《试卷5份集锦》青岛市某知名实验中学2020-2021年中考达标测试数学试题

合集下载

2020-2021青岛实验初中八年级上期中数学试题

2020-2021青岛实验初中八年级上期中数学试题

(3)△ABC 的周长=
(结果保留根号);
(4)画出△ABC 关于关于 y 轴对称的的△A′B′C′.
18.计算(本题满分 16 分,每题 4 分)
(1) ( 3 1 )2
3
(2) 24 216 5 6
15.如图,在 Rt△ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交 BC 于 D 点,E,F 分别是 AD,AC 上的动点,则 CE+EF 的最小值为
(2)若在第一象限中有一个平衡点 N(4,m)恰好在一次函数 y=﹣x+b(b 为常数)
的图象上.
①求 m、b 的值;
②一次函数 y=﹣x+b(b 为常数)与 y 轴交于点 C,问:在这函数图象上,是否存
A.8cm
B.10cm
C.12cm
D.15cm
8.已知函数 y=kx+b 的图象如下方图象所示,则 y=﹣2kx+b 的图象可能是( )
A.(4,2)
B.(-4,2)
C.(-4,-2)
5.下列关于一次函数 y=﹣2x+5 的说法,错误的是( )
A.函数图象与 y 轴的交点是(0,5)
B.当 x 值增大时,y 随着 x 的增大而减小
(3) 3 18 1 32 7 1
2
8
第2页共4页
(4) ( 2 6) 18 3 1
3
19.(本题满分 8 分)科学研究发现,空气含氧量 y(克/立方米)与海拔高度 x(米)
之间近似地满足一次函数关系.经测量,在海拔高度为 0 米的地方,空气含氧量约为
299 克/立方米;在海拔高度为 2000 米的地方,空气含氧量约为 235 克/立方米. (1)求出 y 与 x 的函数表达式; (2)已知某山的海拔高度为 1200 米,请你求出该山山顶处的空气含氧量约为多少? 20.(本题满分 8 分)一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:

