2020-2021学年最新山东省莱芜市中考仿真模拟数学试题及答案
2020-2021学年人教版九年级中考数学冲刺试卷(含答案)
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
2020-2021学年初中七年级上(初一)入学摸底数学考试测试卷及答案 共2套 人教版
2020-2021学年初中七年级(初一)入学摸底考试测试卷及答案(一)一、选择题(本大题共10小题,共30分)1、(3分)2019的相反数是()A.2019B.-2019C.12019D.-120192、(3分)石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003、(3分)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.4、(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°5、(3分)“在山区建设公路时,时常要打通一条隧道,就能缩短路程“,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间,线段最短D.垂线段最短6、(3分)下列各式的计算结果正确的是()A.2x+3y=5xyB.5x-3x=2x2C.7y2-5y2=2D.9a2b-4ba2=5a2b7、(3分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()A.AC=CBB.AC=12ABC.AB=2BCD.AC+CB=AB8、(3分)如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=56°,则∠1的度数等于()A.54°B.44°C.24°D.34°9、(3分)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A. 3+3(100-x)=100B. 3-3(100-x)=100C.3x-100Ͳ 3=100D.3x+100Ͳ 3=10010、(3分)如图:AB∥DE,∠B=50°,∠D=110°,∠C的度数为()A.120°B.115°C.110°D.100°二、填空题(本大题共6小题,共18分)11、(3分)48°36′的余角是______,补角是______.12、(3分)如图,已知AB∥ED,∠ACB=90°,∠CBA=40°,则∠ACE是______度.13、(3分)已知方程x-2y+3=8,则整式14-x+2y的值为______.14、(3分)点A在数轴上表示的数是2,点B在数轴上,并且AB=6,C是AB的中点,则点C 表示的数是______.15、(3分)目前互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利25%元,则这件商品的进价为______元.16、(3分)用火柴棒按如图的方式搭塔式三角形,第一个图用了3根火柴棒,第二个图用了9根火柴棒,第三个图用了18根火柴棒,…,照这样下去,第9个图用了______根火柴棒.三、计算题(本大题共2小题,共16分)17、(8分)计算:(1)47 (Ͳ225)Ͳ37×512Ͳ53 (Ͳ4);(2)-42-16 (-2)×12-(-1)2019.18、(8分)解方程:(1)3-2(x-3)=2-3(2x-1);(2)3ݕ+124=2Ͳ5ݕͲ33四、解答题(本大题共7小题,共56分)19、(7分)先化简,再求值:3x2y-[2x2y-3(2xy-x2y)-xy],其中x=-12,y=2.20、(7分)(1)平面上有四个点A,B,C,D,按照以下要求作图:①作直线AD;②作射线CB交直线AD于点E;③连接AC,BD交于点F;(2)图中共有______条线段;(3)若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为18,求AF长.21、(7分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(______)∴∠2=______(______)∵∠1=∠2(已知)∴∠1=∠______(等量代换)∴EF∥CD(______)∴∠AEF=∠______(______)∵EF⊥AB(已知)∴∠AEF=90°(______)∴∠ADC=90°(______)∴CD⊥AB(______)22、(7分)仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如:14=1 4=0.25;135=85=8 5=1.613=1 3=0.,反之,0.25=25100=14;1.6=1610=85=135.那么0.,1.怎么化成分数呢?解:∵0.×10=3+0.,∴不妨设0.=x,则上式变为10x=3+x,解得x=13,即0.=13;∵1.=1+0.,设0.=x,则上式变为100x=2+x,解得x=299,∴1.=1+0.=1+x=1+299=10199(1)将分数化为小数:95=______,227=______;(2)将小数化为分数:0.=______,1.=______;(3)将小数0.化为分数,需要写出推理过程.23、(6分)如图,∠1=∠2,AD∥BE,求证:∠A=∠E.24、(10分)2019年元旦,某超市将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,某顾客参加活动购买甲、乙各一件,共付1830元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?25、(12分)如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.(1)若α,β满足|α-2β|+(β-60)2=0,则①α=______;②试通过计算说明∠AOD与∠COB有何特殊关系;(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.参考答案【第1题】【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.【第2题】【答案】C【解析】解:300万用科学记数法表示为3×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.【第3题】【答案】C【解析】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.本题考查的是几何体的展开图,此类问题从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.【第4题】【答案】B【解析】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.【第5题】【答案】C【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:C.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.【第6题】【答案】D【解析】解:A、2x和3y不是同类项,不能合并.故本选项错误;B、5x和3x是同类项,可以合并,但结果为2x,故本选项错误;C、7y2和5y2是同类项,可以合并,但结果为2y,故本选项错误;D、9a2b和4ba2是同类项,可以合并,结果为5a2b,故本选项正确.故选:D.合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.【第7题】【答案】D【解析】解:A、若AC=CB,则C是线段AB中点;B、若AC=12AB,则C是线段AB中点;C、若AB=2BC,则C是线段AB中点;D、AC+BC=AB,C可是线段AB是任意一点,则不能确定C是AB中点的条件是D.故选:D.根据线段中点的定义对每一项分别进行分析,即可得出答案.此题考查了两点间的距离,理解线段中点的概念是本题的关键.【第8题】【答案】D【解析】解:如图,,∵两条平行线被第三条直线所截,同位角相等,∴∠3=∠2=56°,又∵∠1+∠3=∠ACB=90°,∴∠1=90°-56°=34°,即∠1的度数等于34°.故选:D.根据两条平行线被第三条直线所截,同位角相等,可得∠3=∠2=56°,然后用90°减去∠3的度数,求出∠1的度数等于多少即可.此题主要考查了平行线性质定理,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.【第9题】【答案】D【解析】解:设大和尚有x人,则小和尚有(100-x)人,根据题意得:3x+100Ͳ 3=100.故选:D.设大和尚有x人,则小和尚有(100-x)人,根据3×大和尚人数+小和尚人数 3=100,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.【第10题】【答案】A【解析】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∵∠B=50°,∴∠1=50°,∵∠D=110°,∴∠2=70°,∴∠C=∠1+∠2=50°+70°=120°.故选:A.过点C作CF∥AB,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.【第11题】【答案】41.4°131.4°【解析】解:根据定义,48°36′的余角是90°-48°36'=89°60'-48°36'=41°24'=41.4°,补角的度数是180°-48°36'=179°60'-48°36'=131°24'=131.4°.故答案为:41.4°,131.4°.根据互余的两角之和为90°,互补的两角之和为180°,可得这个角的余角和补角;根据1°=60′,1′=60″,进行换算即可.本题考查了余角和补角的知识,度分秒之间的换算,属于基础题.【第12题】【答案】50【解析】解:∵∠ACB=90°,∴∠CAB+∠ABC=90°,∴∠CAB=90°-40°=50°.∵AB∥CD,∴∠CAB=∠ACE=50°.故答案为:50先根据直角三角形的性质,得出∠CAB+∠ABC=90°,再由AB∥CD得出∠CAB=∠ACE,进而可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.【第13题】【答案】9【解析】解:∵x-2y+3=8,∴x-2y=5,则原式=14-(x-2y)=14-5=9,故答案为:9.由已知等式得出x-2y=5,代入到原式=14-(x-2y)计算可得.本题主要考查代数式求值,解题的关键是掌握整体代入思想的运用.【第14题】【答案】5或-1【解析】解:∵点A在数轴上表示的数是2,且AB=6,∴B点表示的数为-4或8,如图而C是AB的中点,∴AC=12AB=3于是2+3=5或2-3=-1∴点C表示的数是5或-1故答案为5或-1.分两种情况考虑,B点可能在A点的左侧,也可能在A点的右侧,所以B点可能为-4或8,因此C点也有两种结果.本题考查的是数轴与绝对值的相关内容,利用数形结合的思想使问题更加清晰,是解决本题的关键所在.【第15题】【答案】80【解析】解:设该商品的进价为x元,根据题意得:200×0.5-x=25%x,解得:x=80.故答案为:80.设该商品的进价为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.【第16题】【答案】135【解析】解:∵第一个图形有1个三角形,共有3×1根火柴;第二个图形有1+3个三角形,共有3×(1+2)根火柴;第三个图形有1+3+5个三角形,共有3×(1+2+3)根火柴;…∴第n个有1+3+5+…+2n-1= (2 Ͳ1+1)2=n2个三角形,共有3×(1+2+3+…+n)=32n(n+1)根火柴;∴第9个图形中,火柴棒根数及三角形个数分别32×9×10=135.故答案为:135.由图得出第n个有1+3+5+…+2n-1= (2 Ͳ1+1)2=n2个三角形,共有3×(1+2+3+…+n)=32n(n+1)根火柴,由此代入求得答案即可.此题考查了图形的变化规律,解题的关键是发现三角形个数的规律,从而得到火柴棒的根数.【第17题】【答案】解:(1)47 (Ͳ225)Ͳ37×512Ͳ53 (Ͳ4)=47 (Ͳ125)Ͳ37×512+53×14=47×(Ͳ512)Ͳ37×512+512=512×(Ͳ47Ͳ37+1)=512×0=0;(2)-42-16 (-2)×12-(-1)2019=-16-16×(-12)×12+1=-16+4+1=-11.【解析】(1)根据有理数的乘除法和减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.【第18题】【答案】解:(1)3-2x+6=2-6x+3,-2x+6x=2+3-3-6,4x=-4,x=-1;(2)3(3y+12)=24-4(5y-3),9y+36=24-20y+12,9y+20y=24+12-36,29y=0,y=0.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【第19题】【答案】解:3x2y-[2x2y-3(2xy-x2y)-xy]=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy=-2x2y+7xy当x=-12,y=2时,原式=-2×(-12)2×2+7×(-12)×2=-8.【解析】去小括号,去中括号,合并同类项,最后代入求出即可.本题考查了整式的化简求值和有理数的混合运算的应用,主要考查学生的化简能力和计算能力.【第20题】【答案】解:(1)如图所示:(2)DE上有3条线段,CE上有3条线段,AC上有3条线段,BD上有3条线段,故共有12条线段;故答案为:12;(3)设AF=x,则CF=2x,AC=3x,∴x+2x+3x=18,解得,x=3,∴AF=3.【解析】(1)依据要求进行作图即可;(2)根据DE上有3条线段,CE上有3条线段,AC上有3条线段,BD上有3条线段,可得结论;(3)设AF=x,则CF=2x,AC=3x,依据x+2x+3x=18,解方程即可得解.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【第21题】【答案】同解:证明过程如下:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).【解析】灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.【第22题】【答案】解:(1)95=9 5=1.8,227=22 7≈;故答案为:1.8,;(2)设=x,则10x=5+x,解得:x=59,设=x,则10x=6+x,解得:x=23,∴=53;故答案为:53;(3)设=x,则100x=95+x,解得x=9599.【解析】认真阅读资料,根据材料中的做法计算即可.本题主要考查解一元一次方程,解决此类阅读型题目的关键是认真阅读,理清题目中的解题思路是关键.【第23题】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠E.【解析】由平行线的性质得出同位角相等∠A=∠3,由∠1=∠2,得出DE∥AC,得出内错角相等∠E=∠3,即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【第24题】【答案】解:(1)设甲种商品原销售单价为x元/件,则乙种商品原销售单价为(2400-x)元/件,依题意,得:(1-30%)x+(1-20%)(2400-x)=1830,解得:x=900,∴2400-x=1500.答:甲种商品原销售单价为900元/件,乙种商品原销售单价为1500元/件.(2)设甲种商品进价为m元/件,乙中商品进价为n元/件,依题意,得:(1-30%)×900-m=-25%m,(1-20%)×1500-n=25%n,解得:m=840,n=960,∴1830-840-960=30(元).答:商场在这次促销活动中盈利了,且商场销售甲、乙两种商品各一件盈利了30元.【解析】(1)设甲种商品原销售单价为x元/件,则乙种商品原销售单价为(2400-x)元/件,根据超市的优惠方案,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲种商品进价为m元/件,乙中商品进价为n元/件,根据利润=售价-进价,即可得出关于m(n)的一元一次方程,解之即可得出m(n)的值,再利用总利润=两件商品的售价-两件商品的进价,即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.【第25题】解:(1)①∵|α-2β|+(β-60)2=0,∴α-2β=0,β-60=0,∴α=120;故答案为:120;②∵∠AOB=α°=120°,∠COD=β°=60°,∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补;(2)设∠AOC=θ°,则∠BOC=120°-θ°,∵OE平分∠BOC,∴∠COE=12∠BOC=12(120°-θ°)=60°-12θ°∴∠DOE=∠COD-∠COE=60°-60°+12θ°=12θ°=12∠AOC;(3)OM⊥ON.理由如下:∵OM,ON分别平分∠AOC,∠DOB,∴∠COM=12∠AOC,∴∠DON=12∠BOD,∴∠MON=∠COM+∠COD+∠DON=12∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+∠COD=12(∠AOB-∠COD)+∠COD=12(∠AOB+∠COD)=12(α°+β°)∵α°,β°互补,∴α°+β°=180°,∴∠MON=90°,∴OM⊥ON.【解析】(1)①根据非负数的性质列方程即可得到结论;②根据角的和差和平角的定义即可得到结论;(2)设∠AOC=θ°,则∠BOC=120°-θ°,根据角平分线的定义和角的和差即可得到结论;(3)根据角平分线的定义和补角的性质即可得到结论.本题主要考查了角的计算以及角平分线的定义的运用,解决问题的关键是运用角的和差关系进行计算.解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2020-2021学年初中七年级(初一)入学摸底考试测试卷及答案(二)一、填空题:2.“趣味数学”表示四个不同的数字:则“趣味数学”为_______.正好是第二季度计划产量的75%,则第二季度计划产钢______吨.个数字的和是_______.积会减少______.6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,则这批零件共有______个.8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后四位数是______.二、解答题:1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?答案:一、填空题:1.(81.4)2.(3201)乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.3.(24000)÷75%=24000(吨).4.(8,447)由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.6.(一样大)甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7.(240个)8.(62.172,取π=3.14)液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是9.(1,2,3)10.(7744)到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题:1.(30)由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm).2.(3圈)3.(9,18,27,36,45)第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9.4.(6)这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.(1997-2)÷6=332余3.。
