考查利用基本不等式求最值,考查利用数学知识解决实际问题,属于中档题.求解时,设水池底面一边的长度为m x ,则另一边的长度为4800m 3x,由题意可得水池总造价,然后利用基本不等式求最值,可得水池总造价最低时的水池底部的周长.19.【2019年高考浙江卷】若0,0a b >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,2a b a b +≥当且仅当a b =时取等号,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.20.【2017年高考山东卷理数】若,且,则下列不等式成立的是A .B .C .D . 【答案】B【解析】因为0a b >>,且1ab =,所以 12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B. 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断. 21.【2019年高考天津卷理数】设0,0,25x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】43【解析】方法一:(1)(21)2212662x y xy y x xy xy xy xy xy xy++++++===+. 因为0,0,25x y x y >>+=,0a b >>1ab =()21log 2aba ab b +<<+()21log 2a b a b a b<+<+()21log 2a ba ab b +<+<()21log 2a ba b a b +<+<221,01,1,log ()log 21,2aba b a b ab ><<∴<+>=所以2522x y x y +=≥⋅,即5252,028xy xy ≤<≤,当且仅当522x y ==时取等号成立. 又因为6622243xy xy xy xy+≥⋅=,当且仅当62xy xy =,即=3xy 时取等号,结合258xy ≤可知,xy 可以取到3,故(1)(21)x y xy ++的最小值为43.方法二:0,0,25,x y x y >>+=0,xy ∴>(1)(21)2212662212=43x y xy y x xy xy xy xy xy xy++++++===+≥.当且仅当3xy =时等号成立,故(1)(21)x y xy++的最小值为43.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立. 22.【2018年高考天津卷理数】已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 【答案】【解析】由 可知 ,且,因为对于任意x , 恒成立,结合基本不等式的结论可得:.当且仅当,即 时等号成立. 综上可得的最小值为.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,2a b ab +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.23.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30 【解析】总费用为600900464()42900240x x x x +⨯=+≥⨯=,当且仅当900x x =,即30x =时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.24.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________.【答案】9【解析】由题意可知, ,由角平分线性质和三角形面积公式得,化简得 , 因此当且仅当 时取等号,则 的最小值为 .【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求字母为正数)、“定”不等式的另一边必须为定值)、“等(等号取得的条件)的条件才能应用,否则会出现错误.25.【2017年高考天津卷理数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________. 【答案】4 【解析】44224141114244a b a b ab ab ab ab ab ab+++≥=+≥⋅=,(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当2222,24a b ==时取等号).【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,2a b ab +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.。