《试卷3份集锦》青岛市某知名实验中学2020-2021年八年级上学期期末达标测试数学试题

《试卷3份集锦》青岛市某知名实验中学2020-2021年八年级上学期期末达标测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm【答案】C 【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到结论.【详解】∵DE 是边AB 的垂直平分线,∴AE =BE .∴△BCE 的周长=BC+BE+CE =BC+AE+CE =BC+AC =1.又∵BC =8,∴AC =10(cm ).故选C .【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握计算公式.2.一次函数21y x =--的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数21y x =--,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y 轴的交点在y 轴的负半轴,∴一次函数21y x =--的图象经过第二、三、四象限,不经过第一象限,故选:A .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.3.式子:62xy-,85x+,12xx+,3x y中,分式的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】根据分式的定义进行解答即可.【详解】四个式子中分母含有未知数的有:85x+,12xx+共2个.故选:B.【点睛】本题考查了分式的概念,判断一个有理式是否是分式,不要只看是不是AB的形式,关键是根据分式的定义看分母中是否含有字母,分母中含有字母则是分式,分母中不含字母,则不是分式.4.下列一些标志中,可以看作是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的定义逐项分析判断即可.【详解】解:A、C、D不符合轴对称图形的定义,故不是轴对称图形;B符合轴对称图形的定义,故B是轴对称图形.故选B.【点睛】本题考查了轴对称图形的识别,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对B.1对C.2对D.3对【答案】C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD =CE ,且∠B =∠C ,∠BOD =∠COE ,∴△BDO ≌△CEO (AAS )∴全等的三角形共有2对,故选:C .【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.6.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( )A .1B .3C .5D .7 【答案】C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数. 7.如图,在ABC 中,90B ∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN 交BC 于点D ,连接AD .若30C ∠=︒,12AD =,则BC 的长是( )A .12B .16C .18D .24【答案】C 【分析】由作图可知,DN 为AC 的垂直平分线,求得CD=12,再求出∠DAB=30°,BD=6,问题得解.【详解】解:由作图可知,DN 为AC 的垂直平分线,∴AD=CD=12,∴∠C=∠CAD=30°,∵90B ∠=︒,∴∠CAB=60°,∴∠DAB=30°,∴162BD AD==,∴BC=BD+CD=1.故选:C【点睛】本题考查了线段垂直平分线的尺规作图、性质,含30°角的直角三角形性质,等腰三角形性质.由作图得到“DN为AC的垂直平分线”是解题关键.8.下列各组数中不能作为直角三角形的三边长的是()A.2,3,5 B.3,4,5 C.6,8,10 D.5,12,13【答案】A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、22+32≠52,不符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故正确;C、62+82=102,符合勾股定理的逆定理,故正确;D、52+122=132,符合勾股定理的逆定理,故正确.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.下列计算正确的是()A B C.=3 D【答案】D【解析】解:A不能合并,所以A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.10.已知关于x的一次函数y=(2﹣m)x+2的图象如图所示,则实数m的取值范围为()A .m >2B .m <2C .m >0D .m <0【答案】B 【分析】根据一次函数的增减性即可列出不等式,解不等式即可.【详解】由图可知:1﹣m >0,∴m <1.故选B .【点睛】此题考查的是一次函数图像及性质,掌握一次函数图像及性质与一次项系数的关系是解决此题的关键.二、填空题11.如图,长方形ABCD 的边AD 在数轴上,21AD AB ==,,点A 在数轴上对应的数是-1,以点A 为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的数是__________.51【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得点E 表示的实数.【详解】解:∵AD 长为2,AB 长为1,∴22215+=∵A 点表示-1,∴点E 51, 51.【点睛】本题主要考查了实数与数轴和勾股定理,正确得出AC 的长是解题关键.12.已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组253x y x y +=⎧⎨+=⎩的解是_________. 【答案】12x y =⎧⎨=⎩【详解】解:∵直线x+2y=5与直线x+y=3的交点坐标是(1,2),∴方程组253x yx y+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩【点睛】本题考查一次函数与二元一次方程(组),利用数形结合思想解题是关键.13.已知点M(a,1)与点N(﹣2,b)关于y轴对称,则a﹣b=____.【答案】1.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后计算即可得解.【详解】∵点M(a,1)与点N(-2,b)关于y轴对称,∴a=2,b=1,∴a-b=2-1=1.故答案为:1.【点睛】此题考查关于x轴、y轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.14.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片_____张,B类卡片_____张,C类卡片_____张.【答案】2 1 1【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【详解】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+1ab+b2,∵A图形面积为a2,B图形面积为b2,C图形面积为ab,∴需要A类卡片2张,B类卡片1张,C类卡片1张.故答案为:2;1;1.【点睛】本题考查了多项式与多项式的乘法运算的应用,正确列出算式是解答本题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.15.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________【答案】25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222AD BD++=25cm;=1520只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222=1025=529++cm;AD BD只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm ,在直角三角形ABC 中,根据勾股定理得:∴cm ;∵25<<,∴自A 至B 在长方体表面的连线距离最短是25cm .故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.16.若m 2+m-1=0,则2m 2+2m+2017=________________.【答案】1【分析】由题意易得21m m +=,然后代入求解即可.【详解】解:∵m 2+m-1=0,∴21m m +=,∴()2222201722017220172019m m m m ++=++=+=;故答案为1.【点睛】本题主要考查整式的化简求值,关键是利用整体代入法进行求解.17.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.0000065毫米,该厚度用科学记数法表示为_____毫米.【答案】66.510-⨯【分析】一个较小的数可表示为:10n a -⨯的形式,其中1≤10a <,据此可得结论.【详解】将0.0000065用科学记数法法表示,其中 6.5a =则原数变为6.5,小数点需要向右移动6为,故n=6故答案为:66.510-⨯【点睛】本题考查用科学记数法表示较小的数,需要注意,科学记数法还可以表示较大的数,形式为:10n a ⨯.三、解答题18.已知()2219m -=,()3127n +=.(1)若点P 的坐标为(),m n ,请你画一个平面直角坐标系,标出点P 的位置;(2)求出3m n +的算术平方根.【答案】 (1)P(2,2)或P(-1,2);(2) 22.【分析】(1)依据平方根的定义、立方根的定义可求得m 和n 的值,得到点P 的坐标,最后画出点P 的坐标;(2)分别代入计算即可.【详解】(1)2(21)9m -=,∴213m -=±,即213m -=或213m -=-,∴1221m m ==-,,∵()3127n +=, 13n +=,2n =,∴1(12P -,),2(22P ,); 所求作的P 点如图所示:(2)当22m n ==,时,33228m n +=⨯+=,8的算术平方根是2,当1m =-,2n =时,()33121m n +=⨯-+=-,1-没有算术平方根.所以3m+n 的算术平方根为:2.【点睛】本题考查了立方根与平方根的定义、坐标的确定,此题难度不大,注意掌握方程思想的应用,不要遗漏. 19.如图,在某一禁毒基地的建设中,准备再一个长为()65a b +米,宽为()5b a -米的长方形草坪上修建两条宽为a 米的通道.(1)求剩余草坪的面积是多少平方米?(2)若1a =,3b =,求剩余草坪的面积是多少平方米?【答案】(1)22101525a ab b -++;(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将1a =,3b =代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:22(65)(5)(55)(52)(101525)a b a b a a a b b a a ab b +---=+-=-++平方米;(2)当1,3a b ==时,22101525a ab b -++221011513253=-⨯+⨯⨯+⨯=1,即1,3a b ==时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.20.如图,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD=∠BCE=90°,点M 为DE 的中点,过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1),求证:M 为AN 的中点;(2)将图1中的△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE 绕点B 旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)△ACN 仍为等腰直角三角形,证明见解析.【分析】(1)由EN ∥AD 和点M 为DE 的中点可以证到△ADM ≌△NEM ,从而证到M 为AN 的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)同(2)中的解题可得AB=DA=NE,∠ABC=∠NEC=180°﹣∠CBN,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【详解】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∵MAD MNEADM NEMDM EM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△NEM(AAS).∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∵AB NEABC NECBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN 仍为等腰直角三角形.证明如下:如图3,此时A 、B 、N 三点在同一条直线上.∵AD ∥EN ,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A 、B 、N 三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC .∵△ADM ≌△NEM (已证),∴AD=NE .∵AD=AB ,∴AB=NE .在△ABC 和△NEC 中,∵AB NE ABC NEC BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△NEC (SAS ).∴AC=NC ,∠ACB=∠NCE .∴∠ACN=∠BCE=90°.∴△ACN 为等腰直角三角形.【点睛】本题考查全等三角形的旋转问题,熟练掌握旋转的性质是解题的关键.21.如图 1,在平面直角坐标系中,直线l 1:y =-x +5与x 轴,y 轴分别交于A .B 两点.直线l 2:y =-4x +b 与l 1交于点 D(-3,8)且与x 轴,y 轴分别交于C 、E.(1)求出点A 坐标,直线l 2的解析式;(2)如图2,点P 为线段AD 上一点(不含端点),连接CP ,一动点Q 从C 出发,沿线段CP 以每秒1个单位的速度运动到点P ,再沿着线段PD以每秒2个单位的速度运动到点D 停止,求点Q 在整个运动过程中所用最少时间与点P 的坐标;(3)如图3,平面直角坐标系中有一点G(m ,2),使得S ∆CEG =S ∆CEB ,求点G 的坐标.【答案】(1)A (5,0),y =-4x-4;(2)8秒, P (-1,6);(3)1315G G ,244-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2,2,. 【分析】(1)根据l 1解析式,y=0即可求出点A 坐标,将D 点代入l 2解析式并解方程,即可求出l 2解析式 (2)根据OA=OB 可知ABO 和DPQ 都为等腰直角三角形,根据路程和速度,可得点Q 在整个运动过程中所用的时间为PC PQ +,当C,P ,Q 三点共线时,t 有最小值,根据矩形的判定和性质可以求出P 和Q 的坐标以及最小时间.(3)用面积法CEG HEG HCG -S S S ∆∆∆=,用含m 的表达式求出CEG S ∆,根据S ∆CEG =S ∆CEB 可以求出G 点坐标.【详解】(1)直线l 1:y =-x +5,令y=0,则x=5,故A (5,0).将点D(-3,8)代入l 2:y =-4x +b ,解得b=-4,则直线l 2的解析式为y =-4x-4.∴点A 坐标为A (5,0),直线l 2的解析式为y =-4x-4.(2)如图所示,过P 点做y 轴平行线PQ ,做D 点做x 轴平行线DQ ,PQ 与DQ 相交于点Q ,可知DPQ 为等腰直角三角形,DP=2QP .依题意有12PC t PC PQ =+=+ 当C,P,Q 三点共线时,t 有最小值,此时=8PC PQ +故点Q 在整个运功过程中所用的最少时间是8秒,此时点P 的坐标为(-1,6).(3)如图过G 做x 轴平行线,交直线CD 于点H ,过C 点做CJ ⊥HG .根据l 2的解析式,可得点H (3,22-),E (0,-4),C (-1,0) 根据l 1的解析式,可得点A (5,0),B (0,5)则GH=32m + CEB 119E CO=91=222S B ∆=⋅⨯⨯ CEG HEG HCG 1113=HG EK HG CJ=HG EK CJ =2222∆∆∆-⨯⨯-⨯⨯⨯⨯-+=()2S m S S 又S ∆CEG =S ∆CEB所以39=22m +2,解得12315,44m m ==- 故1315G G ,244-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2,2, 【点睛】本题考察一次函数的综合题、待定系数法、平行线的性质、等高模型、垂线段最短等性质,解题的关键是灵活运用所学的知识解决问题,学会用转化的思想思考问题,属于压轴题.22.如图,两条公路OA 与OB 相交于点O ,在∠AOB 的内部有两个小区C 与D ,现要修建一个市场P ,使市场P 到两条公路OA 、OB 的距离相等,且到两个小区C 、D 的距离相等.(1)市场P 应修建在什么位置?(请用文字加以说明)(2)在图中标出点P 的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).【答案】(1)详见解析;(2)详见解析.【解析】(1)直接利用角平分线的性质以及线段垂直平分线的性质分析得出答案;(2)直接利用角平分线的作法以及线段垂直平分线的作法得出答案.【详解】(1)点P 应修建在∠AOB 的角平分线和线段CD 的垂直平分线的交点处;(2)如图所示:点P 即为所求.【点睛】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键. 23.(1)如图1,在AEC ∆和DFB ∆中,点A 、B 、C 、D 在同一条直线上,AE DF =,//AE DF ,E F ∠=∠, 求证:EC BF .(2)如图2,在ABC ∆中,55CAB ∠=,将ABC ∆在平面内绕点A 逆时针旋转到''AB C ∆的位置,使'//CC AB ,求旋转角的度数.【答案】(1)见解析;(2)70︒.【分析】(1)根据“A A S ”可证AEC DFB ≅,可得EC BF ;(2)由平行线的性质和旋转的性质可求''55CAB C CA CC A ∠=∠=∠=︒,由三角形内角和定理可求旋转角的度数.【详解】(1)证明://AE DF ,A D ∴∠=∠,在AEC 和DFB △中,E F AE DF A D ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEC DFB ∴≅()ASA ,EC BF ∴=;(2)'//CC AB ,'55ACC CAB ∴∠=∠=︒, ABC 绕点A 旋转得到''AB C ,'AC AC ∴=,'1802'18025570CAC ACC ∴∠=︒-∠=︒-⨯︒=︒,''70CAC BAB ∴∠=∠=︒.所以旋转角为70︒.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,平行线的性质,三角形内角和定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.24.解方程:()51511x x x +=--()211201x x x+=++ 【答案】 (1) 0x =; (2)无解【分析】(1)两边乘以()1x -去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2) 两边乘以()1x x +去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘以()1x -去分母得:()551x x +-=,去括号移项合并得:40x =,解得:0x =,经检验0x =是分式方程的解;(2)方程两边都乘以()1x x +去分母得:10x +=,移项得:1x =-,经检验:1x =-时,()10x x +=,∴1x =-是分式方程的增根,∴原方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.25.如图,在ABC ∆中,AD 是BC 边上的高,AE ,BF 分别是BAC ∠和ABC ∠的角平分线,它们相交于点O ,125AOB ∠=︒.求CAD ∠的度数.【答案】20CAD ∠=︒.【分析】根据角平分线的性质,由125AOB ∠=︒,得到110CAB CBA ∠+∠=︒,然后得到∠C ,由余角的性质,即可求出答案.【详解】解:AE ∵,BF 分别是BAC ∠和ABC ∠的角平分线,12OAB BAC ∴∠=∠,12OBA ABC ∠=∠. ()2()2180CAB CBA OAB OBA AOB ∴∠+∠=∠+-∠︒∠=125AOB ∠=︒,110CAB CBA ∴∠+∠=︒,70C ∴∠=︒. AD 是BC 边上的高90ADC ∴∠=︒,20CAD ∴∠=︒.【点睛】本题考查了角平分线的性质,三角形的内角和定理,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出70C ∠=︒,从而求出答案.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:则成绩发挥最稳定的是()A.甲B.乙C.丙D.丁【答案】A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【详解】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【点睛】本题考查的知识点是方差的意义,方差是用来反映一组数据整体波动大小的特征量,方差越小,数据的波动越小.2.在22131211-2,,,,,,2151a b xa xa b x x xπ+--+--+,,分式的个数有()A.3个B.4个C.5个D.6个【答案】B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:22131211-2,,,,,,2151a b xa xa b x x xπ+--+--+,,分式的有:221111,11-+--+,,xxa b x x x共有4个.故选:B【点睛】此题主要考查了分式概念,关键是掌握分式的分母必须含有字母.3.在实数0π,|﹣3|中,最小的数是()A.0 B C.πD.|﹣3| 【答案】B【分析】根据1大于一切负数;正数大于1解答即可.【详解】解:∵|﹣3|=3,∴实数1,π,|﹣3|<1<|﹣3|<π,,故选:B.【点睛】本题考查实数的大小比较;解答时注意用1大于一切负数;正数大于1.4.下列各数中,是无理数的是().A B.1 C.πD.0【答案】C【分析】根据无理数的定义解答.=2,是有理数;-1,0是有理数,π是无理数,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列命题中,逆命题为真命题的是()A.菱形的对角线互相垂直B.矩形的对角线相等C.平行四边形的对角线互相平分D.正方形的对角线垂直且相等【答案】C【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】解:A、菱形的对角线互相垂直的逆命题是对角线互相垂直的四边形是菱形,是假命题;B、矩形的对角线相等的逆命题是对角线相等的四边形是矩形,是假命题;C、平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题;D、正方形的对角线垂直且相等的逆命题是对角线垂直且相等的四边形是正方形,是假命题;故选:C.【点睛】考核知识点:命题与逆命题.理解相关性质是关键.6.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A .0对B .1对C .2对D .3对【答案】C 【分析】由“SAS ”可证△ABE ≌△ACE ,可得∠B =∠C ,由“AAS ”可证△BDO ≌△CEO ,即可求解.【详解】解:∵AB =AC ,∠A =∠A ,AD =AE ,∴△ABE ≌△ACE (SAS )∴∠B =∠C ,∵AB =AC ,AD =AE ,∴BD =CE ,且∠B =∠C ,∠BOD =∠COE ,∴△BDO ≌△CEO (AAS )∴全等的三角形共有2对,故选:C .【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.76+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 【答案】B【分析】利用”夹逼法“66+1的范围.【详解】∵4 < 6 < 9 , ∴469<<263<, ∴36+14<<,故选B.8.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A.8个B.7个C.6个D.5个【答案】A【分析】分AB为腰和为底两种情况考虑,画出图形,即可找出点C的个数.【详解】解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选A.【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.9.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折B.八折C.七折D.六折【答案】A【分析】利润率不低于12.5%,即利润要大于或等于80×12.5%元,设商品打x折,根据打折之后利润率不低于12.5%,列不等式求解.【详解】解:设商品打x折,由题意得,100×0.1x−80≥80×12.5%,解得:x≥9,即商品最多打9折.故选:A.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义是解题的关键.10.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A .(1,2)B .(2,2)C .(3,2)D .(4,2)【答案】C 【详解】解:设对称点的坐标是x(x,y)则根据题意有,y=2,1132x x -+=⇒= 故符合题意的点是(3,2),故选C【点睛】 本题考查点的坐标,本题属于对点关于直线对称的基本知识的理解和运用.二、填空题11.在一次知识竞赛中,有25道抢答题,答对一题得4分,答错或不答每题扣2分,成绩不低于60分就可获奖.那么获奖至少要答对___________道题.【答案】1【分析】设答对x 道题可以获奖,则答错或不答(25-x)道题,根据成绩=4×答对的题目数-2×答错或不答的题目数,即可得出关于x 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设答对x 道题可以获奖,则答错或不答(25-x)道题,依题意,得:4x-2(25-x)≥60,解得:x ≥553, 又x 为整数,故x 的最小为1,故答案为:1.【点睛】题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键. 12.墨烯(Graphene )是人类已知强度最高的物质.据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学计数法表示为_______.【答案】6110-⨯【分析】根据绝对值较小的数用科学记数法表示的一般形式是10n a -⨯(n 为正整数),其中n 由原数左边第一个不为0的数左边所有0的个数决定,由此易用科学记数法表示出0.1.【详解】∵绝对值较小的数的科学记数法的表示为10n a -⨯(n 为正整数),且0.1中1左边一共有6个0∴n=-6∴0.1=6110-⨯【点睛】本题考查的知识点是科学记数法,掌握绝对值较小的数如科学记数法表示时10的指数与原数中左边第一个不为0的数的左边所有0的个数的关系是关键.13.如图,直线122y x =-+与x 轴、y 轴的交点分别为,A B ,若直线AB 上有一点E ,且点E 到x 轴的距离为1.5,则点E 的坐标是_______.【答案】()1,1.5或()7, 1.5-【分析】根据点E 到轴的距离为1.5,可得 1.5E y =或 1.5-,分别代入122y x =-+,即可得到点E 的横坐标,进而即可求解.【详解】∵点E 到轴的距离为1.5,∴ 1.5E y =∴ 1.5E y =或 1.5-,①当 1.5E y =时,1+2=1.52E x -,解得:1E x =; ②当 1.5E y =-时,1+2 1.52E x -=-,解得:7E x =. ∴点E 的坐标为()1,1.5或()7, 1.5-.故答案是:()1,1.5或()7, 1.5-.【点睛】本题主要考查一次函数图象上点的坐标,根据题意,把一次函数化为一元一次方程,是解题的关键. 14.已知点 P (1﹣a ,a+2)关于 y 轴的对称点在第二象限,则 a 的取值范围是______.【答案】21a -<<.【解析】试题分析:点P (1,2)a a -+关于y 轴的对称点在第二象限,在P 在第一象限,则10{,20a a ->+>2 1.a ∴-<< 考点:关于x 轴、y 轴对称的点的坐标.15.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.【答案】2【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.16.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =_____.【答案】1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.17.如图,∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,则∠B=__________°.【答案】50【解析】分析:根据三角形外角的性质进行计算即可.详解:∠ACD是△ABC的外角.若∠ACD=125°,∠A=75°,∠=∠+∠,ACD A B50.∴∠=∠-∠=︒B ACD A故答案为50.点睛:考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.三、解答题18.已知:△ABC中,BO平分∠ABC,CO平分∠ACB(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.【答案】(1)∠BOC=90°+12∠A,理由详见解析;(2)详见解析;(3)∠BOE+∠COF﹣∠P=180°.【分析】(1)根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解;(2)证明∠P=90°﹣12∠A,得到∠P+∠BOC=180°即可解决问题;(3)画出图形由∠P+∠BOC=180°,∠BOC+∠BOE+∠COF=360°,可得∠BOE+∠COF﹣∠P=180°.【详解】解:(1)∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°﹣12∠A,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;(2)∵BP、CP分别平分外角∠DBC、∠GCB,∴∠PBC=12∠CBD,∠PCB=12∠BCG,∴∠P=180°﹣∠CBP﹣∠BCP)=180°﹣12(∠CBD+∠BCG)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(180°+∠A)。