2020-2021学年山东师大附中高三(上)第一次模拟数学试卷
2020-2021学年山东师大附中高三(上)第一次模拟数学试卷试题数:22,总分:1501.(单选题,5分)已知复数z满足(2-i)z=i+i2,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(单选题,5分)已知集合A={x|y=2x-1},集合B={y|y=x2},则集合A∩B=()A.(1,1)B.{(1,1)}C.{1}D.[0,+∞)3.(单选题,5分)已知x,y∈(0,+∞),2x-4=(1)y,则xy的最大值为()4A.2B. 98C. 32D. 944.(单选题,5分)若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式a(x2+1)+b (x-1)+c<2ax的解集为()A.{x|-2<x<1}B.{x|x<-2或x>1}C.{x|x<0或x>3}D.{x|0<x<3}5.(单选题,5分)设f0(x)=sinx,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N,则f2020(x)等于()A.sinxB.-sinxC.cosxD.-cosx6.(单选题,5分)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72B.36C.24D.187.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)8.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则实数m的取值范围是()A.(3,+∞)B. (−∞,37)C.(-∞,3)D. (37,+∞)9.(多选题,5分)若复数z= 21+i,其中i为虚数单位,则下列结论正确的是()A.z的虚部为-1B.|z|= √2C.z2为纯虚数D.z的共轭复数为-1-i10.(多选题,5分)下列命题正确的是()A.“a>1”是“ 1a<1”的必要不充分条件B.命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”C.若a,b∈R,则ba +ab≥2√ba•ab=2D.设a∈R,“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件11.(多选题,5分)关于(a-b)11的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小AB=2,E为AB中12.(多选题,5分)如图直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.则()A.平面PED⊥平面EBCDB.PC⊥EDC.二面角P-DC-B的大小为π4D.PC与平面PED所成角的正切值为√213.(填空题,5分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望E(ξ)=___ .14.(填空题,5分)如图,在正方体ABCD-A'B'C'D'中,BB'的中点为M,CD的中点为N,异面直线AM与D'N所成的角是___ .15.(填空题,5分)在(1-2x)5(2+x)展开式中,x4的系数为___ .−1=0在(0,e]上有两个不相等的实根,则实16.(填空题,5分)关于x的方程kx−lnxx数k的取值范围为 ___ .17.(问答题,10分)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程;(2)若政府不调控,依此相关关系预测第12月份该市新建住宅销售均价.参考数据: ∑5i=1 x i =25, ∑5i=1 y i =5.36, ∑5i=1 (x i - x )(y i - y )=0.64;回归方程 y ̂ = b ̂ x+ a ̂ 中斜率和截距的最小二乘估计公式分别为:b ̂ = ∑(x i −x )ni=1(y i −y )∑(x i −x )2n i=1 , a ̂ = y - b ̂ x .18.(问答题,12分)如图,在多面体ABCDEF 中,四边形ABCD 是矩形,四边形ABEF 为等腰梯形,且AB || EF ,AF=2,EF=2AB=4AD=4 √2 ,平面ABCD⊥平面ABEF .(1)求证:BE⊥DF ;(2)求三棱锥C-AEF 的体积V .19.(问答题,12分)某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X的分布列和数学期望E(X)和方差D(X).20.(问答题,12分)设f(x)=ax3+xlnx.的单调区间;(1)求函数g(x)=f(x)x<1,求实数a的取值范围.(2)若∀x1,x2∈(0,+∞),且x1>x2,f(x1)−f(x2)x1−x221.(问答题,12分)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B-B1E-D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.22.(问答题,12分)已知函数f(x)=e x(lnx-ax+a+b)(e为自然对数的底数),a,b∈R,x是曲线y=f(x)在x=1处的切线.直线y= e2(Ⅰ)求a,b的值;(Ⅱ)是否存在k∈Z,使得y=f(x)在(k,k+1)上有唯一零点?若存在,求出k的值;若不存在,请说明理由.2020-2021学年山东师大附中高三(上)第一次模拟数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知复数z满足(2-i)z=i+i2,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:C【解析】:把已知等式变形,利用复数代数形式的乘除运算化简,进一步求出z的坐标得答案.【解答】:解:由(2-i)z=i+i2,得z=i+i22−i =(−1+i)(2+i)(2−i)(2+i)=−35+15i,∴ z=−35−15i,∴ z在复平面内对应的点的坐标为(−35,−15),位于第三象限角.故选:C.【点评】:本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.(单选题,5分)已知集合A={x|y=2x-1},集合B={y|y=x2},则集合A∩B=()A.(1,1)B.{(1,1)}C.{1}D.[0,+∞)【正确答案】:D【解析】:先分别求出集合A,集合B,由此能求出集合A∩B.【解答】:解:∵集合A={x|y=2x-1}=R,集合B={y|y=x2}={y|y≥0},∴集合A∩B={y|y≥0}=[0,+∞).故选:D.【点评】:本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.(单选题,5分)已知x,y∈(0,+∞),2x-4=(14)y,则xy的最大值为()A.2B. 98C. 32D. 94【正确答案】:A【解析】:由已知结合指数的运算性质可得x+2y=4,然后结合基本不等式即可求解.【解答】:解:因为x,y∈(0,+∞),2x−4=(14)y=(12)2y,所以x-4=-2y即x+2y=4,由基本不等式可得,4=x+2y ≥2√2xy,当且仅当x=2y时取等号,解可得xy≤2,故选:A.【点评】:本题主要考查了利用基本不等式求解最值,属于基础试题.4.(单选题,5分)若不等式ax2+bx+c>0的解集为{x|-1<x<2},则不等式a(x2+1)+b (x-1)+c<2ax的解集为()A.{x|-2<x<1}B.{x|x<-2或x>1}C.{x|x<0或x>3}D.{x|0<x<3}【正确答案】:C【解析】:由已知结合二次方程与不等式的关系可得a,b,c的关系,然后结合二次不等式的求法即可求解.【解答】:解:由ax 2+bx+c >0的解集为{x|-1<x <2}可得x=-1,x=2是ax 2+bx+c=0的解,由方程的根与系数关系可得, { −1+2=−b a −1×2=c a a <0, ∴b=-a ,c=-2a ,a <0,则不等式a (x 2+1)+b (x-1)+c <2ax 可得ax 2+a-ax+a-2a <2ax ,整理可得,x 2-3x >0,解可得x >3或x <0.故选:C .【点评】:本题主要考查了一元二次不等式与二次方程的关系的相互转化,还考查了二次不等式的求解,体现了转化思想的应用.5.(单选题,5分)设f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,则f 2020(x )等于( )A.sinxB.-sinxC.cosxD.-cosx【正确答案】:A【解析】:由题意知f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,所以列举出各项发现周期为4,即可得到答案.【解答】:解:由题意知f 0(x )=sinx ,f 1(x )=f 0'(x ),f 2(x )=f 1'(x ),…,f n+1(x )=f n '(x ),n∈N ,所以由题意知f 0(x )=sinx ,f 1(x )=cosx ,f 2(x )=-sinx ,f 3(x )=-cosx ,f 4(x )=sinx ,所以发现f n (x )周期为4,所以2021÷4=505••1,所以f 2020(x )=f 0(x )=sinx ,故选:A.【点评】:本题考查了导数公式以及函数的周期性,属于简单题.6.(单选题,5分)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72B.36C.24D.18【正确答案】:B【解析】:根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【解答】:解:2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,若甲村分1名外科,2名护士,则由C31C32 =3×3=9若甲村分2名外科医生和1名护士,C32C31 =3×3=9,则分组方法有2×(9+9)=36,故选:B.【点评】:本题主要考查排列组合的应用,根据条件进行分类讨论是解决本题的关键.7.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.8.(单选题,5分)设函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则实数m的取值范围是()A.(3,+∞)B. (−∞,37)C.(-∞,3)D. (37,+∞)【正确答案】:A【解析】:由题意可得m>3x2−x+1在x∈[1,3]恒成立,即m>(3x2−x+1)max,运用y=3x2−x+1在[1,3]递减,即可得到所求范围.【解答】:解:函数f(x)=mx2-mx-1,若对于x∈[1,3],f(x)>-m+2恒成立,则mx2-mx-1>-m+2恒成立,即m>3x2−x+1恒成立,由y= 3x2−x+1在[1,3]递减,可得x=1时,y取得最大值3,可得m>3,即m的取值范围是(3,+∞).故选:A.【点评】:本题考查不等式恒成立问题解法,注意运用参数分离和函数的单调性,考查转化思想和运算能力,属于中档题.9.(多选题,5分)若复数z= 21+i,其中i为虚数单位,则下列结论正确的是()A.z的虚部为-1B.|z|= √2C.z2为纯虚数D.z的共轭复数为-1-i【正确答案】:ABC【解析】:利用复数代数形式的乘除运算化简,然后逐一核对四个选项得答案.【解答】:解:∵z= 21+i = 2(1−i)(1+i)(1−i)=1-i,∴z的虚部为-1,|z|= √2,z2=(1-i)2=-2i为纯虚数,z的共轭复数为1+i.∴正确的选项为:ABC.故选:ABC.【点评】:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.(多选题,5分)下列命题正确的是()A.“a>1”是“ 1a<1”的必要不充分条件B.命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”C.若a,b∈R,则ba +ab≥2√ba•ab=2D.设a∈R,“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件【正确答案】:BD【解析】:对于A:直接利用不等式的解法求出解集,进一步利用充分条件和必要条件的应用求出结果.对于B:直接利用命题的否定的应用判定结果;对于C:直接利用基本不等式的应用和不等式的成立的条件的应用判定结果;对于D:直接利用奇函数的性质的应用判定结果.【解答】:解:对于选项A:1a <1,整理得1−aa<0,即a(a-1)>0,解得a>1或a<0,所以“a>1”是“ 1a<1”的充分不必要条件,故A错误;对于B:命题“∃x0∈(0,+∞),lnx0=x0-1”的否定是“∀x∈(0,+∞),lnx≠x-1”故B正确;对于C:当ab>0时,ba +ab≥2√ba•ab=2,故C错误.对于D:设a∈R,“a=1”时“函数f(x)=a−e x1+ae x =1−e x1+e x在定义域上是奇函数”,当函数f(x)=a−e x1+ae x在定义域上是奇函数,利用f(-x)=-f(x),则a=±1,故“a=1”,是“函数f(x)=a−e x1+ae x在定义域上是奇函数”的充分不必要条件,故D正确.故选:BD.【点评】:本题考查的知识要点:不等式的解法和应用,命题的否定,基本不等式,函数的奇偶性,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)关于(a-b)11的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【正确答案】:ACD【解析】:对于A,B,C选项,分别利用赋值法,二项式系数的性质即可解决;对于选项D,先根据通项写出其系数的表达式,构造不等式即可.【解答】:解:对于A:二项式系数之和为211=2048,故A正确;对于B、C:展开式共12项,中间第6、7项的二项式系数最大,故B错误,C正确;对于D:展开式中各项的系数为C k+1=(−1)k C11k,k=0,1,……,11,(注:用C k+1表示展开式中第k+1项的系数.)易知当k=5时,该项的系数最小.故D正确.故选:ACD.【点评】:本题考查了二项式展开式二项式系数的性质、以及系数与二项式系数的关系,需要熟记公式才能解决问题.同时考查了学生的计算能力和逻辑推理能力.12.(多选题,5分)如图直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12AB=2,E为AB中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.则()A.平面PED⊥平面EBCDB.PC⊥EDC.二面角P-DC-B的大小为π4D.PC与平面PED所成角的正切值为√2【正确答案】:AC【解析】:在A中,四边形EBCD是边长为2的正方形,PE=2,推导出PE⊥DE,PE⊥CE,从而PE⊥平面EBCD,进而平面PED⊥平面EBCD;在B中,由DE || BC,BC⊥PB,得BC与PC 不垂直,从而PC与ED不垂直;在C中,推导出BE⊥平面PDE,BE || CD,从而CD⊥平面PDE,进而∠PDE是二面角P-DC-B的平面角,进而求出二面角P-DC-B的大小为π4;在D中,PC与平面PED所成角的正切值为tan∠CPD= CDPD =2√2=√22.【解答】:解:直角梯形ABCD,AB || CD,AB⊥BC,BC=CD= 12AB=2,E为AB中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2 √3.在A中,四边形EBCD是边长为2的正方形,PE=2,∴PE⊥DE,CE= √22+22 =2 √2,∴PE2+CE2=PC2,∴PE⊥CE,∵DE∩CE=E,∴PE⊥平面EBCD,∵PE⊂平面PED,∴平面PED⊥平面EBCD,故A正确;在B中,∵DE || BC,BC⊥PB,∴BC与PC不垂直,∴PC与ED不垂直,故B错误;在C中,∵BE⊥PE,BE⊥DE,PE∩DE=E,∴BE⊥平面PDE,∵BE || CD,∴CD⊥平面PDE,∴∠PDE是二面角P-DC-B的平面角,∵PE⊥平面BCD,PE=DE,∴∠PDE= π4,∴二面角P-DC-B的大小为π4,故C正确;在D中,∵CD⊥平面PDE,∴∠CPD是PC与平面PED所成角,PD= √PC2−CD2 = √(2√3)2−22 =2 √2,∴PC与平面PED所成角的正切值为tan∠CPD= CDPD =2√2=√22,故D错误.故选:AC.【点评】:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力以及化归与转化思想,是中档题.13.(填空题,5分)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望E(ξ)=___ .【正确答案】:[1]2【解析】:随机变量随机ξ的所有可能的取值为1,2,3.