高考数学抛物线大题专练30题(含详解)经典收藏版

高考数学抛物线大题专练30题(含详解)经典收藏版

目录目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11抛物线大题专练(一)1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.3.如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.4.已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.5.已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.6.已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.7.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.8.抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.9.已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.抛物线大题专练(二)10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.11.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.12.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.13.已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.14.如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.15.已知抛物线C:y2=2px(p>0),直线交此抛物线于不同的两个点A(x1,y1)、B(x2,y2)(1)当直线过点M(p,0)时,证明y1.y2为定值;(2)如果直线过点M(p,0),过点M再作一条与直线垂直的直线l′交抛物线C于两个不同点D、E.设线段AB的中点为P,线段DE的中点为Q,记线段PQ的中点为N.问是否存在一条直线和一个定点,使得点N到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.16.(2014•陕西)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(Ⅰ)求a,b的值;(Ⅱ)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.17.(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.18.(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.19.(2014•福建)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P处的切线l与x轴交于点A.直线y=3分别与直线l及y轴交于点M,N,以MN为直径作圆C,过点A作圆C的切线,切点为B,试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.20.(2014•江西)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2﹣|MN1|2为定值,并求此定值.抛物线大题专练(三)21.(2014•杭州二模)设抛物线Γ:y2=2px(p>0)过点(t,)(t是大于0的常数).(Ⅰ)求抛物线Γ的方程;(Ⅱ)若F是抛物线Γ的焦点,斜率为1的直线交抛物线Γ于A,B两点,x轴负半轴上的点C,D满足|FA|=|FC|,|FD|=|FB|,直线AC,BD相交于点E,当时,求直线AB的方程.22.(2014•包头一模)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,l与x轴交于点R,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=120°,△ABD的面积为8,求p的值及圆F的方程;(2)在(1)的条件下,若A,B,F三点在同一直线上,FD与抛物线C交于点E,求△EDA的面积.23.(2014•长春三模)已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.24.(2014•长沙二模)已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.25.(2015•上海模拟)如图,直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A(x1,y1)、B(x2,y2),且|x2﹣x1|=h(h为定值),线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).(1)用k、b表示出C点、D点的坐标,并证明CD垂直于x轴;(2)求△ABC的面积,证明△ABC的面积与k、b无关,只与h有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连AC、BC,再作与AC、BC平行的切线,切点分别为E、F,小张马上写出了△ACE、△BCF的面积,由此小张求出了直线l与抛物线围成的面积,你认为小张能做到吗?请你说出理由.26.(2014•乌鲁木齐三模)已知抛物线y2=2px(p>0)的焦点过F,过H(﹣,0)引直线l交此抛物线于A,B两点.(1)若直线AF的斜率为2,求直线BF的斜率;(2)若p=2,点M在抛物线上,且+=t,求t的取值范围.27.(2014•太原二模)已知抛物线y2=4x的焦点为F,直线l1与抛物线交于不同的两点A、B,直线l2与抛物线交于不同的两点C、D.(Ⅰ)当l1过F时,在l1上取不同于F的点P,使得=,求点P的轨迹方程;(Ⅱ)若l1与l2相交于点Q,且倾斜角互补时,|QA|•|QB|=a|QC|•|QD|,求实数a的值.28.(2014•合肥一模)已知△ABC的三个顶点都在抛物线y2=2px(p>0)上,且抛物线的焦点F满足,若BC边上的中线所在直线l的方程为mx+ny﹣m=0(m,n为常数且m≠0).(Ⅰ)求p的值;(Ⅱ)O为抛物线的顶点,△OFA、△OFB、△OFC的面积分别记为S1、S2、S3,求证:为定值.29.(2014•呼和浩特一模)已知抛物线C:y2=2px(p>0),直线l过定点A(4,0)且与抛物线C交于P、Q两点,若以弦PQ为直径的圆E过原点O.(Ⅰ)求抛物线C的方程;(Ⅱ)当圆E的面积最小时,求E的方程.30.(2014•普陀区一模)已知点P(2,0),点Q在曲线C:y2=2x上.(1)若点Q在第一象限内,且|PQ|=2,求点Q的坐标;(2)求|PQ|的最小值.抛物线大题专练参考答案与试题解析1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为;(1)求抛物线C的方程;(2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同),求当∠MAB为钝角时,点A的纵坐标y1的取值范围.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的定义,求出p,即可求抛物线C的方程;(2)设直线AM的方程为:y=k(x﹣1)+1,与抛物线方程联立,求出k的范围,利用,即可求出点A的纵坐标y1的取值范围.解答:解:(1)由定义得,则抛物线C的方程:x2=y(2)设直线AM的方程为:y=k(x﹣1)+1联立方程得x2﹣kx+k﹣1=0,A(k﹣1,(k﹣1)2),△1>0即k≠2同理B(﹣k﹣1,(﹣k﹣1)2),△2>0即k≠﹣2,令,则所以k>2或,所以点评:本题考查抛物线的定义与方程,考查直线与抛物线的位置关系,考查学生的计算能力,属于中档题.2.(2015•淮安一模)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.考点:抛物线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的准线方程可得p,进而得到抛物线方程;(2)求出函数y=﹣的导数,求出切线的斜率,以及切线方程,联立切线方程和抛物线方程求得切点A,进而直线OA的方程,设出直线BC的方程,联立抛物线方程运用韦达定理,求出N的坐标,代入所求式子化简即可得到定值2.解答:解:(1)由题设知,,即,所以抛物线的方程为y2=x;(2)因为函数的导函数为,设A(x0,y0),则直线MA的方程为,因为点M(0,﹣2)在直线MA上,所以﹣2﹣y0=﹣•(﹣x0).联立,解得A(16,﹣4),所以直线OA的方程为.设直线BC方程为y=kx﹣2,由,得k2x2﹣(4k+1)x+4=0,所以.由,得.所以,故的为定值2.点评:本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的运用:求切线方程,考查运算能力,属于中档题和易错题.3.(2014•九江三模)如图所示,设F是抛物线E:x2=2py(p>0)的焦点,过点F作斜率分别为k1、k2的两条直线l1、l2,且k1•k2=﹣1,l1与E相交于点A、B,l2与E相交于点C,D.已知△AFO外接圆的圆心到抛物线的准线的距离为3(O为坐标原点).(1)求抛物线E的方程;(2)若•+•=64,求直线l1、l2的方程.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)确定△AFO外接圆的圆心在线段OF的垂直平分线y=上,求出p,即可求抛物线E的方程;(2)利用•+•=64,结合韦达定理,基本不等式,即可求直线l1、l2的方程.解答:解:(1)由题意,F(0,),△AFO外接圆的圆心在线段OF的垂直平分线y=上,∴+=3,∴p=4.∴抛物线E的方程是x2=8y;(2)设直线l1的方程y=k1x+2,代入抛物线方程,得y2﹣(8k12+4)y+4=0设A(x1,y1),B(x2,y2),则y1+y2=8k12+4,y1y2=4设C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴•+•=32+16(k12+)≥64,当且仅当k12=,即k1=±1时取等号,∴直线l1、l2的方程为y=x+2或y=﹣x+2.点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查向量知识的运用,属于中档题.4.(2014•浙江二模)已知抛物线C:y2=2px(p>0),点A、B在抛物线C上.(Ⅰ)若直线AB过点M(2p,0),且|AB|=4p,求过A,B,O(O为坐标原点)三点的圆的方程;(Ⅱ)设直线OA、OB的倾斜角分别为α,β且α+β=,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)求出A,B的坐标,可得三角形ABO是Rt△,从而可求过A,B,O三点的圆方程;(Ⅱ)直线AB的方程为:x=my+b,代入抛物线方程,利用韦达定理,结合α+β=,可得b=﹣2p﹣2mp,即可得出结论.解答:解:(Ⅰ)∵直线AB过点M(2p,0),且|AB|=4p,∴直线x=2p与抛物线y2=2px的两个交点坐标分别是:A(2p,2p),B(2p,﹣2p),∴三角形ABO是Rt△,∴过A,B,O三点的圆方程是:(x﹣2p)2+y2=4p2;(Ⅱ)设点,直线AB的方程为:x=my+b,它与抛物线相交,由方程组消去x可得y2﹣2mpy﹣2pb=0,故y1+y2=2mp,y1y2=﹣2pb,这样,tan==即1=,所以b=﹣2p﹣2mp,∴直线AB的方程可以写成为:x=my﹣2p﹣2mp,即x+2p=m(y﹣2p),∴直线AB过定点(﹣2p,2p).点评:本题考查圆的方程,考查直线与抛物线的位置关系,考查和角的正切公式,考查直线过定点,属于中档题.5.(2014•广州二模)已知点A(2,1)在抛物线E:x2=ay上,直线l1:y=kx+1(k∈R,且k≠0)与抛物线E相交于B,C两点,直线AB,AC分别交直线l2:y=﹣1于点S,T.(1)求a的值;(2)若|ST|=2,求直线l1的方程;(3)试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据点A(2,1)在抛物线E:x2=ay上,可求a的值;(2)y=kx+1代入抛物线方程,利用韦达定理,确定S,T的坐标,根据|ST|=2,即可求直线l1的方程;(3)确定以线段ST为直径的圆的方程,展开令x=0,即可求这两个定点的坐标.解答:解:(1)∵点A(2,1)在抛物线E:x2=ay上,∴a=4.…(1分)(2)由(1)得抛物线E的方程为x2=4y.设点B,C的坐标分别为(x1,y1),(x2,y2),依题意,,y=kx+1代入抛物线方程,消去y得x2﹣4kx﹣4=0,解得.∴x1+x2=4k,x1x2=﹣4.…(2分)直线AB的斜率,故直线AB的方程为.…(3分)令y=﹣1,得,∴点S的坐标为.…(4分)同理可得点T的坐标为.…(5分)∴=.…(6分)∵,∴.由,得20k2=16k2+16,解得k=2,或k=﹣2,…(7分)∴直线l1的方程为y=2x+1,或y=﹣2x+1.…(9分)(3)设线段ST的中点坐标为(x0,﹣1),则=.…(10分)而|ST|2=,…(11分)∴以线段ST为直径的圆的方程为=.展开得.…(12分)令x=0,得(y+1)2=4,解得y=1或y=﹣3.…(13分)∴以线段ST为直径的圆恒过两个定点(0,1),(0,﹣3).…(14分)点评:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查圆的方程,考查学生的计算能力,属于中档题.6.(2015•兴国县一模)已知抛物线y2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且|AF|+|BF|=8,且AB的垂直平分线恒过定点S(6,0)①求抛物线方程;②求△ABS面积的最大值.考点:抛物线的标准方程;抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:①利用点差法,确定AB中点M的坐标,分类讨论,根据AB的垂直平分线恒过定点S(6,0),即可求抛物线方程;②分类讨论,求出△ABS面积的表达式,即可求得其最大值.解答:解:①设A(x1,y1),B(x2,y2),AB中点M(x0,y0)当直线的斜率存在时,设斜率为k,则由|AF|+|BF|=8得x1+x2+p=8,∴又得,∴所以依题意,∴p=4∴抛物线方程为y2=8x﹣﹣﹣﹣(6分)当直线的斜率不存在时,2p=8,也满足上式,∴抛物线方程为y2=8x②当直线的斜率存在时,由(2,y0)及,令y=0,得又由y2=8x和得:∴=﹣﹣﹣﹣(12分)当直线的斜率不存在时,AB的方程为x=2,|AB|=8,△ABS面积为∵,∴△ABS面积的最大值为.点评:本题考查抛物线的标准方程,考查三角形面积的计算,考查学生的计算能力,属于中档题.7.(2015•路南区二模)已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.解答:解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y1|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.点评:本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.8.(2015•大庆二模)抛物线M:y2=2px(p>0)的准线过椭圆N:+y2=1的左焦点,以原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的图象以及y轴的正半轴相交于点A和B,直线AB与x轴相交于点C.(Ⅰ)求抛物线M的方程;(Ⅱ)设点A的横坐标为a,点C的横坐标为c,抛物线M上点D的横坐标为a+2,求直线CD的斜率.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆方程求出椭圆左焦点坐标,得到抛物线准线方程,从而求得p值,则抛物线方程可求;(Ⅱ)写出A的坐标,由|OA|=t列式求得t与A的坐标间的关系,求出直线BC的方程,把A代入BC方程,得到a,c的关系,然后直接代入斜率公式求直线CD的斜率.解答:解:(Ⅰ)∵椭圆N:+y2=1,∴c2=a2﹣b2=﹣1=,∴椭圆的左焦点为F1(﹣,0),∴﹣=﹣,则p=1.故M:y2=2x;(Ⅱ)由题意知,A(a,2a),∵|OA|=t,∴a2+2a=t2.由于t>0,故有t=①由点B(0,t),C(c,0)的坐标知,直线BC的方程为+=1.又∵A在直线BC上,故有+=1.将①代入上式,得:+=1,解得c=a+2+.又∵D(a+2,2),∴直线CD的斜率为:k CD====﹣1.点评:本题主要抛物线方程的求法,考查了直线与圆锥曲线位置关系的应用,解答此题的关键是对抛物线定义的灵活应用,是高考试卷中的压轴题.9.(2015•黄冈模拟)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C,过点(1,),(Ⅰ)求椭圆C的标准方程;(Ⅱ)设T(2,0),过点F2作直线l与椭圆C交于A,B两点,且=λ,若λ∈[﹣2,﹣1],求|+|2的最小值.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆的半焦距为c,由y2=4x求得c=1.设椭圆C的标准方程为(a>b>0),由于椭圆C过点(1,),代入椭圆方程结合a2=b2+c2,联立解得即可;(II)设l:x=ky+1,与椭圆的方程联立可得根与系数的关系,由λ∈[﹣2,﹣1)可得到k2的取值范围.由于=(x1﹣2,y1),=(x2﹣2,y2),通过换元,令t=∈[,],即可得出|+|2的最小值.解答:解:(Ⅰ)设椭圆的半焦距为c,由y2=4x得c=1,设椭圆C的标准方程为(a>b>0),∵椭圆C过点(1,),∴,又a2=b2+1,联立解得b2=1,a2=2.故椭圆C的标准方程为椭圆方程为+y2=1…(5分)(Ⅱ)由题意可设l:x=ky+1,由得(k2+2)y2+2ky﹣1=0…(6分)设A(x1,y1),B(x2,y2),则有将①2÷②得+2=﹣⇒λ++2=…(8分)由λ∈[﹣2,﹣1]得﹣≤λ++2≤0⇒﹣≤≤0,0≤k2≤…(9分)=(x1﹣2,y1),=(x2﹣2,y2),+=(x1+x2﹣4,y1+y2)x1+x2﹣4=k(y1+y2)﹣2=﹣,|+|=+==16﹣+令t=∈[,],|+|2=8t2﹣28t+16∴t=时|+|2的最小值是4点评:本题综合考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数、换元法、分类讨论、向量相等及其向量运算和向量的模等基础知识与基本技能方法,考查了分析问题和解决问题的能力,考查了推理能力和计算能力,属于中档题.10.(2015•福建模拟)如图,已知抛物线y2=4x的焦点为F,过点P(2,0)且斜率为k1的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF、BF分别与抛物线交于点M、N.(Ⅰ)证明•的值与k1无关;(Ⅱ)记直线MN的斜率为k2,证明为定值.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)依题意,设直线AB的方程为x=my+2,与抛物线方程联立消x得关于y的一元二次方程,根据韦达定理即可求得y1y2,进而求出x1x2,根据向量数量积运算公式,可得•的值与k1无关;(Ⅱ)设M(x3,y3),N(x4,y4),设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,得到关于y的一元二次方程,从而得y1y3=﹣4,同理可得y2y4=﹣4,根据斜率公式可把表示成关于y1与y2的表达式,再借助(Ⅰ)的结果即可证明.解答:证明:(Ⅰ)依题意,设直线AB的方程为x=my+2(m≠0).…(1分)将其代入y2=4x,消去x,整理得y2﹣4my﹣8=0.…(2分)从而y1y2=﹣8,于是,…(3分)∴与k 1无关.…(5分)(Ⅱ)设M(x3,y3),N(x4,y4).则.…(8分)设直线AM的方程为x=ny+1(n≠0),将其代入y2=4x,消去x,整理得y2﹣4ny﹣4=0∴y1y3=﹣4.同理可得y2y4=﹣4.…(10分)故,…(11分)由(Ⅰ)知,y1y2=﹣8,∴为定值.…(12分)点评:本题考查直线与圆锥曲线的位置关系及抛物线的简单性质,考查学生综合运用知识分析问题解决问题的能力,难度较大.11.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)当|AM|+4|BM|最小时,求直线l的方程.考点:直线与圆锥曲线的关系.专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1,则|AM|+4|BM|=x 1+4x2+5+5=9,当且仅当x1=4x2时取得最小值9.由于x1x2=1,则解得,x2=(负的舍去),代入抛物线方程y2=4x,解得,y2=,即有B(),将B的坐标代入直线x=my+1,得m=.则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.12.(2015•洛阳一模)已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且•=﹣3,其中O为坐标原点.(1)求p的值;(2)若圆x2+y2﹣2x=0与直线l相交于以C,D(A,C两点均在第一象银),且线段AC,CD,DB长构成等差数列,求直线l的方程.考点:直线与圆锥曲线的关系;直线的一般式方程.专题:计算题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2;(2)求出AB的长,用m表示,再由等差数列的性质,以及CD为圆的直径,即可得到m的方程,解出m,即可得到直线l的方程.解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0,y1+y2=2pm,y1y2=﹣p2,由于•=﹣3,即x1x2+y1y2=﹣3,x1x2==,即有﹣p2=﹣3,解得,p=2;(2)由(1)得,y1+y2=4m,y1y2=﹣4,则(y1﹣y2)2=(y1+y2)2﹣4y1y2=16(1+m2),|AB|2=(y1﹣y2)2+(x1﹣x2)2=(y1﹣y2)2+()2=y1﹣y2)2[1+()2]=16(1+m2)2,即有|AB|=4(1+m2),由于线段AC,CD,DB长构成等差数列,则2|CD|=|AC|+|DB|=|AC|+|BC|﹣|CD|=|AB|﹣|CD|,又CD为圆x2+y2﹣2x=0的直径,即有|CD|=2,则4(1+m2)=6,解得,m=,则直线l的方程是x+y﹣=0或x﹣y﹣=0.点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查等差数列的性质,考查运算能力,属于中档题.13.(2015•衡水模拟)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)设M(x,y),由题意可得:,化简可得曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),与抛物线方程联立化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.可得k1+k2=m,k1•k2=﹣1.得到切线QD⊥QE.因此△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=(4+m2)(k2+1),利用两点之间的距离公式可得|QD|=,|QE|=,代入即可得出.解答:解:(I)设M(x,y),由题意可得:,化为x2=4y.∴曲线C的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),联立,化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.∴x2﹣4kx+4k2=0,解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.∴k1+k2=m,k1•k2=﹣1.∴切线QD⊥QE.∴△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=4(k2﹣km)+m2+(km+2)2=4(k2﹣km)+m2+k2m2+4km+4=(4+m2)(k2+1),∴|QD|=,|QE|=,∴(4+m2)=≥4,当m=0时,即Q(0,﹣1)时,△QDE的面积S取得最小值4.点评:本题考查了直线与抛物线相切的性质、切线方程、相互垂直的斜率之间的关系、两点之间的距离公式、三角形的面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.14.(2015•郴州二模)如图所示,已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A,B两点.(1)求证:以AF为直径的圆与x轴相切;(2)设抛物线x2=4y在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程:(3)设过抛物线x2=4y焦点F的直线l与椭圆+=1的交点为C、D,是否存在直线l使得|AF|•|CF|=|BF|•|DF|,若存在,求出直线l的方程,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.利用抛物线的定义及梯形的中位线定理可得可得r====|O1O2|,即可证明;(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立化为x2﹣4kx﹣4=0,可得根与系数的关系,由x2=4y,可得.可得k MA•k MB==﹣1,可得△MAB为直角三角形,可得△MAB的外接圆的圆心为线段AB的中点.设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M,利用中点坐标公式与根与系数的关系可得圆心P(2,3),半径r=|MP|=|3﹣(﹣1)|=4,即可得出所求的△MAB的外接圆的方程.(3)假设存在直线l使得|AF|•|CF|=|BF|•|DF|,设=λ,可得,,设C(x3,y3),D (x4,y4).利用向量的坐标运算可得x1=﹣λx2,x4=﹣λx3.把x1=﹣λx2代入根与系数的关系可得.把y=kx+1代入椭圆方程可得(3k2+6)x2+6kx﹣1=0,把根与系数的关系与x4=﹣λx3联立可得,联立解得即可.解答:(1)证明:如图所示,设线段AF的中点为O1,过O1作O1O2⊥x轴,垂足为点O2,作AA1⊥x轴.则r====|O1O2|,∴r=|O1O2|,∴以AF为直径的圆与x轴相切;(2)解:设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).联立,化为x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4.。

