浙教版数学八年级下册 第6章 反比例函数 6.3 反比例函数的应用 同步练习题.docx
浙教版八年级下册数学第六章 反比例函数含答案(综合知识)
浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数,当x<0时,y随x的增大而增大,则m的值是()A.-1B.3C.-1或3D.22、如图,已知点 A 、B分别在反比例函数的图象上,且OA ⊥OB ,则的值为()A. B.2 C. D.43、如图,直线y=x−2与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于( )A. B. C.2 D.34、下列各点中,在函数y=-的图象上的是( )A.(3,1)B.(-3,1)C.(,3)D.(3,-)5、如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣1,0),A点的横坐标是2,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为()A.12B.9C.6D.36、已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.7、如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B 两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤88、下列各点中,在函数的图象上的点是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)9、已知点A(m,4)在双曲线上,则m的值是()A.-4B.4C.1D.-110、如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣4B.﹣3C.﹣2D.﹣111、已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)12、若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.13、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定14、下列四个点,在反比例函数图象上的是()。
初中九年级数学上册教案:反比例函数的应用
第六章 反比例函数6.3 反比例函数的应用1.经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程,进一步体会模型思想,发展应用意识.2.能用反比例函数解决简单实际问题,进一步体会数形结合的思想.(重点)阅读教材P158~159,完成下列内容:(一)知识探究反比例函数表达式的求法:设出反比例函数的表达式________,把反比例函数图象上的一个点的坐标代入,得关于k 的方程,解方程求出k 值,把k 的值代入,即得反比例函数的表达式.(二)自学反馈1.长方形地下室的体积V 一定,那么底面积S 与深度h 是________关系;表达式是________.2.运货物的路程s 一定,那么运货物的速度v 与时间t 是________关系;表达式是________.3.电学知识告诉我们,用电器的输出功率P 、两端的电压U 和电器的电阻R 有如下关系:PR =U 2.这个关系式还可以写成P =________,或R =________.活动1 小组讨论例1 某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m 2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N ,那么(1)用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么?(2)当木板面积为0.2 m 2时,压强是多少?(3)如果要求压强不超过6 000 Pa ,木板面积至少要多大?(4)在直角坐标系中,画出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.解:(1)p =600S(S>0),P 是S 的反比例函数. (2)p =3 000 Pa.(3)至少0.1 m 2.(4)提示:只需在第一象限作出函数的图象.因为S>0.(5)问题(2):已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3):已知图象上点的纵坐标不大于6 000,求这些点所处的位置及它们横坐标的取值范围.实际上这些点都在直线p =6 000下方的图象上.例2 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10 A ,那么用电器的可变电阻应控制在什么范围内?解:(1)因为电流I 与电压U 之间的关系式为IR =U(U 为定值),把图象上的点A 的坐标(9,4)代入,得U =36. 所以蓄电池的电压U =36 V .这一函数的表达式为I =36R. (2)当I ≤10 A 时,解得R ≥3.6.所以可变电阻应不小于3.6 Ω.用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,首先要打好数学基础,才能促进对物理知识的理解和探索.例3 如图,正比例函数y =k 1x 的图象和反比例函数y =k 2x 的图象相交于A ,B 两点,其中点A 的坐标为(3,23). (1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求出的?解:(1)y 1=2x ,y 2=6x. (2)点B 的坐标为(-3,-23).活动2 跟踪训练1.某乡粮食总产量为a(a 为常数)吨,设该乡平均每人占有粮食为y(吨),人口数为x ,则y 与x 之间的函数关系的图象应为下图的( )2.某工厂现有煤200吨,这些煤能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是y =________.3.一定质量的二氧化碳,其体积V(m 3)是密度ρ(kg/m 3)的反比例函数,请根据图中的已知条件,写出当ρ=1.1 kg/m3时,二氧化碳的体积V =________m 3.4.如图所示是某一蓄水池每小时的排水量V(m 3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的表达式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少?活动3 课堂小结学生试述:今天学到了什么?【预习导学】(一)知识探究y =k x(二)自学反馈1.反比例 S =V h 2.反比例 v =s t 3.U R 2 U P2 【合作探究】活动2 跟踪训练1.D 2.200x3.94.(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为4 000×12=48 000(m 3).(2)因为此函数为反比例函数,所以表达式为V =48 000t.(3)若要6 h 排完水池中的水,那么每小时的排水量为V =48 0006=8 000(m 3).学科数学课题 3.反比例函数的应用主备者参备者执教者班级九、二学生姓名学习目标: 1.能灵活列反比例函数表达式解决一些实际问题.2.能综合利用反比例函数的知识解决一些实际问题.重、难点:从实际问题中寻找变量之间的关系学前准备1、行程问题(路程是定值):例:一辆汽车从A地到B地,路程是200千米,所用时间t(小时)与速度v(千米/时)的关系是:.2、工程问题(工程总量是定值):例:某车间计划生产3000个零件,所用工作时间t(天)与工作效率m(个/天)的关系是:.3、分配问题(总量是定值):例:某村有600亩耕地,该村的人均耕地面积y(亩/人)与村里的人口数x(人)的关系是.4、几何问题(面积或体积是定值):例:△ABC的面积为24平方米,高AD的长h(米)与底BC的长a(米)的关系是:.5、物理问题(压力、电压等是定值):例:电路中,加在灯泡两端的电压为220V,则通过该灯泡的电流I(A)与灯泡的电阻R(Ω)的关系是:.互动课堂探索合作:1、课本158页(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流.做一做1、(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?2、如图,正比例函数y =k 1x 的图象与反比例函数y =k 2x的图象相交于A ,B 两点,其中点A 的坐标为(3,23).(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求的?达标检测 1、某厂现有300吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A .x y 300=(x >0)B .xy 300=(x ≥0) C .y =300x (x ≥0) D .y =300 2、已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )3、物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为S F P =. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )4、你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度y (m )是面条的粗细(横截面积)x (mm 2)的反比例函数,其图象如图所示:(1)写出y 与x 的函数关系式;(2)求当面条粗1.6mm 2时,面条的总长度是多少米O P S S O P OP SO P A B C D S九年级数学上6.3 反比例函数的应用教案(北师大版)第六章反比例函数6.3 反比例函数的应用1.经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程,进一步体会模型思想,发展应用意识.2.能用反比例函数解决简单实际问题,进一步体会数形结合的思想.(重点)阅读教材P158~159,完成下列内容:(一)知识探究反比例函数表达式的求法:设出反比例函数的表达式________,把反比例函数图象上的一个点的坐标代入,得关于k的方程,解方程求出k值,把k的值代入,即得反比例函数的表达式.(二)自学反馈1.长方形地下室的体积V一定,那么底面积S与深度h是________关系;表达式是________.2.运货物的路程s一定,那么运货物的速度v与时间t是________关系;表达式是________.3.电学知识告诉我们,用电器的输出功率P、两端的电压U和电器的电阻R有如下关系:PR=U2.这个关系式还可以写成P=________,或R=________.活动1 小组讨论例1 某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2 m2时,压强是多少?(3)如果要求压强不超过6 000 Pa,木板面积至少要多大?(4)在直角坐标系中,画出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.解:(1)p=600S(S0),P是S的反比例函数.(2)p=3 000 Pa.(3)至少0.1 m2.(4)提示:只需在第一象限作出函数的图象.因为S0.(5)问题(2):已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3):已知图象上点的纵坐标不大于6 000,求这些点所处的位置及它们横坐标的取值范围.实际上这些点都在直线p=6 000下方的图象上.例2 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)与电阻R(Ω)之间的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器限制电流不得超过10 A,那么用电器的可变电阻应控制在什么范围内?解:(1)因为电流I与电压U之间的关系式为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=所以蓄电池的电压U=36 V.这一函数的表达式为I=36R.(2)当I≤10 A时,解得R≥3.6.所以可变电阻应不小于3.6 Ω.用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,首先要打好数学基础,才能促进对物理知识的理解和探索.例3 如图,正比例函数y=k1x的图象和反比例函数y=k2x的图象相交于A,B两点,其中点A的坐标为(3,23).(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求出的?解:(1)y1=2x,y2=6x.(2)点B的坐标为(-3,-23).活动2 跟踪训练1.某乡粮食总产量为a(a为常数)吨,设该乡平均每人占有粮食为y(吨),人口数为x,则y与x之间的函数关系的图象应为下图的( )2.某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=________. 3.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请根据图中的已知条件,写出当ρ=1.1 kg/m3时,二氧化碳的体积V=________m3.4.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的表达式;(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?活动3 课堂小结学生试述:今天学到了什么?【预习导学】(一)知识探究y=kx(二)自学反馈1.反比例S=Vh 2.反比例v=st 3.UR2 UP2【合作探究】活动2 跟踪训练1.D 2.200x 3.9 4.(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以表达式为V=48 000t.(3)若要6 h排完水池中的水,那么每小时的排水量为V=48 0006=8 000(m3).。
浙江省杭州市浙教版初中八年级下册数学第6章反比例函数图象和性质(教师版)——西湖洪小爱
反比例函数的图像和性质__________________________________________________________________________________ __________________________________________________________________________________重点:能结合具体情境确定反比例函数的表达式,并理解反比例函数系数k 的具体意义;掌握反比例函数的图象的基本特征。
难点:会运用反比例函数的性质解决一些简单的实际问题。
一、反比例函数1、函数 (k 为常数,k ≠ )叫做反比例函数,k 叫做 。
自变量x 的取值范围是x 0,函数值 y 0.反比例函数常见的表达形式还有(k ≠0)和xy=k (k ≠0).2、要确定一个反比例函数的表达式,只需求出 .如果已知一对自变量与函数的对应值,就可以由此求出 .然后写出所求的反比例函数。
二、反比函数的图象和性质1、用描点法画反比例函数图象的基本步骤① ;② ;③ .1-=kx y x k y =2、反比例函数(k ≠0)的图象是由两个分支组成的曲线,当k>0时,图象在 象限;当k<0时,图象在 象限.反比例函数(k ≠0)的图象关于直角坐标系的 成中心对称。
3、反比例函数的图象的对称轴有 条。
4、反比例函数(k ≠0)的性质:当k>0时,在图象所在的每一象限内,函数值y 随自变量x 的增大而 ;当k<0时,在图象所在的每一象限内,函数值y 随自变量x 的增大而 ;知识点一、反比例函数定义例1.函数y=(m 2﹣m )是反比例函数,则( ) A .m ≠0B .m ≠0且m ≠1C .m=2D .m=1或2练习1、若函数y=是反比例函数,则k= . 练习2、若函数是y 关于x 的反比例函数,求m 的值。
反比例函数的意义和函数值例2、已知变量y 关于(x+5)成反比例函数,且x=2时,y=2,求x=2017时,y 的函数值.x k y =x ky =x y 1=x ky =132)1(+++=m m x m y练习1、已知y -1 与x 成反比,且x=2时,y=9. 求x=2017时,y 的函数值。
浙教版2019--2020年八年级数学下册第六章:反比例函数 培优检测(含解析)