〖汇总3套试卷〗青岛市某知名实验中学2021年中考质量监控数学试题

〖汇总3套试卷〗青岛市某知名实验中学2021年中考质量监控数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x 在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象. 2.如图,若数轴上的点A ,B 分别与实数﹣1,1对应,用圆规在数轴上画点C ,则与点C 对应的实数是( )A .2B .3C .4D .5【答案】B 【解析】由数轴上的点A 、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C 对应的实数.【详解】∵数轴上的点 A ,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点 C 对应的实数是:1+2=3.故选B .【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.3.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④【答案】C 【解析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y)EF=2y,∴BE+DF与EF关系不确定,只有当y=(2−2)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(2x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.4.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41=164, 故选B .【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.6.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .7.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是()m-时的函数值小于0A.x取1m-时的函数值大于0B.x取1m-时的函数值等于0C.x取1m-时函数值与0的大小关系不确定D.x取1【答案】B【解析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=1,设抛物线与x轴交于点A、B,2∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.8.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0【答案】D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.9.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.10.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.【答案】D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.二、填空题(本题包括8个小题)11.在实数范围内分解因式:226x - =_________【答案】2()(.【解析】先提取公因式2后,再把剩下的式子写成x 2-2,符合平方差公式的特点,可以继续分解.【详解】2x 2-6=2(x 2-3)=2()(.故答案为2()(.【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.12.因式分解:a 2b-4ab+4b=______.【答案】2(2)b a -【解析】先提公因式b ,然后再运用完全平方公式进行分解即可.【详解】a 2b ﹣4ab+4b=b (a 2﹣4a+4)=b (a ﹣2)2,故答案为b (a ﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键. 13.12的相反数是______. 【答案】﹣12. 【解析】根据只有符号不同的两个数叫做互为相反数解答. 【详解】12的相反数是12-. 故答案为12-. 【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.14.如图,直线4y x =+与双曲线k y x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.【答案】(0,52). 【解析】试题分析:把点A 坐标代入y=x+4得a=3,即A (﹣1,3),把点A 坐标代入双曲线的解析式得3=﹣k ,即k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C 坐标为:(1,3),设直线BC 的解析式为:y=ax+b ,把B 、C 的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y 轴的交点为:(0,52). 考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.15.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__.【答案】1≤a≤1【解析】根据y 的取值范围可以求得相应的x 的取值范围.【详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1,把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 16.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.17.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 【答案】1【解析】根据白球的概率公式44n +=13列出方程求解即可. 【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个, 根据古典型概率公式知:P (白球)=44n +=13. 解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 18.如图,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = __________.【答案】17【解析】∵Rt △ABC 中,∠C=90°,∴tanA=BC AC , ∵1515,tan 8BC A ==,∴AC =8, ∴22BC AC +=17,故答案为17.三、解答题(本题包括8个小题)19.如图,已知一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数m y x= (x <0)的图象交于点B (﹣2,n ),过点B 作BC ⊥x 轴于点C ,点D (3﹣3n ,1)是该反比例函数图象上一点.求m 的值;若∠DBC=∠ABC ,求一次函数y=kx+b 的表达式.【答案】(1)-6;(2)122y x=-+.【解析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上,∴233n mn m-=⎧⎨-=⎩,解得:36nm=⎧⎨=-⎩;(2)由(1)知反比例函数解析式为6yx=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴2321k bk b-+=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴122y x=-+.【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.20.如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF ;(2)如果AC=BC,试判断四边形BDCF 的形状,并证明你的结论.【答案】 (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析.【解析】(1)证明:∵CF ∥AB ,∴∠DAE =∠CFE .又∵DE =CE ,∠AED =∠FEC ,∴△ADE ≌△FCE ,∴AD =CF .∵AD =DB ,∴DB =CF .(2)四边形BDCF 是矩形.证明:由(1)知DB =CF ,又DB ∥CF ,∴四边形BDCF 为平行四边形.∵AC =BC ,AD =DB ,∴CD ⊥AB .∴四边形BDCF 是矩形.21.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?【答案】(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.【解析】分析:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.详解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:63600500.8400.755200x y x y +⎧⎨⨯+⨯⎩==, 解得:40120x y ⎧⎨⎩==. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.22.如图(1),AB=CD ,AD=BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N ,那么∠1与∠2有什么关系?请说明理由;若过O 点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.【答案】详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出△ADC ≌△CBA ,由全等的性质得∠DAC=∠BCA ,可证AD ∥BC ,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC 与△CBA 中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.23.如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)【答案】406海里 【解析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB .【详解】解:如图,过点P 作PC AB ⊥,垂足为点C.∴30APC ︒∠=,45BPC ︒∠=,80AP =海里. 在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 80403PC AP APC =⋅∠≡⨯=(海里). 在Rt PCB ∆中,cos PC BPC PB ∠=, ∴403406cos PC PB BPC ===∠(海里). ∴此时轮船所在的B 处与灯塔P 的距离是406海里.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?【答案】(1)(30103)-m (2)(30213)+米【解析】分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米.详解:(1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF 中,∵斜坡AN 的坡比为3∶1,∴31AF NF =, ∴5033NF ==, ∴MN=MF-NF=50-503=150503-.(2)在RT △BMK 中,BM=502,∴BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE == ∴28350HG HE EG HE MK =+=+=(米)答:休闲平台DE 150503-GH 高为()28350米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.25.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【答案】(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.详解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=1050×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有12+650×2000=720(人).点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.26.如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.【答案】⊙O的半径为256.【解析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。