高考数学-平面几何大题30题

高考数学-平面几何大题30题

立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4cm ,CD 是斜边上的高沿CD 把△ABC 折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A ,B 的位置,使二面角A -CD -B 是直二面角?证明你的结论.(2)试在平面ABC 上确定一个P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值. 解:(1)用直尺度量折后的AB 长,若AB =4cm ,则二面角A -CD -B 为直二面角.∵ △ABC 是等腰直角三角形,(),cm 22DB AD ==∴又∵ AD ⊥DC ,BD ⊥DC .∴ ∠ADC 是二面角A -CD -B 的平面角.有时当,cm 4AB ,22DB AD ===.90ADB .AB DB AD 222︒=∠∴=+(2)取△ABC 的中心P ,连DP ,则DP 满足条件 ∵ △ABC 为正三角形,且 AD =BD =CD .∴ 三棱锥D -ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC , ∴ DP 与平面内任意一条直线都垂直. (3)当小球半径最大时,此小球与三棱锥的4个面都相切,设小球球心为0,半径为r ,连结OA ,OB ,OC ,OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有ABC O ABD O ADC O BCD O BCD A V V V V V -----+++=代入得3623r -=,即半径最大的小球半径为3623-.A B C第1题图 A BCD第1题图2.如图,已知正四棱柱ABCD —A 1B 1C 1D 1的底面边长为3,侧棱长为4,连结A 1B ,过A 作AF ⊥A 1B 垂足为F ,且AF 的延长线交B 1B 于E 。

(Ⅰ)求证:D 1B ⊥平面AEC ; (Ⅱ)求三棱锥B —AEC 的体积; (Ⅲ)求二面角B —AE —C 的大小. 证(Ⅰ)∵ABCD —A 1B 1C 1D 1是正四棱柱,∴D 1D ⊥ABCD .连AC ,又底面ABCD 是正方形, ∴AC ⊥BD ,由三垂线定理知 D 1B ⊥AC . 同理,D 1B ⊥AE ,AE ∩AC = A , ∴D 1B ⊥平面AEC .解(Ⅱ)V B -AEC = V E -ABC . ∵EB ⊥平面ABC ,∴EB 的长为E 点到平面ABC 的距离. ∵Rt △ABE ~ Rt △A 1AB ,∴EB =.4912=A A AB∴V B -AEC = V E -ABC =31S △ABC ·EB=31×21×3×3×49=.827(10分)解(Ⅲ)连CF ,∵CB ⊥平面A 1B 1BA ,又BF ⊥AE ,由三垂线定理知,CF ⊥AE .于是,∠BFC 为二面角B —AE —C 的平面角,在Rt △ABE 中,BF =59=⋅AE BE BA , 在Rt △CBF 中,tg ∠BFC =35,∴∠BFC = arctg 35.即二面角B —AE —C 的大小为arctg 35.3.如图,正三棱柱ABC —A 1B 1C 1的底面边长为1,点M 在BC 上,△AMC 1是以M 为直角顶点的等腰直角三角形. (I )求证:点M 为BC 的中点; (Ⅱ)求点B 到平面AMC 1的距离; (Ⅲ)求二面角M —AC 1—B 的正切值. 答案:(I )证明:∵△AMC 1是以点M 为直角 顶点的等腰直角三角形,ABCA 1B 1C 1M 第3题图∴AM ⊥MC 1且AM=MC 1∵在正三棱柱ABC —A 1B 1C 1中, 有CC 1⊥底面ABC.∴C 1M 在底面内的射影为CM , 由三垂线逆定理,得AM ⊥CM.∵底面ABC 是边长为1的正三角形,∴点M 为BC 中点. (II )解法(一)过点B 作BH ⊥C 1M 交其延长线于H. 由(I )知AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1.∴AM ⊥BH. ∴BH ⊥平面AMC 1. ∴BH 为点B 到平面AMC 1的距离. ∵△BHM ∽△C 1CM. AM=C 1M=,23在Rt △CC 1M 中,可求出CC 1.22 .6623212211=⇒=⇒=∴BH BH M C BM CC BH 解法(二)设点B 到平面AMC 1的距离为h. 则11BMC A AMC B V V --=由(I )知 AM ⊥C 1M ,AM ⊥CB , ∴AM ⊥平面C 1CBB 1 ∵AB=1,BM=.22,23,2111===CC MC AM 可求出 AM S h S MB C AMC ⋅=⋅∆∆113131 232221213123232131⨯⨯⨯⨯=⨯⨯⨯h 66=h (III )过点B 作BI ⊥AC 1于I ,连结HI.∵BH ⊥平面C 1AM ,HI 为BI 在平面C 1AM 内的射影. ∴HI ⊥AC 1,∠BIH 为二面角M —AC 1—B 的平面角. 在Rt △BHM 中,,21,66==BM BH ∵△AMC 1为等腰直角三角形,∠AC 1M=45°.∴△C 1IH 也是等腰直角三角形. 由C 1M=.332,63,23122==-=H C BH BM HM 有 ∴.36=HI .21==∠∴HI BH BIH tg 4.如图,已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2,AB=1,F 是CD 的中点.(Ⅰ)求证:AF ∥平面BCE ; (Ⅱ)求多面体ABCDE 的体积; (Ⅲ)求二面角C-BE-D 的正切值. 证:(Ⅰ)取CE 中点M ,连结FM ,BM ,则有AB DE FM //21//.∴四边形AFMB 是平行四边形. ∴AF//BM ,∵⊂BM 平面BCE , ⊄AF 平面BCE , ∴AF//平面BCE .(Ⅱ)由于DE ⊥平面ACD , 则DE ⊥AF .又△ACD 是等边三角形,则AF ⊥CD .而CD∩DE=D ,因此AF ⊥平面CDE .又BM//AF ,则BM ⊥平面CDE .BM AB V V V CDE B ACD B ABCDE ⋅⋅⋅⋅+⋅⋅=+=--22213124331232233233=⋅⋅+=. (Ⅲ)设G 为AD 中点,连结CG ,则CG ⊥AD .由DE ⊥平面ACD ,⊂CG 平面ACD , 则DE ⊥CG ,又AD∩DE=D , ∴CG ⊥平面ADEB .作GH ⊥BE 于H ,连结CH ,则CH ⊥BE . ∴∠CHG 为二面角C-BE-D 的平面角. 由已知AB=1,DE=AD=2,则3=CG ,∴23122111212)21(21=⨯⨯-⨯⨯-⋅+=∆GBE S . 不难算出5=BE .∴23521=⋅⋅=∆GH S GBE ,∴53=GH . ∴315==∠GH CG CHG tg . 5.已知:ABCD 是矩形,设PA=a ,PA ⊥平面ABCD.M 、N 分别是AB 、PC 的中点.(Ⅰ)求证:MN ⊥AB ;(Ⅱ)若PD=AB ,且平面MND ⊥平面PCD ,求二面角P —CD —A 的大小; (Ⅲ)在(Ⅱ)的条件下,求三棱锥D —AMN 的体积. (Ⅰ)连结AC ,AN. 由BC ⊥AB ,AB 是PB 在底面ABCD 上的射影. 则有BC ⊥PB. 又BN 是Rt △PBC 斜边PC 的中线, 即PC BN 21=. 由PA ⊥底面ABCD ,有PA ⊥AC ,则AN 是Rt △PAC 斜边PC 的中线,即PC AN 21=BN AN =∴又∵M 是AB 的中点, AB MN ⊥∴(也可由三垂线定理证明)(Ⅱ)由PA ⊥平面ABCD ,AD ⊥DC ,有PD ⊥DC.则∠PDA 为平面PCD 与平面ABCD 所成二面角的平面角由PA=a ,设AD=BC=b ,CD=AB=c , 又由AB=PD=DC ,N 是PC 中点,则有DN ⊥PC又∵平面MND ⊥平面PCD 于ND , ∴PC ⊥平面MND ∴PC ⊥MN , 而N 是PC 中点,则必有PM=MC.b ac b c a =∴+=+∴.41412222 此时4,1π=∠=∠PDA PDA tg .即二面角P —CD —A 的大小为4π(Ⅲ)AMD N AMN D V V --=,连结BD 交AC 于O ,连结NO ,则NO 21PA. 且NO ⊥平面AMD ,由PA=a324231a NO S V AMD AMD N =⋅=∴∆-. 6.如图,正方体ABCD —A 1B 1C 1D 1中,P 、M 、N 分别为棱DD 1、AB 、BC 的中点。