2020年初中数学浙教版八年级下册第六章培优检测学校:___________姓名:___________班级:___________考号:___________一、单选题1.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 2.已知压强的计算公式是p =FS,我们知道,刀具在使用一段时间后,就会变钝.如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是( )A .当受力面积一定时,压强随压力的增大而增大B .当受力面积一定时,压强随压力的增大而减小C .当压力一定时,压强随受力面积的减小而减小D .当压力一定时,压强随受力面积的减小而增大3.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =kx的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣74.如图,已知直线12y x =与双曲线(0)ky k x =>交于A 、B 两点,点B 坐标为(-4,-2),C 为双曲线(0)ky k x=>上一点,且在第一象限内,若△AOC 面积为6,则点C 坐标为( )A.(4,2)B.(2,3)C.(3,4)D.(2,4)5.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.6.如图,四边形OABC和四边形BDEF都是正方形,反比例函数kyx=在第一象限的图象经过点E,若两正方形的面积差为8,则k的值为()A.6B.8C.12D.167.函数kyx=和1yx=在第一象限内的图像如图,P是kyx=的图象上一动点,PC⊥x轴于点C,交的图象于点A,PD ⊥y 轴于点D,交kyx=的图像于点B,当点P在kyx=的图像上运动时,下列结论错误的是()A .△ODB 与△OCA 的面积相等 B .当点 A 是 PC 的中点时,点 B 一定是 PD 的中点 C .CA DBPA PB=D .当四边形 OCPD 为正方形时,四边形PAOB 的面积最大8.如图,在平面直角坐标系中,矩形OABC 的顶点A ,B 在反比例函数ky x=()00k x >>,的图像上,纵坐标分别为1和3,则k 的值为( )A .23B .3C .2D .39.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为12,则k 的值为( )A .1B .2C .3D .410.如图,在平面直角坐标系中,梯形OACB 的顶点O 是坐标原点,OA 边在y 轴正半轴上,OB 边在x 轴正半轴上,且OA ∥BC ,双曲线y=k x(x >0)经过AC 边的中点,若S 梯形OACB =4,则双曲线y=kx的k 值为( )A .5B .4C .3D .2二、填空题11.如图,点A 在双曲线y =kx的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为_____.12.如图,含30°的直角三角板ABC(其中∠ABC=90 )的三个顶点均在反比例函数1y x=的图象上,且斜边AC 经过原点O ,则直角三角板ABC 的面积为_____________.13.已知反比例函数的图象经过点(m ,4)和点(8,-2),则m 的值为________. 14.如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB V 与COD △面积分别为8和18,若双曲线ky x=恰好经过BC 的中点E ,则k 的值为__________.15.如图,已知点A 1、A 2、A 3、…、A n 在x 轴上,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1、A 2、A 3、……、A n 作x 轴的垂线,交反比例函数y =2x(x >0)的图象于点B 1、B 2、B 3、…、B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2,…,若记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2,…,△B n P n B n +1的面积为S n ,则S 1+S 2+…+S 2019=_____.三、解答题16.如图,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于(4,)C m -,F 两点,与,x y 轴分别交于,(0,3)B A -两点,且32OA OB =.(1)求一次函数和反比例函数的解析式;(2)若点E 与点B 关于y 轴对称,连接,FE EC ,求EFC ∆的面积. 17.如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线12y x b=-+过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.18.如图,在平面直角坐标系xOy中,△OA1B1是等边三角形,点B1的坐标是(2,0),反比例函数y=kx的图象经过点A1.(1)求反比例函数的解析式.(2)如图,以B1为顶点作等边三角形B1A2B2,使点B2在x轴上,点A2在反比例函数y=kx的图象上.若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移多少个单位长度?19.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点,点A的坐标是(﹣2,1),点B的坐标是(1,n);(1)分别求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式kx+b≥mx的解集.20.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()2,1A -,()1,B n 两点.()1求一次函数与反比例函数的表达式; ()2求AOB V 的面积;()3根据所给条件,请直接写出不等式m kx b x+<的解集.答案与解析1.C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x ,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误;C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【名师点评】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键. 2.D 【解析】如果刀刃磨薄,指的是受力面积减小;刀具就会变得锋利指的是压强增大.故选D. 3.B 【解析】过点D 作DF ⊥x 轴于点F ,则∠AOB =∠DF A =90°,∴∠OAB +∠ABO =90°, ∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC ,∴∠OAB +∠DAF =90°,∴∠ABO =∠DAF , ∴△AOB ∽△DF A ,∴OA :DF =OB :AF =AB :AD , ∵AB :BC =3:2,点A (3,0),B (0,6),∴AB :AD =3:2,OA =3,OB=6,∴DF =2,AF =4,∴OF =OA +AF =7,∴点D 的坐标为:(7,2),∴k 14=,故选B. 4.D【解析】解:因为B 点坐标为(-4,-2),所以A 点坐标为(4,2), 那么双曲线的解析式为8y x= , 设C 点坐标为()m n , ,那么8114622mn n m =⎧⎪⎨⎛⎫-⋅⋅= ⎪⎪⎝⎭⎩ ,解得24m n =⎧⎨=⎩, 所以C 点的坐标为(2,4). 故选:D. 5.C【解析】分k >0,k <0时两种情况分别判断选项的正确与否即可解答. 【详解】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0), ∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =kx经过第一、三象限,故选项D 错误; 当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 【名师点评】此题考查反比例函数的图象,熟记反比例函数图象的性质即可正确解答. 6.B【解析】设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ),由反比例函数图像上点的坐标特征得到E (a+b ,a+bk),由于点E 与点D 的纵坐标相同,所以a+bk=a-b ,则a 2-b 2=k ,最后利用正方形的面积公式即可解答. 【详解】解: 设正方形OABC 、BDEF 的边长分别为a 和b ,则D (a ,a-b ),F (a+b ,a ), 由反比例函数图像上点的坐标特征得到E (a+b ,a+bk), ∵点E 与点D 的纵坐标相同 ∴a+bk=a-b,即a 2-b 2=k 又∵a 2-b 2=8 ∴k=8 故答案为B . 【名师点评】本题考查了反比例函数比例系数k 的几何意义以及正方形的性质,学会设未知数和正确的使用数形结合思想是解答本题的关键. 7.D【解析】根据反比例函数的图象和性质,特别是反比例函数k 的几何意义,对四个选项逐一进行分析,即可得出正确答案 【详解】解:A 、由于点A 和点D 均在同一个反比例函数1y x=的图象上, 所以12ODB S =V ,12OCA S =V , 故ODB △和OCA V 的面积相等, 故本选项正确; B 、如图,连接OP ,则2ODP OCP kS S ==V V ,Q A 是PC 的中点,OAP S ∴=V 1224OAC kkS =⨯=V , ODB S =V Q 4OCA kS =V ,4OBP ODP ODB kS S S ∴=-=V V V ,即4OBP ODB kS S ==V V ,∴B 一定是PD 的中点,故本选项正确; C 、设,k P m m ⎛⎫ ⎪⎝⎭, 则1,A m m ⎛⎫ ⎪⎝⎭,,m kB k m ⎛⎫ ⎪⎝⎭, 11,,,k m m CA PA DB PB m mm m k k∴==-==-, 故1111CA mk PA k m m ==--,11mDB km PBk m k ==--,∴=CA DB PA PB, 故本选项正确;D 、由于矩形OCPD 、三角形ODB 、三角形OCA 的面积为定值, 所以四边形PAOB 的面积不会发生变化, 故本选项错误; 故选:D . 【名师点评】本题考查了反比例函数综合题,关键是设P 点坐标,利用点与点的坐标关系以及反比例函数的性质表现相关线段的长,要对每一个结论进行判断. 8.B【解析】过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,依据△ABE ∽△OAD ,即可得到,设A (k ,1),B (3k ,3),即可得到1223kk =,进而得出k 的值.【详解】如图,过A 作AD ⊥x 轴于D ,过B 作BE ⊥AD 于E ,则∠E=∠ADO=90°,又∵∠BAO=90°,∴∠OAD+∠AOD=∠OAD+∠BAE=90°, ∴∠AOD=∠BAE , ∴△ABE ∽△OAD , ∴AD ODBE AE=, 设A (k ,1),B (3k ,3),则OD=k ,AD=1,AE=2,BE=23k , ∴1223kk =,解得k=±3 ∵k >0, ∴3 故选B . 【名师点评】本题考查了矩形的性质、相似三角形的判定与性质以及反比例函数图象上点的坐标与k 之间的关系.解决问题的关键是作辅助线构造相似三角形. 9.D【解析】可设出点D 、E 的坐标,易知点B 坐标,根据中点的性质表示出点M 坐标,代入ky x=可得n 、m 间关系,由=OABC OCE OAD OACE S S S S --X V V 四边形可求出k 值. 【详解】解:设点D 的坐标为(,)k m m ,点E 的坐标为(,)k n n ,则点B 的坐标为(,)k n m, M Q 为OB 的中点(,)22n k M m∴又Q 反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M 22k k n m ∴=4n m ∴=(4,)k B m m ∴ 11,,442222OCE OAD OABC k k k k kS m S n S m k m n m∴=⋅==⋅==⋅=V V W=41222OABC OCE OAD OACE k kS S S S k ∴--=--=X V V 四边形4k ∴=故选:D. 【名师点评】本题考查了反比例函数的图象与坐标轴围成的图形的面积,灵活的应用反比例函数图象上的点坐标表示三角形的面积是解题的关键. 10.D【解析】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,先根据“AAS ”证明PAD PCE ≅V V ,则PAD PCE S S =V V ,得到BODE AOBC S S =矩形梯形,再利用12DOFP BODE S S =矩形矩形得到114222DOFP AOBC S S ==⨯=矩形梯形,然后根据反比例函数()0ky k x=≠系数k 的几何意义得2k =,再去绝对值即可得到满足条件的k 的值. 【详解】过AC 的中点P 作//DE x 轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,在PAD △和PCE V 中,APD CPE ADP PEC PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PAD PCE ≅V V (AAS ), ∴PAD PCE S S =V V , ∴BODE AOBC S S =矩形梯形, Q 12DOFP BODE S S =矩形矩形, ∴114222DOFPAOBC S S ==⨯=矩形梯形, ∴2k =,而0k >,∴2k =.故选:D . 【名师点评】本题考查了反比例函数()0k y k x =≠系数k 的几何意义:从反比例函数()0ky k x=≠图象上任意一点向x 轴于y 轴作垂线,垂线与坐标轴所围成的矩形面积为k .11.163. 【解析】由AE =3EC ,△ADE 的面积为3,可知△ADC 的面积为4,再根据点D 为OB 的中点,得到△ADC 的面积为梯形BOCA 面积的一半,即梯形BOCA 的面积为8,设A (x,kx),从而表示出梯形BOCA 的面积关于k 的等式,求解即可. 【详解】 如图,连接DC ,∵AE=3EC ,△ADE 的面积为3,∴△CDE 的面积为1. ∴△ADC 的面积为4.∵点A 在双曲线y =kx 的第一象限的那一支上, ∴设A 点坐标为 (x,kx).∵OC =2AB ,∴OC=2x.∵点D 为OB 的中点,∴△ADC 的面积为梯形BOCA 面积的一半,∴梯形BOCA 的面积为8.∴梯形BOCA 的面积=11(2)3822k k x x x x x +⋅=⋅⋅=,解得16k 3=. 【名师点评】反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质. 12.23【解析】设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), 由△ABO 是等边三角形,可得OA=AB ,根据两点间距离公式可求出2221OA 4n n=+=,则OA=AB=2,BC=3然后即可求出面积. 【详解】解:设点A 坐标为(n ,1n ),则B 点坐标为(1n,n ), ∵O 是AC 中点, ∴OA=OB ,∠A=60°,∴△ABO 是等边三角形,∴OA=AB ,∴2222111n n n n n n ⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭, 整理得:2222112()4n n n n+=+-, ∴2214n n +=, 即OA=AB=2, ∴BC=23,1223232ABC S =⨯⨯=V【名师点评】本题考查了反比例函数的图像和性质,求出OB 的值是解题关键. 13.-4. 【解析】试题解析:设反比例函数的解析式为:y=,把(8,-2)代入y=得,中k=-16∴y=-把(m ,4)代入y=-得,m=-4. 考点:反比例函数图象上点的坐标特征. 14.6【解析】根据AB//CD ,得出△AOB 与△OCD 相似,利用△AOB 与△OCD 的面积分别为8和18,得:AO :OC=BO :OD=2:3,然后再利用同高三角形求得S △COB =12,设B 、 C 的坐标分别为(a ,0)、(0,b ),E 点坐标为(12a ,12b )进行解答即可. 【详解】 解:∵AB//CD , ∴△AOB ∽△OCD ,又∵△ABD 与△ACD 的面积分别为8和18,∴△ABD与△ACD的面积比为4:9,∴AO:OC=BO:OD=2:3∵S△AOB=8∴S△COB=12设B、C的坐标分别为(a,0)、(0,b),E点坐标为(12a,12b)则OB=| a | 、OC=| b |∴12|a|×|b|=12即|a|×|b|=24∴|12a|×|12b|=6又∵kyx=,点E在第三象限∴k=xy=12a×12b=6故答案为6.