∥3套精选试卷∥青岛市某知名实验中学2020-2021九年级统考数学试题

∥3套精选试卷∥青岛市某知名实验中学2020-2021九年级统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.2R B.32R C.22R D.3R【答案】D【解析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+【答案】A【解析】分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。

故选A 。

3.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差【答案】D【解析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.4.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数【答案】A【解析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x ,又|-x|≥1,∴-x≥1,即x≤1,即x 是非正数,【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1. 5.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为()A .54°B .64°C .74°D .26°【答案】B 【解析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1 B .2 C .3 D .4【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得.【详解】解:∵原式=223x y y x y -•+ =()()3x y x y y x y +-•+ =33x yy -∵3x-4y=0,∴3x=4y原式=43y yy -=1故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .9【答案】B【解析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.8.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程() A .10%x =330 B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330【答案】D【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x=1.故选D .9.关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,则q 的取值范围是( )A .q<16B .q>16C .q≤4D .q≥4【答案】A 【解析】∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.10.如图1,在等边△ABC 中,D 是BC 的中点,P 为AB 边上的一个动点,设AP=x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则△ABC 的面积为( )A .4B .23C .12D .3【答案】D【解析】分析: 由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可.详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点,∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时3∴BD=332sin 60PD ==, ∴BC=2BD=4,∴AB=4, ∴AD=AB·sin ∠B=4×sin60°=3∴S △ABC=12AD·BC=1234432⨯=故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短=3”是解答本题的关键. 二、填空题(本题包括8个小题)11.分解因式:3ax 2﹣3ay 2=_____.【答案】3a (x +y )(x -y )【解析】解:3ax 2-3ay 2=3a (x 2-y 2)=3a (x+y )(x-y ).【点睛】本题考查提公因式法与公式法的综合运用.12.已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.13.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90°的扇形OAB ,且点O 、A 、B 在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm .2 【解析】设圆锥的底面圆的半径为r ,由于∠AOB =90°得到AB 为圆形纸片的直径,则OB =2222AB =cm ,根据弧长公式计算出扇形OAB 的弧AB 的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r ,连结AB ,如图,∵扇形OAB 的圆心角为90°,∴∠AOB =90°,∴AB 为圆形纸片的直径,∴AB =4cm ,∴OB =2222AB =cm , ∴扇形OAB 的弧AB 的长=90222180π⋅⋅=π, ∴2πr =2π,∴r =22(cm ). 故答案为22.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x 米,若要求出未知数x ,则应列出方程 (列出方程,不要求解方程).【答案】π(x+5)1=4πx 1.【解析】根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.【详解】解:设小圆的半径为x 米,则大圆的半径为(x+5)米,根据题意得:π(x+5)1=4πx 1,故答案为π(x+5)1=4πx 1.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.15.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.【答案】1【解析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.16.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.【答案】46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°.17.关于x 的一元二次方程24410x ax a +++=有两个相等的实数根,则581a a a --的值等于_____. 【答案】3-【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a +++--,然后代入即可得出结果.详解:由题意得:△=2(4)44(1)0a a -⨯+= ,∴210a a --= ,∴221,1a a a a =+-=,即a(a-1)=1, ∴a-1=1a , 5562232888()811a a a a a a a a a a--∴==-=-- 33232(1)8(1)33188357a a a a a a a a a =+-+=+++--=+--(1)3(1)57a a a a =+++--24a a =--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac :当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义. 18.因式分解:2312x -=____________.【答案】3(x-2)(x+2)【解析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x 2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.三、解答题(本题包括8个小题)19.在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.【答案】()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-. 【解析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标.【详解】()1抛物线2y x bx c =++顶点A 的横坐标是1-, b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ =,∴点O 在PQ 的垂直平分线上.又QP //y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=. ∴点Q 的坐标为()3,2--或()1,2-.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键.20.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【答案】(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.21.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m 元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m %和m %,结果在结算时发现,两种耗材的总价相等,求m 的值.【答案】(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)m 的值为95.【解析】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,根据两种耗材的总价相等列方程求解即可.【详解】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据题意,得18000120002150x x =⨯+. 解方程,得450x =.经检验,450x =是原方程的解,且符合题意150600x ∴+=.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,由题意得:()()45021 2.5%m a m -⋅+ ()()6001501%a m =-⋅+整理,得2950m m -=解方程,得195m =,20m =(舍去).m ∴的值为95.【点睛】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.22.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【答案】(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:1205014030k bk b+=⎧⎨+=⎩,解得:1170kb=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.23.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【答案】(1)2;(1) y=x1﹣4x+1或y=x1+6x+1.【解析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x 1﹣4=0得,x 1=﹣1,x 1=1,∵点A 位于点B 的左侧,∴A (﹣1,0),∵直线y =x+m 经过点A ,∴﹣1+m =0,解得,m =1,∴点D 的坐标为(0,1),∴AD =22OA OD =12;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,y =x 1+bx+1=(x+2b )1+1﹣24b , 则点C′的坐标为(﹣2b ,1﹣24b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),∴直线CC′的解析式为:y =x ﹣4,∴1﹣24b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.【点睛】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.24.解方程:.【答案】【解析】两边同时乘以(x-3),得到整式方程,解整式方程后进行检验即可得.【详解】两边同时乘以(x-3),得2-x-1=x-3,解得:x=2检验:当x=2时,x-3≠0,所以x=2是原方程的根,所以原方程的根是x=2.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.25.如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .【答案】证明见解析【解析】试题分析:证明三角形△ABC ≅△DEF,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF,∵AB ⊥BE ,DE ⊥BE ,∴∠B=∠E=90°,AC=DF,∴△ABC ≅△DEF,∴AB=DE.26.阅读下面材料,并解答问题. 材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a ab -=⎧⎨+=⎩,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.【答案】 (1) =x 2+7+211x -+ (2) 见解析【解析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b ,可得168a a b -=-⎧⎨+=⎩, 解得:a=7,b=1, 则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形【答案】D【解析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.3.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-【答案】B【解析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯=233π-. 故选B .4.“一般的,如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x=1x ﹣2实数根的情况是 ( )A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根 【答案】C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点 所以方程只有一个实数根 故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 5.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10B .10C .﹣6D .2 【答案】D【解析】根据“一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4”,结合根与系数的关系,分别列出关于m 和n 的一元一次不等式,求出m 和n 的值,代入m+n 即可得到答案.【详解】解:根据题意得:x 1+x 2=﹣m =2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差【答案】B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.若正六边形的边长为6,则其外接圆半径为()A.3 B.32C.33D.6【答案】D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.8.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【答案】D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.25【答案】C【解析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD =a. ∴DE=1.当点F 从D 到B 时,用5s. ∴BD=5. Rt △DBE 中, BE=()2222=521BD DE --=,∵四边形ABCD 是菱形, ∴EC=a-1,DC=a , Rt △DEC 中, a 1=11+(a-1)1. 解得a=52. 故选C . 【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系. 10.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( ) A .9 cm B .12 cm C .9 cm 或12 cm D .14 cm 【答案】B【解析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B . 二、填空题(本题包括8个小题)11.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.【答案】x +23x =75. 【解析】试题解析:设长方形墙砖的长为x 厘米, 可得:x +23x =75. 12.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.【答案】285【解析】认真审题,根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出本题的答案【详解】解:如图,过点P 作PM ⊥AB ,则:∠PMB=90°,当PM ⊥AB 时,PM 最短, 因为直线y=34x ﹣3与x 轴、y 轴分别交于点A ,B , 可得点A 的坐标为(4,0),点B 的坐标为(0,﹣3), 在Rt △AOB 中,AO=4,BO=3,22345+=, ∵∠BMP=∠AOB=90°,∠B=∠B ,PB=OP+OB=7, ∴△PBM ∽△ABO ,∴PB PMAB AO =, 即:754PM =,所以可得:PM=285.13.若一个圆锥的底面圆的周长是5πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是_____. 【答案】150【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm , ∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=, 解得:150n =。

山东省青岛市实验初中2020-2021学年中考数学模拟试题

山东省青岛市实验初中2020-2021学年中考数学模拟试题

山东省青岛市实验初中2020-2021学年中考数学模拟试题班级:_____________姓名:_____________一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 若|x|=3,|y|=4,且|x−y|=y−x,则xy的值为( )A.−1B.−12C.12D.12或−122. 下列标志既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 目前,第五代移动通信技术(5G)发展迅速,按照产业间的关联关系测算,2020年,5G间接拉动GDP增长超过4190亿元,4190亿用科学记数法表示为()A.4.19×103B.0.4190×104C.4.19×1011D.419×1094. 如图,由5个相同正方体组合而成的几何体,它的俯视图是()A. B.C. D.5. 如图,矩形OABC起始位置紧贴在坐标轴上,且坐标为C(0,2),A(1,0),将矩形OABC绕其右下角的顶点按顺时针方向旋转90∘至图①位置,继续绕右下角的顶点按顺时针方向旋转90∘至图②位置,以此类推,这样连续旋转2021次.则顶点A在旋转2021次后的坐标为()A.(3030,0)B.(2020,2020)C.(3031,0)D.(3030,2)6. 已知△ABC是半径为2的圆内接三角形,若BC=,则∠A的度数()A.30∘B.60∘C.120∘D.60∘或120∘7. 将一张长方形纸左右对折,在折痕处按下图剪掉阴影部分,展开后的图形是().A. B. C.的图象如图所示,则二次函数y=2kx2−4x+k2的图象大致是( )8. 反比例函数y=kx。