高考数学小题狂飙基础篇30题-纯答案用卷

高考数学小题狂飙基础篇30题-纯答案用卷

高考数学小题狂飙基础篇30题答案和解析【答案】1. C2. D3. A4. C5. B6. A7. B8. C 9. A 10. C 11. A 12. A 13. C 14. A15. C 16. D 17. D 18. A 19. A 20. B 21. C22. D 23. C 24. C 25. A 26. A 27. B 28. B29. D 30. D【解析】26. 【分析】本题考查函数的周期性以及奇偶性,题目常规.首先求得函数f (x )为周期函数,周期为4,故f(1)+f(2)+f(3)+⋯+f(2018)=504[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2),分别求得f (1),f (2),f (3),f (4),问题得解.【解答】解:因为f(x +2)=−f(x),f (x +2+2)=−f (x +2),则f (x +4)=−f (x +2)=f (x ),所以函数f (x )为周期函数,周期为4,所以f(1)+f(2)+f(3)+⋯+f(2018)=504[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2).因为f(x)是定义域为的偶函数,且f(0)=1,所以f (4)=f (0)=1,当x =−1时,f (1)=−f (−1)=−f (1),所以f (1)=0,当x =0时,f (2)=−f (0)=−1,当x =1时,f (3)=−f (1)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f(1)+f(2)+f(3)+⋯+f(2018)=504[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)=−1.故选A .27. 【分析】本题考查等差数列的性质,正余弦定理的应用,两角和差公式.先由正弦定理可得2c =a +b ,再由两角和差的正弦公式可得角C ,再由余弦定理求解.【解答】解:在△ABC 中,sinA ,sinC ,sinB 成等差数列,所以2sinC =sinA +sinB ,由正弦定理可得2c =a +b ,因为sin (C −π4)+sin (C +π4)=√2sin2C ,所以√22sinC −√22cosC +√22sinC +√22cosC =2√2sinCcosC , 解得cosC =12,C =π3,因为(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )·CA⃗⃗⃗⃗⃗ =32, 所以CB ⃗⃗⃗⃗⃗ . CA ⃗⃗⃗⃗⃗ =32,即|CB ⃗⃗⃗⃗⃗ | . |CA ⃗⃗⃗⃗⃗ |cos π3=32, 所以ab =64,由余弦定理可得c 2=a 2+b 2−2ab cos C ,所以c 2=a 2+b 2−ab =(a +b )2−3ab ,解得c 2=4c 2−3×64,所以3c 2=3×64,解得c=8.故选B.28. 【分析】本题考查了立体图形的三视图,以及球的体积,正方体的结构特征.由截面面积,得到三角形的边长,再得到正方体的棱长,得到球的半径,从而得到结果.【解答】解:依题意:球内切于正方体各面,∵面A1C1B截得小球的截面为正三角形的内切圆面积为2π3,∴πr2=2π3,∴小圆半径r=√63,∴正三角形的高√63×3=√6,∴正三角形的边长A1B=BC1=A1C1=2√2,∵设正方体的边长为a,∴a2+a2=(2√2)2,∴a=2,∴球的半径为R=1,∴球的体积V=43πR3=43π.故选B.29. 【分析】本题考查抛物线的概念及性质.根据题意可得|MP|=|MF2|,可求得曲线C2的方程,|QA|+|QB|的最小值为点A到准线的距离.【解答】解:∵椭圆C1:x23+y22=1的左右焦点为F1,F2,∴F1(−1,0),F2(1,0),直线l1:x=−1,设l2:y=t,设P(−1,t),(t∈R),M(x,y),则y=t,且由题意可得|MP|=|MF2|,∴(x+1)2=(x−1)2+y2,∴曲线C2:y2=4x.根据点Q是C2上任意的一点,定点A(4,3),B(1,0)为曲线C2的焦点,|QB|可化为到准线的距离,则|QA|+|QB|的最小值为点A到准线的距离5.故选D.30. 【分析】本题考查导数在函数中的应用.根据题意构造函数g(x)=f(x)sin x ,x∈(−π,0)∪(0,π),并研究其在定义域内的单调性,从而可比较a,b,c的大小.【解答】解:由题意得:设函数g(x)=f(x)sin x ,x∈(0,π),∵f(x)为偶函数,∴g(−x)=f(−x)sin(−x)=−f(x)sin x=−g(x),即函数g(x)为奇函数,,0 '/>,0 '/>,所以g(x)在(0,π)上单调递增,又g(x)为奇函数,∴g(x)在(−π,0),(0,π)上分别单调递增,∵f(π2)=0,∴g(π2)=f(π2)sinπ2=0,g(−π2)=−g(π2)=0,∴a=−2f(−π6)=g(−π6)>0,b=2f(π6)=g(π6)<c=√2f(π4)=g(π4)<0,∴b<c<a.故选D.。

2020高考数学(理数)题海集训26 等差数列及前n项和公式(30题含答案)

2020高考数学(理数)题海集训26 等差数列及前n项和公式(30题含答案)

2020高考数学(理数)题海集训26 等差数列及前n 项和公式一、选择题1.设S n 是等差数列{a n }的前n 项和,若3163=S S ,则126S S等于( ). A.103 B.31 C.81 D.912.在等差数列{a n }中,已知前15项的和S 15=90,则a 8等于( )A.3B.4C.6D.123.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A.37B.36C.20D.194.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升B .6766升 C.4744升 D .3733升5.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.217 B.219 C.10 D.126.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A.12B.13C.14D.157.等差数列{a n }的前m 项的和为10,前2m 项的和为100,则它的前3m 项的和为( )A.130B.170C.270D.260 8.等差数列{a n }的前n 项和为S n ,若a 1019=1,则S 2037( )A.1018B.1019C.2018D.20199.已知数列-1,a 1,a 2,-4与数列1,b 1,b 2,b 3,-5各自成等差数列,则212b a a -等于( ) A.41 B.21 C.-21 D.-4110.设S n 是等差数列{a n }的前n 项和,若a 2+a 12=18,则S 13=( )A.91B.126C.234D.11711.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A.2B.3C.6D.712.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( ).A.14B.21C.28D.3513.数列{2n -1}的前10项的和是( )A .120B .110C .100D .1014.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.415.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( ).A.22B.21C.19D.1816.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于( )A .2B .0C .-1D .-217.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A.6B.7C.8D.918.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-6619.设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-1320.如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n+1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列二、填空题21.已知S n 是等差数列{a n }的前n 项和,且a 1=21,S 2=a 3,则a 2=________.22.等差数列{a n }中,S 10=4S 5,则da 1=________.23.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于________.24.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1a 5=a 22,则S 8=________.25.等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+…+a 99等于________.26.已知数列{a n }中,a 1=-7,a 2=3,a n +2=a n +2,则S 100= .27.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于 .28.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.则月末日织几何?”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布.29.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n=________时,{a n }的前n 项和最大.30.在-1与7之间顺次插入三个数a 、b 、c ,使这5个数成等差数列,则插入的三个数为 .答案解析1.答案为:A;解析:2.答案为:C ;3.答案为:A ;解析:a m =a 1+a 2+…+a 9=9a 1+36d=36d=a 37,∴m=37.故选A.4.答案为:B.解析:设该等差数列为{a n },公差为d ,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.5.答案为:B ;6.答案为:B ;7.答案为:C ;解析:∵S m =10,S 2m =100,故S 2m -S m =90,故知S m ,S 2m -S m ,S 3m -S 2m 构成首项为10, 公差为80的等差数列,∴S 3m -S 2m =90+80=170.∴S 3m =100+170=270. 8.D.9.答案为:B ;解析:设数列-1,a 1,a 2,-4的公差是d ,则a 2-a 1=d=-1,b 2=-2,故知212b a a -=21. 10.D.11.答案为:B ; 12.答案为:C ;解析:由等差数列性质得a 3+a 4+a 5=3a 4,由3a 4=12,得a 4=4,所以a 1+a 2+…+a 7=7a 4=28. 13.答案为:C ;14.答案为:B ;解析:由等差中项的性质知a 3=5,又a 4=7,∴公差d=a 4-a 3=7-5=2. 15.答案为:D ;解析:∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a a -4=146,∴5(a 1+a n )=180,a 1+a n =36,S n =2)(1n a a n +=236⨯n =234. ∴n=13,S 13=13a 7=234.∴a 7=18.16.答案为:D ;17.答案为:A;解析:∵{a n }是等差数列,∴a 4+a 6=2a 5=-6,即a 5=-3,d=2,∴{a n }是首项为负数的递增数列,所有的非正项之和是S n 的最小值.∵a 6=-1,a 7=1, ∴当n=6时,S n 最小,故选A.18.答案为:D ;∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n[-1+-2n +2=-n 2,∴S n n =-n 2n=-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66,故选D.19.答案为:B ;设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n≤2时,a n <0,当n≥3时,a n >0, ∴a 2a 3=-12为a n a n +1的最小值; 当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7, 此时a n =-7n +53,a 7=4,a 8=-3,易知当n≤7时,a n >0,当n≥8时,a n <0, ∴a 7a 8=-12为a n a n +1的最小值. 综上,a n a n +1的最小值为-12.20.答案为:A.解析:作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n , 则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|,∴|C n C n +1|=|C n +1C n +2|. 设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a(n≥3),∴S n =12c[(n -1)b -(n -2)a]=12c[(b -a)n +(2a -b)],∴S n +1-S n =12c[(b -a)(n +1)+(2a -b)-(b -a)n -(2a -b)]=12c(b -a),∴数列{S n }是等差数列.一、填空题21.答案为:1; 22.答案为:0.5; 23.28;解析:∵a 3+a 4+a 5=3a 4=12,∴a 4=4.∴a 1+a 2+a 3+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28. 24.答案为:64; 25.答案为:60; 26.答案为:4 700;解析:由a 1=-7,a n +2=a n +2,可得a n +2-a n =2,∴a 1,a 3,a 5,a 7,…,a 99是以-7为首项,公差为2的等差数列,共50项.∴a 1+a 3+a 5+…+a 99=50×(-7)+2)150(50-⨯×2=2 100.同理,a 2,a 4,a 6,…,a 100是以3为首项,公差为2的等差数列,共50项. ∴a 2+a 4+a 6+…+a 100=50×3+2)150(50-⨯×2=2 600.∴S 100=2 100+2 600=4 700.27.答案为:3;28.答案为:21;解析:由题意得,该女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有+a 302=390,解得a 30=21,即该女最后一天织21尺布.29.答案为:8;解析:∵a 7+a 8+a 9=3a 8>0,∴a 8>0.∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0.∴数列的前8项和最大,即n=8. 30.答案为:1,3,5;解析:5个数成等差数列,则a 1=-1,a 5=7,∴d=415a a -=2, ∴插入的三个数依次为1,3,5.。

2020高考数学(文数)考点测试刷题本30 等差数列前n项和公式(含答案解析)

2020高考数学(文数)考点测试刷题本30 等差数列前n项和公式(含答案解析)