【名师点评】本题考查了反比例函数综合题应用,根据已知求出S△COB=12是解答本题的关键.15.2019 2020.【解析】由反比例函数图像上点的坐标特征可得:B1、B2、B3、…、B n的坐标,从而可得出B1P1、B2P2、B3P3、…、B n P n的长度,根据三角形的面积公式即可得出S n=12A n A n+1•B n P n=1n(n1)+,将其代入S1+S₂+…+S2019中即可解答.【详解】解:根据题意可知:点B1(1,2)、B2(2,1)、B3(3,23)、…、B n(n,2n),∴B1P1=2﹣1=1,B2P2=1﹣2133=,B3P3=211326-=,…,B n P n=2221(1)n n n n-=++,∴S n=12A n A n+1•B n P n=1n(n1)+,∴S1+S2+…+S2019=1111 122334(1)n n++++⨯⨯⨯+K=1﹣1111111 2233420192020 +-+-++-L=1﹣12020 =20192020. 故答案为:20192020.【名师点评】本题考查了反比例函数图像上点的坐标特征以及三角形的面积,根据反比例函数图象上点的坐标特征结合三角形的面积得到S n =12A n A n +1•B n P n =1n(n 1)+,是解题的关键.16.(1)12y x=-;(2)18. 【解析】(1)先求出B 点坐标,再用待定系数法求一次函数的解析式,再求出C 点坐标,用待定系数法求反比例函数解析式;(2)先由对称性质求E 点坐标,再联立方程组求得F 点坐标,最后根据三角形面积公式求面积. 【详解】解:(1)∵A (0,-3) ∴OA=3, ∵OA=32OB , ∴OB=2, ∴B (-2,0).将(0,3),(2,0)A B --代入一次函数1y k x b =+,得1320b k b =-⎧⎨-+=⎩,解得13,23.k b ⎧=-⎪⎨⎪=-⎩∴一次函数的解析式为332y x =--. Q 点(4,)C m -在一次函数332y x =--的图像上,3(4)33,(4,3)2m C ∴=-⨯--=∴-.Q 点(4,3)C -在反比例函数2ky x =的图像上,24312k ∴=-⨯=-, ∴反比例函数的解析式为12y x=-.(2)Q 点E 与点B 关于y 轴对称,(2,0)B -,(2,0)E ∴,2(2)4BE ∴=--=.联立33,212,y x y x ⎧=--⎪⎪⎨⎪=-⎪⎩解得114,3x y =-⎧⎨=⎩或222,6.x y =⎧⎨=-⎩ (2,6)F ∴-,1146431822EFC EFB EBC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.【名师点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,三角形的面积等,熟练掌握待定系数法是解题的关键. 17.(1)y =12x ;(2)点F 的坐标为(2,4);(3)∠AOF =12∠EOC ,理由见解析;(4)P 的坐标是(197,0)或(-5,00)或(5,0) 【解析】(1)设反比例函数的解析式为y =kx,把点E (3,4)代入即可求出k 的值,进而得出结论;(2)由正方形AOCB 的边长为4,故可知点D 的横坐标为4,点F 的纵坐标为4,由于点D 在反比例函数的图象上,所以点D 的纵坐标为3,即D (4,3),由点D 在直线12y x b =-+上可得出b 的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F 的坐标;(3)在CD 上取CG=AF=2,连接OG ,连接EG 并延长交x 轴于点H ,由全等三角形的判定定理可知△OAF ≌△OCG ,△EGB ≌△HGC (ASA ),故可得出EG=HG ,设直线EG 的解析式为y=mx+n ,把E (3,4),G (4,2)代入即可求出直线EG 的解析式,故可得出H 点的坐标,在Rt △AOF 中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE ,即OG 是等腰三角形底边EF 上的中线,所以OG 是等腰三角形顶角的平分线,由此即可得出结论; (4)分△PDQ 的三个角分别是直角,三种情况进行讨论,作DK ⊥x 轴,作QR ⊥x 轴,作DL ⊥QR ,于点L ,即可构造全等的直角三角形,设出P 的坐标,根据点在图象上,则一定满足函数的解析式即可求解, 【详解】 解:(1)设反比例函数的解析式y =k x, ∵反比例函数的图象过点E (3,4), ∴4=3k,即k =12, ∴反比例函数的解析式y =12x; (2)∵正方形AOCB 的边长为4, ∴点D 的横坐标为4,点F 的纵坐标为4, ∵点D 在反比例函数的图象上, ∴点D 的纵坐标为3,即D (4,3), ∵点D 在直线y =﹣12x +b 上, ∴3=﹣12×4+b , 解得:b =5,∴直线DF 为y =﹣12x +5, 将y =4代入y =﹣12x +5,得4=﹣12x +5,解得:x =2,∴点F 的坐标为(2,4), (3)∠AOF =12∠EOC ,理由为: 证明:在CD 上取CG =AF =2,连接OG ,连接EG 并延长交x 轴于点H ,OAF OCG V V 在和中,4902AO CO OAF OCG AF CG ==⎧⎪∠=∠=︒⎨⎪==⎩,∴△OAF ≌△OCG (SAS ),∴∠AOF =∠COG ,EGB HGC V V 在和,290EGB HGC BG CG GBC GCH ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩, ∴△EGB ≌△HGC (ASA ),∴EG =HG ,设直线EG :y =mx +n ,∵E (3,4),G (4,2),∴3442m n m n +=⎧⎨+=⎩,解得210m n =-⎧⎨=⎩, ∴直线EG :y =﹣2x +10,令y =﹣2x +10=0,得x =5,∴H (5,0),OH =5,在Rt △AOE 中,AO =4,AE =3,根据勾股定理得OE =5,∴OH =OE ,∴OG 是等腰三角形底边EH 上的中线,∴OG 是等腰三角形顶角的平分线,∴∠EOG =∠GOH ,∴∠EOG =∠GOC =∠AOF ,即∠AOF =12∠EOC ; (4)当Q 在D 的右侧(如图1),且∠PDQ =90°时,作DK ⊥x 轴,作QL ⊥DK ,于点L ,则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=12x得:7(-1+a)=12,解得:a=197,则P的坐标是(197,0);当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,则Q的坐标是(1,7-b),代入y=12x得:b=-5,则P的坐标是(-5,0);当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是12c,则QK=QL=12c,又∵QL=c-4,∴c-4=12c,解得:c=-2(舍去)或6,则PK=DL=DR-LR=DR-QK=3-126=1,∴OP=OK-PK=6-1=5,则P的坐标是(5,0);当Q在D的左侧(如图3),且∠DQP=90°时,不成立;当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,则△DPR≌△PQK,∴DR=PK=3,RP=QK,设P的坐标是(d,0),则RK=QK=d-4,则OK=OP+PK=d+3,则Q 的坐标是(d +3,d -4),代入y =12x 得: (d +3)(d -4)=12,解得:d =197+或197-(舍去), 则P 的坐标是(197+,0), 综上所述,P 的坐标是(197,0)或(-5,0)或(1972+,0)或(5,0), 【名师点评】 本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键. 18.(1)y =3x;(2)需将△B 1A 2B 2向上平移6个单位长度. 【解析】(1)根据等边三角形的性质求点A 1的坐标,利用待定系数法可得反比例函数的解析式;(2)如图2,过点A 2作A 2G ⊥x 轴于点G ,设B 1G =a ,则A 2G =3a ,表示点A 2的坐标,通过代入计算可得a 的值,根据等边三角形的性质确定点B 2的坐标,可得结论.【详解】解:(1)如图1,过点A 1作A 1H ⊥x 轴于点H .∵△OA 1B 1是等边三角形,点B 1的坐标是(2,0),∴OA 1=OB 1=2,OH =1,∴A 1H 22100A H -2221-3,∴A 1(13).∵点A1在反比例函数y=kx的图象上,∴k=3.∴反比例函数的解析式为y=3x;(2)如图2,过点A2作A2G⊥x轴于点G,设B1G=a,则A2G=3a,∴A2(2+a3).∵点A2在反比例函数y=3x的图象上,33,解得a12﹣1,a22﹣1(不合题意,舍去),经检验a2﹣1是方程的根∴a2﹣1,∴△B1A2B2的边长是22﹣1),∴B2(2,0),∴把x=2代入y 3,得y3226∴(2,64y3∴若要使点B2在反比例函数y=kx的图象上,需将△B1A2B2向上平移64个单位长度.【名师点评】本题考查了反比例函数的几何问题,掌握反比例函数的性质、勾股定理、等边三角形的性质是解题的关键.19.(1)y=﹣x﹣1;(2)32;(3)x≤﹣2或0<x≤1.【解析】(1)运用待定系数法先求出反比例函数的解析式,再求得B点的坐标,然后把点A、B代入y=kx+b即可得到一次函数的表达式;(2)先确定点C的坐标,再根据S△AOB=S△AOC+S△COB进行计算即可;(3)根据A(-2.1),B(1,-2),结合图像可得不等式kx+b>mx的解集.【详解】解:(1)把点A的坐标(﹣2,1)代入一反比例函数y=mx,可得:m=﹣2×1=﹣2,∴反比例函数为y=﹣2x,∵反比例函数y=mx的图象经过B点,∴n=﹣21=﹣2,∴B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得212k bk b-+=⎧⎨+=-⎩解得k=﹣1,b=﹣1∴一次函数为y=﹣x﹣1;(2)在直线y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),即OC=1,∴S△AOB=S△AOC+S△BOC=12OC×2+12OC×1=12×1×(2+1)=32;(3)不等式kx+b≥mx的解集是x≤﹣2或0<x≤1.【名师点评】本题主要考查了一次函数与反比例函数交点问题,解题关键在于运用待定系数法求函数解解析式.20.()1 2y x =-,1y x =--;()2 32AOB S =V ;()320x -<<,1x >. 【解析】(1)把A (-2,1)代入反比例函数y=m x,求出m 的值即可;把B (1,n )代入反比例函数的解析式可求出n ,从而确定B 点坐标为(1,-2),然后利用待定系数法即可求出一次函数的解析式;(2)设直线y=-x-1与x 轴的交点为C ,根据解析式求得C 的坐标,然后根据S △ABC=S △OAC+S △OBC 即可求得;(3)观察函数图象得到当-2<x <0或x >1时,一次函数的图象都在反比例函数的图象的下方,即一次函数的值小于反比例函数的值.【详解】()1把点()2,1A -代入反比例函数m y x=得: 12m =-, 解得:2m =-, 即反比例函数的解析式为:2y x=-, 把点()1,B n 代入反比例函数2y x =-得: 2n =-,即点A 的坐标为:()2,1-,点B 的坐标为:()1,2-,把点()2,1A -和点()1,2B -代入一次函数y kx b =+得:{212k b k b -+=+=-, 解得:{11k b =-=-,即一次函数的表达式为:1y x =--, ()2把0y =代入一次函数1y x =--得:10x --=,解得:1x =-,即点C 的坐标为:()1,0-,OC 的长为1,点A 到OC 的距离为1,点B 到OC 的距离为2,AOB OAC OBC S S S =+V V V ,11111222=⨯⨯+⨯⨯, 32=, ()3如图可知:m kx b x+<的解集为:20x -<<,1x >. 【名师点评】 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数解析式;利用待定系数法求函数的解析式.也考查了观察函数图象的能力.。
《第六章3反比例函数的应用》作业设计方案-初中数学北师大版12九年级上册
《反比例函数的应用》作业设计方案(第一课时)一、作业目标通过本次作业,学生应能:1. 掌握反比例函数的基本概念及其图像特征。
2. 理解反比例函数在现实生活中的应用场景。
3. 学会运用反比例函数解决简单的实际问题。
二、作业内容作业内容主要围绕反比例函数的应用展开,具体包括以下几个部分:1. 基础知识巩固:要求学生复习反比例函数的基本定义、性质及图像特点,加深对反比例函数概念的理解。
2. 典型例题解析:选取几个与反比例函数相关的实际应用问题,详细解析解题步骤和思路,帮助学生理解如何将实际问题转化为数学模型。
3. 实践操作练习:布置一系列反比例函数的应用题目,包括填空题、选择题及解答题,涉及距离、速度、时间等日常生活中的场景,让学生通过实践操作,加深对反比例函数的理解。
4. 拓展延伸:鼓励学生尝试寻找生活中其他反比例函数的实例,并尝试用所学知识进行解释和分析,培养学生的数学应用能力和创新意识。
三、作业要求1. 学生在完成作业时,应认真审题,明确题目要求,避免因理解错误导致答案偏离。
2. 学生在解答过程中,应注重思路的清晰和步骤的完整,以便于检查和交流。
3. 学生在实践操作练习中,应注重题目的实际应用背景,尝试将数学问题与实际生活相联系。
4. 学生在完成作业后,应进行自我检查和反思,总结自己在解题过程中的收获和不足。
四、作业评价1. 教师根据学生完成作业的情况,给予相应的评价和指导,指出学生在解题过程中的优点和不足。
2. 教师通过批改作业,了解学生对反比例函数的理解程度和应用能力,以便于后续教学的调整和优化。
3. 鼓励学生之间进行作业交流和讨论,相互学习、相互启发,提高解题能力和思维水平。
五、作业反馈1. 教师及时将作业反馈给学生,让学生了解自己在解题过程中的错误和不足,以便于及时改正。
2. 对于共性问题,教师在课堂上进行讲解和指导,帮助学生彻底解决问题。
3. 对于个别学生的问题,教师通过个别辅导或线上解答等方式,给予针对性的指导和帮助。
专题6-5反比例函数的k的几何意义大题专练(重难点培优30题,八下浙教)--2(0002)