分别求出其对应的概率,列出分布列,求期望即可.【解答】:解:随机变量ξ的所有可能的取值为1,2,3.P(ξ=1)= C41C22C63 = 15.P(ξ=2)= C42C21C63 = 35.P(ξ=3)= C43C63 = 15.所有随机变量ξ的分布列为:ξ 1 2 3P 153515所以ξ的期望E(ξ)=1× 15 +2× 35+3× 15=2.故答案为:2.【点评】:本题考查离散型随机变量的数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14.(填空题,5分)如图,在正方体ABCD-A'B'C'D'中,BB'的中点为M,CD的中点为N,异面直线AM与D'N所成的角是___ .【正确答案】:[1]90°【解析】:取CC′中点M′,连接DM′,利用三角形全等证明DM′⊥D′N即可得出答案.【解答】:解:取CC′中点M′,连接DM′,则AM || DM′,由△DCM′≌△D′DC可知∠CDM′=∠DD′N,∴∠CDM′+∠D′ND=∠DD′N+∠D′ND=90°,∴DM′⊥D′N,∴AM⊥D'N,∴异面直线AM与D'N所成的角为90°.故答案为:90°.【点评】:本题考查了异面直线所成角的计算,属于基础题.15.(填空题,5分)在(1-2x)5(2+x)展开式中,x4的系数为___ .【正确答案】:[1]80【解析】:从展开式中求出含有x4的项,找出对应的系数,即可求解.【解答】:解:由已知可得:含有x4的项为C 54(−2x)4×2+C53(−2x)3×x =160x4-80x4=80x4,所以x4的系数为80,故答案为:80.【点评】:本题考查了二项式定理的展开式的系数问题,属于基础题.16.(填空题,5分)关于x的方程kx−lnxx−1=0在(0,e]上有两个不相等的实根,则实数k的取值范围为 ___ .【正确答案】:[1] [e+1e2,1)【解析】:把kx−lnxx −1=0变形为k= lnxx2+1x,先利用导数研究函数f(x)=f(x)= lnxx2+1x,x∈(0,e]的单调性与极值,结合题意得答案.【解答】:解:kx−lnxx −1=0可变形为:k= lnxx2+1x,设f(x)= lnxx2+1x,x∈(0,e]f′(x)= 1−2lnx−xx3,设g(x)=1-2lnx-x,x∈(0,e]g′(x)= −2x−1<0,即y=g(x)为减函数,又g(1)=0,即0<x<1时,g(x)>0,即f′(x)>0,1<x <e 时,g (x )<0,f′(x )<0,即y=f (x )在(0,1)为增函数,在(1,e )为减函数, 又x→0+时,f (x )→-∞, f (1)=1,f (e )= e+1e 2 . 关于x 的方程 kx −lnx x −1=0 在区间(0,e]上有两个不相等的实根,等价于y=f (x )的图象与直线y=k 的交点个数有两个,由上可知,当 e+1e 2 ≤k <1时,关于x 的方程 kx −lnx x−1=0 在区间(0,e]上有两个不相等的实根,故答案为: [e+1e 2,1) .【点评】:本题考查了导数的综合应用,利用导数研究函数的大致图象,属中档题. 17.(问答题,10分)据某市地产数据研究显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,为抑制房价过快上涨,政府从8月开始采用宏观调控措施,10月份开始房价得到很好的抑制.(1)地产数据研究院发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程;(2)若政府不调控,依此相关关系预测第12月份该市新建住宅销售均价.参考数据: ∑5i=1 x i =25, ∑5i=1 y i =5.36, ∑5i=1 (x i - x )(y i - y )=0.64;回归方程 y ̂ = b ̂ x+ a ̂ 中斜率和截距的最小二乘估计公式分别为:b ̂ = i −x )ni=1i −y )∑(x −x)2n , a ̂ = y - b ̂ x .【正确答案】:【解析】:(1)由题意,计算 x 、 y ,求出回归系数 b ̂ 、 a ̂ ,即可写出回归方程; (2)利用(1)中回归方程,计算x=12时 y ̂ 的值即可.【解答】:解:(1)由题意,得出下表;月份x 3 4 5 6 7 均价y0.950.981.111.121.20计算 x = 15 × ∑5i=1 x i =5, y = 15 × ∑5i=1 y i =1.072, ∑5i=1 (x i - x )(y i - y )=0.64, ∴ b ̂ = ∑(x i −x )ni=1(y i −y )∑(x i−x )2n i=1= 0.64(3−5)2+(4−5)2+(5−5)2+(6−5)2+(7−5)2 =0.064, a ̂ = y - b̂ x =1.072-0.064×5=0.752, ∴从3月到6月,y 关于x 的回归方程为 y ̂ =0.064x+0.752;(2)利用(1)中回归方程,计算x=12时, y ̂ =0.064×12+0.752=1.52; 即可预测第12月份该市新建住宅销售均价为1.52万元/平方米.【点评】:本题考查了回归直线方程的求法与应用问题,正确计算是解题的关键.18.(问答题,12分)如图,在多面体ABCDEF 中,四边形ABCD 是矩形,四边形ABEF 为等腰梯形,且AB || EF ,AF=2,EF=2AB=4AD=4 √2 ,平面ABCD⊥平面ABEF . (1)求证:BE⊥DF ;(2)求三棱锥C-AEF 的体积V .【正确答案】:【解析】:(1)取EF 的中点G ,连结AG ,推导出四边形ABEG 为平行四边形,AG || BE ,且AG=BE=AF=2,再求出AG⊥AF ,AD⊥AB ,从而AD⊥平面ABEF ,AD⊥AG ,进而AG⊥平面ADF ,再由AG || BE ,得BE⊥平面ADF ,由此能证明BE⊥DF ;(2)首先证明CD || 平面ABEF ,可得V C-AEF =V D-AEF ,由(1)得DA⊥平面ABEF ,再求出三角形AEF的面积,代入棱锥体积公式得答案.【解答】:(1)证明:取EF的中点G,连结AG,∵EF=2AB,∴AB=EG,又AB || EG,∴四边形ABEG为平行四边形,∴AG || BE,且AG=BE=AF=2,在△AGF中,GF= 12EF=2 √2,AG=AF=2,∴AG2+AF2=GF2,∴AG⊥AF,∵四边形ABCD是矩形,∴AD⊥AB,又平面ABCD⊥平面ABEF,且平面ABCD∩平面ABEF=AB,∴AD⊥平面ABEF,又AG⊂平面ABEF,∴AD⊥AG,∵AD∩AF=A,∴AG⊥平面ADF,∵AG || BE,∴BE⊥平面ADF,∵DF⊂平面ADF,∴BE⊥DF;(2)解:∵CD || AB且CD⊄平面ABEF,BA⊂平面ABEF,∴CD || 平面ABEF,∴V C-AEF=V D-AEF,由(1)得,DA⊥平面ABEF,∵ S△AEF=12×4√2×√2=4,∴V C-AEF=V D-AEF= 13×4×√2=4√23.【点评】:本题考查线线垂直的证明,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.19.(问答题,12分)某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班.公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200名职工中,参加这种技能培训服务时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;(Ⅱ)从招聘职工(人数很多)中任意选取3人,记X 为这3名职工中参加这种技能培训时间不少于90小时的人数.试求X 的分布列和数学期望E (X )和方差D (X ).【正确答案】:【解析】:(Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为60,在时间段[95,100)小时的职工人数为20,由此能求出从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率.(Ⅱ)依题意,随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X 的分布列、数学期望与方差.【解答】:解:(Ⅰ)依题意,参加这种技能培训时间在时间段[90,95)小时的职工人数为:200×0.04×5=40,在时间段[95,100)小时的职工人数为200×0.02×5=20,∴抽取的200位职工中,参加这种技能培训时间不少于90小时的职工人数为60, ∴从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率估计为: p= 60200 = 310 .(Ⅱ)依题意,随机变量X 的可能取值为0,1,2,3,P (X=0)= C 30(35)3 = 27125 , P (X=1)= C 31(25)(35)2 = 54125 ,P(X=2)= C32(25)2(35) = 36125,P(X=3)= C33(25)3=8125,∴随机变量X的分布列为:∵X~B(3,5),EX= 3×5=5,DX=3×5×5=25.【点评】:本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.20.(问答题,12分)设f(x)=ax3+xlnx.(1)求函数g(x)=f(x)x的单调区间;(2)若∀x1,x2∈(0,+∞),且x1>x2,f(x1)−f(x2)x1−x2<1,求实数a的取值范围.【正确答案】:【解析】:(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)问题转化为a≤−lnx3x2,设ℎ(x)=−lnx3x2,根据函数的单调性求出a的范围即可.【解答】:解:(1)g(x)=ax2+lnx(x>0),g′(x)=2ax+1x =2ax2+1x(x>0),① 当a≥0时,g'(x)>0,g(x)在(0,+∞)上单调递增;② 当a<0时,若x∈(0,√−12a ),则g'(x)>0,若x∈(√−12a,+∞),则g'(x)<0,所以g(x)在(0,√−12a )上单调递增,在(√−12a,+∞)上单调递减.综上,当a≥0时,函数g(x)在(0,+∞)上单调递增;当a<0时,函数g(x)在(0,√−12a )上单调递增,在(√−12a,+∞)上单调递减.(2)因为x1>x2>0,所以f(x1)-f(x2)<x1-x2,即f(x1)-x1<f(x2)-x2恒成立,设F(x)=f(x)-x在(0,+∞)上为减函数,即F'(x)≤0恒成立.所以F'(x )=3ax 2+lnx≤0,即 a ≤−lnx3x 2,设 ℎ(x )=−lnx3x 2, ℎ′(x )=−3+6lnx9x 3(x >0) , 当 x ∈(0,√e) ,h'(x )<0,h (x )单减,当 x ∈(√e ,+∞) ,h'(x )>0,h (x )单增, ℎ(x )≥ℎ(√e)=−16e ,所以 a ≤−16e .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.(问答题,12分)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,AC⊥BC ,AC=BC=2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD=1,CE=2,M 为棱A 1B 1的中点. (Ⅰ)求证:C 1M⊥B 1D ;(Ⅱ)求二面角B-B 1E-D 的正弦值;(Ⅲ)求直线AB 与平面DB 1E 所成角的正弦值.【正确答案】:【解析】:(Ⅰ)方法一:根据线面垂直的性质定理和判定定理即可证明; 方法二:建立空间坐标系,根据向量的数量积等于0,即可证明;(Ⅱ)先平面DB 1E 的法向量 n ⃗ ,再根据向量的夹角公式,求出二面角B-B 1E-D 的正弦值; (Ⅱ)求出cos < AB ⃗⃗⃗⃗⃗ , n ⃗ >值,即可求出直线AB 与平面DB 1E 所成角的正弦值.【解答】:解:(Ⅰ)在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC , 则该三棱柱是个直三棱柱(各侧棱均垂直底面,各侧面均与底面垂直) ∵C 1A 1=C 1B 1=2,M 为 M 为棱A 1B 1的中点, ∴C 1M⊥A 1B 1,又平面C 1A 1B 1⊥平面A 1B 1BA , ∴C 1M⊥平面A 1B 1BA , ∵B 1D⊂A 1B 1BA , ∴C 1M⊥B 1D ; 方法二:(Ⅰ)以C 为原点, CA ⃗⃗⃗⃗⃗ , CB ⃗⃗⃗⃗⃗ , CC 1⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示,则C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3), ∴C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,-2,-2), ∴ C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ • B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =2-2+0=0,∴C 1M⊥B 1D ;(Ⅱ)依题意, CA⃗⃗⃗⃗⃗ =(2,0,0)是平面BB 1E 的一个法向量, EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1), ED ⃗⃗⃗⃗⃗ =(2,0,-1), 设 n ⃗ =(x ,y ,z )为平面DB 1E 的法向量, 则 {n ⃗ •EB 1⃗⃗⃗⃗⃗⃗⃗ =0n ⃗ •ED ⃗⃗⃗⃗⃗ =0,即 {2y +z =02x −z =0 ,不妨设x=1,则 n ⃗ =(1,-1,2), ∴cos < CA ⃗⃗⃗⃗⃗ , n ⃗ >= CA ⃗⃗⃗⃗⃗ •n ⃗ |CA ⃗⃗⃗⃗⃗|•|n⃗ | = √66 , ∴sin < CA ⃗⃗⃗⃗⃗ , n ⃗ >= √1−16 = √306 ,∴二面角B-B 1E-D 的正弦值√306; (Ⅲ)依题意, AB ⃗⃗⃗⃗⃗ =(-2,2,0),由(Ⅱ)知, n ⃗ =(1,-1,2)为平面DB 1E 的一个法向量,∴cos < AB ⃗⃗⃗⃗⃗ , n ⃗ >= AB ⃗⃗⃗⃗⃗•n ⃗ |AB ⃗⃗⃗⃗⃗ |•|n ⃗ | =- √33,∴直线AB与平面DB1E所成角的正弦值为√33.【点评】:本题考查了空间向量在几何中的应用,线线平行和二面角和线面角的求法,考查了运算求解能力,转化与化归能力,逻辑推理能力,属于中档题.22.(问答题,12分)已知函数f(x)=e x(lnx-ax+a+b)(e为自然对数的底数),a,b∈R,直线y= e2x是曲线y=f(x)在x=1处的切线.(Ⅰ)求a,b的值;(Ⅱ)是否存在k∈Z,使得y=f(x)在(k,k+1)上有唯一零点?若存在,求出k的值;若不存在,请说明理由.【正确答案】:【解析】:(Ⅰ)求得f(x)的导数,可得切线的斜率和切点,解方程可得所求值;(Ⅱ)求得f(x)的导数,设g(x)=lnx-x+ 1x + 12,求得导数,判断单调性,求得g(1),g(2)的符号,判断g(x)的零点范围,可得f(x)的零点范围,即可得到所求k的值.【解答】:解:(Ⅰ)f(x)=e x(lnx-ax+a+b)的导数为f′(x)=e x(lnx-ax+ 1x+b),由已知,有f(1)=eb= e2,f′(1)=e(b-a+1)= e2,解得a=1,b= 12;(Ⅱ)由(Ⅰ)知,f(x)=e x(lnx-x+ 32),则f′(x)=e x(lnx-x+ 1x + 12),令g(x)=lnx-x+ 1x + 12,则g′(x)=- x2−x+1x2<0恒成立,所以g(x)在(0,+∞)上单调递减,又因为g(1)= 12>0,g(2)=ln2-1<0,所以存在唯一的x0∈(1,2),使得g(x0)=0,且当x∈(0,x0)时,g(x)>0,即f′(x)>0,当x∈(x0,+∞)时,g(x)<0,即f′(x)<0,所以f(x)在(0,x0)上单调递增,在(x0,+∞)上单调递减.又因为当x→0时,f(x)<0,f(1)= e2>0,f(2)=e2(ln2- 12)>0,f(e)=e e(52-e)<0,所以存在k=0或2,使得y=f(x)在(k,k+1)上有唯一零点.【点评】:本题考查导数的运用:求切线的斜率和单调性,考查函数零点存在定理和构造函数法,考查化简运算能力,属于中档题.。
2020-2021学年人教版五年级下册期中模拟测试数学试卷(A卷)(word版 含答案)
2020-2021学年人教版五年级下册期中模拟测试数学试卷(A卷)学校:___________姓名:___________班级:___________考号:___________一、填空题1.3.02m³=(________)dm³90020cm³=(________)L4.07m³=(________)m³(________)dm³9.08dm³=(________)L(________)mL2.一个正方体的表面积是54dm²,体积是(______)dm³。
3.一个两位数既是5的倍数,也是3的倍数,而且是偶数,这个数最小是(______),最大是(______)。
4.16和24的公因数有(________);8和12的公倍数有(________)。
5.一个长方体的体积是72cm³、长6cm 、宽5cm,高(________)cm 。
6.一个容量是15升的药桶,装满了止咳药水,把这些药水分别装在100毫升的小瓶里,可以装满(________)瓶。
7.在括号里填上适当的单位名称。
旗杆高15(______)教室面积80(______)油箱容积16(______)一瓶墨水60(______)8.左图从(_____)面看和(______)面看都是.从(________)面看是.9.在1~10中,(______)既不是质数,也不是合数。
既是质数,也是偶数的是(______)。
既是奇数,又是合数的是(______)。
10.一个长方体棱长总和是36cm,宽和高分别是3cm、2cm,它的体积是(______)cm³。
11.用3个棱长是2dm的正方体合成一个长方体,长方体的表面积比3个正方体的表面积之和少(________)dm²。
12.一个立体图形,从正面看是,从左面看是,要搭成这样的立体图形,至少要用(________)个小正方体,最多要用(________)个小正方体。
2020-2021学年人教版九年级中考数学练习试题1