12.答案为:16;
( ) 3
76
81
解析:设{an}的公差为 d,由 a12=8a5>0,得 a1=- 5 d,d<0,所以 an= n- 5 d,
从而可知当 1≤n≤16 时,an>0;当 n≥17 时,an<0.
从而 b1>b2>…>b14>0>b17>b18>…,
b15=a15a16a17<0,b16=a16a17a18>0,故 S14>S13>…>S1,S14>S15,S15<S16,S16>S17>S18>….
3 12.数列{an}是等差数列,数列{bn}满足 bn=anan+1an+2(n∈N*),设 Sn 为{bn}的前 n 项和.若 a12=8a5
>0,则当 Sn 取得最大值时 n 的值为________. 三、解答题 13.已知等差数列{an}的公差 d>0,前 n 项和为 Sn,且 a2·a3=45,S4=28.
所以 S4
035=
2
=4
035a2
018>0,S4
036=
2
=
4 036a2 018+a2 019
<0, 2
所以使得 Sn>0 的 n 的最大值为 4 035,故选 C.
8.答案为:D; 因为点(n,Sn)(n∈N*)在函数 y=x2-10x 的图象上,所以 Sn=n2-10n,所以 an=2n-11, 又 bn+bn+1=an(n∈N*),数列{bn}为等差数列,设公差为 d,
A.18
B.20
C.21
D.25
3.设 Sn 为等差数列{an}的前 n 项和,已知 a1=S3=3,则 S4 的值为( )
A.-3
B.0
C.3
D.6
4.已知等差数列{an}前 9 项的和为 27,a10=8,则 a100=( )

2020年高考数学复习题:基本不等式及其应用

2020年高考数学复习题:基本不等式及其应用

2020年高考数学复习题:基本不等式及其应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN基本不等式及其应用[基础训练]1.下列结论中正确的个数是( ) ①若a >0,则a 2+1a 的最小值是2a ;②函数f (x )=sin 2x 3+cos 2x 的最大值是2;③函数f (x )=x +1x 的值域是[2,+∞);④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b .A .0B .1C .2D .3答案:B 解析:①错误:设f (a )=a 2+1a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值;②错误:f (x )=sin 2x3+cos 2x ≤sin 2x +3+cos 2x 2=2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1x ≥2x ·1x =2,当且仅当x =1x ,即x =1时等号成立;当x <0时,-x >0,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x≤-2(-x )·1-x=-2,当且仅当-x =-1x ,即x =-1时等号成立. ∴f (x )=x +1x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab ,其中等号成立的条件是a +b =0,即a =-b .2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则2a -1+1b 的最小值为( )A .4B .5C .6D .8答案:D 解析:因为a >1,b >0,且a +2b =2, 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b=8, 当且仅当4b a -1=a -1b 时等号成立,所以2a -1+1b的最小值是8,故选D.3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立),∴2x +y≤12,∴2x +y≤14,得x +y ≤-2.故选D.4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22 B .2 2 C. 2 D .2答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.5.用一段长为L 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积为( )A.L 28B.L 24 C.L 22D .L 2答案:A 解析:设菜园平行于墙的一边长为x ,其邻边长为y ,则x +2y =L ,面积S =xy ,因为x +2y ≥22xy , 所以xy ≤(x +2y )28=L 28,当且仅当x =2y =L 2,即x =L 2,y =L 4时,S max =L 28, 故选A.6.[2019云南玉溪一中月考]已知f (x )=x 2-2x +1x,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( ) A.12 B.43 C .-1 D .0答案:D 解析:f (x )=x 2-2x +1x =x +1x -2≥2-2=0, 当且仅当x =1x ,即x =1时等号成立.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.7.[2019天津和平区期末]已知a >0,则(a -1)(4a -1)a 的最小值为________.答案:-1 解析:(a -1)(4a -1)a =4a 2-a -4a +1a =4a -5+1a .∵a >0,∴4a -5+1a ≥24a ·1a -5=-1,当且仅当4a =1a ,即a =12时等号成立, ∴(a -1)(4a -1)a的最小值为-1. 8.[2019江苏苏北四市联考]若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值为________. 答案:8 解析:∵实数x ,y 满足xy +3x =3⎝⎛⎭⎪⎫0<x <12,∴x =3y +3∈⎝⎛⎭⎪⎫0,12,解得y >3,则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4⎝ ⎛⎭⎪⎫x =37时等号成立. 9.[2019天津第一中学月考]对任意的θ∈⎝ ⎛⎭⎪⎫0,π2,不等式1sin 2θ+4cos 2θ≥|2x -1|恒成立,则实数x 的取值范围是________.答案:[-4,5] 解析:∵当θ∈⎝ ⎛⎭⎪⎫0,π2时,1sin 2θ+4cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+4cos 2θ(sin 2θ+cos 2θ)=5+cos 2θsin 2θ+4sin 2θcos 2θ ≥5+2cos 2θsin 2θ·4sin 2θcos 2θ=9,当且仅当sin θ=33,cos θ=63时等号成立, 又1sin 2θ+4cos 2θ≥|2x -1|恒成立,∴|2x -1|≤9,∴-4≤x ≤5,即x ∈[-4,5].10.[2019安徽黄山一模]已知函数f (x )=k -|x -4|,x ∈R ,且f (x +4)≥0的解集为[-1,1].(1)求k 的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc =1,求证:19a +29b +39c ≥1.(1)解:因为f (x )=k -|x -4|, 所以f (x +4)≥0等价于|x |≤k .由|x |≤k 有解得k ≥0,且其解集为{x |-k ≤x ≤k }. 又f (x +4)≥0的解集为[-1,1],故k =1. (2)证明:由(1)知1a +12b +13c =1, 又a ,b ,c 是正实数,由均值不等式得 a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫a 2b +2b a +⎝ ⎛⎭⎪⎫a 3c +3c a +⎝ ⎛⎭⎪⎫2b 3c +3c 2b≥3+2+2+2=9.当且仅当a =2b =3c 时等号成立, 所以19a +29b +39c ≥1.[强化训练]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322答案:B 解析:解法一:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本(均值)不等式可知, (3-a )(a +6)≤(3-a )+(a +6)2=92, 当且仅当a =-32时等号成立.解法二:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92, 当且仅当a =-32时等号成立.2.[2018内蒙古包头二模]已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256答案:A 解析:解法一(常数代换法): 设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5, 可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24, 所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4mn 时,等号成立, 所以1m +4n 的最小值为32,故选A. 解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5.故1m +4n =1m +46-m =6-m +4m m (6-m )=3(m +2)m (6-m )=3m (6-m )m +2=-3[(m +2)-2][(m +2)-8]m +2=-3(m +2)+16m +2-10. 由基本不等式,得(m +2)+16m +2-10 ≥2(m +2)×16m +2-10=-2⎝ ⎛⎭⎪⎫当且仅当m +2=16m +2,即m =2时等号成立,易知(m +2)+16m +2-10<0,所以1m +4n ≥-3-2=32.故选A.3.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案:B 解析:因为b >a >0,故a +b2>ab . 又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .4.[2019西安模拟]设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8 D .9答案:D 解析:因为AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线,则有AB →∥AC →, 所以(a -1)×2-1×(-b -1)=0, 所以2a +b =1,又a >0,b >0, 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab ≥5+22b a ×2ab =9,当且仅当⎩⎨⎧2b a=2a b ,2a +b =1,即a =b =13时等号成立.5.[2018河南信阳二模]如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD 的形状,下底AB 是半圆的直径,上底CD 的端点在圆周上,则所得梯形面积的最大值为( )A .3 3B .3 2C .5 3D .5 2 答案:A 解析:如图,设半圆圆心为O ,连接OD ,过C ,D 分别作DE ⊥AB ,CF ⊥AB , 垂足分别为E ,F .设∠AOD =θ,θ∈⎝⎛⎭⎪⎫0,π2,OE =2cos θ,DE =2sin θ.可得CD =2OE =4cos θ,∴梯形ABCD 的面积为S =12(4+4cos θ)·2sin θ=4sin θ(1+cos θ),S ′=4(cos θ+cos 2θ-sin 2θ)=4(2cos 2θ+cos θ-1) =4(2cos θ-1)(cos θ+1).∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴当θ∈⎝ ⎛⎭⎪⎫0,π3时,S ′>0;当θ∈⎝⎛⎭⎪⎫π3,π2时,S ′<0.∴当θ=π3,S 取得最大值,S =3 3.6.[2019广东广州质检]设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是( )A .(1,3)B .(1,2]C.⎝ ⎛⎭⎪⎫12,72 D.⎝ ⎛⎭⎪⎫12,3 答案:A 解析:对任意的正实数x ,y ,a =x 2-xy +y 2≥2xy -xy =xy ,当且仅当x =y 时等号成立, b =p xy ,c =x +y ≥2xy , 当且仅当x =y 时等号成立.又三角形的任意两边之和大于第三边, 所以xy +2xy >p xy ,p xy +xy >2xy , p xy +2xy >xy ,解得1<p <3, 故实数p 的取值范围是(1,3).7.[2019广东揭阳期末]当0<x <π2时,函数f (x )=1+cos 2x +8sin 2xsin 2x的最小值为( )A .2B .2 3C .4D .4 3答案:C 解析:∵0<x <π2,∴tan x >0,∴f (x )=1+cos 2x +8sin 2x sin 2x=2cos 2x +8sin 2x 2sin x cos x =1+4tan 2x tan x =1tan x +4tan x≥21tan x ·4tan x =4, 当且仅当tan x =12时等号成立,∴函数f (x )=1+cos 2x +8sin 2x sin 2x的最小值为4, 故选C.8.[2019四川成都月考]实数x ,y 满足2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1,则xy 的最小值为( ) A .2 B .1 C.12 D.14答案:D 解析:因为2cos 2(x +y -1)∈[0,2],(x +1)2+(y -1)2-2xy x -y +1=x 2+y 2+1-2xy +2x -2y +1x -y +1=(x -y +1)2+1x -y +1=x -y +1+1x -y +1∈(-∞,-2]∪[2,+∞), 又2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1, 所以2cos 2(x +y -1)=2,所以x -y +1=1,x +y -1=k π(k ∈Z ),所以x =y =k π+12(k ∈Z ),所以xy =⎝ ⎛⎭⎪⎫k π+122≥14, 当且仅当k =0时等号成立,故选D.9.[2019江苏如皋质量调研]已知x ,y ,z 均为正数,2x +1y =2,x +2y +2z =xyz ,则xyz 的最小值为________.答案:16 解析:∵2x +1y =2y +x xy =2,∴2y +x =2xy ,∴x +2y +2z =2xy +2z =xyz .∵x ,y ,z 均为正数,z =2xy xy -2>0,xy -2>0, ∴xyz =2(xy )2xy -2=2(xy -2)+8xy -2+8 ≥22(xy -2)×8xy -2+8=16, 当且仅当2(xy -2)=8xy -2,即xy =4时等号成立, ∴xyz 的最小值为16.10.[2017江苏卷]某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30 解析:一年的总运费为6×600x =3 600x (万元).一年的总存储费用为4x 万元.总运费与总存储费用的和为⎝ ⎛⎭⎪⎫3 600x +4x 万元. 因为3 600x +4x ≥2 3 600x ·4x =240, 当且仅当3 600x =4x ,即x =30时等号成立,所以当x =30时,一年的总运费与总存储费用之和最小.11.若正实数x ,y 满足不等式(x +y )(1+xy )=5xy ,则x +y 的最大值是________.答案:4 解析:∵x ,y >0,∴由xy ≤(x +y )24可得x +y xy ≥4x +y, 又∵(x +y )(1+xy )=5xy ,∴5=x +y xy +(x +y )≥4x +y+x +y , 整理得(x +y )2-5(x +y )+4≤0, 解得1≤x +y ≤4.当且仅当x =y =12时,x +y 取得最小值1;当且仅当x =y =2时,x +y 取得最大值4.。