【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题6.5反比例函数的k的几何意义大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2019秋·浙江台州·九年级统考期末)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当⊥P AC的面积等于6时,点P 的坐标.2.(2021春·浙江湖州·八年级校联考期末)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6x (x>0)和y=kx(x<0)的图象交于点P,点Q.(1)求点P的坐标;(2)若△POQ的面积为7,求k的值.3.(2020春·浙江绍兴·八年级统考期末)已知图中的曲线是反比例函数y=m−5x(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当⊥OAB的面积为4时,求m的值.(x>0)和一次函数y2=kx+b的图象都经过点4.(2022·浙江嘉兴·校考一模)如图,反比例函数y1=mxA(1,4)和点B(n,2).(1)m=_________,n=_________;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积(3)若点P是反比例函数y1=mx为_________.5.(2020春·浙江宁波·八年级统考期末)如图,已知点A(2,m)是反比例函数y=k的图象上一点,过点Ax作x轴的垂线,垂足为B,连结OA,⊥ABO的面积为6.(1)求k和m的值;(2)直线y=2x+a(a≤0)与直线AB交于点C与反比例函数图象交于点E,F;⊥若a=0,已知E(p,q),则F的坐标为(用含p,q的坐标表示);⊥若a=﹣2.求AC的长.6.(2019春·浙江金华·八年级校考期末)如图,平行四边形ABOC的顶点A,C分别在y轴和x轴上,顶点B在反比例函数y=3x的图象上,求平行四边形ABOC的面积.7.(2018·浙江宁波·校联考一模)已知反比例函数y=kx的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB⊥x轴,交y轴于点B;过点A作直线AC⊥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.8.(2018秋·浙江·九年级统考期中)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6x (x>0)和y=kx(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.9.(2019·浙江绍兴·统考一模)如图,反比例函数y=kx(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:⊥四个顶点均在格点上,且其中两个顶点分别是点O,点P;⊥矩形的面积等于k的值.10.(2015·浙江台州·九年级学业考试)如图,反比例函数y=k在第一象限的图象经过矩形OABC对角线的x交点E,与BC交于点D,若点B的坐标为(6,4).(1)求E点的坐标及k的值;(2)求△OCD的面积.11.(2019秋·浙江杭州·九年级校联考阶段练习)如图,已知双曲线y=k(x>0)经过长方形OABC的边xAB的中点F,交BC于点E,且四边形OEBF的面积为2,求k的值.12.(2020春·浙江杭州·八年级统考期末)已知点M,P是反比例函数y=k(k>0)图象上两点,过点M作xMNMN⊥x轴,过点P作PQ⊥x轴,垂足分别为点N,Q.若PQ=12(1)若点P在第一象限内,点M坐标为(1,2),求P的坐标;(2)若S△MNP=2,求k的值;(3)设点M(1-2n,y1)、P(2n+1,y2),且y1<y2,求n的范围.(k>0)的图象上,AB⊥x轴于点B,AC⊥y 13.(2022·浙江·九年级专题练习)背景:点A在反比例函数y=kx轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.⊥求这个“Z函数”的表达式.⊥补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).⊥过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.14.(2019·浙江杭州·九年级)已知函数y={−4x,x<0−x2+4x,x≥0,方程y−a=0有三个根,且x1<x2<x3;(1)在右图坐标系中画出函数y的图像,并写出a的取值范围;(2)求x1+x2+x3的取值范围.15.(2022秋·河南周口·九年级校考期末)如图,双曲线y=kx上的一点M(a,b),其中b>a>0,过点M作MN⊥x轴于点N,连接OM.(1)已知△MON的面积是4,求k的值;(2)将△MON绕点M逆时针旋转90°得到△MQP,且点O的对应点Q恰好落在该双曲线上,求ab的值.16.(2022·全国·九年级专题练习)如图,直线y=kx与反比例函数y=2x(k≠0,x>0)的图像交于点A(1,a),点B是此反比例函数图形上任意一点(不与点A重合),BC⊥x轴于点C.(1)求k的值;(2)求△OBC的面积;17.(2022秋·全国·九年级专题练习)如图,点A在反比例函数y=kx(x>0)的图像上,AB⊥x轴,垂足为B,ABOB =12,AB=2.(1)求k的值:(2)点C在这个反比例函数图像上,且∠BAC=135°,求OC的长.18.(2022秋·广东佛山·九年级校考阶段练习)如图,矩形ABCD的面积为8,它的边CD位于x轴上.双曲线y=4x 经过点A,与矩形的边BC交于点E,点B在双曲线y=4+kx上,连接AE并延长交x轴于点F,点G与点О关于点C对称,连接BF,BG.(1)求k的值;(2)求△BEF的面积;(3)求证:四边形AFGB为平行四边形.19.(2022秋·上海青浦·八年级校考期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP⊥y轴,垂足为P.(1)联结AO,当S△APO=2时,求反比例函数的解析式;(2)联结AO,若A(−1,2),y轴上是否存在点M,使得S△APM=S△APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,求k的值.20.(2022春·全国·九年级专题练习)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=⋯=A n−1A n=2,过点A1、A2、A3…、A n分别作x轴的垂线与反比例函数y=10x的图像相交于点P1、P2、P3…、P n得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、…、A n−1P n A n,并设其面积分别为S1、S2、S3…、S n.(1)求P2、P3、Pn、的坐标(2)求S n的值;21.(2022秋·广东肇庆·九年级校考期末)如图,点C是反比例函数y=k图象的一点,点C的坐标为(4,−1).x(1)求反比例函数解析式;(2)若一次函数y=ax+3与反比例函数y=k相交于A,C点,求点A的坐标;x(3)在x轴上是否存在一个点P,使得△PAC的面积为10,如果存在,求出点P的坐标,如果不存在,请说明理由.22.(2022·云南楚雄·云南省楚雄第一中学校考模拟预测)如图,点D双曲线上,AD垂直x轴,垂足为A,点C在AD上,CB平行于x轴交曲线于点B,直线AB与y轴交于点F,已知AC:AD=1:3,点C的坐标为(2,2).(1)求该双曲线的解析式;(2)求△OFA的面积.23.(2022秋·上海·八年级期末)如图,在平面直角坐标系中,点M为x正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图像交于P,Q两点,SΔPOQ=14(1)求k的值;(2)当∠QOM=45°时,求直线OQ的解析式;(3)在(2)的条件下,若x轴上有一点N,使得△NOQ为等腰三角形,请直接写出所有满足条件的N点的坐标.24.(2022·山东菏泽·山东省郓城第一中学校考模拟预测)如图,动点P在函数y=3x(x>0)的图象上,过点P分别作x轴和y轴的平行线,交函数y=−1x的图象于点A、B,连接AB、OA、OB.设点P横坐标为a.(1)直接写出点P、A、B的坐标(用a的代数式表示);(2)点P在运动的过程中,⊥AOB的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q(13,1),且点Q始终在△P AB的内部(不包含边),求a的取值范围.25.(2022秋·九年级课时练习)如图,菱形ABCD的边长为5,AD⊥y轴,垂足为点E,点A在第二象限,点B在y轴的正半轴上,点C、D均在反比例函数y=kx (k≠0,x>0)的图像上,连接BD,点B(0,34).(1)求反比例函数的表达式;(2)点D的横坐标为1,反比例函数的图像上是否存在一点P,使得△BPC的面积是菱形ABCD面积的1,若存4在,求出点P的坐标;若不存在,请说出理由.(x>0)图象上一点,26.(2022·河南郑州·郑州外国语中学校考一模)如图,点B(4,a)是反比例函数y=12x(x>0)的图象经过OB的中点M,与AB,BC 过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx分别相交于点D,E.连接DE并延长交x轴于点F,连接BF.(1)求k的值;(2)求△BDF的面积;(3)设直线DE的解析式为y=k1x+b,请结合图像直接写出不等式k1x+b<k的解集______.x27.(2022·山东聊城·统考二模)已知点A为函数y=4(x>0)图象上任意一点,连接OA并延长至点B,使xAB=OA,过点B作BC∥x轴交函数图象于点C,连接OC.(1)如图1,若点A的坐标为(4,n),求n及点C的坐标;(2)如图2,过点A作AD⊥BC,垂足为D,求四边形OCDA的面积.(x>0)的图象经过矩形OABC对角线的交点M,分28.(2022·江苏苏州·模拟预测)如图,反比例函数y=kx别与AB、BC相交于点D、E.(1)若点B(8,4),求k的值;(x>0)的解析式.(2)若四边形ODBE的面积为6,求反比例函数y=kx29.(2022·全国·九年级专题练习)已知点A(a,ma+2)、B(b,mb+2)是反比例函数y=k图象上的两个点,x且a>0,b<0,m>0.(1)求证:a+b=−2;m(2)若OA2+OB2=2a2+2b2,求m的值;(3)若S△OAB=3S△OCD,求km的值.30.(2021秋·四川成都·九年级统考期末)如图,已知A(2,4)是正比例函数函数y=kx的图象与反比例函数y=m的图象的交点.x(1)求反比例函数和正比例函数的解析式;(2)B为双曲线上点A右侧一点,连接OB,AB.若△OAB的面积为15,求点B的坐标.。
6.3 反比例函数的应用(数学北师大版九年级上册)
(2)当他按原路匀速返回时,汽车的速度 v 与时间 t 有怎样的函数关系?
解:由题意得 vt=480,
整理得 v 480 (t >0). t
新课进行时 核心知识点二 反比例函数在其他学科中的应用
例4 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂 分别为 1200 N 和 0.5 m. (1) 动力 F 与动力臂 l 有怎样的函数关系? 当动力臂为 1.5 m时,撬动石头至少需要多大的力?
北师大版九年级上册
6.3 反比例函数的应用
新课目标
【知识与技能】
使学生对反比例函数和反比例函数的图象意义理解加 深. 【过程与方法】
经历分析实际问题中变量之间的关系、建立反比例函 数模型,进而解决问题的过程. 【情感态度】
调动学生参与数学活动的积极性,体验数学活动充满 着探索性和创造性. 【教学重点】 建立反比例函数的模型,进而解决实际问题. 【教学难点】 经历探索的过程,培养学生学习数学的主动性和解决 问题的能力.
随堂演练
3. A、B两城市相距720千米,一列火车从A城去B城. (1) 火车的速度 v (千米/时) 和行驶的时间 t (时) 之间的函数关系是_v___7_2t_0__. (2)若到达目的地后,按原路匀速返回,并要求 在 3 小时内回到 A 城,则返回的速度不能低 于_2_4_0_千__米__/_时___.
R
知识小结
比实 例际 函问 数题
中 的 反
过程: 分析实际情境→建立函数模型→明确数学问题
注意: 实际问题中的两个变量往往都只能取非负值; 作实际问题中的函数图像时,横、纵坐标的单 位长度不一定相同
随堂演练
浙教版数学八年级下册《第6章 反比例函数》
《第6章反比例函数》一、填空题1.已知反比例函数的解析式为,则m的取值范围是.2.在反比例函数y=﹣中,自变量x的取值范围是.3.如果y与y 1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣45.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100 13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.《第6章反比例函数》参考答案与试题解析一、填空题1.已知反比例函数的解析式为,则m的取值范围是m≠.【考点】反比例函数的定义.【分析】根据y=,(k是常数,k≠0)是反比例函数,可得答案.【解答】解:比例函数的解析式为,2m﹣1≠0m≠,故答案为:m.【点评】本题考查了反比例函数,y=,(k是常数,k≠0)是反比例函数.2.在反比例函数y=﹣中,自变量x的取值范围是x≠0 .【考点】反比例函数的定义.【分析】根据反比例函数的意义,可得分母不能为0,可得答案.【解答】解:反比例函数y=﹣中,自变量x的取值范围是x≠0,故答案为:x≠0.【点评】本题考查了分式的定义,分母不能为0.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是y=﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设y=ay1(a≠0),y1=(b≠0).由此易得y=,然后把点(,﹣1)代入函数关系式,可以求得ab的值.【解答】解:根据题意设y=ay1(a≠0),y1=(b≠0).则y=.∵y关于x的函数图象经过点(,﹣1),∴﹣1=,解得,ab=﹣,∴y关于x的函数解析式是:y=﹣.故答案是:y=﹣.【点评】本题考查了待定系数法求反比例函数解析式.注意y与x的函数关系式中的ab作为整体来解答的.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣4【考点】反比例函数图象上点的坐标特征.【分析】先把x=3,y=4代入反比例函数y=求出m2﹣1的值,再对各选项进行逐一判断即可.【解答】解:∵x=3,y=4适合解析式,∴m2﹣1=3×4=12,A、∵2×6=12,∴此点在反比例函数y=的图象上,故本选项正确;B、∵(﹣2)×6=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;C、∵(﹣3)×4=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;D、∵3×(﹣4)=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例【考点】反比例函数的定义.【专题】跨学科.【分析】在本题中,P=I2R,即I2和R的乘积为定值,所以根据反比例的概念应该是I2和R成反比例,而并非I与R成反比例.【解答】解:根据P=I2R可以得到:当P为定值时,I2与R的乘积是定值,所以I2与R 成反比例.故选:B.【点评】本题渗透初中物理中“电流”有关的知识,当P为定值时,I2与R成反比例.把I2看作一个整体时,I2与R成反比例,而不是I与R成反比例,这是易忽略的地方,应引起注意.6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】分别计算出自变量为3和6的函数值,利用它们的差为1得到﹣=1,然后解此方程求出k即可得到反比例函数解析式.【解答】解:当x=3时,y==;当x=6时,y==,而函数值减少了1,∴﹣=1,解得k=6,所以反比例函数解析式为y=.故选A.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.【考点】待定系数法求反比例函数解析式;待定系数法求一次函数解析式.【专题】计算题.【分析】(1)设反比例解析式为y=,将x=1,y=3代入求出k的值,即可确定出反比例解析式;(2)将x=m,y=﹣2代入反比例解析式求出m的值,确定出(m,﹣2),代入一次函数求出b的值,即可确定出一次函数解析式.【解答】解:(1)设反比例解析式为y=,将x=1,y=3代入得:k=3,则反比例解析式为y=;(2)将x=m,y=﹣2代入反比例解析式得:﹣2m=3,即m=﹣,将(﹣,﹣2)代入一次函数解析式得:﹣2=﹣+b,即b=,则一次函数解析式为y=3x+.【点评】此题考查了待定系数法求反比例与一次函数解析式,熟练掌握待定系数法是解本题的关键.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】(1)设反比例函数解析式y=,然后把A点坐标代入求出k即可;(2)分别把P点和Q点坐标代入(1)中的解析式,求出a和b的值,然后代入中计算即可.【解答】解:(1)设反比例函数解析式y=,把A(2,﹣3)代入得k=2×(﹣3)=﹣6,所以反比例函数解析式为y=﹣;(2)把P(3,)代入y=﹣得3×=﹣6,解得a=﹣4,把Q(﹣5,b)代入y=﹣得﹣5b=﹣6,解得b=,所以=﹣4+×=﹣3.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.【考点】待定系数法求反比例函数解析式;二元一次方程的解.【专题】待定系数法.【分析】根据正比例和反比例函数的定义设表达式,再根据给出自变量和函数的对应值求出待定的系数则可.【解答】解:设y1=k1x(k1≠0),y2=∴y=k1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴.所以.所以y=x+.【点评】本题考查了正比例和反比例函数的定义,并且考查了二元一次方程组的解法,难度稍大.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?【考点】反比例函数的应用.【分析】(1)利用矩形面积固定进而得出y与x的关系式;(2)利用边长越接近相等,面积不变时,周长越小,进而得出答案;(3)利用一元二次方程的解法得出答案;(4)利用反比例函数增减性得出答案.【解答】解:(1)∵矩形两条邻边的长分别为6m和8m,∴矩形的面积为:6×8=48(cm2),∵设矩形的一边长为x(m),与它相邻的一边长为y(m),∴y=,比例系数即为矩形的面积;(2)当x=7时,y=,∵2(7+)=27<2(6+8),∴这是一种比小强更节省材料的方案;(3)当矩形两邻边相等,则x=,解得:x=±4(负数不合题意舍去),∴需要旧围栏的长为:4×4=16(m);(4)∵y=,48>0,∴矩形的一条边长x变大,那么另一条边的长会变小.