[试卷合集5套]青岛市某知名实验中学2021年九年级上学期期末数学统考试题

[试卷合集5套]青岛市某知名实验中学2021年九年级上学期期末数学统考试题
【答案】22015π
【分析】连接P1O1,P2O2,P3O3,易求得PnOn垂直于x轴,可知 为 圆的周长,再找出圆半径的规律即可解题.
【详解】解:连接P1O1,P2O2,P3O3…,
∵P1是⊙O1上的点,
∴P1O1=OO1,
∵直线l解析式为y=x,
∴∠P1OO1=45°,
∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,
本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.
三、解答题(本题包括8个小题)
19.如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259, ≈1.414, ≈1.732)
故选:D.
【点睛】
本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.
4.若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角为()
A.30B.45C.60D.90
【答案】A
【分析】将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的长度与矩形相等的一条边上的高为矩形的一半,即AB=2AE.
同理,PnOn垂直于x轴,
∴ 为 圆的周长,
∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,
∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,

∥3套精选试卷∥青岛市某知名实验中学2020-2021一轮总复习数学能力测试题

∥3套精选试卷∥青岛市某知名实验中学2020-2021一轮总复习数学能力测试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数 【答案】B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y ,顶角为x ,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系, 故选B .【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.2.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .20cm2B .20πcm2C .10πcm2D .5πcm2 【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π. 故答案为C3.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 【答案】B【解析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.4.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233πB.2233π-C.433π-D.4233π-【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.6.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数【答案】A 【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7.下列分式是最简分式的是( ) A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b -- 【答案】C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.8.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2 ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−12×1×1−245(2)3=-24π⨯π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式9.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C 35D 35 【答案】B【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=,所以1122ABD S AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,22222418655 BHBD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHB∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B3C.2 D.3【答案】B【解析】由折叠的性质可得3DE=EF,AC=23由三角形面积公式可求EF的长,即可求△ACE 的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12AC,∵将△CDE沿CE折叠到△CFE,∴3DE=EF,∴AC=3在Rt△ACD中,22AC CD-.∵S△ADC=S△AEC+S△CDE,∴12×AD×CD=12×AC×EF+12×CD×DE∴3233,∴DE=EF=1,∴S △AEC=12×23×1=3. 故选B .【点睛】 本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.二、填空题(本题包括8个小题)11.一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为【答案】7 2°或144°【解析】∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°12.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.【答案】31+【解析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值【详解】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=1209030,EDM ∠=-=3cos30,DM DE =⋅= 23,DF DM a ∴==()331,DGGF FD a a a ∴=+=+=+ ()3131tan .a GD GCD CDa +∠===+故答案为:3 1.+【点睛】 考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.13.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5 (Ⅱ)如图,取格点E 、F ,连接AE 与BC 交于点M ,连接DF 与AM 交于点P .【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC ,连接AE 交BC 于M ,即可得出AM 是ABC 的角平分线,再取点F 使AF=1,则根据等腰三角形的性质得出点C 与F 关于AM 对称,连接DF 交AM 于点P ,此时CP DP +的值最小.【详解】(Ⅰ)根据勾股定理得AC=22345+=;故答案为:1.(Ⅱ)如图,如图,取格点E 、F ,连接AE 与BC 交于点M ,连接DF 与AM 交于点P ,则点P 即为所求.说明:构造边长为1的菱形ABEC ,连接AE 交BC 于M ,则AM 即为所求的ABC 的角平分线,在AB 上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.14.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.【答案】1【解析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【详解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.15.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.【答案】1.【解析】设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x的图象上,∴当y=b,x=-4b ,即A点坐标为(-4b,b),又∵点B在反比例函数y=2x的图象上,∴当y=b ,x=2b ,即B 点坐标为(2b ,b ), ∴AB=2b -(-4b )=6b , ∴S △ABC =12•AB•OP=12•6b•b=1. 16.若一个圆锥的底面圆的周长是5πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是_____.【答案】150【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=, 解得:150n =故答案为150.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积17.把多项式x 3﹣25x 分解因式的结果是_____【答案】x (x+5)(x ﹣5).【解析】分析:首先提取公因式x ,再利用平方差公式分解因式即可.详解:x 3-25x=x (x 2-25)=x (x+5)(x-5).故答案为x (x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.18.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.【答案】-2【解析】试题分析:根据题意可得2k+3>2,k <2,解得﹣<k <2.因k 为整数,所以k=﹣2. 考点:一次函数图象与系数的关系.三、解答题(本题包括8个小题)19.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.【答案】见解析【解析】(1)二次函数图象经过A (2,0)、B (0,-6)两点,两点代入y=-12x 2+bx+c ,算出b 和c ,即可得解析式;(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-. (2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0,∴422AC OC OA =-=-=, ∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.20.如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE 的面积= .②若AB =10,则BC = 时,四边形ADCE 是正方形.【答案】(1)见解析;(2)①1;②102.【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADC E是矩形.(2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD=22AC CD-=22178-=12,∴四边形ADCE的面积是AD×DC=12×8=1.②当BC=102时,DC=DB=52.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.21.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【答案】(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得=,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.观察下列等式:=,第1个等式:a1=-第2个等式:a2第3个等式:a3=-2,第4个等式:a4…按上述规律,回答以下问题:请写出第n个等式:a n=__________.a1+a2+a3+…+a n=_________.a=(21.【答案】(1)【解析】(1)根据题意可知,1 1a ==,2a ==32a ==42a ==,…由此得出第n 个等式:a n = (2)将每一个等式化简即可求得答案.【详解】解:(1)∵第1个等式:11a ==,第2个等式:2a ==第3个等式:3 2a ==-第4个等式:4 2a ==,∴第n 个等式:a n= (2)a 1+a 2+a 3+…+a n=()()(+++++n+11.=1.【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案. 24.观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=- ③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 【答案】x n+1-1【解析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得.试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.25.先化简,再求值:2214422x x x x x x x -÷-++++,其中x=2﹣1. 【答案】21-.【解析】试题分析:试题解析:原式=2221(2)2x x x x x x +-⨯-++ =122x x x x --++ =12x + 当x=21-时,原式=21212=--+. 考点:分式的化简求值.26.如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).求灯杆CD 的高度;求AB 的长度(结果精确到0.1米).(参考数据:3=1.1.sin 37°≈060,cos37°≈0.80,tan37°≈0.75)【答案】(1)10米;(2)11.4米【解析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在 Rt △ADH 中求出AH 即可解决问题.【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【答案】A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.2.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab【答案】B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.4.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.5.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.33【答案】B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=2BD.cos∠ACB=222ADAB==,故选B.6.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下【答案】C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.7.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42∴22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=1S△ABE=22.4故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.8.矩形具有而平行四边形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对边相等【答案】C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.9.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【答案】B【解析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=1(180°﹣150°)=15°,2∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.10.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.二、填空题(本题包括8个小题)11.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s________2s乙.(填“>”或“<”)甲【答案】>【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.分解因式:a 3b+2a 2b 2+ab 3=_____.【答案】ab (a+b )1.【解析】a 3b+1a 1b 1+ab 3=ab (a 1+1ab+b 1)=ab (a+b )1.故答案为ab (a+b )1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___.【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得 22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;14.如图,AB 是半圆O 的直径,E 是半圆上一点,且OE ⊥AB ,点C 为的中点,则∠A=__________°.【答案】22.5【解析】连接半径OC ,先根据点C 为BE 的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=12×45°,可得结论. 【详解】连接OC ,∵OE ⊥AB ,∴∠EOB=90°,∵点C为BE的中点,∴∠BOC=45°,∵OA=OC,∴∠A=∠ACO=12×45°=22.5°,故答案为:22.5°.【点睛】本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.15.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.【答案】1或32.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.。