2020高考数学(理数)题海集训38 分类加法计数原理与分步乘法计数原理(30题含答案)

2020高考数学(理数)题海集训38 分类加法计数原理与分步乘法计数原理(30题含答案)

2020高考数学(理数)题海集训38分类加法计数原理与分步乘法计数原理一、选择题1.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )A.13种B.16种C.24种D.48种2.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.483.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.194. (a1+a2+a3+a4)·(b1+b2)·(c1+c2+c3)展开后共有不同的项数为( )A.9B.12C.18D.245.如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开从不同的路线同时传递,则单位时间内传递的最大信息量为( )A.26B.24C.20D.196.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 ( )A.C28A23B.C28A66C.C28A26D.C28A257.已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为( )A.8个B.12个C.10个D.9个8.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( )A.8种B.9种C.10种D.11种9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数的个数是( )A.30 B.42 C.36 D.3510.用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.27911.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40B.16C.13D.1012.体育老师把9个相同的足球放入编号为1,2,3的三个箱子中,要求每个箱子放球的个数不小于其编号,则不同的放球方法有( )A.8种B.10种C.12种D.16种13.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( )A.14B.23C.48D.12014.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.615.下图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一个颜色,相邻区域颜色不相同,则不同的涂色方法有( )A.24种B.72种C.84种D.120种16.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A、B的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条17.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.818.甲与其四位同事各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )A.5B.24C.32D.6419.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14B.13C.12D.1020.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( )A.480B.240C.120D.96二、填空题21.直线方程Ax +By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A ,B 的值,则可表示 条不同的直线.22.在连接正八边形的顶点而成的三角形中,与正八边形有公共边的三角形有 个. 23.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.24.现有五种不同的颜色,要对图形中的四个部分进行着色,要求有公共边的两块不能用同一种颜色,不同的涂色方法有 种.25.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女一定不是O 型,若某人的血型为O 型,则父母血型所有可能情况有________种.26.已知△ABC 三边a,b,c 的长都是整数,且a ≤b ≤c,如果b=25,则符合条件的三角形共有个.27.从数字1,2,3,4,5,6中取两个数相加,共得 个不同的偶数.28.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛 ,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有 种.(用数字作答)29.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答)30.从集合{1,2,3,4,5,6}中任取两个元素作为双曲线x 2a 2-y 2b2=1中的几何量a 、b 的值,则“双曲线渐近线的斜率k 满足|k|≤1”的概率为 .答案解析1.A.[解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A.2.B.解析:A 有4种选择,B 有3种选择,若C 与A 相同,则D 有3种选择,若C 与A 不同,则C 有2种选择,D 也有2种选择,所以共有4×3×(3+2×2)=84种.3.D.[解析]本题考查计数原理与古典概型,∵两数之和为奇数,则两数一奇一偶,若个位数为奇数,则共有4×5=20个数,若个位数为偶数,共有5×5=25个数,其中个位为0的数共有5个,∴P=520+25=19.4.D.解析:由分步乘法计数原理得共有不同的项数为4×2×3=24.故选D.5.D.[解析] 因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从A 向B 传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D.6.C.解析:从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.7.D.解析:分两步:第一步,在集合{2,3,7}中任取一个值,有3种不同的取法;第二步,在集合{-3,-4,8}中任取一个值,有3种不同取法.故x ·y 可表示3×3=9(个)不同的值.故选D.8.B.[解析]设四个班级分别是A 、B 、C 、D ,它们的老师分别是a 、b 、c 、d ,并设a 监考的是B ,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a 监考C 、D 时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.另外,本题还可让a 先选,可从B 、C 、D 中选一个,即有3种选法.若选的是B ,则b 从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法.9.答案为:C.解析:因为a +bi 为虚数,所以b≠0,即b 有6种取法,a 有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.10.B.[解析]用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900, 其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.11.C.解析:分两类:第1类,直线a 与直线b 上8个点可以确定8个不同的平面;第2类,直线b 与直线a 上5个点可以确定5个不同的平面.故可以确定8+5=13个不同的平面.12.B.[解析]首先在三个箱子中放入个数与编号相同的球,这样剩下三个足球,这三个足球可以随意放置,第一种方法,可以在每一个箱子中放一个,有1种结果;第二种方法,可以把球分成两份,1和2,这两份在三个位置,有3×2=6种结果;第三种方法,可以把三个球都放到一个箱子中,有3种结果.综上可知共有1+6+3=10种结果.13.C.解析:分两步:第一步,取多面体,有5+3=8种不同的取法,第二步,取旋转体,有4+2=6种不同的取法.所以不同的取法种数是8×6=48种.14.B.[解析](1)当从0,2中选取2时,组成的三位奇数的个位只能奇数,只要2不排在个位即可,先排2再排1,3,5中选出的两个奇数,共有2×3×2=12(个).(2)当从0,2中选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,只要排好从1,3,5中选出的两个奇数.共有3×2=6(个).综上,由分类加法计数原理知共有12+6=18(个).15.答案为:C ;解析:如图,设四个直角三角形依次为A,B,C,D,下面分两种情况:(1)A,C 不同色(注意:B,D 可同色、也可不同色,D 只要不与A,C 同色即可,所以D 可以从剩余的2种颜色中任意取一色):有4×3×2×2=48(种)涂色方法.(2)A,C 同色(注意:B,D 可同色、也可不同色,D 只要不与A,C 同色即可,所以D 可以从剩余的3种颜色中任意取一色):有4×3×1×3=36(种)涂色方法,综上,共有48+36=84种涂色方法.故选C.16.A.解析:第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.17.D.[解析] 当公比为2时,等比数列可为1、2、4,2、4、8.当公比为3时,等比数列可为1、3、9.当公比为32时,等比数列可为4、6、9. 同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.18.D.解析:5日至9日,有3天奇数日,2天偶数日,第一步安排奇数日出行,每天都有2种选择,共有23=8(种),第二步安排偶数日出行分两类,第一类,先选1天安排甲的车,另外一天安排其他车,有2×2=4(种).第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8,根据分步乘法计数原理,不同的用车方案种数共有8×8=64.故选D.19.B.解析:当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.20.B.解析:先把5本书中的两本捆起来,再分成4份即可,∴分法种数为C25A44=240.一、填空题21.答案为:22;[解析]若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.22.答案为:40;解析:分两类:①有一条公共边的三角形共有8×4=32个;②有两条公共边的三角形共有8个.故共有32+8=40个.23.答案为:20,10.解析:产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.24.答案为:180;[解析]依次给区域Ⅰ、Ⅱ、Ⅲ、Ⅳ涂色分别有5、4、3、3种方法,根据分步乘法计数原理,不同的涂色方法的种数为5×4×3×3=180.25.答案为:9;解析:父母应为A或B或O,C13·C13=9(种).26.答案为:325;解析:根据三角形的三边关系可知,c<25+a.第一类,当a=1,b=25时,c可取25,共1个;第二类,当a=2,b=25时,c可取25,26,共2个;……当a=25,b=25时,c可取25,26,…,49,共25个.所以符合条件的三角形的个数为1+2+…+25=325.27.答案为:4.[解析]由两个数相加是偶数知两个数都是偶数或两个数都是奇数,分两类,第一类,两个数都是偶数,2+4=6,2+6=8,4+6=10,共得3个偶数,第二类,两个数都是奇数,1+3=4,1+5=6,3+5=8,共得3个偶数,∵2+6=3+5,2+4=1+5,∴从数字1,2,3,4,5,6中取两个相加,共得4个不同的偶数,28.答案为:48;[解析]本题可分为两类完成:两老一新时,有3×2×2=12(种)排法;两新一老时,有2×3×3×2=36(种)排法,即共有48种排法.29.答案为:480.解析:按C 的位置分类计算.①当C 在第一或第六位时,有A 55=120(种)排法;②当C 在第二或第五位时,有A 24A 33=72(种)排法;③当C 在第三或第四位时,有A 22A 33+A 23A 33=48(种)排法.所以共有2×(120+72+48)=480(种)排法.30.答案为:12; [解析]所有可能取法有6×5=30种,由|k|=b a≤1知b ≤a ,满足此条件的有(2,1),(3,2),(3,1),(4,3),(4,2),(4,1),(5,4),(5,3),(5,2),(5,1),(6,5),(6,4),(6,3),(6,2),(6,1)共15种,∴所求概率P=1530=12.。

2020高考数学(理数)题海集训10 空间向量(30题含答案)

2020高考数学(理数)题海集训10 空间向量(30题含答案)