【点评】此题主要考查了反比例函数的应用以及反比例函数增减性和一元二次方程的解法等知识,得出y与x的函数关系式是解题关键.11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?【考点】反比例函数的应用.【专题】应用题.【分析】(1)根据盈利=单件利润×售量,可得y与x的函数关系式;(2)将y=50,代入可得x的值;(3)卖出一件上衣的净利润为48元,再由总利润为5000元,可求出需要卖出的数量.【解答】解:(1)由题意得,xy=6000,∴y=.(2)当y=50时,x=120.(3)设卖a件,能完成任务,则(50﹣2)a=5000,解得:a≈104.2.答:营业员至少需要卖出105件上衣才能完成任务.【点评】本题考查了反比例函数的应用,解答本题的关键是根据盈利=单件利润×售量,得出函数关系式.12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100【考点】反比例函数的应用.【专题】阅读型;图表型.【分析】首先根据题意,可以用反比例函数刻画这种海产品的每天销售量y与销售价格x之间的关系,且根据图表可得数据,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)函数解析式为;填表如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100(2)2104﹣(30+40+48+50+60+80+96+100)=1600,即8天试销后,余下的海产品还有1600千克,当x=150时,=80.1600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.【点评】本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.【考点】反比例函数的定义.【专题】规律型.【分析】根据将x=代入反比例函数y=﹣中,可得y1,再根据又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,可得规律,根据规律,可得答案.【解答】解:y1=﹣,y2=2,y3=﹣,y4=﹣…每三个出现相同的一次,2014÷3=671 (1).【点评】本题考查了反比例函数的定义,计算得出规律是解题关键.初中数学试卷。
初中数学浙教版八年级下册《第六章 反比例函数 6.3 反比例函数的应用》教材教案
课题:反比例函数的应用●教学目标:一、知识与技能目标:1.根据实际问题中的条件,确定反比例函数的解析式;2.能根据图像指出函数值随自变量变化情况;3.会综合运用反比例函数的表达式。
二、过程与方法目标:1.能通过探索实际问题列出函数关系式;2.利用反比例函数的性质解释实际问题。
三、情感态度与价值观目标:1.在探索交流中,发展从图中获取信息的能力,渗透数形结合的思想方法;2.通过对实际问题的分析解决,让学生体验数学的价值,培养学生对数学的兴趣。
●重点:1.反比例函数的应用;2.数形结合思想在函数中的应用。
●难点:反比例函数与其它知识点的综合题,体会建模思想。
●教学流程:一、课前回顾我们在前面的学习中,已经知道了反比例函数的概念和相关性质,现在我们一起回忆一下相关概念。
反比例函数:其图像是双曲线,且既是轴对称图形也是中心对称图形。
当k>0时,双曲线分别位于第一三象限内;在每一象限内,y随x的增大而减小;当k<0时, 双曲线分别位于第二四象限内;在每一象限内,y随x的增大而增大. 双曲线无限趋近于x、y轴,但永远不会与坐标轴(x轴、y轴)相交.任意一组变量的乘积是一个定值,即xy=k,长方形面积=|m n|=|K|,三角形面积=|mn|=|K|.那么,对于反比例函数而言,它具有这么多的性质,在生活中有些什么应用呢?而我们又该怎么用反比例函数的性质来解决生活中的问题呢?今天我们将进一步的走进反比例函数,一起探索反比例函数在生活中的具体应用。
【设计意图】回顾学过的知识,帮学生复习知识,引出这节课的教学内容,同时也帮助学生能更好的融入课程。
二、 活动探究同学们,我们首先探究一下以下情况:探究 设一根火柴的长度为1,能否用若干根火柴收尾顺次连接摆出一个面积为12的矩形?面积为12的正方形呢?设:摆的长为x,摆的宽为y(x 、y 为正整数).则y 为大于0的整数)∵存在x 和y 都为正整数、且x 和y 的积为12 ∴能摆出矩形.若要摆出正方形,那么x 和y 的值就相等.∵此时x=y=正整数∴不能摆出正方形.结论:我们可以发现,在现实世界里,成反比例的量广泛存在着。
第6章 反比例函数 浙教版数学八年级下册期末试题选编(含答案)
第6章反比例函数一、单选题1.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,矩形ABCO,点B(10,8),点D在BC边上,连接AD,把ABD沿AD折叠,使点B恰好落在OC边上点E处,反比例函数(k≠0)的图象经过点D,则k的值为( )A.20B.30C.40D.482.(2022春·浙江丽水·八年级统考期末)反比例函数的图象必经过点()A.B.C.D.3.(2022春·浙江杭州·八年级统考期末)已知是关于的反比例函数,,和,是自变量与函数的两组对应值.则下列关系式中,成立的是()A.B.C.D.4.(2022春·浙江嘉兴·八年级统考期末)若反比例函数的图象经过点,则该反比例函数的表达式是()A.B.C.D.5.(2022春·浙江丽水·八年级统考期末)已知点,,都在反比例函数(a是常数)的图象上,且,则,,的大小关系为()A.B.C.D.6.(2022春·浙江湖州·八年级统考期末)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A.y=B.y=﹣C.y=D.y=﹣7.(2022春·浙江湖州·八年级统考期末)如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,则与的面积差为().A.32B.16C.8D.48.(2022春·浙江金华·八年级统考期末)已知反比例函数的图象位于第一、三象限,则a的取值范围是()A.B.C.D.二、填空题9.(2022春·浙江绍兴·八年级统考期末)若点A(2,m)在反比例函数y=的图像上,则m 的值为________.10.(2022春·浙江宁波·八年级统考期末)如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结. 若的面积与的面积相等,则的值是_____.11.(2022春·浙江宁波·八年级统考期末)若点在反比例函数的图象上,则____(填“>”或“<”或“=”)12.(2022春·浙江绍兴·八年级统考期末)如图,直线与反比例函数的图象相交于A、C 两点,与x轴交于点D,过点D作轴交反比例函的图象于点E,连结,点B为y 轴上一点,满足,且恰好平行于x轴.若,则k的值为________.13.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,已知点的坐标为,射线与反比例函数的图像交于点,过点作轴的垂线交双曲线于点,过点作轴的垂线交双曲线于点,联结,那么的值是__________14.(2022春·浙江杭州·八年级统考期末)已知反比例函数,当时,的最大值与最小值之差是4,则________.15.(2022春·浙江绍兴·八年级统考期末)如图,在平面直角坐标系中,矩形的顶点A在x轴上,顶点C在y轴上,矩形的边在上,.反比例函数的图象经过点B,若阴影部分面积为6,则k的值为______________.16.(2022春·浙江嘉兴·八年级统考期末)如图,直线交反比例函数的图象于点A,交y轴于点B,将直线向下平移个单位后得到直线,交反比例函数的图象于点C.若的面积为,则k的值为____.17.(2022春·浙江丽水·八年级统考期末)如图,的顶点在轴正半轴上,反比例函数在第一象限经过点,与交于点,且,若的面积为9,则的值是______.18.(2022春·浙江宁波·八年级统考期末)如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.三、解答题19.(2022春·浙江丽水·八年级统考期末)已知是关于的反比例函数,当时,.(1)求此函数的表达式;(2)当时,函数值是,求的值.20.(2022春·浙江宁波·八年级统考期末)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象交于点A(1,2)和B(﹣2,a),与y轴交于点M.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;(3)求不等式kx+b﹣<0的解集.(请直接写出答案)21.(2022春·浙江杭州·八年级校考期末)如图,一次函数的图象与反比例四数的图象相交于A(1,3),B(-3,n)两点.(1)求一次函数和反比例函数的表达式;(2)当一次函数的值大于反比例函数的值时,直接写出的取值范围.(3)直线交轴于点,点是轴上的点,的面积等于的面积,求点的坐标.22.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图像刚好过点B.(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图像于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.23.(2022春·浙江嘉兴·八年级统考期末)如图,经过坐标原点O的直线交反比例函数的图象于点,B.点C是x轴上异于点O的动点,点D与点C关于y轴对称,射线交y轴于点E,连结,,.(1)①写出点B的坐标.②求证:四边形是平行四边形.(2)当四边形是矩形时,求点C的坐标.(3)点C在运动过程中,当A,C,E三点中的其中一点到另两点的距离相等时,求的值.24.(2022春·浙江湖州·八年级统考期末)如图一次函数y=kx+b的图像与反比例函数的图像交于点A(2,5)和点B(n,2).(1)求m,n的值;(2)连接OA,OB,求△OAB的面积.25.(2022春·浙江舟山·八年级统考期末)背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点D,E,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请有助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.①求这个“Z函数”的表达式.②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).26.(2022春·浙江温州·八年级统考期末)如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).(1)求关于的函数表达式.(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.27.(2022春·浙江衢州·八年级统考期末)如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:桌面所受压强P(Pa)400受力面积S()0.5根据表中数据,求出压强()的函数表达式及10cm,且与原长方体相同重量的长方体放置于该水平28.(2022春·浙江杭州·八年级统考期末)在探究欧姆定律时,小明发现小灯泡电路上的电压保持不变,通过小灯泡的电流越大,灯就越亮.设选用小灯泡的电阻为,通过的电流强度为.(1)若电阻为,通过的电流强度为,求关于的函数表达式.(2)如果电阻小于,那么与原来的相比,小灯泡的亮度将发生什么变化?参考答案:1.B【分析】根据翻折变换的性质,可得AE=AB=5,DE=BD;然后设点D的坐标是(10,b),在Rt△CDE 中,根据勾股定理,求出CD的长度,进而求出k的值.【详解】解:∵△ABD沿AD折叠,使点B恰好落在OC边上点E处,点B(10,8),∴AE=AB=10,DE=BD,∵AO=8,AE=10,∴OE==6,CE=10﹣6=4,设点D的坐标是(10,b),则CD=b,DE=8﹣b,∵CD2+CE2=DE2,∴b2+42=(8﹣b)2,解得b=3,∴点D的坐标是(10,3),∵反比例函数的图象经过点D,∴k=10×3=30,故选:B.【点睛】本题考查了求反比例函数的解析式,同时也考查了矩形的翻折问题.须熟练掌握待定系数法求反比例函数的解析式,轴对称的性质.其中求点D的坐标是解题的关键.2.B【分析】利用代入法,把坐标一一代入反比例函数解析式,即可得出结果.【详解】解:A.把代入反比例函数,可得:,故该选项不符合题意;B.把代入反比例函数,可得:,故该选项符合题意;C.把代入反比例函数,可得:,故该选项不符合题意;.把代入反比例函数,可得:,故该选项不符合题意.故选:B【点睛】本题考查了反比例函数的定义及解析式,解本题的关键在充分利用反比例函数解析式进行分【详解】解:设该反比例函数的表达式是,把点代入得:,解得:,∴该反比例函数的表达式是.故选:【点睛】本题主要考查了求反比例函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.【分析】根据,判断反比例函数的图象所在位置,结合图象分析函数增减性,利用函数增减性比较自变量的大小.∵,反比例函数(当时,,故选:D.【点睛】本题考查反比例函数的自变量大小的比较,解题的关键是结合图象,根据反比例函数的增减性分析自变量的大小.=,代入点求出即可.【详解】解:设反比例函数解析式为=,-4=,所以这个反比例函数解析式为=-.【点睛】本题主要考查待定系数法求反比例函数解析式,求反比例函数解析式只需要知道其图像上一点的【分析】已知反比例函数的解析式为,根据系数)再结合已知条件求解即可;【详解】解:如图,设点,因为点B在反比例函数的图象上,所以设点,),)−=m2−2=n−(=−m mn=−(BAD=8.【点睛】本题考查了反比例函数系数的几何意义、等腰三角形的性质以及面积公式,解题的关键是掌握反比例函数系数的几何意义.【分析】根据反比例函数经过第一、三象限,可知,据此作答即可.反比例函数的图象位于第一、三象限,∴,解得:,故选:C.函数的(当时,反比例函数的(当时,反比例函数的()的图象经过二、四象限.【详解】解:将点()代入反比例函数得,==3点睛:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标符合函数的解【分析】过点作轴于.根据代入即可求得的值.【详解】如图,过点作轴于.代入得:由反比例函数比例系数的几何意义,可得,.∵,∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2.【分析】先确定的图像在一,三象限,且在每一象限内,随的增大而减小,再利用反比例函数的性质可得答案.【详解】解:>的图像在一,三象限,且在每一象限内,随的增大而减小,><故答案为:【点睛】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的【分析】由等腰三角形的性质可得,即点C的纵坐标得出,进而利用全等三角形得出点,利用反比例函数图象上点的坐标特征得出点E的纵坐标,再利用三角形的面积可得【详解】解:如图,过点作轴,交于点作轴,垂足为∵,∴,由于点A、点C在反比例函数的图象上,可设点,即,,∴,∴点,即,∴,∴,在和中,,∴,∴,∴点E的横坐标为,在反比例函数的图象上,的纵坐标为,即,∵,即,∴,∴,故答案为:6.【点睛】本题考查反比例函数图象上点的坐标特征,以及一次函数与反比例函数的交点坐标,利用坐标表【分析】求出的直线解析式,联立,求出,,过点作交于点,交于点,则,,分别求出,,,,即可求,,再求即可.【详解】解:设的解析式为,,,,联立,解得,,,过点作交于点,交于点,,,,,,,,,,故答案为:1.【点睛】本题考查反比例函数的图象及性质,解题的关键是熟练掌握反比例函数的图象及性质.,∴△CMO≌△EMF(AAS)∴,∴,则ab=12,=,=k =12故答案为【点睛】本题考查待定系数法求反比例函数,矩形的性质和全等三角形的性质和判定,不规则图形面积,【分析】向下平移个单位后得到直线,可得到的函数表达式,将点A分别作轴得垂线,与y轴交于点P,则,即可求的坐标,最后将点的坐标代入反比例函数的表达式,求出k即可.∵向下平移个单位后得到直线直线=0代入得;y=,)的横坐标为m,则,)的横坐标为,)AP=m,CQ=n,PQ=-()= PB==,BQ=====∵的面积为∴==(,4(,)代入解得:k=6=四边形OACB=BC∴,∵∴,∴,∴k=12,.【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.