∥3套精选试卷∥青岛市某知名实验中学2020-2021中考数学终极冲刺试题

∥3套精选试卷∥青岛市某知名实验中学2020-2021中考数学终极冲刺试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .1B .2C .3D .4 【答案】B【解析】先由平均数是3可得x 的值,再结合方差公式计算.【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B .【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.2.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x = 【答案】D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .3.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .10【答案】C 【解析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12,即△PCD 的周长为12,故选:C .【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.4.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0【答案】A【解析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了. 【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.5.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80°【答案】C 【解析】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM 2+ON 2=MN 2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C .【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.6.如图是由5个相同的正方体搭成的几何体,其左视图是( )A .B .C .D .【答案】A【解析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A .【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.7.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π【答案】A 【解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【详解】∵AB BC CD ==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6360⨯ππ. 故答案为:A.【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 8.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D【答案】C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.9.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.10.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tan米B.30sinα米C.30tanα米D.30cosα米【答案】C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.二、填空题(本题包括8个小题)11.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.12.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.【答案】54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.13.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .【答案】20°【解析】根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC ﹣∠PAB得到∠BAC的度数.【详解】解:∵PA是⊙O的切线,AC是⊙O的直径,∴∠PAC=90°.∵PA,PB是⊙O的切线,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.14.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)【答案】//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.15.如图,在Rt △ABC 中,∠C=90°,AC=6,∠A=60°,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_________.【答案】23-2 .【解析】延长FP 交AB 于M ,当FP ⊥AB 时,点P 到AB 的距离最小.运用勾股定理求解.【详解】解:如图,延长FP 交AB 于M ,当FP ⊥AB 时,点P 到AB 的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=1, ∴22AF FM -3,∵FP=FC=1,∴PM=MF-PF=13-1,∴点P 到边AB 距离的最小值是13-1.故答案为: 13-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.16.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q【答案】D【解析】D .试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M ,AM 最小,与图2不符,可排除A.若微型记录仪位于图1中的点N ,由于AN=BM ,即甲虫从A 到B 时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P ,由于甲虫从A 到OP 与圆弧的交点时甲虫与微型记录仪之间的距离y 逐渐减小;甲虫从OP 与圆弧的交点到A 时甲虫与微型记录仪之间的距离y 逐渐增大,即y 与t 的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D .考点:1.动点问题的函数图象分析;2.排他法的应用.17.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______【答案】2.1【解析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.【详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k ,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=12AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=12BC=2.1.故答案为2.1.【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.18.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.【答案】13n【解析】分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.【详解】第1个图形中有1+3×1=4个★,第2个图形中有1+3×2=7个★,第3个图形中有1+3×3=10个★,第4个图形中有1+3×4=13个★,第5个图形中有1+3×5=16个★,…第n个图形中有1+3×n=(3n+1)个★.故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.三、解答题(本题包括8个小题)19.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【答案】(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x (k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD 解析式为:y=200x (10≤x≤24)∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x 中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.20.为加快城乡对接,建设全域美丽乡村,某地区对A 、B 两地间的公路进行改建.如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地需途径C地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A 地到B 地大约要走多少千米?开通隧道后,汽车从A 地到B 地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)【答案】(1)开通隧道前,汽车从A 地到B 地大约要走136.4千米;(2)汽车从A 地到B 地比原来少走的路程为27.2千米【解析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程.【详解】解:(1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC=80千米,∴CD=BC•sin30°=80×1402=(千米),AC==402sin452CD=︒(千米),AC+BC=80+402≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3403=(千米),∵tan45°=CDAD,CD=40(千米),∴AD=4040tan451CD==︒(千米),∴AB=AD+BD=40+403≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.【答案】(1)证明见解析;(2)AB、AD的长分别为2和1.【解析】(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又90ABC∠=︒,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由222AE DE AD+=得:()22293x x-+=.【详解】(1)证明:∵AB⊥OM于B,DE⊥ON于E,∴90ABO DEA∠=∠=︒.在Rt△ABO与Rt△DEA中,∵AO AD OB AE=⎧⎨=⎩∴Rt △ABO ≌Rt △DEA (HL ). ∴∠AOB=∠DAE .∴AD ∥BC .又∵AB ⊥OM ,DC ⊥OM ,∴AB ∥DC .∴四边形ABCD 是平行四边形.∵90ABC ∠=︒,∴四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,∴AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=,解得5x =.∴AD=1.即AB 、AD 的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.22.如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).【答案】(1)135BAD ∠=︒;(2)212ABC ADC ABCD S S S ∆∆+=+=四边形 【解析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【详解】解:(1)连接AC ,如图所示:∵AB=BC=1,∠B=90°∴AC=22112+=,又∵AD=1,DC=3,∴ AD2+AC2=3 CD2=(3)2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×12+1×2×12=1222+.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.【答案】(1)详见解析;(2)23.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为42 63 =.24.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF ;连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.【答案】(1)证明见解析;(2)四边形AEMF 是菱形,证明见解析.【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ;(2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形.【详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE ⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.25.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.【答案】(1)证明见解析;(2)35.【解析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AFAG = 3 5考点:相似三角形的判定26.定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)【答案】(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为105、120、75;(4)A的最终得分为854903105310⨯+⨯+⨯=92.5(分),B的最终得分为954803120310⨯+⨯+⨯=98(分),C的最终得分为90485375310⨯+⨯+⨯=84(分),∴B最终当选,故答案为B.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.2.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩【答案】A【解析】根据图形,结合题目所给的运算法则列出方程组.【详解】图2所示的算筹图我们可以表述为:211 4327x yx y+=⎧⎨+=⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.3.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .33D .233【答案】C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,△AOB 是边长为1的正三角形,所以正六边形ABCDEF 的面积为S 6=6×12×1×1×sin60°=332. 故选C .【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n 边形的性质解答.4.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( ) A .26×105B .2.6×102C .2.6×106D .260×104【答案】C【解析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】260万=2600000=62.610⨯.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( )A .60°B .65°C .70°D .75°【答案】D【解析】解:连接OD∵∠AOD=60°,∴ACD=30°. ∵∠CEB 是△ACE 的外角,∴△CEB =∠ACD+∠CAO=30°+45°=75°故选:D6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°【答案】A 【解析】试题分析:∵AB ∥CD ,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE 的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A .考点:平行线的性质.7.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解【答案】C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+, ∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,3 【答案】D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+12=(2)2,是等腰直角三角形,故选项错误;C 、底边上的高是2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米【答案】C 【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt △A′BD 中,∵∠A′DB=90°,A′D=2米,BD 2+A′D 2=A′B′2,∴BD 2+22=6.25,∴BD 2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C .【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.10.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(本题包括8个小题)11.关于x的方程2230mx x-+=有两个不相等的实数根,那么m的取值范围是__________.【答案】13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.。