2020高考数学(理数)题海集训10 空间向量一、选择题1.已知向量=(2,4,5),=(3,x ,y)分别是直线l 1、l 2方向向量,若l 1∥l 2,则( )A.x=6,y=15B.x=3,y=7.5C.x=3,y=15D.x=6,y=7.5 2.若向量=(1,1,x),=(1,2,1),=(1,1,1),满足条件(﹣)(2)=﹣2,则x 的值为( ) A.1 B.2 C.3 D.43.如图所示,在平行六面体ABCD­A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→相等的向量是( )A .-12a +12b +c B.12a +12b +c C .-12a -12b +c D.12a -12b +c4.若直线l 的方向向量与平面α的一个法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°5.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 满足=3,=3,则BE 与DF 所成角正弦值为( )A.B.C.D.6.(在正三棱柱ABC ﹣A 1B 1C 1中,若AB=,则AB 1与C 1B 所成的角的大小为( )A.60°B.90°C.75°D.105°7.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90°8.已知长方体ABCD ﹣A 1B 1C 1D 1,下列向量的数量积一定不为0的是( )A. B. C. D.9.在四棱锥P­ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h=( )A .1B .2C .13D .2610.已知A(1,0,0),B(0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( )A .±66B .66C .-66 D .± 611.已知向量=(1,1,0),=(﹣1,0,2),且k +与2-互相垂直,则k 的值是( )A.1B.0.2C.0.6D.1.412.如图所示,已知空间四边形OABC ,OB=OC ,且∠AOB=∠AOC=,则cos <,>的值为( )A. B.0 C.0.5 D.13.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a ,b ,c 三向量共面,则λ=( )A .9B .-9C .-3D .314.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→(x ,y ,z ∈R),则“x =2,y=-3,z=2”是“P,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件15.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p=xa +yb +zc.其中正确命题的个数是( )A .0B .1C .2D .316.如图所示,在正方体ABCD­A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 上的点,A 1M=AN=2a 3, 则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定17.在三棱柱ABC­A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32 B .22 C.104 D .6418.已知底面是边长为2的正方形的四棱锥P­ABCD 中,四棱锥的侧棱长都为4,E 是PB 的中点,则异面直线AD 与CE 所成角的余弦值为( )A.64 B .33 C.12 D .2219.如图,在棱长为1的正方体ABCD­A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论正确的是( )A .DB 1⊥D 1P B .平面AD 1P ⊥平面A 1DB 1C .∠APD 1的最大值为90° D .AP +PD 1的最小值为2+6220.在空间四边形ABCD 中,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→的值为( )A .-1B .0C .1D .2二、填空题21.在空间直角坐标系中,已知P(2,2,5)、Q(5,4,z)两点之间的距离为7,则z= . 22.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB ―→=(2,-1,-4),AD ―→=(4,2,0),AP ―→=(-1,2,-1).对于结论: ①AP ⊥AB ; ②AP ⊥AD ; ③AP ―→是平面ABCD 的法向量; ④AP ―→∥BD ―→.其中正确的是________.23.=(2,﹣3,5),=(﹣3,1,﹣4),则||= .24.△ABC 的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC 边上高BD 等于______.25.点P 是二面角α­AB­β棱上的一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN=60°,那么二面角α­AB­β的大小为________.26.已知四棱锥P­ABCD 的底面ABCD 是正方形,PA ⊥平面ABCD ,且PA=AD ,则平面PAB 与平面PCD所成的二面角的大小为________.27.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG ―→=2GN ―→,现用基底{OA ―→,OB ―→,OC ―→}表示向量OG ―→,有OG ―→=x OA ―→+y OB ―→+z OC ―→,则x ,y ,z 的值分别为________.28.已知长方体ABCD­A 1B 1C 1D 1中,AA 1=AB=2,若棱AB 上存在点P ,使得D 1P ⊥PC ,则AD 的取值范围是________. 29.如图,已知四棱锥P­ABCD 的底面ABCD 是边长为2的正方形,PA=PD=5,平面ABCD⊥平面PAD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是________.三、解答题30.如图所示,四棱锥S­ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,点P 为侧棱SD 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面PAC.若存在,求SE ∶EC 的值;若不存在,试说明理由.答案解析1.D.2.B.3.答案为:A ;解析:BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→)=c +12(b -a)=-12a +12b +c.4.答案为:C.解析:设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12.又因为0°≤β≤90°,所以β=30°.5.A.6.B.7.答案为:C.解析:cos 〈m ,n 〉=m·n |m||n|=11×2=22,即〈m ,n 〉=45°,其补角为135°.所以两平面所成的二面角为45°或135°.8.D.9.答案为:B.解析:设平面ABCD 的一个法向量为n=(x ,y ,z).则⎩⎨⎧n⊥AB →,n⊥AD →⇒⎩⎪⎨⎪⎧4x -2y +3z =0,-4x +y =0,令y=4,则n=⎝⎛⎭⎪⎫1,4,43,则cos 〈n ,AP →〉=n·AP →|n||AP →|=-6+8-323133×226=-2626.因为h |AP →|=|cos 〈n ,AP →〉|,所以h=2626×226=2.10.答案为:C ;解析:OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66. 经检验λ=66不合题意,舍去,所以λ=-66. 11.D. 12.B.13.答案为:B ;解析:由题意设c=xa +yb ,则(7,6,λ)=x(2,1,-3)+y(-1,2,3),∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.14.答案为:B ;解析:当x=2,y=-3,z=2时,OP ―→=2OA ―→-3OB ―→+2OC ―→. 则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→, 根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP ―→=m AB ―→+n AC ―→(m ,n ∈R), 即OP ―→-OA ―→=m(OB ―→-OA ―→)+n(OC ―→-OA ―→),即OP ―→=(1-m -n)OA ―→+m OB ―→+n OC ―→, 即x=1-m -n ,y=m ,z=n ,这组数显然不止2,-3,2.故“x =2,y=-3,z=2”是“P,A ,B ,C 四点共面”的充分不必要条件.15.答案为:A ;解析:a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p=xa +yb +zc ,故④不正确,综上可知四个命题中正确的个数为0,故选A.16.答案为:B.解析:因为正方体的棱长为a ,A 1M=AN=2a3,所以MB →=23A 1B →,CN →=23CA →,所以MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →=23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →)=23B 1B →+13B 1C 1→,又CD →是平面B 1BCC 1的一个法向量,且MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0,所以MN →⊥CD →,又MN ⊄平面B 1BCC 1,所以MN∥平面B 1BCC 1.17.答案为:D.如图,建立空间直角坐标系A­xyz,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n=(1,0,0),所以cos 〈n ,AD →〉=322=64,即sin α=64.18.答案为:A ;解析:设O 为正方形ABCD 的对角线AC 与BD 的交点,根据题意建立如图所示的空间直角坐标系,则A(1,-1,0),D(-1,-1,0),C(-1,1,0),E(12,12,142),所以AD →=(-2,0,0),CE →=⎝ ⎛⎭⎪⎫32,-12,142,所以|cos 〈AD →,CE →〉|=⎪⎪⎪⎪⎪⎪⎪⎪AD →·CE →|AD →||CE →|=⎪⎪⎪⎪⎪⎪-32× ⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫1422=64,故选A.19.答案为:B.解析:建立如图所示的空间直角坐标系D­xyz,则有D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D 1(0,0,1),A 1(1,0,1),B 1(1,1,1), ∵A 1B →=(0,1,-1),又P 为线段A 1B 上的动点, ∴设P(1,λ,1-λ)(0<λ<1), ∴AD 1→=(-1,0,1),D 1P →=(1,λ,-λ),设n=(x ,y ,z)是平面AD 1P 的法向量,则有⎩⎨⎧n ·AD 1→=0,n·D 1P →=0,即⎩⎪⎨⎪⎧-x +z =0,x +λy -λz =0,可取n=⎝ ⎛⎭⎪⎫1,1-1λ,1,又平面A 1DB 1的法向量可为AD 1→=(-1,0,1),∵AD 1→·n=0, ∴平面AD 1P ⊥平面A 1DB 1.故选B.20.答案为:B ;解析:法一:如图,令AB ―→=a ,AC ―→=b ,AD ―→=c ,则AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=AB ―→·(AD ―→-AC ―→)+AC ―→·(AB ―→-AD ―→)+AD ―→·(AC ―→-AB ―→)=a ·(c -b)+b ·(a -c)+c ·(b -a)=a ·c -a ·b +b ·a -b ·c +c ·b -c ·a=0.法二:在三棱锥A­BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直.所以AB ―→·CD ―→=0,AC ―→·DB ―→=0,AD ―→·BC ―→=0.所以AB ―→·CD ―→+AC ―→·DB ―→+AD ―→·BC ―→=0.一、填空题21.答案为:11或﹣1.22.答案为:①②③;解析:∵AP ―→·AB ―→=-2-2+4=0,∴AP ⊥AB ,故①正确; AP ―→·AD ―→=-4+4+0=0,∴AP ⊥AD ,故②正确; 由①②知AP ⊥平面ABCD ,故③正确,④不正确.23.答案为:;24.答案为:5;解析:设AD ―→=λAC ―→,D(x ,y ,z),则(x -1,y +1,z -2)=λ(0,4,-3), ∴x=1,y=4λ-1,z=2-3λ,∴D(1,4λ-1,2-3λ), ∴BD ―→=(-4,4λ+5,-3λ),∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD ―→=⎝ ⎛⎭⎪⎫-4,95,125,∴|BD ―→|= -42+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.25.答案为:90°;解析:不妨设PM=a ,PN=b ,如图.作ME⊥AB 于点E ,NF ⊥AB 于点F ,因为∠EPM =∠FPN =45°,所以PE=22a ,PF=22b , 所以EM →·FN →=(PM →-PE →)·(PN →-PF →)=PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=abcos 60°-a×22bcos 45°-22abcos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α­AB­β的大小为90°.26.答案为:π4;解析:设PA=AD=1,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A­xyz,则P(0,0,1),A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),∴CD →=(-1,0,0),PD →=(0,1,-1).设n=(x ,y ,z)是平面PCD 的法向量,则有⎩⎨⎧n·CD →=0,n·PD →=0,即⎩⎪⎨⎪⎧-x =0,y -z =0,可取n=(0,1,1).易知平面PAB 的一个法向量为AD →=(0,1,0),则cos 〈n ,AD →〉=n·AD →|n||AD →|=12=22∴平面PAB 与平面PCD 所成的二面角的大小为π4.27.答案为:16,13,13;解析:∵OG ―→=OM ―→+MG ―→=12OA ―→+23MN ―→=12OA ―→+23(ON ―→-OM ―→)=12OA ―→+23⎣⎢⎡⎦⎥⎤12OB ―→+OC ―→-12OA ―→=16OA ―→+13OB ―→+13OC ―→,∴x=16,y=13,z=13.28.答案为:(0,1];解析:如图,以D 1为原点建立空间直角坐标系D 1­xyz.设AD=a(a >0),AP=x(0≤x≤2),则P(a ,x ,2),C(0,2,2),所以D 1P →=(a ,x ,2),CP →=(a ,x -2,0),因为D 1P ⊥PC ,所以D 1P →·CP →=0,即a 2+x(x -2)=0,a=-x 2+2x=-(x -1)2+1. 当0≤x≤2时,a ∈(0,1].即AD 的取值范围是(0,1].29.答案为:88585;解析:以O 为原点,OA 所在直线为x 轴,过O 且平行于AB 的直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系O­xyz,则B(1,2,0),P(0,0,2),C(-1,2,0),M ⎝ ⎛⎭⎪⎫-12,1,1,O(0,0,0),OP →=(0,0,2),OC →=(-1,2,0),BM →=⎝ ⎛⎭⎪⎫-32,-1,1.设平面PCO 的法向量为m=(x ,y ,z),则⎩⎨⎧m·OP →=2z =0,m·OC →=-x +2y =0,可取m=(2,1,0),设直线BM 与平面PCO 所成的角为θ,则sin θ=|cos 〈m ,BM →〉|=⎪⎪⎪⎪⎪⎪⎪⎪BM →·m |m||BM →|=45×174=88585.30.解:(1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD.连接SO ,由题意知SO ⊥平面ABCD.以O 为坐标原点,OB ―→,OC ―→,OS ―→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.设底面边长为a ,则高SO=62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, C ⎝ ⎛⎭⎪⎫0,22a ,0,OC ―→=⎝ ⎛⎭⎪⎫0,22a ,0,SD ―→=⎝ ⎛⎭⎪⎫-22a ,0,-62a , 则OC ―→·SD ―→=0.故OC ⊥SD.从而AC ⊥SD.(2)棱SC 上存在一点E ,使BE ∥平面PAC.理由如下:由已知条件知DS ―→是平面PAC 的一个法向量,且DS ―→=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS ―→=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC ―→=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE ―→=t CS ―→,则BE ―→=BC ―→+CE ―→=BC ―→+t CS ―→=⎝ ⎛⎭⎪⎫-22a ,22a 1-t ,62at , 而BE ―→·DS ―→=0⇒t=13. 即当SE ∶EC=2∶1时,BE ―→⊥DS ―→.而BE ⊄平面PAC ,故BE ∥平面PAC.。