【详解】如图,过点,分别做轴的垂线,交于点,,设长为∴在,中,∴,∴∴∴在,中,∴;∴;∴,∴,∴故答案为:.反比例函数解析式为(2)【分析】()首先设反比例函数解析式为,然后把,代入反比例函数,即可得出)中反比例函数解析式,把代入解析式,即可得出)解:设反比例函数解析式为,把,代入反比例函数解析式,可得:,反比例函数解析式为.)可得:,当时,函数值是,∵当时,,∴,解得:.【点睛】本题考查了用待定系数法求反比例函数表达式、反比例函数的定义,解本题的关键在正确求出反比例函数表达式.),;)或;)或【分析】(1)先由点A(1,)在反比例函数图象上求解反比例函数的解析式,再求解的坐标代入一次函数的解析式,求解一次函数的解析式即可;)先求解设点,可得)结合函数图象,根据一次函数的图象在反比例函数的图象的下方,从而可得答案)=(反比例函数的解析式为:)代入可得:把代入y1=(k≠0),解得:所以一次函数的解析式为:)令则则设点,解得:或或(3)kx+b﹣<0,所以一次函数值小于反比例函数值,即一次函数的图象在反比例函数图象的下方,所以或【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的图象,坐标与图形的面积,利用函数图(1),(2)或(3)或【分析】(1)将点A坐标代入反比例解析式求出解析式求出n的值,确定出点)代入反比例解析式得:,,∴反比例解析式为,)代入反比例解析式得:,∴,∴B(-3,)代入中,得:,解得:,一次函数解析式为;)解:由图象得:一次函数值大于反比例函数值的的取值范围为或;)解:对于一次函数,令,得到,即0),∴.∵的面积等于的面积,,,∵点是轴上的点,∴设点P(∴,解得,.∴或.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.(1),存在,Q点的坐标为(5,-)或(-)或(,)根据题意分别求出A点和C点的坐标,然后用待定系数法求出函数解析式即可;点和D点的坐标,分点在直线BA=,3=,的反比例函数的解析式为=,点坐标得,,解得,A,C两点的一次函数的表达式为=-x)解:存在,(m,-m,)若以点B,为顶点的四边形为菱形则点∴-(-m+3=,整理得,解得=或,经检验,m的值是方程的解,=时,=--m==此时Q5,3-),Q(5-);=时,=-(-m==此时(5,3-),Q(5-);B,D,P,,且=3=,经检验,m的值是方程的解,,=,(,综上所述,若以点-)或(-)或(,3【点睛】本题主要考查反比例函数的综合题,熟练掌握待定系数法求解析式,一次函数的性质,反比例函数的性质,菱形的性质,解一元二次方程等知识是解题的关键.23.(1);证明见解析(2)(3)或或【分析】(1)①根据反比例函数图象是中心对称图形可得点②根据中心对称的性质可得正比例函数与反比例函数的图象于点,∴;②∵点A、∴OA=OB,∵,∴,∴,∴;(3)当点E作AH⊥x轴于∴,∴,∵,∴点D与H重合,∴,∴,当点A为CE的中点时,如图,则,同理可得,∴,∵四边形ACBD是平行四边形,∴,∴,∴,当点C为AE的中点时,,则,,由勾股定理得,∴,综上:或或.【点睛】本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的判定,矩形的性质,三角形中位线定理等知识,熟练掌握反比例函数图象是中心对称图形是解题的关键,同时注意分类讨论思想的运用.(2)【分析】2)利用待定系数法求得一次函数的解析式,即可求得直线与)代入中,得到y,y中,得到=5;)解:如图所示:∴,解得,∴一次函数为+7,令y=0,则﹣0,解得∴C(7,0),BOC.【点睛】本题考查待定系数法确定函数关系式以及平面直角坐标系下三角形面积,掌握待定系数法以及坐①;而增大.,,=(A(∴;②图象如图:性质1:x>0时,y随x的增大而增大;性质2:x<0时,y随x的增大而增大.【点睛】此题考查待定系数法求反比例函数解析式,画函数图象,函数的性质,熟练掌握各知识点并应用解决问题是解题的关键.26.(1)(2)(3)或,进而可得出:;均为整数,围成矩形劳动基地三边的篱笆总长小于10m,可得出∴.又∵墙长为∴,∴.∴y关于的函数表达式为:.)解:依题意得:,∴或,∵,∴,∴;(3)解:依题意得:,,∴,∵和的长都是正整数,∴或,∴则满足条件的围建方案为:或【点睛】本题考查了根据实际问题列出反比例函数关系式,根据各数量之间的关系,找出关系式以及根据x(1),这种摆放方式不安全,理由见解析()的函数表达式为,)代入得:,)关于受力面积S()的函数表达式为,时,,)解:这种摆放方式不安全,理由如下:=0.1×0.2=0.02()将长方体放置于该水平玻璃桌面上的压强为,(1)小灯泡的亮度将变亮【分析】(1)根据题意列出关系即可求解;电压不变,,∴,;(2),,随的增大而减小,若电阻小于,那么与原来的相比,小灯泡的亮度将变亮.【点睛】本题考查了反比例函数的应用,根据题意列出函数关系式是解题的关键.。
浙教版数学八年级下册6.1《反比例函数》说课稿2
浙教版数学八年级下册6.1《反比例函数》说课稿2一. 教材分析《反比例函数》是浙教版数学八年级下册第六章第一节的内容。
本节内容是在学生已经掌握了函数的概念、正比例函数的基础上进行的。
反比例函数是初中数学中的重要内容,它在实际生活中有着广泛的应用。
本节课的内容包括反比例函数的定义、图象和性质,以及反比例函数的应用。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念和正比例函数的知识。
他们对于函数的理解已经有一定的基础,但反比例函数的概念和性质与他们之前学习的函数有所不同,需要他们进行一定的转换和适应。
同时,学生对于图象的绘制和分析也有一定的掌握,但反比例函数的图象特点需要他们进一步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解反比例函数的概念,掌握反比例函数的性质,能够绘制反比例函数的图象,并能够运用反比例函数解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流的方式,培养他们的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,培养他们对数学的兴趣和热情。
四. 说教学重难点1.教学重点:反比例函数的概念、性质和图象。
2.教学难点:反比例函数的性质的理解和应用,反比例函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、案例教学法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入:通过展示实际生活中的反比例函数应用,引发学生对反比例函数的兴趣,激发他们的学习动机。
2.新课导入:介绍反比例函数的定义,引导学生通过自主学习与合作交流,理解反比例函数的概念和性质。
3.图象展示:利用多媒体课件展示反比例函数的图象,引导学生观察和分析反比例函数图象的特点。
4.性质探讨:引导学生通过实例和数学推理,探讨反比例函数的性质,如单调性、奇偶性等。
5.应用拓展:给出一些实际问题,引导学生运用反比例函数的知识解决,巩固他们的理解和应用能力。
《第六章3反比例函数的应用》作业设计方案-初中数学北师大版12九年级上册
《反比例函数的应用》作业设计方案(第一课时)一、作业目标本作业旨在通过反比例函数的应用练习,使学生能够:1. 掌握反比例函数的基本概念和性质。
2. 理解反比例函数在现实生活中的应用。
3. 培养学生的数学思维能力和解决实际问题的能力。
二、作业内容本课时的作业内容主要包括以下几个部分:1. 基础概念回顾:要求学生回顾反比例函数的概念、性质及其图像特征,并完成相关练习题。
2. 实际问题分析:选取几个与反比例函数相关的实际问题,如电费计算、路程与时间的关系等,让学生分析并建立反比例函数模型。
3. 函数应用练习:设计一系列练习题,包括填空题、选择题和解答题,让学生运用反比例函数解决实际问题。
4. 拓展延伸:引导学生探索反比例函数在其他领域的应用,如物理学中的胡克定律等。
三、作业要求为确保学生能够高效完成作业并达到预期效果,特提出以下要求:1. 认真审题:仔细阅读题目,明确题目要求,理解题目的意图。
2. 独立思考:在完成作业过程中,要独立思考,尝试多种解题方法。
3. 规范答题:书写要规范,步骤要清晰,答案要准确。
4. 及时复习:在完成作业后,要及时复习相关知识点,巩固所学内容。
5. 拓展探索:鼓励学生进行拓展探索,尝试将反比例函数应用于其他领域。
四、作业评价作业评价将根据以下标准进行:1. 正确性:答案是否正确,是否符合题目要求。
2. 规范性:书写是否规范,步骤是否清晰。
3. 创新性:是否有新颖的解题思路和方法。
4. 拓展性:是否能够进行拓展探索,将反比例函数应用于其他领域。
评价方式将采用教师批改、同学互评和自我评价相结合的方式,以全面了解学生的作业情况。
五、作业反馈作业反馈将通过以下方式进行:1. 教师批改:教师将对每一份作业进行认真批改,指出学生的优点和不足。
2. 课堂讲解:在下一课时,教师将对共性问题进行讲解,并展示优秀作业。
3. 个别辅导:对于存在较大问题的学生,教师将进行个别辅导,帮助他们解决问题。
浙教版数学八年级下册6.3《反比例函数的应用》说课稿
浙教版数学八年级下册6.3《反比例函数的应用》说课稿一. 教材分析浙教版数学八年级下册6.3《反比例函数的应用》这一节的内容,是在学生已经掌握了反比例函数的定义、性质和图象的基础上进行讲解的。
本节课的主要内容是让学生学会如何运用反比例函数解决实际问题,培养学生的数学应用能力。
教材通过例题和练习题的形式,引导学生运用反比例函数解决生活中的问题,如速度、面积等。
二. 学情分析学生在学习这一节内容时,已经具备了一定的函数知识,对反比例函数的概念和性质有一定的了解。
但是,学生在应用反比例函数解决实际问题时,可能会遇到一些困难,如对反比例函数图象的理解、对实际问题中变量关系的把握等。
因此,在教学过程中,教师需要关注学生的这些认知困难,并通过实例讲解、练习题等方式,帮助学生更好地理解和运用反比例函数。
三. 说教学目标1.知识与技能目标:使学生掌握反比例函数的应用,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过实例分析,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维。
四. 说教学重难点1.教学重点:反比例函数的应用,如何运用反比例函数解决实际问题。
2.教学难点:对反比例函数图象的理解,以及如何将实际问题中的变量关系转化为反比例函数。
五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、小组讨论法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、板书、练习题等,辅助教学。
六. 说教学过程1.导入:通过一个实际问题,引出反比例函数的应用,激发学生的学习兴趣。
2.新课讲解:讲解反比例函数的应用,引导学生理解反比例函数图象的特点,以及如何将实际问题转化为反比例函数问题。
3.实例分析:分析几个典型的实际问题,引导学生运用反比例函数解决问题。
4.练习巩固:布置一些练习题,让学生独立完成,巩固所学知识。
5.课堂小结:总结本节课的主要内容,强调反比例函数在实际问题中的应用。
浙教版初中数学教材(总目录)
浙教版初中数学教材总目录
七年级上册
第1章从自然数到有理数
1.1从自然数到分数
1.2有理数
1.3数轴
1.4绝对值
1.5有理数的大小比较
第2章有理数的运算
2.1有理数的加法
2.2有理数的减法
2.3有理数的乘法
2.4有理数的除法
2.5有理数的乘方
2.6有理数的混合运算
2.7准确数和近似数
2.8计算器的使用
第3章实数
3.1平方根
3.2实数
3.3立方根
3.4用计算器进行数的开方
3.5实数的运算
第4章代数式
4.1用字母表示数
4.2代数式
4.3代数式的值
4.4整式
4.5合并同类项
4.6整式的加减
第5章一元一次方程
5.1一元一次方程
5.2一元一次方程的解法
5.3一元一次方程的应用
5.4问题解决的基本步骤
第6章数据与图表
6.1数据的收集与整理
6.2统计表
6.3条形统计图和折线统计图
6.4扇形统计图。
八年级数学下册第章反比例函数检测卷新版浙教版1.doc
第6章 反比例函数检测卷一、选择题(每题3分,共30分) 1. 已知反比例函数y=xk的图象经过点P (-1,2),则这个函数的图象位于( ) A . 第二,三象限 B . 第一,三象限 C . 第三,四象限 D . 第二,四象限 2. 已知矩形的面积为20cm2,设该矩形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的函数图象大致是( )3. 已知当x=2时,反比例函数y=xk 1与正比例函数y=k2x 的值相等,则k1∶k2的值是( ) A .41B . 1C . 2D . 4 4. 在反比例函数y=xm31 图象上有两点A (x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m 的取值范围是…( ) A . m >31 B . m <31 C . m ≥31 D . m ≤315. 在同一坐标系中,函数y=xk和y=kx+3的图象大致是( )6. 如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y=-x 6和y=x4的图象交于A 、B 两点. 若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A . 3B . 4C . 5D . 107. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) A. 16时 B. 1587小时 C. 151615小时 D. 17小时8. 如图,A 、B 是双曲线y=xk上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C . 若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B . 38C . 3D . 49. 如图,正比例函数y1=k1x 的图象与反比例函数y2=xk 2的图象相交于A ,B 两点,其中点A 的横坐标为2,当y1>y2时,x 的取值范围是( )A . x <-2或x >2B . x <-2或0<x <2C . -2<x <0或0<x <2D . -2<x <0或x >210. 某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机. 饮水机关机后即刻自动开机,重复上述自动程序. 若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A . 27分钟B . 20分钟C . 13分钟D . 7分钟 二、填空题(每题4分,共24分) 11. 反比例函数y=xk 1的图象在每一个象限内y 随x 的增大而减小,则k 的取值范围为 . 12. 老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A (x1,y1)、B (x2,y2)且x1<x2,y1>y2; 丙:函数图象经过第一象限;丁:在每个象限内,y 随x 的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数: .13. 如图,过点A (1,0)的直线与y 轴平行,且分别与正比例函数y=k1x ,y=k2x 和反比例函数y=xk 3在第一象限相交,则k1、k2、k3的大小关系是 .14. 表1给出了正比例函数y1=kx 的图象上部分点的坐标,表2给出了反比例函数y2=xm的图象上部分点的坐标.表1 表2则当y1=y2时,x 的值为 .15. 如图,Rt △ABC 在第一象限,∠BAC=90°,AB=AC=2,点A 在直线y=x 上,其中点A 的横坐标为1,且AB ∥x 轴,AC ∥y 轴,若双曲线y =xk (k ≠0)与△ABC 有交点,则k 的取值范围是 .16. 如图,在函数y=x8(x >0)的图象上有点P1、P2、P3…、Pn 、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn 、Pn+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn ,则S1= ,Sn= . (用含n 的代数式表示)三、解答题(共46分)17. (5分)已知正比例函数y=ax 与反比例函数y=xb的图象有一个公共点A (1,2). (1)求这两个函数的表达式;(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.18. (5分)如图,已知一次函数y1=kx+b 与反比例函数y2=xm的图象交于A (2,4)、B (-4,n )两点.