2020-2021学年人教新版中考数学练习试题1一.选择题1.如图,数轴上点A,B,C对应的有理数分别为a,b,c.下列结论:①a+b+c>0;②abc>0;③a+b﹣c<0;④.其中正确的是()A.①②③B.②③C.①④D.②③④2.下列计算正确的是()A.=(y≠0)B.÷=C.|﹣2|=2﹣D.2﹣=13.下列计算正确的是()A.4a﹣2a=2B.2(a+2b)=2a+2bC.7ab﹣(﹣3ab)=4ab D.﹣a2﹣a2=﹣2a24.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°5.下列说法错误的是()A.若a+3>b+3,则a>b B.若,则a>bC.若a>b,则ac>bc D.若a>b,则a+3>b+26.如图,CE是△ABC的外角∠ACD的平分线,CE交BA的延长线于点E,∠B=35°,∠E=25°,则∠ACD的度数为()A.100°B.110°C.120°D.130°7.如图,在平行四边形ABCD中,点E为边DC上一点,且DE:EC=3:1,连接AE并延长,与BC的延长线交于点G,AE与BD交于点F,则△GEC的面积与△DEF的面积之比为()A.1:3B.3:7C.4:21D.7:278.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C 以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2D.4二.填空题9.的平方根是.10.如图,在△ABC中,∠BAC=90°,∠B=60°,分别以点A和点C为圆心,大于AC 长为半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC与点D、E.若AE=4cm,△ABD的周长为cm.11.如图,在平面直角坐标系中,点A从点M(0,5)出发向原点O匀速运动,与此同时点B从点N(3,0)出发,在x轴正半轴上以相同的速度向右运动,当点A到达终点O 时,两点同时停止运动.连接AB,以线段AB为一边在第一象限内作正方形ABCD,则正方形ABCD面积的最小值为.12.若x+y=4,x2+y2=6,则xy=.13.科学防疫从勤洗手开始,一双没洗干净的手上带有各种细菌病毒大约850000000个,这个数据用科学记数法表示为.14.若关于x的分式方程,有负数解,则实数a的取值范围是.15.如图,直线y=kx﹣b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx﹣b 的解集为.16.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.17.如图,在正方形网格中,小正方形的边长均为1,点A、B、C都是格点,则cos∠BAC =.18.平面直角坐标系xOy中,已知点A(8,0)及第一象限的动点P(x,y),且x+y=10.设△OPA的面积为S,周长为l.给出下列结论:①0≤y≤10;②≤PA<2;③S=﹣4x+40;④l的最小值为8+2其中所有正确结论的代号是.三.解答题19.先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.20.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.21.在一个不透明的箱子内装入标记数字分别为﹣1,2,3,﹣6的四个小球,小球除标记数字不同外其他都相同.随机取出一个小球,记下标记的数字为m,不放回;再从箱内剩下的球中再随机取出一个小球,记下标记的数字为n.请用画树状图或列表的方法,求“点(m,n)在第二象限”的概率.22.随着生活水平的日益提高,人们越来越喜欢过节,节日的仪式感日渐浓烈,某校举行了“母亲节暖心特别行动”,从中随机调查了部分同学的暖心行动,并将其分为A,B,C,D四种类型(分别对应送服务、送鲜花、送红包、送话语).现根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该校共抽查了多少名同学的暖心行动?(2)求出扇形统计图中扇形B的圆心角度数?(3)若该校共有2400名同学,请估计该校进行送鲜花行动的同学约有多少名?23.在▱ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点.连接BE、EF.(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论.24.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m 与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.25.如图,在平面直角坐标系中,一次函数y=mx+5(m≠0)的图象与反比例函数y=(k ≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式.(2)求△OAM的面积S.(3)在y轴上求一点P,使PA+PB的值最小并求出此时点P的坐标.26.如图,在矩形ABCD中,=,F、G分别为AB、DC边上的动点,连接GF,沿GF将四边形AFGD翻折至四边形EFGP,点E落在BC上,EP交CD于点H,连接AE交GF于点O.(1)GF与AE之间的位置关系是:,的值是:,请证明你的结论;(2)连接CP,若tan∠CGP=,GF=2,求CP的长.27.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值,使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE 为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且BF=FC.①求证:E G是⊙O的直径;②连接FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.28.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.参考答案与试题解析一.选择题1.解:由数轴可得:a<﹣2<b<﹣1<0<c<1,∴a+b+c<0,故①错误;∵a,b,c中两负一正,∴abc>0,故②正确;∵a<0,b<0,c>0,∴a+b﹣c<0,故③正确;∵a<﹣2<b<﹣1,∴0<<1,故④正确.综上,可知,正确的有3个.故选:D.2.解:A、原式不能化简,不符合题意;B、原式=•=x,不符合题意;C、原式=2﹣,符合题意;D、原式=,不符合题意.故选:C.3.解:A、应为4a﹣2a=2a,故选项错误;B、应为2(a+2b)=2a+4b,故选项错误;C、应为7ab﹣(﹣3ab)=10ab,故选项错误;D、﹣a2﹣a2=﹣2a2,故选项正确.故选:D.4.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°, 故选:B .5.解:A 、若a +3>b +3,则a >b ,原变形正确,故此选项不符合题意; B 、若>,则a >b ,原变形正确,故此选项不符合题意;C 、若a >b ,则ac >bc ,这里必须满足c ≠0,原变形错误,故此选项符合题意;D 、若a >b ,则a +3>b +2,原变形正确,故此选项不符合题意; 故选:C .6.解:∵∠ECD 是△BCE 的一个外角, ∴∠ECD =∠B +∠E =35°+25°=60°, ∵CE 平分∠ACD ,∴∠ACD =2∠ECD =120°, 故选:C .7.解:∵平行四边形ABCD , ∴CD =AB ,CD ∥AB ,AD ∥BC ,∴△GEC ∽△GAB ,△GEC ∽AED ,△DEF ∽△ABF , ∵DE :EC =3:1,∴EC :CD =1:4,DE :AB =3:4, ∴==,==,==;设S △ECG =a ,则S △ABG =16a ,S △ADE =9a ,∴四边形ABCE 的面积为16a ﹣a =15a ,平行四边形ABCD 的面积为9a +15a =24a , ∴S △ABD =12a ,因此S △ABF ﹣S △DEF =3a , 设S △DEF =x ,则S △ABF =3a +x , 于是=, 解得,x =a ,∴△GEC 的面积与△DEF 的面积之比为a : a =,故选:D .8.解:设AB=a,∠C=30°,则AC=2a,BC=a,设P、Q同时到达的时间为T,则点P的速度为,点Q的速度为,故点P、Q的速度比为3:,故设点P、Q的速度分别为:3v、v,由图2知,当x=2时,y=6,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×v=2v,y=AB×BQ=6v×2v=6,解得:v=1,故点P、Q的速度分别为:3,,AB=6v=6=a,则AC=12,BC=6,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=x=4,CQ=BC﹣BQ=6﹣4=2,故点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×=3,同理CH=3,则HQ=CH﹣CQ=3﹣2=,PQ===2,故选:C.二.填空题9.解:=10,10的平方根是.故答案为:±.10.解:∵∠BAC=90°,∠B=60°,∴∠C=90°﹣60°=30°,由作图可知,DE垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠BAD=90°﹣30°=60°,∴∠B=∠BAD=∠ADB=60°,∴△ABD是等边三角形,∵AD==(cm),∴△ABD的周长=8(cm).故答案为8.11.解:由题意可得,NB=MA,则AO+OB=8,设AO=x,则OB=8﹣x,=AB2=AO2+OB2=x2+(8﹣x)2=2(x﹣4)2+32,∵S正方形ABCD∴当x=4时,正方形ABCD的面积取得最小值32,故答案为:32.12.解:将x+y=4两边平方得:(x+y)2=x2+y2+2xy=16,把x2+y2=6代入得:6+2xy=16,解得:xy=5,故答案为:513.解:850 000 000=8.5×108.故答案是:8.5×108.14.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.15.解:不等式4x+2<kx﹣b表示的是直线y=4x+2的图象位于直线y=kx﹣b的图象的下方,则由点A(﹣1,﹣2)的坐标得:x<﹣1.故答案为:x<﹣1.16.解:作△AB C的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB==3,∴OA==3,∴CM=OC+OM=3+3,∴S=AB•CM=×6×(3+3)=9+9.△ABC故答案为:9+9.17.解:AB=BC==,AC==,则AB2+BC2=5+5=10=AC2,则△ABC为等腰直角三角形,∠BAC=45°,则cos∠BAC=.故答案为:.18.解:如图所示,∵A(8,0),P(x,y),△OPA的面积为S,∴S=OA•y=×8y=4y.∵x+y=10,∴y=10﹣x,∴S=4(10﹣x)=40﹣4x;∵0≠y和y≠10,若y=0,则O、P、A三点在一条直线上;若y=10,则x=0,P点落在y轴上,与题干不合∴①0≤y≤10,错误;②≤PA<2,正确;③S=﹣4x+40,正确;④l的最小值为8+2,正确;故答案为:②③④.三.解答题19.解:原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.20.解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x1=3,x2=﹣1;(2)解不等式2x>1﹣x,得:x>,解不等式2(2x+1)<x+4,得:x<,则不等式组的解集为<x<.21.解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(m,n)在第二象限的有4种,所以点(m,n)在第二象限的概率为=.22.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.23.(1)证明:∵四边形ABCD是平行四边形,∴BD=2BO,∵BD=2AB,∴AB=BO,∵E为OA中点,∴BE⊥AC,∴∠BEC=90°,∵F为BC中点,∴EF=BF=CF,即EF=BF;(2)四边形EBFG是菱形,证明:连接CG,∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,BD=2BO=2OD,∴BD=2AB=2CD,∴OC=CD,∵BG:GD=3:1,OB=OD,∴G为OD中点,∴CG⊥OD(三线合一定理),即∠CGB=90°,∵F为BC中点,∴GF=BC=AD,∵E为OA中点,G为OD中点,∴EG∥AD,EG=AD,∴EG∥BC,EG=BC,∵F为BC中点,∴BF=BC,EG=GF,即EG∥BF,EG=BF,∴四边形EBFG是平行四边形,∵EG=GF,∴平行四边形EBFG是菱形(有一组邻边相等的平行四边形是菱形).24.解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∴w随x的增大而增大,=800×6+8000=12800.∴当x=6时,w最大值当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,=12800元,∴当x=6时,w最大,且w最大值答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.25.解:(1)将B(4,1)代入y=得:.∴k=4.∴y=.将B(4,1)代入y=mx+5得:1=4m+5,∴y=﹣x+5.(2)在y=中,令x=1,解得y=4.∴A(1,4).∴S=×1×4=2.(3)作点A关于y轴的对称点N,则N(﹣1,4).连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由,得,∴y=﹣x+.∴点P的坐标为(0,).26.解:(1)GF⊥AE,.理由如下:由折叠性质可知,∠AOF=∠EOF,∵∠AOF+∠EOF=180°,∴∠AOF=∠EOF=90°,∴AE⊥GF;过G作GM⊥AB于M,如图,得矩形ADGM,则AD=GM,∠MFG+∠MGF=90°,∵∠MFG+∠FAO=90°,∴∠BAE=∠MGF,∵∠B=∠FMG=90°,∴△ABE∽△GMF,∴=2,∴,故答案为:AE⊥GF;;(2)延长BC与GP,两延长线交于点L,过P作PK⊥CL于点K,如图,由折叠知,∠FEP=∠FAD=∠D=∠EPG=90°,∴∠PEL+∠L=90°,∵∠BCD=∠DCL=90°,∴∠CGP+∠L=90°,∴∠PEL=∠CGL,∵∠BEF+∠BFE=∠BEF+∠PEL=90°,∴∠BFE=∠PEL=∠CGL,∵tan∠CGP=,∴tan∠bBFE=,不妨设BE=3x,则BF=4x,∴AF=EF=,∴AB=9x,∵AE=2FG,GF=2,∴AG=4,在Rt△ABE中,由勾股定理得81x2+9x2=160,解得x=,∴AB=9×=12,BE=4,∴EP=AD==6,CE=BC﹣BE=6﹣4=2,∵tan∠PEK=,不妨设PK=3y,EK=4y,在Rt△PEK中,由勾股定理得16y2+9y2=62,解得,y=,∴PK=,EK=,∴CK=EK﹣EC=,∴CP=.27.(1)解:∵∠A=120°,∠B=50°,∠C=α,∴∠D=360°﹣120°﹣50°﹣α=190°﹣α,若∠A=∠B﹣∠D,则120°=50°﹣(190°﹣α),解得:α=260°(舍),若∠A=∠D﹣∠B,则120°=(190°﹣α)﹣50°,解得:a=20°,若∠B=∠A﹣∠C,则50°=120°﹣α,解得:α=70°,若∠B=∠C﹣∠A,则50°=α﹣120°,解得:α=170°,若∠C=∠B﹣∠D,则α=50°﹣(190°﹣α),无解,若∠C=∠D﹣∠B,则α=(190°﹣α)﹣50°,解得:α=70°,若∠D=∠A﹣∠C,则190°﹣α=120°﹣α,无解,若∠D=∠C﹣∠A,则190°﹣α=α﹣120°,解得:α=155°,综上,α的值是20°或70°或170°或155°(写一个即可),故答案为:20°或70°或170°或155°(写一个即可);(2)证明:如图1,设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠B=180°﹣x﹣y=∠BDE﹣∠C,∴四边形DBCE为幸福四边形;(3)①证明:如图2,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∵∠ADE=∠A,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∵BF=CF,∴∠B=∠BCF,∵∠A+∠B+∠BCA=180°,∴∠ACF+∠BCF=90°,即∠ACB=90°,∴EG是⊙O的直径;②如图3,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG=7,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,∴EG==5,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴,即,∴AH=,∵AE=DE,EH⊥AD,∴AD=2AH=,∴幸福四边形DBCE的周长=BD+ED+CE+BC=6﹣+1+5+12=18+.28.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,∴PQ=PH﹣QH=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.。
湘教版2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)
8.当 分别取值 , , , , ,1,2, ,2017,2018,2019时,计算代数式 的值,将所得结果相加,其和等于
A.1B. C.1009D.0
9.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,xn表示第n秒时机器人在数轴上的位置所对应的数,给出下列结论(1)x3=3,(2)x5=1,(3)x76>x77,(4)x103<x104,(5)x2018>x2019其中,正确结论的个数是( )
方法一 将条件变形.因x= ,得x﹣1= .再把所求的代数式变形为关于(x﹣1)的表达式.
原式= (x3﹣2x2﹣2x)+2
= [x2(x﹣1)﹣x(x﹣1)﹣3x]+2
= [x(x﹣1)2﹣3x]+2
= (3x﹣3x)+2
=2
方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由x﹣1= ,可得x2﹣2x﹣2=0,即,x2﹣2x=2,x2=2x+2.