(汇总3份试卷)2020年青岛市某知名实验中学中考统考数学试题

(汇总3份试卷)2020年青岛市某知名实验中学中考统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.2.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩【答案】A【解析】根据图形,结合题目所给的运算法则列出方程组.【详解】图2所示的算筹图我们可以表述为:211 4327x yx y+=⎧⎨+=⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.3.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤32【答案】B【解析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴230 10 mm<-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1C.1,1D.1,2【答案】D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B、∵12+12)2,是等腰直角三角形,故选项错误;C=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D.5.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.5【答案】B【解析】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.6.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.7.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2【答案】C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.89()A.±3 B.3 C.9 D.81【答案】C【解析】试题解析:∵93∴9 3故选C.9.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角【答案】B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A 、若a 2=b 2,则a=±b ,错误,是假命题; B 、4的平方根是±2,正确,是真命题;C 、两个锐角的和不一定是钝角,故错误,是假命题;D 、相等的两个角不一定是对顶角,故错误,是假命题. 故选B . 【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.10.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-【答案】B【解析】根据函数的图象和交点坐标即可求得结果. 【详解】解:不等式kx+b >mx的解集为:-6<x <0或x >2, 故选B . 【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用. 二、填空题(本题包括8个小题)11.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是【答案】4【解析】当CD ∥AB 时,PM 长最大,连接OM ,OC ,得出矩形CPOM ,推出PM=OC ,求出OC 长即可.【详解】当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.12.已知23-是一元二次方程240-+=的一个根,则方程的另一个根是________.x x c+【答案】23【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将3【详解】设方程的另一根为x1,又∵3x13,解得x13.故答案为:23【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.13.已知a<0,那么2a2a|可化简为_____.【答案】﹣3a【解析】根据二次根式的性质和绝对值的定义解答.【详解】∵a<0,∴|2a﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【点睛】本题主要考查了根据二次根式的意义化简.二次根式2a规律总结:当a≥0时,2a=a;当a≤0时,2a =﹣a.解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.14.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.【答案】(﹣b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=同理cos α==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.15.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.【答案】60%【解析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y xy-×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.16.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.【答案】1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.17.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.【答案】6+25【解析】解:设E(x,x),∴B(2,x+2), ∵反比例函数ky x= (k≠0,x>0)的图象过点B. E. ∴x 2=2(x+2),115x ∴=+ ,215x =-(舍去),()2215625k x ∴==+=+ ,故答案为625+18.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.【答案】30°【解析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可. 【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD , ∴∠BOD=45°, 又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°.三、解答题(本题包括8个小题)19.如图,直线y=kx+2与x 轴,y 轴分别交于点A (﹣1,0)和点B ,与反比例函数y=mx的图象在第一象限内交于点C (1,n ).求一次函数y=kx+2与反比例函数y=mx的表达式;过x 轴上的点D (a ,0)作平行于y 轴的直线l (a >1),分别与直线y=kx+2和双曲线y=mx交于P 、Q 两点,且PQ=2QD ,求点D 的坐标.【答案】()1一次函数解析式为22y x =+;反比例函数解析式为4y x=;()()22,0D .【解析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值; (2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数my x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a+-=⨯,进而求得D 点的坐标.【详解】(1)把A (﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2, ∴一次函数解析式为y=2x+2; 把C (1,n )代入y=2x+2得n=4, ∴C (1,4),把C (1,4)代入y=mx得m=1×4=4, ∴反比例函数解析式为y=4x;(2)∵PD ∥y 轴, 而D (a ,0),∴P (a ,2a+2),Q (a ,4a), ∵PQ=2QD , ∴2a+2﹣4a =2×4a, 整理得a 2+a ﹣6=0,解得a 1=2,a 2=﹣3(舍去), ∴D (2,0). 【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.20.如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求ADDB的值.【答案】(1)10;(2)35AD BD =. 【解析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1,在Rt △AEC 中,根据勾股定理得:AC=2231+=10;(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =, ∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.21.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:天数(x )1 3 6 10 每件成本p (元) 7.5 8.5 10 12任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x 天创造的产品利润为W 元.直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【答案】(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x <11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.22.如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.【答案】(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.23.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.24.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)+【答案】(5005003)【解析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=5003,+.在Rt△ADC中,AD=500,CD=500,则BC=5005003+米.答:观察点B到花坛C的距离为(5005003)考点:解直角三角形25.如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.【答案】证明见解析【解析】试题分析:证明三角形△ABC≅△DEF,可得AB=DE.试题解析:证明:∵BF=CE,∴BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,AC=DF,∴△ABC≅△DEF,∴AB=DE.26.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB 行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.41,3≈1.73)【答案】(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×1402=(千米),AC==402sin4522CD=︒,2≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=BD BC,BC=80(千米),∴BD=BC•cos30°=80×2=, ∵tan45°=CD AD,CD=40(千米), ∴AD=4040tan 451CD ==︒(千米), ∴(千米),∴汽车从A 地到B 地比原来少走多少路程为:AC+BC ﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A 地到B 地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E 【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由//AB ED,得∠B=∠D,因为CD BF=,若ABC≌EDF,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.2.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 【答案】A【解析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DCOB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.3.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<< 【答案】D【解析】先求出点M 到x 轴、y 轴的距离,再根据直线和圆的位置关系得出即可.【详解】解:∵点M 的坐标是(4,3),∴点M 到x 轴的距离是3,到y 轴的距离是4,∵点M (4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,∴r 的取值范围是3<r <4,故选:D .【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键. 4.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20° 【答案】D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.5.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C .1903∠=+∠D .以上都不对 【答案】C【解析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C .【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.6.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .【答案】D【解析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.7.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .3【答案】C 【解析】设B (2k ,2),由翻折知OC 垂直平分AA′,A′G =2EF ,AG =2AF ,由勾股定理得OC 13据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k =xy 建立方程求k . 【详解】如图,过点C 作CD ⊥x 轴于D ,过点A′作A′G ⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF ⊥x设B (2k ,2), 在Rt △OCD 中,OD =3,CD =2,∠ODC =90°,∴OC 222232OD CD ++13由翻折得,AA′⊥OC ,A′E =AE ,∴sin ∠COD =AE CD OA OC=, ∴AE =213213k CD OA OC ⨯⋅==,∵∠OAE+∠AOE =90°,∠OCD+∠AOE =90°,∴∠OAE =∠OCD ,∴sin ∠OAE =EF OD AE OC ==sin ∠OCD , ∴EF =1331313OD AE k OC ⋅==, ∵cos ∠OAE =AF CD AE OC ==cos ∠OCD , ∴1321313CD AF AE k OC =⋅==, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G , ∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0, ∴169=15k , 故选C .本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.8.关于反比例函数4y x =-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.【答案】C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A 、关于反比例函数y=-4x ,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x,当x >0时,函数值y 随着x 的增大而增大,故此选项正确; D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误; 故选C .【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9.将1、2、3、6按如图方式排列,若规定(m 、n )表示第m 排从左向右第n 个数,则(6,5)与(13,6)表示的两数之积是( )A 6B .6C 2D 3【答案】B 【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】第一排1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第56,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是6,则(1,5)与(13,1)表示的两数之积是1.故选B.10.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形【答案】C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.二、填空题(本题包括8个小题)11.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB 约是45 m,根据以上观测数据可求观光塔的高CD是______m.【答案】135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=453m,所以在Rt△ACD中,CD=3AD=453×3=135m.考点:解直角三角形的应用.12.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=_______.【答案】1 或0 或15±【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.【详解】解:(1)当m﹣1=0 时,m=1,函数为一次函数,解析式为y=2x+1,与x 轴交点坐标为(﹣12,0);与y 轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣12)2<54,解得m<1+5或m>1-5.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=15±.故答案为1 或0 或152±.【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.13.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.【答案】1.【解析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP 为圆O 的切线,得到OA 与AP 垂直,根据垂直的定义得到∠OAP 为直角,再由∠OAP-∠PAB 即可求出∠BAC 的度数【详解】∵PA ,PB 是⊙O 是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴OA ⊥AP .∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.14.因式分解:3222x x y xy +=﹣__________.【答案】()2x x y -【解析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy yx x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.15.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .【答案】8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD ,则AB=AD+CD ,所以,△ACD 的周长=AD+CD+AC=AB+AC ,解答出即可解:∵DE 是BC 的垂直平分线,∴BD=CD ,∴AB=AD+BD=AD+CD ,∴△ACD 的周长=AD+CD+AC=AB+AC=8cm ;。

〖汇总3套试卷〗青岛市某知名实验中学2020年九年级上学期数学期末达标检测试题

〖汇总3套试卷〗青岛市某知名实验中学2020年九年级上学期数学期末达标检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,A 、B 两点在双曲线4y x=上,分别经过点A 、B 两点向x 、y 轴作垂线段,已知=2S 阴影,则12S S +=( )A .6B .5C .4D .3【答案】C 【解析】欲求S 1+S 1,只要求出过A 、B 两点向x 轴、y 轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线4y x=的系数k ,由此即可求出S 1+S 1. 【详解】解:∵点A 、B 是双曲线4y x =上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=2,∴S 1+S 1=2+2-1×1=2.故选:C .【点睛】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.2.下列事件中,必然事件是( )A .2a 一定是正数B .八边形的外角和等于360︒C .明天是晴天D .中秋节晚上能看到月亮【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A 、a 2一定是非负数,则a 2一定是正数是随机事件;B 、八边形的外角和等于360°是必然事件;D 、中秋节晚上能看到月亮是随机事件;故选B .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列事件中为必然事件的是( )A .抛一枚硬币,正面向上B .打开电视,正在播放广告C .购买一张彩票,中奖D .从三个黑球中摸出一个是黑球【答案】D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A ,B ,C 选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D 是必然事件,符合题意.故选:D.【点睛】本题考查必然事件的定义,熟练掌握定义是关键.4.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确的是( )A .△AOD ∽△BOCB .△AOB ∽△DOC C .CD =BCD .BC•CD =AC•OA【答案】D 【分析】直接利用相似三角形的判定方法分别分析得出答案.【详解】解:∵∠DAC=∠DBC ,∠AOD=∠BOC ,∴AOD ∆∽BOC ∆ ,故A 不符合题意;∵AOD ∆∽BOC ∆ ,∴AO :OD=OB :OC ,∵∠AOB=∠DOC ,∴AOB ∆∽DOC ∆,故B 不符合题意; ∵AOB ∆∽DOC ∆,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC =∠DBC,∴∠CDB=∠DBC,∴CD=BC;没有条件可以证明BC CD AC OA ⋅=⋅,故选D.本题考查了相似三角形的判定与性质,解题关键在于熟练掌握相似三角形的判定方法①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.5.如图,已知矩形OABC 的面积是200,它的对角线OB 与双曲线()0k y x x=>图象交于点D ,且:3:2OD DB =,则k 值是( )A .9B .18C .36D .72【答案】D 【分析】过点D 作DE ∥AB 交AO 于点E ,通过平行线分线段成比例求出,OE DE 的长度,从而确定点D 的坐标,代入到解析式中得到k 的值,最后利用矩形的面积即可得出答案.【详解】过点D 作DE ∥AB 交AO 于点E∵DE ∥AB∴OE DE OD OA AB OB== ∵:3:2OD DB =∴35OE DE OD OA AB OB === ∴33,55OE OA DE AB == ∴33(,)55D OA AB ∵点D 在()0k y x x =>上 ∴3355k OA AB = ∵200OA AB = ∴99200722525k OA AB ==⨯= 故选D本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.6.若二次函数2y ax bx c =++的x 与y 的部分对应值如下表,则当x 1=时,y 的值为( ) x 7- 6- 5- 4- 3- 2- y27- 13- 3- 3 5 3 A .5B .3-C .13-D .27- 【答案】D【分析】由表可知,抛物线的对称轴为x 3=-,顶点为()3,5-,再用待定系数法求得二次函数的解析式,再把x 1=代入即可求得y 的值.【详解】设二次函数的解析式为2y a(x h)k =-+,当x 4=-或2-时,y 3=,由抛物线的对称性可知h 3=-,k 5=, 2y a(x 3)5∴=++,把()2,3-代入得,a 2=-,∴二次函数的解析式为2y 2(x 3)5=-++,当x 1=时,y 27=-.故选D .【点睛】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为x 3=-,顶点为()3,5-,是本题的关键.7.如图,已知矩形ABCD 和矩形EFGO 在平面直角坐标系中,点B ,F 的坐标分别为(-4,4),(2,1).若矩形ABCD 和矩形EFGO 是位似图形,点P(点P 在GC 上)是位似中心,则点P 的坐标为( )A .(0,3)B .(0,2.5)C .(0,2)D .(0,1.5)【答案】C【分析】如图连接BF交y轴于P ,由BC∥GF可得GPPC=GFPC,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴GPPC =GFPC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.8.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据中心对称图形的定义:旋转180度之后与自身重合称为中心对称,轴对称是折叠后能够与自身完全重合称为轴对称,根据定义去解题.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是中心对称图形和轴对称图形的定义.9.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③ADAC=AEAB;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有( )A.1个B.2 C.3个D.4个【答案】D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③ADAC=AEAB,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为AD DEAC BC=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.10.在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B.C.D.【答案】B【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.11.直角三角形两直角边之和为定值,其面积与一直角边之间的函数关系大致图象是下列中的()A. B.C.D.【答案】A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = ,以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.12.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.15【答案】B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选B.此题主要考查了概率的意义,明确概率的意义是解答的关键.二、填空题(本题包括8个小题)13.如图,为了测量水塘边A 、B 两点之间的距离,在可以看到的A 、B 的点E 处,取AE 、BE 延长线上的C 、D 两点,使得CD ∥AB ,若测得CD =5m ,AD =15m ,ED =3m ,则A 、B 两点间的距离为_____m .【答案】20m【详解】∵CD ∥AB ,∴△ABE ∽△DCE , ∴AB AE CD DE=, ∵AD=15m ,ED=3m ,∴AE=AD-ED=12m ,又∵CD=5m,∴1253AB =, ∴3AB=60,∴AB=20m.故答案为20m.14.已知:如图,在ABC ∆中,AD BC ⊥于点D ,E 为AC 的中点,若8CD =,5DE =,则AD 的长是_______.【答案】6【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论.【详解】解:∵△ABC 中,AD ⊥BC ,∴∠ADC =90°.∵E 是AC 的中点,DE =5,CD =8,∴AC =2DE =1.∴AD 2=AC 2−CD 2=12−82=2.故答案为:3.【点睛】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.15.一元二次方程x 2﹣16=0的解是_____.【答案】x 1=﹣1,x 2=1【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x 2=16,开方得:x =±1,解得:x 1=﹣1,x 2=1.故答案为:x 1=﹣1,x 2=1【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键.16.已知线段a=4,b=9,则a ,b 的比例中项线段长等于________.【答案】1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积, ∴2x ab =,即24936x =⨯=,解得6x =,6c =-(不合题意,舍去)故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.17.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m.【答案】10【详解】如图:设BC=x ,则AC=3x ,根据勾股定理,得:222(3)10x x +=,解得:x=10(负值舍去).故此时钢球距地面的高度是10米. 18.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====……,过点1A 、2A 、3A 、4A 、5A ……,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点1P 、2P 、3P 、4P 、5P ……,得直角三角形11OP A 、122A P A ,233A P A ,344A P A ,455A P A ……,并设其面积分别为1S 、2S 、3S 、4S 、5S ……,则10S =__.(1n 的整数).【答案】110【解析】根据反比例函数y=k x=中k 的几何意义再结合图象即可解答. 【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,S=12|k|. ∴1S =1,22A S O P =1,∵O 1A =12A A ,∴2S =22A 1 S 2O P =12, 同理可得,1 S =1 2S =12 3S =13 4S =101S 4=110. 故答案是:110. 【点睛】本题考查反比例函数系数k 的几何意义.三、解答题(本题包括8个小题)19.某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg ,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=280x -+,设这种产品每天的销售利润为y(元) .(1)求y 与x 之间的函数关系式;【答案】(1)221201600y x x =-+-;(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元【分析】(1)每天的销售利润y=每天的销售量×每件产品的利润;(2)根据(1)得到的函数关系式求得相应的最值问题即可.【详解】(1)2(20)(20)(280)21201600y x W x x x x =-=--+=-+-;∴y 与x 之间的函数关系式为221201600y x x =-+-;(2)22212016002(30)200y x x x =-+-=--+,∵20-<,∴当30x =时,y 有最大值,其最大值为1.答:销售价定为30元时,每天的销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的实际应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法求得二次函数的最值问题是常用的解题方法.20.阅读下面内容,并按要求解决问题: 问题:“在平面内,已知分别有2个点,3个点,4个点,5 个点,…,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线? ” 探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有n 个点时,直线条数为 ;(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点.【答案】(1)()12n n -;(2)8. 【分析】(1)根据过两点的直线有1条,过不在同一直线上的三点的直线有3条,过任何三点都不在一条直线上四点的直线有6条,按此规律,由特殊到一般,总结出公式:()12n n -;(2)将28代入公式求n 即可.【详解】解:(1)当平面内有2个点时,可以画212(21)222⨯⨯-==条直线; 当平面内有3个点时,可以画323(31)322⨯⨯-==条直线; 当平面内有4个点时,可以画434(41)622⨯⨯-==条直线; …当平面内有n (n≥2)个点时,可以画()12n n -条直线; ()2设该平面内有x 个已知点. 由题意,得()1282x x -= 解得128,7x x ==-(舍)答:该平面内有8个已知点【点睛】此题是探求规律题并考查解一元二次方程,读懂题意,找出规律是解题的关键,解题时候能够进行知识的迁移是一种重要的解题能力.21.如图,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0),B (4,0),反比例函数的图象经过点C .求点C 的坐标及反比例函数的解析式.【答案】点C 坐标为(2,3,y 43 【分析】过C 点作CD ⊥x 轴,垂足为D ,设反比例函数的解析式为y =k x,根据等边三角形的知识求出AC 和CD 的长度,即可求出C 点的坐标,把C 点坐标代入反比例函数解析式求出k 的值.【详解】解:过C 点作CD ⊥x 轴,垂足为D ,设反比例函数的解析式为y=kx,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=32×4=23,∴点C坐标为(2,23),∵反比例函数的图象经过点C,∴k=43,∴反比例函数的解析式:y=43;【点睛】考查了待定系数法确定反比例函数的解析式的知识,解题的关键是根据题意求得点C的坐标,难度不大.22.如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD为平行四边形;(2)由EC∥AB,可得OA OBOE OD=,由AD∥BC,可得OB OFOD OA=,等量代换得出OA OFOE OA=,即2OA=OE•OF.试题解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD 为平行四边形;(2)∵EC ∥AB ,∴△OAB ∽△OED ,∴OA OB OE OD =,∵AD ∥BC ,∴△OBF ∽△ODA ,∴OB OF OD OA =,∴OA OF OE OA=,∴2OA =OE•OF . 考点:相似三角形的判定与性质;平行四边形的判定与性质.23.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。