(1)分别求出y1和y2的解析式; (2)写出y1=y2时,x 的值; (3)写出y1>y2时,x 的取值范围.19. (6分)如图,在直角坐标系xOy 中,一次函数y=k1x+b 的图象与反比例函数y=xk 2的图象交于A (1,4),B (3,m )两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积.20. (6分)去学校食堂就餐,经常会在一个买菜窗口前等待. 经调查发现,同学的舒适度指数y 与等待时间x (分)之间存在如下的关系:y=x100,求: (1)若等待时间x=5分钟时,求舒适度y 的值;(2)舒适度指数不低于10时,同学才会感到舒适. 函数y=x100(x >0)的图象如图,请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?21. (6分)“至诚宾馆”客房有80个房间供游客居住,旅游旺季,当每个房间的定价增加时,就会有一些房间空闲,具体数据如下表:(1)请你认真分析表中数据,写出能表示其变化规律的函数表达式;(2)对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,同时为促进当地旅游业的蓬勃发展,市旅游局将对每个实际入住的房间予以每间每天奖励50元,求每天入住的房间数为50时宾馆每天的纯利润.22. (6分)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12m ,设AD 的长为xm ,DC 的长为ym. (1)求y 与x 之间的函数关系式;(2)若围成矩形科技园ABCD 的三边材料总长不超过26m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.23. (6分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,-2). (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移5个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.24. (6分)(北海中考)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B (0,1),C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式.参考答案第6章反比例函数检测卷一、选择题1—5. DBDBA 6—10. CCBDC二、填空题11. k>112. y=x1(x >0) 13. k2>k3>k1 14. 1或-1 15. 1≤k ≤4 16. 4)1(8n n三、解答题17. (1)把A (1,2)代入y=ax 得a=2,所以正比例函数解析式为y=2x ;把A (1,2)代入y=x2得b=1×2=2,所以反比例函数解析式为y=xb ; (2)如图,当-1<x <0或x >1时,正比例函数值大于反比例函数值.18. ((1)将A (2,4)代入反比例函数解析式得:m=8,∴反比例函数解析式为y2=x8,将B (-4,n )代入反比例函数解析式得:n=-2,即B (-4,-2),将A 与B 坐标代入一次函数解析式得:2k+b=4,-4k+b=-2,解得:k=1,b=2,则一次函数解析式为y1=x+2; (2)联立两函数解析式得:y=x+2,y=x8,解得:x=2,y=4或x=-4,y=-2,则y1=y2时,x 的值为2或-4;(3)利用图象得:y1>y2时,x 的取值范围为-4<x <0或x >2.19. (1)把A (1,4)代入y=x k 2得k2=1×4=4,所以反比例函数解析式为y=x4(x >0),把B (3,m )代入y=x4得3m=4,解得m=34,所以B 点坐标为(3,34),把A (1,4),B (3,34)代入y=k1x+b 得k1+b=4,3k1+b=34,解得k1=-34,b=316,所以一次函数解析式为y=-34x+316;(2)如图,把x=0代入y=-34x+316得y=316,则C 点坐标为(0,316);把y=0代入y=-34x+316得-34x+316=0,解得x=4,则D 点坐标为(0,4),所以S △AOB=S △OCD-S △OCA-S △OBD=21×4×316-21×316×1-21×4×34=316.20. (1)当x=5时,舒适度y=x 100=5100=20; (2)舒适度指数不低于10时,由图象y ≥10时,0<x ≤10,所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟. 21. (1)由题意得:y=x 12000 (2)y=50时,x=5012000=240,(240-20+50)×50=13500元.答:每天入住的房间数为50时宾馆每天的纯利润为13500元.22. ((1)AD 的长为xm ,DC 的长为ym ,根据题意,得x ·y=60,即y=x60,∴y 与x 之间的函数关系式为y=x 60; (2)由y=x60,且x ,y 都为正整数,∴x 可取1,2,3,4,5,6,10,12,15,20,30,60. 但∵2x+y ≤26,0<y ≤12. ∴符合条件的有:x=5时,y=12,x=6时,y=10,x=10时,y=6. 答:满足条件的所有围建方案:AD=5m ,DC=12m 或AD=6m ,DC=10m 或AD=10m ,DC=6m.23. (1)设反比例函数的解析式为y=xk(k >0),∵A (m ,-2)在y=2x 上,∴-2=2m ,∴m=-1,∴A (-1,-2),又∵点A 在y=x k 上,∴k=2,∴反比例函数的解析式为y=x2;(2)观察图象可知正比例函数值大于反比例函数值时自变量x 的取值范围为-1<x <0或x >1;(3)四边形OABC 是菱形. 证明:∵A (-1,-2),∴OA=2221+=5,由题意知:CB ∥OA 且CB=5,∴CB=OA ,∴四边形OABC 是平行四边形,∵C (2,n )在y=x2上,∴n=1,∴C (2,1),OC=2212+=5,∴OC=OA ,∴四边形OABC 是菱形. 24. (1)如图作CN ⊥x 轴于点N ,在Rt △CNA 和Rt △AOB 中,CN=AO=2,AC=AB ∴Rt △CNA ≌Rt △AOB (HL ),则AN=BO=1,∴NO=AN+AO=3,且点C 在第二象限,∴d=-3;(2)设反比例函数为y=xk,点C ′和B ′在该反比例函数图象上,设C ′(m-3,2),则B ′(m ,1),把点C ′和B ′的坐标分别代入y=xk,得k=2m-6;k=m ,∴k=2k-6,则k=6,m=6,反比例函数解析式为y=x6. 得点C ′(3,2),B ′(6,1). 设直线C ′B ′的解析式为y=ax+b ,把C ′、B ′两点坐标代入得3a+b=2,6a+b=1,∴解得a=-31,b=3,∴直线C ′B ′的解析式为y=-31x+3.。
浙教版八年级下册数学《第6章反比例函数》单元练习(A)含答案试卷
八年级下第6章反比例函数练习A卷姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1、下列函数中,不是反比例函数的是()A、y=﹣B、y=C、y=D、3xy=22、反比例函数y= 的图象是()。
A、线段B、直线C、抛物线D、双曲线3、下列问题中,两个变量成反比例的是()A、长方形的周长确定,它的长与宽;B、长方形的长确定,它的周长与宽;C、长方形的面积确定,它的长与宽;D、长方形的长确定,它的面积与宽.4、在同一平面直角坐标系中,反比例函数y=-与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为( )A、2B、6C、10D、85、反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是()A、1B、2C、4D、6、如图,反比例函数y=(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B (3,2).当ax+b<时,则x的取值范围是()A、1<x<3B、x<1或x>3C、0<x<1D、0<x<1或x>37、小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A、x=1B、x=2C、x=3D、x=4A、如果y是x的反比例函数,那么x也是y的反比例函数.B、如果y是z的反比例函数,z是x的正比例函数,且x≠0,那么y是x的反比例函数C、如果y是z的正比例函数,z是x的反比例函数,且x≠0,那么y是x的反比例函数D、如果y是z的反比例函数,z是x的反比例函数,那么y是x的反比例函数9、如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是A、 B、 C、 D、10、如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A、(﹣2,﹣4)B、(﹣2,﹣1)C、(﹣1,﹣2)D、(﹣4,﹣2)二、填空题(共7题;共21分)11、若函数y=(m﹣1)是反比例函数,则m的值等于________12、在反比例函数的图象上有两点,当时,与的大小关系是________ .13、如图,反比例函数y=图象上有一点P,PA⊥x轴于点A,点B在y轴的负半轴上,若△PAB 的面积为4,则k=________14、如图,点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=________ .去15、函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当,x>3时,y2>y1;③当x=1时,BC=8,④当逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是________ .16、求方程x2+3x﹣1=0的解,除了用课本的方法外,也可以采用图象的方法:画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即为该方程的图象,则两图象交点的横坐标即为该方程的解.类似地,可以判断方程x3+x﹣1=0的解的个数有________ 个.17、如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为________ .三、解答题(共8题;共48分)18、如果函数y=m是一个经过二、四象限的反比例函数,则求m的值和反比例函数的解析式.19、如果y是z的反比例函数,z是x的反比例函数,那么y与x具有怎样的函数关系?20、水池中蓄水90m2,现用放水管以x(m3/h)的速度排水,经过y(h)排空,求y与x之间的函数表达式,y是x的反比例函数吗?21、作出反比例函数y=的图象,并根据图象解答下列问题:(1)当x=4时,求y的值;(2)当y=﹣2时,求x的值.22、若反比例函数y=与一次函数y=2x﹣4的图象都经过点A(a,2)(1)求反比例函数的解析式;(2)当反比例函数y=的值大于一次函数y=2x﹣4的值时,求自变量x的取值范围.23、如图,已知直线y=﹣x+4与反比例函数y=的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积;(4)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.24、(1)如图,过反比例函数y=(x>0)图象上任意一点P(x,y),分别向x轴与y轴作垂线,垂线段分别为PA、PB,证明:S矩形OAPB=k,S△OAP=k,S△OPB=k.(2)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,求k的值.25、已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD (A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数,它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式.答案解析一、选择题1、分析:根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.解:A、符合反比例函数的定义,y是x的反比例函数,错误;B、符合反比例函数的定义,y是x的反比例函数,错误;C、y与x﹣1成反比例,y不是x的反比例函数,正确;D、符合反比例函数的定义,y是x的反比例函数,错误.故选C.2、分析:根据反比例函数的性质可直接得到答案解:∵y= 是反比例函数,∴图象是双曲线选:D.3、分析:根据反比例函数的定义解答.例如:在本题中,长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.解:A、长方形的周长=2×(长+宽),即长和宽的和为定值,所以根据正比例的概念应该是长和宽成正比例.故本选项错误;B、长方形的周长=2×(长+宽),所以,长=-宽,即周长的一半长和宽的和为定值,所以根据正比例的概念应该是周长和宽成正比例.故本选项错误;C、长方形的面积=长×宽,即长和宽的乘积为定值,所以根据反比例的概念应该是长和宽成反比例;故本选项正确;D、长方形的面积=长×宽,即长和宽的乘积为定值,所以根据正比例的概念应该是长和宽成正比例;故本选项错误;故选C.4、分析:本题需先求出两个函数的交点坐标,联立两函数的解析式,所得方程组的解即为A、B点的坐标.由于△OAB的边不在坐标轴上,因此可用其他图形面积的和差来求出△AOB的面积.本题难度较大,考查利用反比例函数和一次函数的知识求三角形的面积,因为△AOB的边都不在坐标轴上,所以直接利用三角形的面积计算公式来求这个三角形的面积比较烦琐,也比较难,因此需要将这个三角形转化为两个有一边在坐标上的三角形来求面积.本题也可以求出一次函数y=-x+2与x轴的交点坐标 D(2,0),再利用上面的方法来求△AOB的面积.解:由题意:,解得,;∴A(-2,4)、B(4,-2).如图:由于一次函数y=-x+2与y轴的交点坐标C(0,2),所以OC=2;因此S△AOB=S△AOC+S△COB=×2×2+×2×4=6,故选B.5、分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求得k的值.解:由于点M是反比例函数y=(k>0)图象上一点,则S△MOP=|k|=1,又由于k>0,则k=2.故选B.6、分析:依题意可知,问题转化为:当一次函数值小于反比例函数值时,x的取值范围.解:由两函数图象交点可知,当x=1或3时,ax+b=,当0<x<1或x>3时,ax+b<.故选D.7、分析:关于x的分式方程−1=2的解就是函数y=−1中,纵坐标y=2时的横坐标x的值,据此即可求解.解:关于x的分式方程−1=2的解就是函数y=−1中,纵坐标y=2时的横坐标x的值.根据图象可以得到:当y=2时,x=1.故选A.8、分析:形如y= (k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数解: A.如果y是x的反比例函数,那么x也是y的反比例函数,说法正确,故本选项正确;B.如果y是z的反比例函数,z是x的正比例函数,且x≠0,那么y是x的反比例函数,说法正确,故本选项正确;C.如果y是z的正比例函数,z是x的反比例函数,且x≠0,那么y是x的反比例函数,说法正确,故本选项正确;D.如果y是z的反比例函数,z是x的反比例函数,那么y不一定是x的反比例函数,原说法错误,故本选项错误选D.9、解:∵点A在反比例函数的图象上,∴设点A的坐标为(x,)。
新版浙教版2020初中数学八年级下册第6章反比例函数6.3反比例函数的应用教学课件
y x 2.
解得x y
4,2;或xy
2, 4.
A( 2,4), B(4, 2).
y
A
N
M
O
x
B
(2)解法一:y来自y x 2,当y 0时, x 2, M (2,0).
A
OM 2.
N
作AC x轴于C, BD x轴于D.
MD
AC 4, BD 2,
CO
x
B
SOMB
1 2
OM
BD
1 2
满池水排空所需的时间t(h)将如何变化?
解析:此时所需时间t(h)将减少. (3)写出t与Q之间的函数关系式.
解析:t与Q之间的函数关系式为:
t
48 Q
.
(4)如果准备在5h内将满池水排空,那么每时的排水量 至少为多少? 解析:当t=5h时,Q=48/5=9.6(m3).所以每时的排水 量至少为9.6 m3. (5)已知排水管的最大排水量为每时12m3,那么最少 多长时间可将满池水全部排空? 解析:当Q=12(m3)时,t=48/12=4(h).所以最少需 4h可将满池水全部排空.