1、-5、7、-17、31、-65、127、……③
(1)第①行的第8个数是___________,第①行第n个数是___________(用n的式子表示)
(2)取第①、②、③行的第10个数分别记为a、b、c,求a-b+c的值
(3)取每行数的第n个数,这三个数中任意两数之差的最大值为6146,则n=__________
(1)根据记录的数据可知小明妈妈星期三生产玩具__________个;
(2)根据记录的数据可知小明妈妈本周实际生产玩具__________个;
2020-2021学年山东省菏泽市中考数学第一次模拟试题及答案解析
山东省菏泽市最新中考数学一模试卷(解析版)一、选择题(本大题共8个小题,每小题3分,共24分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.下列运算正确的是()A.x3+x3=2x6B.x8÷x2=x4C.x m•x n=x mn D.(﹣x5)4=x203.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=24.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形5.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C.D.6.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(分) 1 1 5 2 1则下列说法正确的是()A.学生成绩的方差是110 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分7.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A. B.C.﹣2 D.二、填空题(本大题共6个小题,每小题3分,共18分)9.在实数0,﹣π,,﹣4中,最小的数是______.10.根据国务院南水北调办公室最新统计,南水北调东、中线一期工程累计下达投资2525亿元,其中2525亿用科学记数法表示为______.11.如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=______.12.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x 的不等式a(x﹣1)﹣b>0的解集为______.13.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是______.14.如图,在菱形ABCD中,对角线AC和BD的长分别为8和6,将BD沿CB方向平移,使D和A重合,B和CB延长线上的E点重合,则阴影部分的面积为______.三、解答题(本题共78分)15.计算﹣22+()﹣1﹣|﹣2|+2sin30°.16.解不等式组,并写出不等式组的整数解.17.如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.(1)求坡高CD;(2)求斜坡新起点A与原起点B的距离(精确到0.1米).18.某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为200元的药品,经过连续两次降价后,价格控制在100~140元范围内.若两次降价相同的百分率,且已知第二次下降了32元,试求第一次降了多少元.19.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)求条形统计图中m,n的值.(3)扇形统计图中,艺术类读物所在扇形的圆心角是多少度?20.已知:如图,D是△ABC的边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE,(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,判断四边形AFDE是怎样的四边形,证明你的判断结论.21.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.22.已知关于x的一元二次方程k2x2+(1﹣2k)x+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围.(2)当k为何值时,|x1+x2|﹣2x1x2=﹣24.23.如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,BC平分∠ABD.(1)求证:BD⊥CD.(2)若⊙O的半径R=,BC=3,求BD的长.24.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.下列运算正确的是()A.x3+x3=2x6B.x8÷x2=x4C.x m•x n=x mn D.(﹣x5)4=x20【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x8÷x2=x6,故本选项错误;C、应为x m•x n=x m+n,故本选项错误;D、(﹣x5)4=x20,故本选项正确.故选:D.【点评】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方的性质,熟练掌握运算性质是解题的关键.3.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.4.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形【考点】平行四边形的判定;作图—复杂作图.【分析】利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.【解答】解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.【点评】本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.5.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;关于x轴、y轴对称的点的坐标.【分析】求出P点在第四象限,得出不等式组,求出不等式组的解集,即可得出选项.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,∴,解得:﹣1<a<,在数轴上表示为:,故选A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据题意得出不等式组是解此题的关键.6.某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(分) 1 1 5 2 1则下列说法正确的是()A.学生成绩的方差是110 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分【考点】方差;统计表;加权平均数;中位数;众数.【分析】根据众数、平均数、中位数及方差公式分别进行解答即可.【解答】解:A.∵.=(60+70+80×5+90×2+100)÷10=81,∴S2=[(60﹣81)2+(70﹣81)2+5(80﹣81)2+2(90﹣81)2+(100﹣81)2]=109;故此选项错误;B.∵80出现了5次,出现的次数最多,∴众数为80,故此选项错误;C.中位数为:(80+80)÷2=80;故此选项正确;D.=(60+70+80×5+90×2+100)÷10=81;故此选项错误;故选:C【点评】此题主要考查了平均数、众数、中位数及方差的知识,解题时分别计算出众数、中位数、平均数及方差后找到正确的选项即可.7.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°【考点】圆周角定理.【分析】根据圆周角定理求得、:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【解答】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故选B.【点评】本题考查了圆周角定理.解答此题时,通过作辅助线OD,将隐含在题中的圆周角与圆心角的关系(同弧所对的圆周角是所对的圆心角的一半)显现出来.8.如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A. B.C.﹣2 D.【考点】二次函数综合题.【分析】连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a 的值.【解答】解:如图,连接OB,过B作BD⊥x轴于D;则∠BOC=45°,∠BOD=30°;已知正方形的边长为1,则OB=;Rt△OBD中,OB=,∠BOD=30°,则:BD=OB=,OD=OB=;故B(,﹣),代入抛物线的解析式中,得:()2a=﹣,解得a=﹣;故选B.【点评】此题主要考查了正方形的性质、直角三角形的性质以及用待定系数法确定函数解析式的方法,能够正确地构造出与所求相关的直角三角形,是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)9.在实数0,﹣π,,﹣4中,最小的数是﹣4 .【考点】实数大小比较.【分析】根据0大于一切负数,两个负数,绝对值大的反而小.【解答】解:∵|﹣4|>|﹣π|>|﹣|,∴最小的数为﹣4,故答案为:﹣4.【点评】本题考查了实数的大小比较,属于基础题,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.也可以利用数轴来比较大小.10.根据国务院南水北调办公室最新统计,南水北调东、中线一期工程累计下达投资2525亿元,其中2525亿用科学记数法表示为 2.525×1011.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:2525亿=2.525×1011.故答案为:2.525×1011.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.11.如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG= 55°.【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】首先根据对顶角相等可得∠BOF=70°,再根据角平分线的性质可得∠GOF=35°,然后再算出∠DOF=90°,进而可以根据角的和差关系算出∠DOG的度数.【解答】解:∵∠AOE=70°,∴∠BOF=70°,∵OG平分∠BOF,∴∠GOF=35°,∵CD⊥EF,∴∠DOF=90°,∴∠DOG=90°﹣35°=55°,故答案为:55°.【点评】此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.12.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x 的不等式a(x﹣1)﹣b>0的解集为x<﹣1 .【考点】一次函数与一元一次不等式.【分析】根据一次函数y=ax+b的图象过第一、二、四象限,得到b>0,a<0,把(2,0)代入解析式y=ax+b求出=﹣2,解a(x﹣1)﹣b>0,得x﹣1<,代入即可求出答案【解答】解:∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,【点评】本题考查的是一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等之色的理解和掌握,能根据一次函数的性质得出a、b的正负,并正确地解不等式是解此题的关键.13.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是.【考点】由三视图判断几何体.【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为,母线长为1,因此侧面面积为×π×1=.【点评】本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.14.如图,在菱形ABCD中,对角线AC和BD的长分别为8和6,将BD沿CB方向平移,使D和A重合,B和CB延长线上的E点重合,则阴影部分的面积为18 .【考点】菱形的性质;平移的性质.【分析】直接利用菱形的性质得出其面积,进而得出S△ABO,再利用平移的性质得出S△AEB=S=S菱形ABCD,进而得出答案.四边形AEBD【解答】解:∵在菱形ABCD中,对角线AC和BD的长分别为8和6,∴菱形ABCD的面积为:×6×8=24,∴S△ABO=×24=6,∵将BD沿CB方向平移,使D和A重合,B和CB延长线上的E点重合,∴四边形AEBD是菱形,∴S△AEB=S四边形AEBD=S菱形ABCD=12,∴阴影部分的面积为:18.故答案为:18.【点评】此题主要考查了平移的性质以及菱形的性质,正确应用菱形的面积公式是解题关键.三、解答题(本题共78分)15.计算﹣22+()﹣1﹣|﹣2|+2sin30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算,即可解答.【解答】解:原式=﹣4+2﹣(2﹣)+2×=﹣4+2﹣2++1=﹣3+.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.16.解不等式组,并写出不等式组的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:由①得x<3;由②得x≥﹣1,∴原不等式组的解集为﹣1≤x<3,则不等式组的整数解有﹣1,0,1,2.【点评】此题考查了解一元一次不等式组,以及不等式组的整数解,熟练掌握不等式取解集的方法是解本题的关键.17.如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.(1)求坡高CD;(2)求斜坡新起点A与原起点B的距离(精确到0.1米).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)运用三角函数的定义求解.(2)在△ACD中先求出AD长,AB=AD﹣BD.【解答】解:(1)在Rt△BCD中,CD=BCsin12°≈10×0.208≈2.1(米).(2)在Rt△BCD中,BD=BCcos12°≈10×0.98=9.8(米);在Rt△ACD中,AD=≈23.33(米),AB=AD﹣BD≈23.33﹣9.8=13.53≈13.5(米),答:坡高2.1米,斜坡新起点与原起点的距离为13.5米.【点评】这两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.18.某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为200元的药品,经过连续两次降价后,价格控制在100~140元范围内.若两次降价相同的百分率,且已知第二次下降了32元,试求第一次降了多少元.【考点】一元二次方程的应用.【分析】利用第二次下降了32元,得出等式200(1﹣x)•x=32,进而求出即可.【解答】解:设每次降价百分率为x,根据题意,得200(1﹣x)•x=32.解得x1=0.2,x2=0.8当x1=0.2时,最后价格为200(1﹣0.2)2=132,第一次降价为200×0.2=40,当x2=0.8时,最后价格为:200(1﹣0.8)2=8,不合题意,舍去.答:第一次降价40元.【点评】此题主要考查了一元二次方程的应用,利用升降价问题得出等式方程是解题关键.19.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)求条形统计图中m,n的值.(3)扇形统计图中,艺术类读物所在扇形的圆心角是多少度?【分析】(1)根据文学类人数及其所占百分比可得总人数;(2)用总人数乘以科普类所占百分比即可得n的值,再将总人数减去其他类别人数可得m 的值;(3)用360°乘以艺术类占被调查人数的比例即可得.【解答】解:(1)本次调查中,一共调查学生70÷35%=200(名);(2)n=200×30%=60,m=200﹣70﹣60﹣30=40;(3)艺术类读物所在扇形的圆心角是360°×=72°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知:如图,D是△ABC的边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE,(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,判断四边形AFDE是怎样的四边形,证明你的判断结论.【考点】全等三角形的判定与性质;等腰三角形的判定;矩形的判定.【分析】(1)欲证△ABC是等腰三角形,又已知DE⊥AC,DF⊥AB,BF=CE,可利用三角形全等的判定和性质,得出两内角相等来证△ABC是等腰三角形;(2)由三角形的全等得出DF=DE,再根据三个角是直角得出四边形AFDE是正方形.【解答】证明:(1)∵DE⊥AC、DF⊥AB,∴∠BFD=∠CED=90°,∵D是△ABC的边BC的中点,∴DB=DC,在Rt△BFD和Rt△DEC中,,∴Rt△BFD≌Rt△DEC(HL),∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形;(2)四边形AFDE是正方形,理由如下:∵Rt△BFD≌Rt△DEC,∴DF=DE,∵∠BFD=∠CED=90°,∠A=90°,∴四边形AFDE是正方形.【点评】此题考查全等三角形,关键是根据直角三角形的HL证明三角形全等,同时根据两内角相等来证等腰三角形和正方形的判定.21.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.【考点】反比例函数综合题.【分析】(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐标,由点D在双曲线y=(x>0)的图象上求出k的值;(2)首先直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式.【解答】解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(2,2).∵点D在双曲线y=(x>0)的图象上,∴k=2×2=4.(2)直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(﹣b,﹣b).∵点D在双曲线y=(x>0)的图象上,∴k=(﹣b)•(﹣b)=b2.即k与b的数量关系为:k=b2.直线OD的解析式为:y=x.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的中考试题.22.已知关于x的一元二次方程k2x2+(1﹣2k)x+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围.(2)当k为何值时,|x1+x2|﹣2x1x2=﹣24.【考点】根与系数的关系;根的判别式.【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于k的不等式,解不等式即可求出k的值,再根据二次项系数非零,即可得出结论;(2)由根与系数的关系可得出x1+x2=、x1•x2=,结合|x1+x2|﹣2x1x2=﹣24即可得出关于k的含绝对值符号的分式方程,解方程即可得出k值.【解答】解:(1)∵方程有两个不相等的实数根,∴△=(1﹣2k)2﹣4k2=1﹣4k>0,解得:k<.又∵k2≠0,∴k的取值范围是k<且k≠0.(2)∵方程k2x2+(1﹣2k)x+1=0有两个不相等的实数根x1,x2,∴x1+x2=,x1•x2=,∵|x1+x2|﹣2x1x2=﹣24,∴||﹣2•=﹣24,即﹣=﹣24,∴|2k﹣1|=﹣24k2+2,①当2k﹣1≥0,即k≥时,与(1)中求得的k<相矛盾,故舍去;②当2k﹣1<0,即k<时,有﹣(2k﹣1)=﹣24k2+2,解得:k1=,k2=﹣,∵k<,∴k1=不合题意,故舍去.经检验k2=﹣是方程﹣=﹣24的解.综上,当k=﹣时,|x1+x2|﹣2x1x2=﹣24.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)找出△=1﹣4k >0;(2)分两种情况考虑.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.23.如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,BC平分∠ABD.(1)求证:BD⊥CD.(2)若⊙O的半径R=,BC=3,求BD的长.【考点】切线的性质.【分析】(1)连接OD,根据等边对等角、角平分线的性质及切线的性质即可证明结论成立.(2)连接AC,证明△BAC∽△BCD,由相似三角形的性质即可求得BD的长.【解答】(1)证明:连接OD,如下图所示:∵直线CD与⊙O相切于C点,∴OC⊥CD.∵OC=OB∴∠OCB=∠OBC.又∵BC平分∠ABD.∴∠ABC=∠DBC∴∠DBC=∠BCO∴OC∥BD.∵OC⊥CD.∴BD⊥CB.(2)解:连接AC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,∵由(1)知:BD⊥CD,∴∠CDB=90°,又∵∠ABC=∠DBC,∴△BAC∽△BCD,∴,即:,∴BD=【点评】本题考查了切线的性质、相似三角形的判定与性质等问题,解题的关键是能将切线的性质、角平分线的性质、相似三角形的判定与性质等知识点综合应用.24.如图,对称轴为直线x=的抛物线经过点A(﹣6,0)和点B(0,4).(1)求抛物线的解析式和顶点坐标;(2)设点E(x,y)是抛物线上的一个动点,且位于第三象限,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x的函数关系式,并写出自变量x的取值范围;①当▱OEAF的面积为24时,请判断▱OEAF是否为菱形?②是否存在点E,使▱OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据对称轴设抛物线的解析式为y=a(x+)2+k,将A、B两点坐标代入,列方程组求a、k的值;(2)根据平行四边形的性质可知S=2S△OAE,△OAE的底为AO,高为E点纵坐标的绝对值,由此列出函数关系式,①当S=24时,由函数关系式得出方程,求x的值,再逐一判断;②不存在,只有当0E⊥AE且OE=AE时,□OEAF是正方形,由此求出E点坐标,判断E点坐标是否在抛物线上.【解答】解:(1)设抛物线的解析式为y=a(x+)2+k(k≠0),则依题意得:a+k=0,a+k=4,解之得:a=,k=﹣即:y=(x+)2﹣,顶点坐标为(﹣,﹣);(2)∵点E(x,y)在抛物线上,且位于第三象限.∴S=2S△OAE=2××0A×(﹣y)=﹣6y=﹣4(x+)2+25 (﹣6<x<﹣1);①当S=24时,即﹣4(x+)2+25=24,解之得:x1=﹣3,x2=﹣4∴点E为(﹣3,﹣4)或(﹣4,﹣4)当点E为(﹣3,﹣4)时,满足OE=AE,故▱OEAF是菱形;当点E为(﹣4,﹣4)时,不满足OE=AE,故▱OEAF不是菱形.②不存在.当0E⊥AE且OE=AE时,▱OEAF是正方形,此时点E的坐标为(﹣3,﹣3),而点E不在抛物线上,故不存在点E,使▱OEAF为正方形.【点评】本题考查了二次函数的综合运用.关键是根据已知条件求抛物线解析式,根据平行四边形的性质表示面积,由特殊平行四边形的性质确定E点坐标,判断E点坐标是否在抛物线上,确定存在性.。
北师大版2020-2021学年度第一学期八年级数学期中模拟测试题1(附答案)
6.函数 中,自变量x的取值范围( )
A.x>﹣4B.x>1C.x≥﹣4D.x≥1
7.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为( )
A.8B.10C.12D.14
8.如图,矩形OABC中,OA、OC分别在平面直角坐标系x轴、y轴的正半轴上,点D在AB上,将△CDB沿着CD翻折,点B恰好落在OA的中点E处,若四边形OCDA的面积为 ,则直线ED的解析式为( )
A. B.30 C. D.30
二、填空题
11.已知点 是直线 上一动点,点 在点 的下方,且 轴, 轴上有一点 ,当 值最小时,点 的坐标为___________.
12.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且 ,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为_
= tanα(2x2−2ax+a2)
∴S阴的值先变小后变大,
故选:B
【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
6.B
【解析】
根据二次根式有意义的条件和分式有意义的条件,即x+4≥0,x-1>0,即x>1.
故选:B.
7.B
【解析】
当x=9时,原式=2×9-11=7.
小荣同学是这样计算的:
解: =x-1+10-x=9.
聪明的 同学,谁的计算结果是正确的呢?错误的计算错在哪里?