2020—2021年山东省青岛市中考数学模拟试题(解析版)(下载后可直接打印).doc

2020—2021年山东省青岛市中考数学模拟试题(解析版)(下载后可直接打印).doc

山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km 用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5 5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km 用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC =BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC =180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC =∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x 方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩【答案】C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【答案】C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.5.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟【答案】C【解析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx=,将y=35代入700yx =,解得20x;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.6.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.3D.3【答案】B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.7.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.6【答案】B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.8.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③【答案】B 【解析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.9.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .270【答案】C 【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-=309018090210++-=,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.10.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.二、填空题(本题包括8个小题)11.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.【答案】3a<.【解析】∵(a−3)x>1的解集为x<13a-,∴不等式两边同时除以(a−3)时不等号的方向改变,∴a−3<0,∴a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.12.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.【答案】1【解析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD 的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD 是平行四边形,∴OA=OC ,AB=CD ,AD=BC .∵AB=4,BC=6,∴AD+CD=1.∵OE ⊥AC ,∴AE=CE ,∴△CDE 的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.13.如图,把一个面积为1的正方形分成两个面积为12的长方形,再把其中一个面积为12的长方形分成两个面积为14的正方形,再把其中一个面积为14的正方形分成两个面积为18的长方形,如此进行下去……,试用图形揭示的规律计算:111111248163264+++++11128256++=__________.【答案】8112- 【解析】结合图形发现计算方法:11111=1-+=1-22244; ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式=12551-=256256=8112- 故答案为:8112-【点睛】 此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.14.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.【答案】60°【解析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D 的度数.【详解】∵DA ⊥CE ,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB ∥CD ,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.15.分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +- 【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4b a a 2b a 2b -=-=+-. 16.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .【答案】1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π; 这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17.函数11y x =-的自变量的取值范围是.【答案】x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X -1≠0,即x≠1那么函数y=的自变量的取值范围是x≠1 18.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的+的值最小,请用无刻度的直尺,画出AM和点P,并简要说角平分线,在AM上求一点P,使CP DP明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,+的值最小.连接DF交AM于点P,此时CP DP【详解】(Ⅰ)根据勾股定理得AC=22+=;345故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(本题包括8个小题)19.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】(1)100、35;(2)补图见解析;(3)800人;(4)5 6【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n 的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种, 所以这两位同学最认可的新生事物不一样的概率为105126=. 点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.已知AB 是O 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P 为AB 上一点,CP 延长线与O 交于点Q ,若AQ CQ =,求APC ∠的大小及PA 的长.【答案】(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,223PA +=【解析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,易得∠APC=45°;过点C 作CD ⊥AB 于点D ,易得AD=12AO=12CO ,在Rt △DOC 中易得CD 的长,即可求解【详解】解:(Ⅰ)∵AB 是○O 的直径,∴OA 是○O 的半径.∵∠OAC=60°,OA=OC ,∴△OAC 是等边三角形.∴∠AOC=60°.∵PC 是○O 的切线,OC 为○O 的半径,∴PC ⊥OC ,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°. ∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=12AO=12CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=23∴PD=CD=23∴AP=AD+DP=2+23【点睛】此题主要考查圆的综合应用21.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.【答案】(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE ,∴△ABM ∽△EFA ;(2)∵∠B=10°,AB=12,BM=5,∴AM=22125+=13,AD=12,∵F 是AM 的中点,∴AF=12AM=6.5, ∵△ABM ∽△EFA ,∴BM AM AF AE =, 即5136.5AE=, ∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.22.如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.求这条直线的函数关系式及点B 的坐标.在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?【答案】(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是1.【解析】(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB 2+AC 2=BC 2;若∠ACB=90°,则AB 2=AC 2+BC 2;若∠ABC=90°,则AB 2+BC 2=AC 2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩ 解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB 2=22(82)(161)=325 .设点C(m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6; ③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32,∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M(a ,14a 2), 则MN2114a =+, 又∵点P 与点M 纵坐标相同, ∴32x +4=14a 2, ∴x=2166a - ,∴点P 的横坐标为2166a -, ∴MP =a -2166a -, ∴MN +3PM =14a 2+1+3(a -2166a -)=-14a 2+3a +9=-14 (a -6)2+1, ∵-2≤6≤8,∴当a =6时,取最大值1,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是123.先化简代数式222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,再从12x -≤≤范围内选取一个合适的整数作为x 的值代入求值。

相关文档
最新文档