位置 二、四
k<0
象限
二、四 象限
增减性 y随x的增大 每个象限内, y随x
而减小
的增大而增大
知识讲 解
某校科技小组进行野外考察,途中遇到 一片十几米宽的烂泥湿地.为了安全、 迅速通过这片湿地,他们沿着前进路线 铺垫了若干块木板,构筑成一条临时通 道,从而顺利完成了任务.你能解释他 们这样做的道理吗?当人和木板对湿地 的压力一定时,随着木板面积S 的变化 ,人和木板对地面的压强p(Pa)将如何变 化?如果人和木板对湿地地面的压力合 计600N,那么
浙教版八年级数学下册第6章综合素质评价附答案
浙教版八年级数学下册第6章综合素质评价一、选择题(每题3分,共30分)1.下列两个变量之间的关系为反比例关系的是()A.匀速行驶过程中,行驶路程与时间的关系B.体积一定时,物体的质量与密度的关系C.质量一定时,物体的体积与密度的关系D.长方形的长一定时,它的周长与宽的关系2.反比例函数y=kx的图象经过点P(2,3),则下列四个点中在该函数图象上的是()A.(-2,3) B.(2,-3) C.(3,2) D.(3,-2)3.下列函数:①y=x-2,②y=3x,③y=x-1,④y=2x+1,其中y是关于x的反比例函数的有()A.0个B.1个C.2个D.3个4.关于反比例函数y=2x,下列说法错误的是()A.y随x的增大而减小B.图象位于第一、三象限C.图象过点(-1,-2) D.图象关于原点成中心对称5.若反比例函数y=2k-1x的图象在第二、四象限,则k的取值范围是()A.k>12B.k<12C.k≠12D.不存在6.已知点A(x1,y1),B(x2,y2)在反比例函数y=-12x的图象上,若x1<0<x2,则()A.y1<0<y2B.y2<0<y1 C.y1<y2<0 D.y2<y1<07.一次函数y=ax+1与反比例函数y=-ax在同一坐标系中的大致图象是()8.已知某种显示器的使用寿命为定值,这种显示器可工作的天数y与平均每天工作的小时数x是反比例函数的关系,图象如图所示.如果这种显示器至少要用2 000天,那么显示器平均每天工作的小时数x应控制在()A.0<x≤10 B.10≤x≤24C.0<x≤20 D.20≤x≤249.如图,矩形AOBC的面积为4,反比例函数y=kx(k≠0)的图象的一支经过矩形两对角线的交点P,则该反比例函数的表达式是()A.y=4x B.y=2x C.y=-2x D.y=-1x10.如图,已知点A在反比例函数y=k1x(x<0,k1<0)的图象上,点B,C在反比例函数y=k2x(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E,若△ABC的面积比△DBC的面积大4,CEDE=23,则k1的值为()A.-12 B.-9 C.-15 D.-18二、填空题(每题4分,共24分)11.已知函数y=(m-1)x m2-2是反比例函数,则m的值为___________.12.若点A(1,-3),B(m+1,3)在同一反比例函数的图象上,则m的值为________.13.写出一个反比例函数y=kx(k≠0),使它的图象在每个象限内,y的值随x的值的增大而增大,这个函数的表达式为________________________.14.若点A(m,-2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是________.15.反比例函数y=7x的图象与正比例函数y=kx(k≠0)的图象交于点A(x1,y1),B(x2,y2),则x1y2+x2y1的值为________.16.【2022·安徽】如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1x的图象经过点C,y=kx(k≠0)的图象经过点B.若OC=AC,则k=________.三、解答题(共66分)17.(6分)已知y是关于x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数表达式;(2)当x=4时,求y的值.18.(6分)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数表达式;(2)若火焰的像高为3 cm,求小孔到蜡烛的距离.19.(6分)如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b(k≠0)的图象和反比例函数y=mx(m≠0)的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求不等式kx+b-mx<0的解集(请直接写出答案).20.(8分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE的位置,A的对应点是C,O的对应点是E,反比例函数y=kx(k≠0)的图象经过点C和DE的中点F,求k的值.21.(8分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式;(2)若要求不超过5小时卸完这批货物,那么平均每小时至少要卸货多少吨?22.(10分)如图,点A(m,6),B(n,1)在反比例函数y=kx(k≠0,x>0)的图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值及反比例函数的表达式;(2)连结AB,在线段DC上是否存在一点E,使△ABE的面积等于5?若存在,求出点E的坐标;若不存在,请说明理由.23.(10分)为了预防“甲型H1N1”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内空气中每立方米的含药量y (mg)与时间x (min)成正比例,药物燃烧完后,y 与x 成反比例,如图所示,现测得药物8 min 燃烧完,此时室内空气中每立方米的含药量为6 mg ,请你根据题中提供的信息,解答下列问题: (1)求:药物燃烧时,y 关于x 的函数关系式和自变量x 的取值范围.药物燃烧完后,y 关于x 的函数关系式.(2)当室内空气中每立方米的含药量低于1.6 mg 时,学生方可进入教室,那么从燃烧药物开始,至少需要几分钟,学生才能进入教室?24.(12分)如图,四边形OBAC 是矩形,OC =2,OB =6,反比例函数y =kx (k ≠0)的图象过点A . (1)求k 的值;(2)点P 为反比例函数图象上的一点,作PD ⊥直线AC 于点D ,PE ⊥x 轴于点E ,当四边形PDCE 是正方形时,求点P 的坐标.答案一、1.C 2.C 3.C 4.A 5.B 6.B 7.B 8.A9.D 提示:过点P 作PE ⊥x 轴于点E ,PF ⊥y 轴于点F .∵四边形AOBC 为矩形,点P 为两对角线的交点, ∴S 矩形EOFP =14S 矩形AOBC =14×4=1. ∴k =-1,故该反比例函数的表达式是y =-1x . 10.A 提示:设CE =2t ,则DE =3t .∵点B ,C 在y =k 2x (x >0,k 2>0)的图象上,AB ∥x 轴,CD ⊥x 轴, ∴C (k 25t ,5t ),B (k 23t ,3t ).∵点A 在y =k 1x (x <0,k 1<0)的图象上, ∴A ⎝ ⎛⎭⎪⎫k 13t ,3t .∵△ABC 的面积比△DBC 的面积大4, ∴12×⎝ ⎛⎭⎪⎫k 23t -k 13t ×2t -12×5t ×⎝ ⎛⎭⎪⎫k 23t -k 25t =4, 解得k 1=-12. 二、11.-1 12.-2 13.y =-1x (答案不唯一) 14.x ≤-2或x >0 15.-1416.3 提示:如图,连结OB ,过点C 作CD ⊥OA 于点D ,过点B 作BE ⊥x 轴于点E , ∴CD ∥BE .∵四边形OABC 为平行四边形, ∴OC =AB ,CB ∥OA ,即CB ∥DE , ∴四边形CDEB 为平行四边形.∴CD =BE .在Rt △COD 和Rt △BAE 中, ⎩⎨⎧OC =AB ,CD =BE ,∴Rt △COD ≌Rt △BAE (HL), ∴S △OCD =S △ABE .∵反比例函数y =1x 的图象经过点C ,∴S △OCD =12,∴S △ABE =12. ∵OC =AC ,CD ⊥OA , ∴OD =AD , ∴S △CAD =S △OCD =12,∴S ▱OABC =2(S △OCD +S △CAD )=2, ∴S △OBA =12S ▱OABC =1,∴S △OBE =S △OBA +S △ABE =1+12=32, ∴k =2×32=3.三、17.解:(1)因为y 是关于x 的反比例函数,所以设y = kx (k ≠0).当x =2时,y =6, 所以k =xy =12,所以y 关于x 的函数表达式为y =12x . (2)当x =4时,y =3.18.解:(1)由题意设y =kx(k ≠0),把x =6,y =2代入,得k =6×2=12.∴y 关于x 的函数表达式为y =12x . (2)把y =3代入y =12x ,得x =4. ∴小孔到蜡烛的距离为4 cm.19.解:(1)把B (2,-4)代入y =mx ,得m =2×(-4)=-8,所以反比例函数的表达式为y =-8x . 把A (-4,n )代入y =-8x ,得-4n =-8,解得n =2,则A 点的坐标为(-4,2). 把A (-4,2),B (2,-4)代入y =kx +b ,得⎩⎨⎧-4k +b =2,2k +b =-4,解得⎩⎨⎧k =-1,b =-2.所以一次函数的表达式为y =-x -2. (2)-4<x <0或x >2.20.解:如图,过点F 作FG ⊥x 轴,FH ⊥y 轴,过点D 作DQ ⊥x 轴,根据题意,得AC =EO =BD ,AO =DQ =4,AB =3.易知四边形ACEO ,四边形HFGO ,四边形CDQE 均为矩形.∴EQ =DC =AB =3. 设AC =EO =BD =a , 则矩形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴, ∴FG 是△EDQ 的中位线, ∴FG =12DQ =2, EG =12EQ =32,∴矩形HFGO 的面积为2(a +32), ∴k =4a =2(a +32), 解得a =32, ∴k =6.21.解:(1)由题意可得100=vt ,∴v 关于t 的函数表达式为 v =100t (t >0).(2)∵不超过5小时卸完这批货物, ∴t ≤5,∴v ≥1005,即v ≥20.答:平均每小时至少要卸货20吨. 22.解:(1)由题意得⎩⎨⎧6m =n ,m +5=n ,解得⎩⎨⎧m =1,n =6,∴A (1,6),B (6,1). 将A (1,6)的坐标代入y =k x , 得k =6,∴反比例函数的表达式为y =6x (x >0). (2)存在.如图,设E (x ,0), 则DE =x -1,CE =6-x . ∵AD ⊥x 轴,BC ⊥x 轴, ∴∠ADE =∠BCE =90°, 则S △ABE =S四边形ABCD-S △ADE -S △BCE =12(BC +AD )·DC -12DE ·AD -12CE ·BC =12×(1+6)×5-12(x -1)×6-12(6-x )×1=352-52x =5,解得x=5,则E(5,0).23.解:(1)设药物燃烧时,y关于x的函数关系式为y=k1x(k1>0),将(8,6)代入,得6=8k1,∴k1=3 4.∴药物燃烧时,y关于x的函数关系式为y=34x(0≤x≤8).设药物燃烧完后,y关于x的函数关系式为y=k2x(k2>0),将(8,6)代入,得6=k2 8,∴k2=48,∴药物燃烧完后,y关于x的函数关系式为y=48x(x>8).(2)由题知,y≤1.6,∴48x≤1.6,得x≥30.即从燃烧药物开始,至少需要30分钟,学生才能进入教室.24.解:(1)∵OC=2,OB=6,∴C(2,0),B(0,6),A(2,6).∵反比例函数y=kx的图象过点A,∴k=2×6=12.(2)∵k=12,∴反比例函数的表达式为y=12 x.设点P(a,12 a).∵四边形PDCE是正方形,∴PD=PE,当点P在第一象限时,12a=a-2,解得a1=13+1,a2=1-13(舍去),∴点P的坐标为(13+1,13-1);当点P在第三象限时,-12a =2-a ,解得a 1=13+1(舍去),a 2=1-13,∴点P 的坐标为(1-13,-1-13);综上所述,点P 的坐标为(13+1,13-1)或(1-13,-1-13).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级下册 第6章 反比例函数 6.3 反比例函数的应用 同步练
习题
1.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是( )
2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )
A .不小于54 m 3
B .小于54 m 3
C .不小于45 m 3
D .小于4
5 m 3
3.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N /m 2,那么此人必须站立在面积至少____m 2的木板上才不至于下陷.(木板的重量忽略不计)
4.如图所示,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm ),观察弹簧秤的示数y(N )的变化情况.实验数据记录如下:
x (cm ) … 10 15 20 25 30 … y (N )
…
30
20
15
12
10
…
猜测y 与x 之间的函数关系,并求出函数表达式为________________.
5.水产公司有一种海产品共518千克,为寻求合适的销售价格,进行了3天试销,试销情况如下:
第1天第2天第3天
售价x(元/千克) 40 25
销售量y(千克) 30 40 48
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系,现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的表达式,并补全表格;
(2)在试销3天后,公司决定将这种海产品的销售价格定为15元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
6.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气
体的密度ρ也随之改变.ρ与V在一定范围内满足ρ=m
V,它的图象如图所示,则该气体的
质量m为____kg.
7.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10 A,那么此用电器的可变电阻应( )
A.不小于4.8 Ω B.不大于4.8 Ω C.不小于14 Ω D.不大于14 Ω
8.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用时间( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
9.为了预防流感,学校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比,燃烧后,y与x成反比(如图),现测得药物10 min燃烧完,此时,教室内每立方米空气含药量为16 mg.已知每立方米空气中含药量低于4
mg时对人体无害,那么从消毒开始经多长时间后学生才能进教室?
10.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB,BC分别为线段,CD为双曲线的一部分):
(1)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
答案:
1. C
2. C
3. 2
4. y=300 x
5. 解:(1)函数表达式为y=1200
x表中填30(2)由题意可知,当x=15时,y=
1200
15=
80,设余下的这些海产品预计再用z天可以全部售出,由题意得80z+(30+40+48)=518,解得z=5.答:余下这些海产品预计再用5天可以售完
6. 7
7. A
8. C
9. 解:40分钟后
10. 解:(1)设线段AB所在的直线的表达式为y1=k1x+20,把B(10,40)代入得,k1=2,∴
y1=2x+20.设C,D所在双曲线的表达式为y2=k2
x,把C(25,40)代入得,k2=1000,∴y2=
1000
x,当x1=5时,y1=2×5+20=30,当x2=30时,y2=1000
30=
100
3,∴y1<y2,∴第30
分钟注意力更集中(2)令y1=36,∴36=2x+20,∴x1=8,令y2=36,∴36=1000
x,∴x2
=1000
36≈27.8,∵27.8-8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状
态下讲解完这道题目
初中数学试卷
鼎尚图文**整理制作。