28.如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),
2020-2021学年度山东省济南市高考第二次模拟考试数学试题(文)及答案
文科数学参考公式:锥体的体积公式:1 3V Sh=,其中S为锥体的底面积,h为锥体的高.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R=,集合{}10A x x=-≤,集合{}260B x x x=--<则下图中阴影部分表示的集合为()A.{}3x x<B.{}31x x-<≤C.{}2x x<D.{}21x x-<≤2.设复数z满足()12z i-=(其中i为虚数单位),则下列说法正确的是()A.2z=B.复数z的虚部是iC.1z i=-+D.复数z在复平面内所对应的点在第一象限3.已知{}n a是公差为2的等差数列,n S为数列{}n a的前n项和,若515S=,则5a=()A.3B.5C.7D.94.已知角a的终边经过点(),2m m-,其中0m≠,则sin cosa a+等于()A.55-B.55± C.35-D.35±5.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖则中奖的概率为()A.110B.15C.310D.256.已知变量,x y满足约束条件1,50,210,xx yx x⎧≥⎪=-≥⎨⎪-+≤⎩则目标函数2z x y=+的最小值为()A.3B.6 C.7D.87.已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱5的左视图的面积为()A .186B .183 C. 182 D .27228.设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12,A A 为双曲线的左右顶点,其中1212,3,F F A A =,若双曲线的顶点到渐近线的距离为2,则双曲线的标准方程为( )A .22136x y -= B .22163x y -= C. 2212y x -= D .2212x y -= 9.执行如图所示的程序框图,则该程序框图的输出结果是( )A .3-B .12-C.13D .2 10.如图,半径为1的圆O 中,,A B 为直径的两个端点,点P 在圆上运动,设BOP x ∠=,将动点P 到,A B 两点的距离之和表示为x 的函数()f x ,则()y f x =在[]0,2π上的图象大致为( )A. B.C.C.11.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O为坐标原点若,0PA PB =u u u r u u u r,则直线OA 与OB 的斜率之积为( )A .14-B .3- C.18- D .4- 12.已知定义在R 上的函数()f x ,当1x >-时,21,10,()1n ,0,x x f x x x +-<≤⎧⎪=⎨>⎪⎩且(1)f x -为奇函数,若方程()()R f x kx k k =+∈的根为12,,,n x x x L ,则12x x x +++L 的所有的取值为( )A .6-或4-或2-B .7-或5-或3-C. 8-或6-或4-或2- D .9-或7-或5-或3-第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,满分20分.13.已知12,e e u r u u r 是互相垂直的单位向量,向量123a e e =-u r u u r r,12b e e =+u r u u r r ,则a b ⋅=r r .14.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊. 比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是.15.已知[]x 表示不超过x 的最大整数,例如:[][]2.32, 1.52=-=-.在数列{}n a 中,[]1,n a gn n N +=∈,记n S 为数列{}n a 的前n 项和,则2018S =.16.已知点,,,P A B C 均在表面积为81π的球面上,其中PA ⊥平面ABC ,30,=3BAC AC ∠=o,则三棱锥P ABC -的体积的最大值为.三、解答题:共70分。
2020-2021学年度九年级第二学期第一次中考模拟考试卷(7)
2020-2021学年度第二学期九年级模拟考试(一)数学试卷一.选择题(共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7B.﹣C.D.﹣72.新冠病毒肆虐全球,截止至2021年1月,全球约有85500000人感染新冠病毒,将85500000用科学记数法可表示为()A.8.55×106B.8.55×107C.855×105D.0.855×1083.如图所示的几何体,它的俯视图是()A. B. C. D.4.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(2a)3=8a3D.A3÷a=a35.如图,已知a∥b,将一块等腰直角三角板的两个顶点分别放在直线a、b上.若∠1=25°,则∠2的度数为()A.60°B.70°C.110°D.115°6.“节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量的中位数是()月用水量(吨)4569户数(户)3421 A.5B.6C.5.5D.2.57.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.正六边形D.圆8.不等式组⎩⎨⎧≤-<-3120x x 的解集为( )A .0>xB .2≤xC .20≤<xD .0<x9.已知x 1,x 2是一元二次方程x x 32=的两个实数根,下列结论错误的是( ) A .x 1≠x 2B .x 12-3x 1=0C .x 1+x 2=3D .x 1x 2=310.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论: ①abc >0;②4ac ﹣b 2<0;③当x >2时,y 随x 的增大而增大;④2c <3b ; 其中正确的有( )A .4个B .3个C .2个D .1个二.填空题(共7小题,每小题4分,共28分) 11..分解因式:=-1822a .12.一个正多边形的一个外角为30°,则它的内角和 . 13.若032=++-b a ,则()=+2021b a .14.已知a ﹣b =5,ab =﹣1,则3a ﹣3(ab +b )的值是 .15.如图,⊙O 的半径是2,扇形BAC 的圆心角为60°.若将扇形BAC 剪下围成一个圆锥,则此圆锥的底面圆的半径为 .16.如图,△ABC 中,以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于E 、F 点,分别以点E 、F 为圆心,以大于EF 的长为半径作弧,两弧交于点G ,做射线BG ,交AC 于点D ,过点D 作DH ∥BC 交AB 于点H .已知HD =3,BC =7,则AH 的长为 . 17.如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把△PBE 沿PE 折叠,得到△PFE ,连接CF .若AB =10,BC =12,则CF 的最小值为 .18.先化简,再求值:÷(1﹣),其中a=﹣2.19.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE =AB,∠BAE=∠CAD.求证:DE=CB.20.为了解疫情期间网络学习的效果,某中学随机抽取了部分学生进行调查.要求每位学生从“优秀”、“良好”、“一般”、“不好”四个等次中,选择一项作为评价网络学习的效果.现将调查结果绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人;扇形统计图中,学习效果“一般”所对应的圆心角度数为;请将条形统计图补充完整;(2)张老师在班上抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若从这4人中随机抽取2人,请用画树状图法或列表法,求抽取的2人学习效果全是“良好”的概率.21.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA 的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且P A⊥BF,求对角线BD的长.22.如图,AB是⊙O的直径,点C是的中点,⊙O的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OC=,求BH的长.23.今年3月份,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?五.解答题(二)(共2小题,每小题10分,共20分)24.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连接OA,OC,并延长OC交AB于点E,当AB=2OA 时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.(3)求点C的坐标.25.如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣6,0),B(1,0),与y轴相交于点C,直线l⊥AC,垂足为C.(1)求该抛物线的表达式;(2)若直线l与该抛物线的另一个交点为D,求点D的坐标;(3)设动点P(m,n)在该抛物线上,当∠P AC=45°时,求m的值.。
2021年中考数学模拟试题(5)及答案
2021年中考数学模拟试题(5)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2020的相反数是()A.﹣2020 B.2020 C.D.﹣2.一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为()A.7.5×104B.7.5×105C.7.5×108D.7.5×1093.如图,由几个小正方体组成的立体图形的左视图是()A.B.C.D.4.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是()A.B.C.D.5.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④6.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小7.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm8.如图,半径为5的⊙P与y轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P的坐标为()A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)9.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.24510.已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里,今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?()A.309 B.316 C.336 D.339二、填空题(本题有6小题,每题5分,满分30分,将答案填在答题纸上)11.因式分解:4x2﹣y2=.12.不等式>x的解集为.13.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为.14.如图,平面直角坐标系中有正方形ABCD和正方形EFGH,若点A和点E的坐标分别为(﹣2,3),(1,﹣1),则两个正方形的位似中心的坐标是.15.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,cos∠BOC=,顶点C的坐标为(a,4),反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是.16.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B'D交AB 于点F.若△AB'F为直角三角形,则AE的长为.三、解答题(本题有8小题,第17-20题各8分,第21题10分,第22-23题各12分,第24题14分,共80分)17.(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1;(2)解方程:=2.18.《如果想毁掉一个孩子,就给他一部手机!》这是微信圈一篇热传的文章.国际上,法国教育部宣布从新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A,E,C,F在同一直线上,且∠CAB=75°,公共自行车车轮的半径约为30cm,且AB与地面平行.(1)求车架中AE的长;(2)求车座点F到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.在Rt△ABC中,∠B=90°,CE平分∠BCA交AB于点E,在AC上取一点O,以OC 为半径的圆恰好经过点E,且分别交AC,BC于点D,F,连结DE,EF.(1)求证:AB是⊙O的切线;(2)若AD=2,OC=3;①求△AEC的面积;②求EF的长.22.如图,AB∥CD,AB=5cm,AC=4cm,线段AC上有一动点E,连接BE,ED,∠BED =∠A=60°,设A,E两点间的距离为xcm,C,D两点间的距离为ycm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.51 1.52 2.3 2.5y/cm00.390.75 1.07 1.33 1.45x/cm 2.8 3.2 3.5 3.6 3.8 3.9y/cm 1.53 1.42 1.17 1.030.630.35请你补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:;(4)解决问题:当AE=2CD时,CD的长度大约是cm.23.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.24.如图1,在平面直角坐标系中,正方形OABC的边长为6,点A、C分别在x、y正半轴上,点B在第一象限.点P是x正半轴上的一动点,且OP=t,连结PC,将线段PC绕点P顺时针旋转90度至PQ,连结CQ,取CQ中点M.(1)当t=2时,求Q与M的坐标;(2)如图2,连结AM,以AM、AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时,求∠CP A的度数;(3)在(2)的条件下,连结AQ,记△AMQ的面积为S',若S=S',则t=(直接写出答案).2020年浙江省绍兴市柯桥区联盟学校中考数学模拟试卷(6月份)参考答案与试题解析一.选择题(共10小题)1.2020的相反数是()A.﹣2020 B.2020 C.D.﹣【分析】根据a的相反数是﹣a,可直接得结论.【解答】解:2020的相反数是﹣2020.故选:A.2.一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为()A.7.5×104B.7.5×105C.7.5×108D.7.5×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:75000万=750000000=7.5×108吨.故选:C.3.如图,由几个小正方体组成的立体图形的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从物体左面看,左边2列,右边是1列.故选:A.4.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是()A.B.C.D.【分析】让1除以团员总数即为该班团员京京被抽到的概率.【解答】解:全部是20名团员,抽取1名,所以被抽到的概率是.故选C.5.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【分析】根据完全平方公式、积的乘方、同底数幂的除法和乘法判断即可.【解答】解:①(a+b)2=a2+2ab+b2,原式错误;②(2a2)2=4a4,原式错误;③a5÷a3=a2,原式正确;④a3•a4=a7.原式错误;故选:C.6.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.7.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【分析】设AB=xcm,则DE=(6﹣x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.8.如图,半径为5的⊙P与y轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P的坐标为()A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)【分析】由M(0,﹣4),N(0,﹣10),即可得MN的值,然后连接PM,过点P作PE ⊥MN于E,根据垂径定理可得ME的值,然后由勾股定理,即可求得PE的值,则可得圆心P的坐标.【解答】解:∵M(0,﹣4),N(0,﹣10),∴MN=6,连接PM,过点P作PE⊥MN于E,∴ME=NE=MN=3,∴OE=OM+EM=4+3=7,在Rt△PEM,PE===4,∴圆心P的坐标为(4,﹣7).故选:C.9.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.245【分析】图,“喜之郎”果冻礼盒是一长方体.2个底面为矩形A′B′C′D′(如图3),2个侧面为矩形ABCD(如图2),2个侧面是以AB为高,AE为底的矩形.【解答】解:建立如图(2)所示的平面直角坐标系,过切点K作KH⊥OC于点H.依题意知K(x,2).易求开口向上抛物线的解析式:y=x2,所以2=x2,解得x=或x=﹣(舍去),∴OH=HG=,∴BC=BO+OH+HG+GC=3+++3=6+3,∴S矩形ABCD=AB•BC=4×(6+3)=24+12(平方厘米).如图3,S矩形A′B′C′D′=6BC=6×(6+3)(平方厘米).所以,2S矩形ABCD+2S矩形A′B′C′D′+2AB•AE=178+80(平方厘米).2×(24+12)+2×(36+18)+2×4×6=168+60≈253(平方厘米).故选:A.10.已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里,今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?()A.309 B.316 C.336 D.339【分析】由于在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,所以第n个广告牌距离A地12+27(n﹣1),设此车停止时前面有x个广告牌,根据题意列出不等式12+27(x﹣1)≤320+19,将不等式的最大整数解代入12+27(x﹣1),计算即可.【解答】解:设此车停止时前面有x个广告牌,根据题意得12+27(x﹣1)≤320+19,x≤13,即此车停止时前面有13个广告牌,并且超过第13个广告牌3公里,所以此车在停止前经过的最后一个广告牌距离A地320+19﹣3=336公里,故选:C.二.填空题(共6小题)11.因式分解:4x2﹣y2=(2x+y)(2x﹣y).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2x+y)(2x﹣y),故答案为:(2x+y)(2x﹣y)12.不等式>x的解集为x<1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3﹣x>2x,移项,得:﹣x﹣2x>﹣3,合并同类项,得:﹣3x>﹣3,系数化为1,得:x<1,故答案为:x<1.13.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为π.【分析】根据圆周角定理、圆内接四边形的性质求出∠BOD,根据弧长公式计算,得到答案.【解答】解:由圆周角定理得,2∠BAD=∠BOD,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠BAD,∴180°﹣∠BAD=2∠BAD,解得,∠BAD=60°,∴∠BOD=2∠BAD=120°,∴的长==π,故答案为:π.14.如图,平面直角坐标系中有正方形ABCD和正方形EFGH,若点A和点E的坐标分别为(﹣2,3),(1,﹣1),则两个正方形的位似中心的坐标是(,0)或(4,﹣).【分析】分两种情况讨论,一种是点A和E是对应顶点,B和F是对应顶点;另一种是点A和G是对应顶点,C和E是对应顶点.【解答】解:(1)当点A和E是对应顶点,B和F是对应顶点时,位似中心就是AE与BF的交点,如图所示:连接AE,交x轴于点N,点N即为两个正方形的位似中心,∵点A和点E的坐标分别为(﹣2,3),(1,﹣1),∴AB=3,EF=1,BF=1﹣(﹣2)=3,∵AB∥EF,∴△ABN∽△EFN,∴=,∴=,解得:BN=,∴ON=﹣2=,∴两个正方形的位似中心的坐标是:(,0).(2)当点A和G是对应顶点,C和E是对应顶点时,位似中心就是AG与CE的交点,如图所示:连接AG,DF,BH,CE并延长交于点M,设AG所在直线解析式为:y=kx+b,把A(﹣2,3),G(2,0)代入得:故,解得:,故y=﹣x+;设BH所在直线解析式为:y=mx+n,把B(﹣2,0),H(2,﹣1)代入得:,故y=﹣x﹣,,解得:,故M(4,﹣),综上所述:两个正方形的位似中心的坐标是:(,0)或(4,﹣).故答案为:(,0)或(4,﹣).15.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,cos∠BOC=,顶点C的坐标为(a,4),反比例函数y=的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是﹣.【分析】先求出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(﹣5,0),A(﹣8,4),接着利用待定系数法确定直线OA的解析式为y=﹣x,则可确定D(﹣5,),然后把D点坐标代入y=中可得到k的值.【解答】解:过点C作CE⊥x轴于点E,∵顶点C的坐标为(a,4),∴OE=﹣a,CE=4,∵cos∠BOC==,∴OE=3,CO=5,∵四边形OBAC为菱形,∴AC=OB=OC=5,AC∥OB,∴B(﹣5,0),A(﹣8,4),设直线OA的解析式为y=mx,把A(﹣8,4)代入得﹣8m=4,解得m=﹣,∴直线OA的解析式为y=﹣x,当x=﹣5时,y=﹣x=,即D(﹣5,),把D(﹣5,)代入y=中,∴k=﹣5×=﹣,故答案为﹣.16.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B'D交AB 于点F.若△AB'F为直角三角形,则AE的长为6或.【分析】分两种情形:①当∠AFB′=90°时.由直角三角形的性质得出AB=2AC=8,求出BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,证明BE=DE =B'E,证出△BDF∽△BAC,得出=,解得:BF=3,设BE=DE=x,在Rt△EDF 中,DE=2EF,得出方程x=2(3﹣x),解方程即可;②当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.证明Rt△ADC≌Rt△ADB′(HL),得出AC=AB′=4,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,由勾股定理得出方程,解方程即可.【解答】解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴=,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.三.解答题17.(1)计算:2tan60°﹣﹣(﹣2)0+()﹣1;(2)解方程:=2.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣2﹣1+3=2;(2)去分母得:x+1=2x﹣14,解得:x=15,经检验x=15是分式方程的解.18.《如果想毁掉一个孩子,就给他一部手机!》这是微信圈一篇热传的文章.国际上,法国教育部宣布从新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为35%,圆心角度数是126度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【分析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.19.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.20.目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A,E,C,F在同一直线上,且∠CAB=75°,公共自行车车轮的半径约为30cm,且AB与地面平行.