2020高考数学题

2020高考数学题

2020高考数学题
1. 解方程:求实数x的值,使得2x-5 = 7x+3。

2. 计算:已知a = 2,b = 5,求a² + 2ab + b²的值。

3. 函数图像:已知函数y = 2x² + 3x - 1,绘制其图像。

4. 统计问题:某班有40名学生,其中男生占总人数的40%,问男生人数有多少人?
5. 概率问题:从52张扑克牌中随机抽出一张牌,求抽到黑
桃牌的概率。

6. 三角函数:已知sinθ = 1/2,求cosθ的值。

7. 集合运算:已知A = {1, 2, 3, 4},B = {3, 4, 5, 6},求A和
B的并集和交集。

8. 排列组合:从8个人中选出4人,求不考虑顺序的情况下
的组合数。

9. 计算面积:已知正方形的边长为4cm,求其面积和周长。

10. 几何问题:已知AB是三角形ABC的边,BC是直线DE
的一部分,且∠ABC = 90°,求∠ADE的度数。

2020高考数学 精华题选30套(1) 精品

2020高考数学 精华题选30套(1) 精品

2020高考数学精华30套(1)1.一模21.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。

(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由。

21.(12分)解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =+=+(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)22.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

43
33
3
10 m2 . 9
故存在常数 4 ,使得 PT 2 PA PB . 5
19.【抛物线】已知抛物线 C : y2 2x 的焦点 为 F ,平行于 x 轴的两条直线 l1,l2 分别交 C 于 A,B 两点,交 C 的准线于 P,Q 两 点. (I)若 F 在线段 AB 上,R 是 PQ 的中点, 证明 AR FQ ; (II)若 PQF 的面积是 ABF 的面积的 两倍,求 AB 中点的轨迹方程.
10【平面向量】已知非零向量 m,n 满足
4│m│=3│n│,cos<m,n>= 1 .若 n⊥ 3
(tm+n),则实数 t 的值为
(A)4
(B)–4
(C) 9 4
(D)– 9 4
【答案】B
11【离心率与渐近线】已知双曲线 的左焦点为 ,离心率
为 .若经过 和
两点的直线平行于
双曲线的一条渐近线,则双曲线的方程为
又 S1=b1,所以 b1=23,b2=2-2(b1+b2),则 b2=29, 当 n≥2 时,由 bn=2-2Sn,可得 bn-bn-1=- 2(Sn-Sn-1)=-2bn. 即bbn-n1=13,所以{bn}是以 b1=23为首项,13为公 比的等比数列,所以 bn=2·31n. (2)证明 数列{an}为等差数列,公差 d=12(a7 -a5)=3,可得 an=3n-1, 从而 cn=an·bn=2(3n-1)·31n, ∴Tn= 2 2×13+5×312+8×313+ …+(3n-1)·31n
(
)
A.
B.
C.
D.
12 解答. 题意得
选 B.
13【命题逻辑充要条件】下列命题错误的是 () A.命题“若 x2-3x+2=0,则 x=1”的逆否 命题为“若 x≠1,则 x2-3x+2≠0” B.命题 p:∃x0∈R,使得 x20+x0+1<0,则┑ p:对∀x∈R,都有 x2+x+1≥0 C.若 p∧q 为假命题,则 p,q 均为假命题 D.“x<1”是“x2-3x+2>0”的充分不必要 条件
3 又φ(0)=0,结合 y=φ(x)的图象(如图),
可知
①当 m>2时,函数 g(x)无零点; 3
②当 m=2时,函数 g(x)有且只有一个零点; 3
③当 0<m<2时,函数 g(x)有两个零点; 3
④当 m≤0 时,函数 g(x)有且只有一个零点. 综上所述,当 m>2时,函数 g(x)无零点;
在显著差异,拟从这三个年级中按人数比例抽
取部分学生进行调查,则最合理的抽样方法是
()
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
答案:C
8【分段函数零点】已知符号函数 sgn(x)=
1,x>0, 0,x=0,则函数 f(x)=sgn(ln x)-ln x 的零点 -1,x<0.
个数为( )
A.1 B.2 C.3 D.4
解答. 8. 2x+y+1=0 [设 x>0,则-x<0,f(- x)=ln x-3x,又 f(x)为偶函数,f(x)=ln x-3x, f′(x)=1-3,f′(1)=-2,切线方程为 y=-2x
x -1.]
5【三视图锥体体积面积】已知一个四棱锥的 底面是平行四边形,该四棱锥的三视图如图所 示(单位:m),则该四棱锥的体积为_______m3.
f′(x)=x-x2 e, ∴当 x∈(0,e),f′(x)<0,f(x)在(0,e)上单调 递减, 当 x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单 调递增, ∴x=e 时,f(x)取得极小值 f(e)=ln e+e=2,
e ∴f(x)的极小值为 2. (2)由题设 g(x)=f′(x)-3x=1x-xm2-3x(x>0), 令 g(x)=0,得 m=-1x3+x(x>0).
答案 C
2.【二项式定理(理科用)】
式中 的系数为(
)
A. 15 B. 20 C. 30 D. 35
解答.C

展开式中含 的项为
展开式中含 的项为
, 的系数为
展开
, , ,选 C.
2【几何型概率理科(文理兼用)】如图,矩形
ABCD 中,点 A 在 x 轴上,点 B 的坐
标为(1,0),且点 C 与点 D 在函数 f(x
n-1
-(3n-1)·3n1+1
=2
7- 6
n+7 6
·31n
∴Tn=72-
n+7 6
3n1-1<72.
18【椭圆】已知椭圆 E:
的两个焦点与短轴的一个端点是直角三角形 的 3 个顶点,直线 l:y=-x+3 与椭圆 E 有且 只有一个公共点 T. (I)求椭圆 E 的方程及点 T 的坐标; (II)设 O 是坐标原点,直线 l’平行于 OT, 与椭圆 E 交于不同的两点 A、B,且与直线 l 交于点 P.证明:存在常数λ,使得∣PT∣2= λ∣PA∣· ∣PB∣,并求λ的值.
3 当 m=2或 m≤0 时,函数 g(x)有且只有一个零
3 点; 当 0<m<2时,函数 g(x)有两个零点.
3 (3)对任意的 b>a>0,f(b)-f(a)<1 恒成
b-a 立,
等价于 f(b)-b<f(a)-a 恒成
立.
(*)
设 h(x)=f(x)-x=ln x+m-x(x>0), x
∴(*)式等价于 h(x)在(0,+∞)上单调递减.
x+1,x≥0, = -1x+1,x<0
2
的图象上.
若在矩形 ABCD 内随机取一点,则此点取自阴
影部分的概率等于( )
A.1
B.1
C.3
D.1
6
4
8
2
答案:B
3【空间几何点线面关系】 , 是两个平面,
m, n 是两条直线,有下列四个命题:
(1)如果 m n, m , n / /
,那么
. [
答案 C
9【函数图像比较大小】已知定义在 R 上的函
数 f(x)=2|x-m|-1(m 为实数)为偶函数,记 a=
f(log0.53),b=(log25),c=f(2m),则 a,b,c
的大小关系为( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
答案.C [因为函数 f(x)=2|x-m|-1 为偶函数可 知,m=0, 所以 f(x)=2|x|-1,当 x>0 时,f(x)为增函数, log0.53=-log23, ∴log25>|-log0.53|>0, ∴b=f(log25)>a=f(log0.53)>c=f(2m),故选 C.
平面 ABCD. (1)证明:平面 AEC⊥平面 BED; (2)若∠ABC=120°,AE⊥EC,三棱锥 EACD 的体积为 6,求该三棱锥的侧面积.
3
解答.解 (1)因为四边形 ABCD 为菱形,所以
AC⊥BD.
因为 BE⊥平面 ABCD,所以 AC⊥BE.
所以 AC⊥平面 BED,又 AC⊂平面 AEC,
由 h′(x)=1x-xm2-1≤0 在(0,+∞)上恒成立,

m≥-x2+x=-
x-1 2
2+1(x>0)恒成立,
4
∴m≥1(对 m=1,h′(x)=0 仅在 x=1时成立),
4
4
2
1,+∞
∴m 的取值范围是 4
.
21【空间几何垂直与平行关系】如图,四边形 ABCD 为菱形,G 是 AC 与 BD 的交点,BE⊥
∴13Tn= 2 2×312+5×313+…+(3n-4)
·31n+(3n-1·3n1+1 )两式相减得 23Tn= 2 23+3×312+3×313+…+3×
31n-(3n-1)·3n1+1

1 2+3×32
1-
1 3
n-1
3 2·
1-1 3
-(3n-1)
·3n1+1
=2
2+1 32
1-
1 3
17【数列】设数列{bn}的前 n 项和为 Sn,且 bn =2-2Sn,数列{an}为等差数列,且 a5=14, a7=20,
(1)求数列{bn}的通项公式; (2)若 cn=an·bn(n=1,2,3,…),Tn 为数列 {cn}的前 n 项和,求证:Tn<72.
解答.(1)解 由 bn=2-2Sn,令 n=1,则 b1=2 -2S1,
答案 C
14【复数】已知 ,i 为虚数单位,若 为实数,则 a 的值为 _______. 答案.-2 15【三角函数图像】
答案 D
16【线性规划】设变量 满足约束条件
则目标函数
Байду номын сангаас
的最大值
为(
)
A.
B. 1 C.
D. 3
解答 2. 目标函数为四边形 ABCD 及其内部,其中
,所以直线 过点 B 时取最大值 3,选 D
2020 年高考数学必备 30 题型
大洋课程中心(微信公众号)
作者 刘崇文
——————————————————————
1【集合解二次不等式】.已知全集为 R,集合 A ={x|x≥0},B={x|x2-6x+8≤0},则 A∩(∁RB)= () A.{x|x≤0} B.{x|2≤x≤4} C.{x|0≤x<2 或 x>4} D.{x|0<x≤2 或 x≥4}
所以平面 AEC⊥平面 BED.
(2)设 AB=x,在菱形 ABCD 中,由∠ABC=
120°,可得 AG=GC= 3x,GB=GD=x.
2
2
因为 AE⊥EC,所以在 Rt △AEC 中,可得 EG
= 3x. 2
由 BE⊥平面 ABCD,知△EBG 为直角三角形,
可得 BE= 2x. 2
相关文档
最新文档