(1)求车架中AE的长;(2)求车座点F到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】(1)由DE⊥AC及DE,AD的长,利用勾股定理即可求出AE的长;(2)作FG⊥AB于G,延长FG交地平线于点Q,由AE,CE,CF的长可得出F A的长,通过解直角三角形可求出FG的长,再结合FQ=FG+GQ即可求出结论.【解答】解:(1)∵DE⊥AC,DE=20,AD=25,∴AE===15(cm);(2)在图(2)中,作FG⊥AB于G,延长FG交地平线于点Q.∵AE=15,CE=30,CF=15,∴F A=FC+CE+EA=15+30+15=60.∵sin∠CAB=,∴FG=F A•sin∠CAB≈60×0.97=58.2(cm),∴FQ=FG+GQ=58.2+30=88.2≈88(cm).答:车座点F到地面的距离约为88cm.21.在Rt△ABC中,∠B=90°,CE平分∠BCA交AB于点E,在AC上取一点O,以OC 为半径的圆恰好经过点E,且分别交AC,BC于点D,F,连结DE,EF.(1)求证:AB是⊙O的切线;(2)若AD=2,OC=3;①求△AEC的面积;②求EF的长.【分析】(1)证明∠ECO=∠CEO,∠FCO=∠CEO,进而求解;(2)①证明△AEO∽△ABC,则,求出BC=,利用S△AEC=AE•BC=,即可求解;②证明△AED∽△ECF,则,即EF=.【解答】解:(1)如图,连结OE,∵CE平分∠ACB,∴∠ECO=∠FCO,∵OC=OE,∴∠ECO=∠CEO,∴∠FCO=∠CEO,∴OE∥BC,又∵∠B=90°,∴∠OEA=90°,即AB是⊙O的切线;(2)①∵OE∥BC,∴△AEO∽△ABC,∴,∴BC=,∵∠OEA=90°,在Rt△AEO中,OA=5,OE=3,∴AE===4,∴S△AEC=AE•BC=;②∵OE∥BC,∴,∴BE=,∴CE=,又∵∠AED+∠OED=∠OED+∠OEC=90°,∴∠AED=∠OEC=∠ECF,∵∠ADE+∠EDC=∠EDC+∠EFC=180°,∴∠ADE=∠EFC,∴△AED∽△ECF,∴,∴EF=.22.如图,AB∥CD,AB=5cm,AC=4cm,线段AC上有一动点E,连接BE,ED,∠BED =∠A=60°,设A,E两点间的距离为xcm,C,D两点间的距离为ycm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.51 1.52 2.3 2.5y/cm00.390.75 1.07 1.33 1.451.50(答案不唯一)x/cm 2.8 3.2 3.5 3.6 3.8 3.9y/cm 1.53 1.42 1.17 1.030.630.35请你补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:当0≤x≤2.8时,y 随x的增大而增大,当2.8<x≤3.9时,y随x的增大而减小(答案不唯一);(4)解决问题:当AE=2CD时,CD的长度大约是 1.50(答案不唯一)cm.【分析】(1)通过取点、画图、测量可得;(2)依据表格中的数据描点、连线即可得;(3)观察图象即可求解;(4)画出函数图象:y=x,该函数图象和原函数图象交点,即为所求.【解答】解:(1)通过画图得:当x=2.5时,y≈1.50cm,故答案为:1.50(答案唯一);(2)画出该函数的图象如下:(3)随着自变量x的不断增大,函数y的变化趋势是:当0≤x≤2.8时,y随x的增大而增大,当2.8<x≤3.9时,y随x的增大而减小(其中2.8是概略数值,答案不唯一);故答案为:当0≤x≤2.8时,y随x的增大而增大,当2.8<x≤3.9时,y随x的增大而减小(答案不唯一);(4)当AE=2CD时,即x=2y,则y=x,画出函数图象:y=x,该函数图象和原函数图象交点,即为所求,两个函数交点的纵坐标为:1.50,故CD=y=1.50,故答案为:1.50cm(答案不唯一).23.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.【分析】(1)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;(2)存在.证明方法类似(1);(3)连接BQ.只要证明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出当BA⊥OM时,的值最小,最小值为0.5,由此即可解决问题;【解答】解:(1)连接:AB=PB.理由:如图1中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(2)存在,理由:如图2中,连接BQ.∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.(3)连接BQ.易证△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BP A=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴=,∵∠AOB=30°,∴当BA⊥OM时,的值最小,最小值为0.5,∴k=0.5.24.如图1,在平面直角坐标系中,正方形OABC的边长为6,点A、C分别在x、y正半轴上,点B在第一象限.点P是x正半轴上的一动点,且OP=t,连结PC,将线段PC绕点P顺时针旋转90度至PQ,连结CQ,取CQ中点M.(1)当t=2时,求Q与M的坐标;(2)如图2,连结AM,以AM、AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时,求∠CP A的度数;(3)在(2)的条件下,连结AQ,记△AMQ的面积为S',若S=S',则t=或(直接写出答案).【分析】(1)过点Q作QD⊥x轴于点D,证△COP≌△PDQ(AAS),得OP=QD=2,OC=PD=6,则OD=OP+PD=8,得Q(8,2),再由中点坐标公式得M(4,4);(2)①由全等三角形的性质得OP=OQ=t,OC=PD=6,则OD=t+6,得Q(t+6,t),再由中点坐标公式得M(,),由平行四边形面积公式即可得出答案;②分两种情况:当N在PC上时,连接OB、PM,先证△COM≌△AOM(SAS),得CM =AM,再证PM=AM,然后证AM⊥PQ,得∠PMA=∠QMA=45°,最后由等腰三角形的性质得∠MP A=67.5°,即可得出答案;当N在PQ上时,连接PM、OM,同理可证MA=MP,∠AMP=45°,∠MP A=67.5°,则∠CP A=67.5﹣45=22.5°;(3)过点M作MH⊥x轴于点H,过点Q作QG⊥x轴于点G,分两种情况:①当0<t <6时,即点AP在点A左侧时;②当t>6时,即点P在点A右侧时;由面积关系得出方程,解方程即可.【解答】解:(1)过点Q作QD⊥x轴于点D,如图1所示:∵OP=t,t=2,∴OP=2,∵正方形的边长为6,∴OC=6,∴C(0,6),由旋转的性质得:CP=PQ,∠CPQ=90°,∴∠CPO+∠QPD=90°,∵∠QPD+∠PQD=90°,∴∠CPO=∠PQD,在△COP和△PDQ中,,∴△COP≌△PDQ(AAS),∴OP=QD=2,OC=PD=6,∴OD=OP+PD=8,∴Q(8,2),∵M是CQ的中点,C(0,6),∴M(4,4);(2)①∵△COP≌△PDQ,∴OP=OQ=t,OC=PD=6,∴OD=t+6,∴Q(t+6,t),∵C(0,6),∴M(,),当0<t<6时,S=AP×y M=(6﹣t)×=;②分两种情况:a、当N在PC上时,连接OB、PM,如图2﹣1所示:∵点M的横、纵坐标相等,∴点M在对角线BD上,∵四边形OABC是正方形,∴OC=OA,∠COM=∠AOM,又∵OM=OM,∴△COM≌△AOM(SAS),∴CM=AM,在Rt△CPQ中,CP=PQ,M为CQ的中点,∴PM⊥CQ,∠CPM=∠MPQ=45°,PM=CQ=CM=MQ,∴PM=AM,∵点N在PC上,四边形APNM是平行四边形,∴NP∥AM,∵∠CPQ=90°,∴NP⊥PQ,∴AM⊥PQ,∴∠PMA=∠QMA=45°,又∵PM=AM,∴∠MP A=(180°﹣45°)=67.5°,∴∠CP A=45°+67.5=112.5°;b、当N在PQ上时,连接PM、OM,如图2﹣2所示:同理可证MA=MP,∠AMP=45°,∴∠MP A=(180°﹣45°)=67.5°,∴∠CP A=67.5﹣45=22.5°;综上所述,当点N在△CPQ的直角边上时,∠CP A的度数为112.5°或22.5°;(3)过点M作MH⊥x轴于点H,过点Q作QG⊥x轴于点G,∵S△AMQ=S梯形MHGQ﹣S△AHM﹣S△AGQ,∴S'=(+t)•﹣(6﹣)•﹣t•t=3t,①当0<t<6时,即点AP在点A左侧时,如图3所示:∵S=S',∴=3t,解得:t=﹣3+3,或t=﹣3﹣3(舍去);②当t>6时,即点P在点A右侧时,如图4所示:S=AP×y M=(t﹣6)×=,∵S=S',∴=3t,解得:t=3+3,或t=3﹣3(舍去);综上所述,t的值为或,故答案为:或.。
2020-2021七年级数学上期中第一次模拟试卷(及答案) (6)
2020-2021七年级数学上期中第一次模拟试卷(及答案) (6)一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .+26nB .+86nC .44n +D .8n2.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .93.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .4.若关于x 的方程3x +2a =12和方程2x -4=12的解相同,则a 的值为( ) A .6 B .8 C .-6D .4 5.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x-5=y+5 B .若a=b ,则ac=bcC .若23a b c c=,则2a=3b D .若x=y ,则x y a b = 6.下列各个运算中,结果为负数的是( ) A .2- B .()2-- C .2(2)-D .22- 7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④8.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<0 9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( )A .9B .10C .11D .1210.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 11.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .12.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人 二、填空题13.当k =_____时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.14.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.15.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。
人教版(五四制)2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)
人教版(五四制)2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)一、单选题1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短2.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个3.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.102°B.108°C.124°D.128°4.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED 5.对一个正整数x进行如下变换:若x是奇数,则结果是31x ;若x是偶数,则结果是12x.我们称这样的操作为第1次变换,再对所得结果进行同样的操作称为第2次变换,……以此类推.如对6第1次变换的结果是3,第2次变换的结果是10,第3次变换的结果是5……若正整数a第6次变换的结果是1,则a可能的值有()A.1种B.4种C.32种D.64种6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款()A.3360 元B.2780 元C.1460 元D.1360元8.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟9.下列说法中,错误的有( )①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A.3个B.2个C.1个D.0个10.A,B两地相距100km,甲车以30km/h的速度由A地出发驶向B地,同一时间乙车以40km/h的速度由B地驶向A地,两车中途相遇后继续前行,直到其中一辆车先到达终点时,两车停止运动,下列选项中,能正确反映两车离A地的距离s(km)与时间t(h)函数关系的图象是()A.B.C.D.二、填空题 11.方程2019121231220182019x x x x +++⋅⋅⋅+=+++++⋅⋅⋅++的解是x =____. 12.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________13.若方程(m ﹣1)x 2|m|﹣1=2是一元一次方程,则m=________.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距_____________千米. 15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了36元,则该学生第二次购书实际付款_______元.17.数轴上点 A ,B 到表示−2 的点的距离都为 9,P 为线段 AB 上任一点,C ,D 两点分别从 P ,B 同时向 A 点移动,且 C 点运动速度为每秒 3 个单位长度,D 点运动速度为每秒 4 个单位长度,运动 3 秒时,CD =4,则 P 点表示的数为 .18.如图,甲、乙两动点分别从正方形ABCD 的顶点A .C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边________上.19.在方程2223303x x x x-++=-中,如果设23y x x =-,那么原方程可化为关于y 的整式方程是______ .20.长为2,宽为a 的长方形纸片(12a <<),用如图所示的方法折叠,剪下折叠所得的正方形纸片(称为第一次操作);再把剩下的长方形同样的方法折叠,剪下折叠所得的正方形纸片(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的纸片为正方形,则操作终止,当3n =时,a 的值为__________.三、解答题21.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a )﹣1=3a ,求a 的值.22.如图,点C 、M 、N 在射线DQ 上,点B 在射线AP 上,且AP ∥DQ ,∠D =∠ABC =80°,∠1=∠2,AN 平分∠DAM .(1)试说明AD ∥BC 的理由;(2)试求∠CAN 的度数;(3)平移线段BC .①试问∠AMD :∠ACD 的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND =∠ACB ,试求此时∠ACB 的度数. 23.已知关于x 的方程2a(x -1)=(5-a)x+3b 有无数多个解,那么a 2-5+b 的值是多少? 24.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.25.如图,已知直线AB ∥CD ,∠A=∠C=100°,E ,F 在CD 上,且满足∠DBF=∠ABD ,BE 平分∠CBF .(1)求证:AD ∥BC ;(2)求∠DBE 的度数;(3)若平行移动AD ,在平行移动AD 的过程中,是否存在某种情况,使∠BEC=∠ADB ?若存在,求出其度数;若不存在,请说明理由.26.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(,)a b (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(,)a b ,并说明理由.(其中0a ≠,且1a ≠)(3)若(,)m n 是“相伴数对”,求代数式22[42(31)]3m n m n ----的值. 27.下表是某市青少年业余体育健身运动中心的三种消费方式.(1)设一年内参加健身运动的次数为t 次(t 为正整数).试用t 表示大于180次时,三种方式分别如何计费.(2)试计算t 为何值时,方式A 与方式B 的计费相等?方式A 与方式C 呢?(3)请你根据参加运动的次数,设计最省钱的消费方式.28.解一元一次方程:()()23273523x x x +-=- 29.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s ,而整列火车在隧道内的时间为33 s ,火车的长度为180 m ,求隧道的长度和火车的速度. 30.(阅读理解)如果点,M N 在数轴上分别表示实数,m n ,在数轴上,M N 两点之间的距离表示为()MN m n m n =->或()MN n m n m =->或||m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.(1)点A 表示的数为____,点B 表示的数为____.(2)用含t 的代数式表示P 到点A 和点C 的距离:PA =____,PC ____.(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q、两点之间的距离能否为2个单位?如点到达C点后停止.在点Q开始运动后,P Q果能,请求出此时点P表示的数:如果不能,请说明理由.参考答案1.A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.2.C【解析】【分析】【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.3.A【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选:A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.4.C【解析】试题分析:BD是△ABC的角平分线,AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA, ∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
专题15 专项训练卷(二) 新定义型试题-2020-2021学年度人教版七年级数学下册(解析版)
2020-2021学年度人教版七年级数学下册新考向多视角同步训练专项训练卷(二) 新定义型试题1.(2019山东枣庄中考,21,★☆☆)对于实数a 、b,定义关于“⊕”的一种运算:a⊕b=2a+b,例如3⊕4=2×3+4=10.(1)求4⊕(-3)的值;(2)若x⊕(-y)=2,(2y)⊕x=-1,求x+y 的值.2.(2020湖南张家界中考,20,★☆☆)阅读下面的材料:对于实数a,b,我们定义符号min{a,b}的意义:当a<b 时,min{a,b}=a ;当a≥b 时,min{a,b}=b,如:min{4,-2}=-2,min{5,5}=5.根据上面的材料回答下列问题:(1)min{-1,3}=________;(2)当min ⎩⎨⎧⎭⎬⎫2x -32,x+23 =x+23 时,求x 的取值范围3.(2019上海浦东新区期末,19,★★☆)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的 “识别距离”,给出如下定义:若x 1-x 2 ≥y 1-y 2 ,则点P 1(x 1,y 1)与点P 2(x 2,y)的“识别距离”为x 1-x 2若x 1-x 2 <y 1-y 2 ,则点P 1(x 1,y 1)与点P 2(x 2,y 2)的“识别距离”为y 1-y 2(1)已知点A(-1,0),点B 为y 轴上的动点①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为________;②直接写出点A 与点B 的“识别距离”的最小值为________;(2)已知点C 的坐标为⎝ ⎛⎭⎪⎫ m ,34 m+3 ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.4.(2020河北石家庄外国语学校期末,20,★★☆)于实数a 、b,定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k 为常数,且k≠0),若对于平面直角坐标系xOy 中,点P 的坐标为(a,b),有点P ′(a*b,a⊕b)与之对应,则称点P ′为点P 的“k 衍生点”例如:P(1,4)的“2衍生点”为P ′(1+2×4,2×1+4),即P ′(9,6)(1)点P(-1,6)的“2衍生点”P ′的坐标为________;(2)若点P 的“5衍生点”P ′的坐标为(-3,9),求点P 的坐标;(3)若点P 的“k 衍生点”为点P ′,且直线PP ′平行于y 轴,线段PP ′的长度为线段OP 长度的3倍,求k 的值5.(2019甘肃兰州模拟,20,★★☆)对于实数a,我们规定:用符号[ a ]表示不大于 a 的最大整数,称[ a ]为a 的根整数,例如:[9 ]=3,[10 ]=3(1)仿照以上方法计算:[ 4 ]=________,[37 ]=________;(2)若[x ]=1,写出满足题意的x 的整数值:________;(3)如果我们对a 连续求根整数,直到结果为1例如:对10连续求根整数2次,[10 ]=3→[ 3 ]=1,这时的结果为1,对120连续求根整数,________次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是________6.(2019江西九江期末,20,★★★定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的形式的二元一次方程组,称为“相关线性方程组”,如⎩⎪⎨⎪⎧kx+y =b1kx+y=-b 所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组⎩⎨⎧2x+3=y mx+ny =-6可化为“相关线性方程组”,则该方程组的解为________________; (2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和7.(2019四川成都七中期末,22,★★★)阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B,若数轴上存在一点M,使得点M 到点A 的距离等于点M 到点 B 的距离,则称点M 为点A 与点B 的“平衡点”解答下列问题:(1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为________;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C 、D 表示的数分别是-3、-1,点O 为原点,点B 为线段CD 上一点①设点M 表示的数为m,若点M 为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方 向移动设移动的时间为t(t>0)秒,若点O 可以为点A 与点B 的“平衡点”,求t 的取值范围.8.(2020河南濮阳期末,22,★★★)规定:{x}表示不小于x 的最小整数,如{4}=4,{2.6}=-2,{-5}=-5.在此规定下,任意数x 都能写出如下形式:x ={x}-b,其中0≤b<1.(1)直接写出{x},x,x+1的大小关系;________________________。
人教版2020-2021学年度七年级数学上册期末模拟测试卷C卷(附答案)
绝密★启用前2020-2021学年度初中数学期中考试卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB =7.8 cm,那么线段MN的长等于( )A.5.4 cm B.5.6 cm C.5.8 cm D.6 cm2.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A 出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点A B.点B C.点C D.点D3.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在( )A.边BC B.边CD C.边DE D.边EF4.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第50个三角形数与第48个三角形数的差为( )A .50B .49C .99D .1005.如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )A .8B .12C .16D .176.式子a b c a b c++的值等于( ) A .3± B .±1 C .3±或±1 D .3或17.如图,数轴上每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的位置如图所示,它们对应的数分别是a 、b 、c 、d ,且d ﹣b+c=10,那么点A 对应的数是( )A .﹣6B .﹣3C .0D .正数8.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定9.若|3m-5|+(n+3)2=0,则6m-(n+2)=( )A .6B .9C .0D .1110.如果两个数的和是正数,商是负数,那么这两个数的积是( )A .正数B .负数C .零D .以上三种结论都有可能第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.设一列数1232018,,,...,a a a a 中任意三个相邻的数之和都是22,已知32a x =,1913a =,666a x =-,那么2018a =________.12.在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”,中国古代称为“河图”、“洛书”,又叫“纵横图”.3阶幻方也称九宫格,即把1,2,3,4,5,6,7,8,9九个数填入3×3方格中,使每一行,每一列以及两条对角线上的数字之和都相等.请你将1,2,3,4,5,6,7,8,9填入下表的9个空格中,完成三阶幻方.13.若|x ﹣2+3﹣2x|=|x ﹣2|+|3﹣2x|成立,则x 的范围是__.14.观察下列各式数:0,3,8,15,24,…,试按此规律写出第2020个数是_____. 15.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。
2020-2021学年最新青岛版七年级上学期第一次月考数学模拟试题及答案解析-精编试题
第一学期第一次阶段性检测七年级数学试题时间:100分钟分值:120分第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分。
每小题只有一个选项符合题意)1、下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2、若两个有理数的和是正数,那么一定有结论()A . 两个加数都是正数B .两个加数只有一个是正数C . 一个加数正数,另一个加数为零D .两个加数不能同为负数, 又已知点B和点A相距5个单位长度, 则点B 3、已知点A和点B在同一数轴上, 点A表示数2表示的数是( )A.3B.-7C.3或-7D.3或74、如果,则()A.B.C.D.5、如图,下列结论中错误的是()A.B.C.D.6、下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数,差是正数D.两个正数的差一定是正数7、下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B .-2-1-3可以说是2,-1,-3的和C .-2-1-3是连减运算不能说成和D .-2-1-3=-2+3-1 8、下面说法中正确的是( )A .因为同号相乘得正,所以(-2)×(-3)×(-1)=6B .任何数和0相乘都等于0C .若,则D .以上说法都不正确9、在下列说法中,正确的个数是( ) ⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数 A .1 B .2 C .3 D .410、654321-+-+-+……+2015-2016的结果不可能是( ) A .奇数 B .偶数 C .负数 D .整数11、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( ) A.-1 B.0 C.1 D.2 12、下列各数中0、21、25-、25%-、3π、|23|---、0.65(65循环)、3.14π-、227-整数的个数为x ,非负数的个数是y ,分数的个数是z ,则x y z ++的值为( ) A.10 B .11 C .12 D .以上都不对第Ⅱ卷(非选择题,共84分)二、填空题(每小题4分,共20分。
2020-2021学年七年级上册数学第一章测试卷及答案人教版
2020-2021学年七年级上册数学第一章测试卷及答案人教版一、选择题(本大题共10道小题,每题3分,共30分)1. 冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作( )A. 7 ℃ B. -7 ℃ C. 2 ℃ D. -12 ℃【答案】B 【解析】零上记为正数,则零下记为负数,零上5℃记为+5℃,则零下7℃记为-7℃.2. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( )A. -2 B. -3 C. 3 D. 5【答案】A 【解析】最接近标准的工件是绝对值最小的数,-2的绝对值是2,-3和3的绝对值是3,5的绝对值是5,所以最接近的是-2.3. 下列各数中,-3的倒数是( )A. -13B. 13C. -3D. 3【答案】A 【解析】∵-3×(-13)=1,∴-3的倒数为-13.4. 下列各式中,计算结果为正的是( )A .(-50)+(+4) B .2.7+(-4.5)C .(-13)+25D .0+(-13)【答案】C 【解析】A 选项(-50)+(+4)=-46;B 选项2.7+(-4.5)=-1.8;C 选项(-13)+25=,D 选项0+(-13)=,故本题正确选项为C.5. 2020年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A. 2.89×107B. 2.89×106C. 28.9×105D. 2.89×104【答案】B 【解析】科学记数法的一般形式为a ×10n ,1≤a <10,其中n 为原数的整数位数减1,则289万=2890000=2.89×106.6. 数a ,b 在数轴上的对应点的位置如图所示.把-a ,-b ,0按照从小到大的顺序排列,正确的是( )A .-a <0<-bB .0<-a <-bC .-b <0<-aD .0<-b <-a【答案】C 【解析】由数轴可知:a <0<b, ∴-a >0>-b ,即 -b <0<-a .7. 如图,在数轴上点A ,B 对应的有理数分别为a ,b ,有下列结论:①b a>0;②a b>0;③-ba>0;④-ab>0.其中正确的有( )图K -14-1A .1个B .2个C .3个D .4个【答案】B [解析] 观察数轴,可知a 与b 的符号相反,所以-a 与b 或a 与-b 的符号相同,根据除法中确定商的符号的方法,可知①②错误,③④正确.故选B.8. 35 cm 比较接近于( )A .珠穆朗玛峰的高度 B .三层楼的高度C .姚明的身高D .一张纸的厚度【答案】C [解析] 35 cm =243 cm =2.43 m ,接近于姚明的身高.9. 储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了( )A .12.25万元 B .-12.25万元C .12万元D .-12万元【答案】A [解析] 记取出为负,存入为正,则(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(+5)+(+12)+(+25)]+[(-9.5)+(-8)+(-10.25)+(-2)]=(+42)+(-29.75)=12.25.10. 若a b c ,,三个数互不相等,则在a b b c c ab c c a a b------,,中,正数一定有( )A .0个B .1个C .2个D .3个【答案】B【解析】不妨设a b c >>,则000a b b c c ab c c a a b---><<---,,,显然有两个负数,一个正数.二、填空题(本大题共8道小题,每题4分,共32分)11. |-0.3|的相反数等于________.【答案】-0.3 【解析】|-0.3|=0.3,而0.3的相反数是-0.3.12. 若小亮的体重增加了3 kg,记作+3 kg,则小阳的体重减少了2 kg,可记作________kg.【答案】-2 【解析】体重增加记为+,则体重减少记为—13. 若x-1与-5互为相反数,则x的值为________.【答案】6 [解析] 因为x-1与-5互为相反数,由于-5的相反数是5,所以x-1=5,解得x=6.14. 一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.【答案】2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.15. 绝对值小于3的所有整数的和为______,绝对值不大于2020的所有整数的和为______.【答案】0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0.绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.16. 已知a+c=-2019,b+d=2020,则a+d+c+b的值是________.【答案】1 [解析] a+d+c+b=(a+c)+(b+d)=-2019+2020=1.17. 如图,圆圈分别表示负数集合、整数集合和正数集合,其中有甲、乙、丙三个部分,下面对这三部分中数的个数的描述正确的是________.(填序号)①甲、丙两部分有无数个数,乙部分只有一个数0;②甲、乙、丙三部分都有无数个数;③甲、乙、丙三部分都只有一个数;④甲只有一个数,乙、丙两部分有无数个数.【答案】① [解析] 甲部分既是负数,又是整数,即负整数,有无数个;丙部分既是正数,又是整数,即正整数,有无数个;乙是整数,但既不是正数也不是负数,即0,只有一个,故①正确,②③④错误.18. 若|a-4|+|b-8|=0,则a+bab的值为________.【答案】38 [解析] 因为任意数的绝对值均为非负数,所以|a-4|≥0,|b-8|≥0.因为|a-4|+|b-8|=0,所以|a-4|=0,|b-8|=0,即a-4=0,b-8=0.所以a=4,b=8.所以a+bab=4+84×8=38.三、解答题(本大题共6道小题,共38分)19. (5分)某化肥厂计划每月生产化肥500吨,2月份超额生产12吨,3月份少生产2吨,4月份少生产3吨,5月份超额生产6吨,6月份刚好完成计划指标,7月份超额生产5吨.请你设计一个表格,用所学知识表示这6个月的生产情况.【答案】解:规定500吨为标准,超过的吨数记为正数,不足的吨数记为负数,则该化肥厂2~7月份的生产情况如下:月份234567产量/吨+12-2-3+60+520. (9分)用适当的方法计算下列各题:(1)(+7)+(-21)+(-7)+(+21);(2)-4+17+(-36)+73;(3)(-37)+(+15)+(+27)+(-115);【答案】解:(1)原式=[(+7)+(-7)]+[(-21)+(+21)]=0.(2)原式=[(-4)+(-36)]+(17+73)=-40+90=50.(3)原式=[(-37)+(+27)]+[(+15)+(-115)]=-17+(-1)=-87.21. (6分)如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)若点A,C表示的数互为相反数,求点B表示的数.【答案】解:(1)若点A表示的数为0,因为0-4=-4,所以点B表示的数为-4.因为-4+7=3,所以点C表示的数为3.(2)若点C表示的数为5,因为5-7=-2,所以点B表示的数为-2.因为-2+4=2,所以点A表示的数为2.(3)若点A,C表示的数互为相反数,因为AC=7-4=3,所以点A表示的数为-1.5.因为-1.5-4=-5.5,所以点B表示的数为-5.5.22. (6分)分类讨论:已知|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.【答案】解:因为|a|=4,所以a=±4.因为|b|=2,所以b=±2.因为|a+b|=a+b,所以a+b≥0.所以a=4,b=±2.当a=4,b=2时,a-b=4-2=2;当a=4,b=-2时,a-b=4-(-2)=6.所以a-b的值为2或6.加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2020-2021学年最新山东省临沂市中考数学二模试卷及答案(1)
中考数学二模试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°3.(3分)下列运算正确的是()A.3m﹣2m=1 B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m44.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.5.(3分)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°7.(3分)为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x公里,根据题意列出的方程正确的是()A .=B .=C .=D .=8.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A .B .C .D .9.(3分)李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:2 2.53 3.5 4阅读时间(小时)学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3 C.平均数是3 D.方差是0.3410.(3分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A .B .C .D .11.(3分)如图,是一组按照某种规律摆放成的图案,则图20中三角形的个数是()A.100 B.76 C.66 D.3612.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC13.(3分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的14.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(本题共5小题,每小题3分,共15分)15.(3分)因式分解:3a3﹣3a= .16.(3分)化简:﹣= .17.(3分)如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC= .18.(3分)如图,在Rt△ABC中,∠ACB=90°,CD是边AB的中线,若CD=6.5,BC=12.sinB的值是19.(3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,y1>y2,则称该函数为减函数.根据以上定义,可以判断下面所给的函数中,是减函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1③y=x2(x>0)④y=﹣三、解答题(本大题共7小题,共63分)20.(7分)计算:|﹣2|+2sin60°+()﹣121.(7分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(7分)小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.23.(9分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.24.(9分)赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题(1)起点A与终点B之间相距米.(2)哪支龙舟队先到达终点?(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间时,两支龙舟队相距200米?25.(11分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.26.(13分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.B.4.D.5.A.6.B.7.C.8.B9.B.10.B.11.B.12.C.13.C.14.C.二、填空题15.3a(a+1)(a﹣1).16.0.17.6.18.19.②.三、解答题20.解:原式=2﹣+2×+3=2﹣++3=5.21.解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.解:作AD⊥BC交CB的延长线于D,设AD为xm,由题意得,∠ABD=45°,∠ACD=36°,在Rt△ADB中,∠ABD=45°,∴DB=xm,在Rt△ADC中,∠ACD=36°,∴tan∠ACD=,∴=0.73,解得x≈270.4.答:热气球离地面的高度约为270.4m.23.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.24.解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得,解得,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.故答案为:3000;乙.25.解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.26.解:(1)当x=0时,y=4,∴B(0,4),当y=0时,﹣x+4=0,x=6,∴C(6,0),把B(0,4)和C(6,0)代入抛物线y=ax2+x+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+4;(2)如图1,过E作EG∥y轴,交直线BC于G,设E(m,﹣m2+m+4),则G(m,﹣m+4),∴EG=(﹣m2+m+4)﹣(﹣m+4)=﹣+4m,∴S△BEC=EG•OC=×6(﹣+4m)=﹣2(m﹣3)2+18,∵﹣2<0,∴S有最大值,此时E(3,8);(3)y=﹣x2+x+4=﹣(x2﹣5x+﹣)+4=﹣(x﹣)2+;对称轴是:x=,∴A(﹣1,0)∵点Q是抛物线对称轴上的动点,∴Q的横坐标为,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形;①如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线y=﹣x+4上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为,根据M到Q的平移规律:可知:P的横坐标为﹣,∴P(﹣,﹣);②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是3,∵A(﹣1,0),且Q的横坐标为,∴P的横坐标为,∴P(,﹣);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律,∴点P的坐标是(﹣,),综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣,﹣)或(,﹣)或(﹣,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记0分,共36分)1.(3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择C.2.(3分)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()A.14.7×107 B.1.47×107 C.1.47×108 D.0.147×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.47亿用科学记数法表示为1.47×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】首先得出2的取值范围进而得出答案.【解答】解:∵2=,∴6<<7,∴无理数2﹣3在3和4之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.4.(3分)下列图形中,既是中心对称,又是轴对称的是()【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.5.(3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B.C.D.【分析】据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选:D.【点评】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.6.(3分)某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95 人数 4 6 8 5 7对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.(3分)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2 D.130πcm2【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.8.(3分)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=的图象上,则k=()A.3 B.4 C.6 D.12【分析】如图,作AH⊥y轴于H.构造全等三角形即可解决问题;【解答】解:如图,作AH⊥y轴于H.∵CA=CB,∠AHC=∠BOC,∠ACH=∠CBO,∴△ACH≌△CBO,∴AH=OC,CH=OB,∵C(0,3),BC=5,∴OC=3,OB==4,∴CH=OB=4,AH=OC=3,∴OH=1,∴A(﹣3,﹣1),∵点A在y=上,∴k=3,故选:A.【点评】本题考查反比例函数的应用、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.9.(3分)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣149.5°﹣61°=149.5°.故选:B.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.10.(3分)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【解答】解:抛物线y=ax2+2ax+m得对称轴为直线x=﹣=﹣1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.11.(3分)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b 垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()【分析】依据a和b同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t<1时,函数图象为开口向上的抛物线的一部分,当1≤t<2时,函数图象为开口向下的抛物线的一部分,当2≤t ≤3时,函数图象为开口向上的抛物线的一部分. 【解答】解:如图①,当0≤t <1时,BE=t ,DE=t ,∴s=S △BDE =×t ×t=;如图②,当1≤t <2时,CE=2﹣t ,BG=t ﹣1,∴DE=(2﹣t ),FG=(t ﹣1),∴s=S 五边形AFGED =S △ABC ﹣S △BGF ﹣S △CDE =×2×﹣×(t ﹣1)×(t ﹣1)﹣×(2﹣t )×(2﹣t )=﹣+3t ﹣;如图③,当2≤t ≤3时,CG=3﹣t ,GF=(3﹣t ),∴s=S △CFG =×(3﹣t )×(3﹣t )=﹣3t+,综上所述,当0≤t <1时,函数图象为开口向上的抛物线的一部分;当1≤t <2时,函数图象为开口向下的抛物线的一部分;当2≤t ≤3时,函数图象为开口向上的抛物线的一部分, 故选:B .【点评】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.12.(3分)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1 B.2 C.3 D.4【分析】①只要证明△ADE为直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG•FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得==,由EG∥CD,推出==,推出=,由AD=AE,EG•AE=BG•AB,故④正确,【解答】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为直角三角形∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°﹣∠CGB,∠DAF=90°+∠EAF=90°+(90°﹣∠AGF)=180°﹣∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴==,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.【点评】本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共5小题,每小题4分,共20分。