3、截一个几何体_练习4
2021最新精选《截一个几何体》同步提升训练
《截一个几何体》提升训练
1(教材P15习题T3变式)一个几何体的截面是三角形,则原几何体一定不是下列图形中的()
A圆柱和圆锥 B球体和圆锥 C球体和圆柱 D正方体和圆锥
2下列几何体:①圆柱;②正方体:③棱锥;④球;⑤圆锥;⑥长方体中,截面可能是圆的有()
个个个个
3下列几何体的截面分别是()
A圆、平行四边形、三角形、圆 B圆、长方形、三角形、圆
C圆、长方形、长方形、三角形 D圆、长方形、三角形、三角形
4(太原调研)用一个平面去截下列几何体,其截面可能是六边形的几何体是()A圆柱 B圆锥 C三棱柱 D四棱柱
5一个圆柱形蛋糕,三刀最多切成()
块块块块
6用一个平面分别截六棱柱、长方体、圆柱、圆锥,得到的截面不可能为四边形的几何体是_______
7用一个平面去截一个正方体,所得截面的边数最少是______,最多是______ 8用一个平面去截一个圆柱:
(1)所得截面可能是三角形吗
(2)如果能得到正方形的截面,那么圆柱的底面半径和高有什么关系
9过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其展
开图正确的为
10如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造
参考答案
6圆锥
6
8解:(1)用一个平面去截一个圆柱,所得截面不可能是三角形(2)圆柱的底面半径r与圆柱的高h之间的关系为h≤2r
10解:这个圆柱的内部构造为:圆柱中间有一球状空洞,即空心球。
初一数学截一个几何体试题
初一数学截一个几何体试题1.(2013•沙市区三模)如图是一个底面为正方形的长方形,现将左图中的长方体切掉一个“角”后变成了右图的几何体,则右图的俯视图是()A.B.C.D.【答案】C【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得到正方形右下角有一条斜线,图形为.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.(2010•资阳)用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是()A.球体B.圆柱C.圆锥D.三棱锥【答案】B【解析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.解:A、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;D、用一个平面去截一个三棱锥,得到的图形可能是三角形,不可能是四边形,故D选项错误;故选:B.点评:本题考查了圆锥、圆柱、球体、三棱锥的几何特征,其中熟练掌握相关旋转体的几何特征,培养良好的空间想象能力.3.(2008•茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是()A.球B.圆锥C.圆柱D.正方体【答案】D【解析】根据圆锥、圆柱、球、正方体的形状特点判断即可.解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面的形状不可能是圆.故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.4.(2005•嘉兴)圆锥的轴截面是()A.梯形B.等腰三角形C.矩形D.圆【答案】B【解析】根据圆锥的形状特点判断即可.解:圆锥的轴垂直于底面且经过圆锥的底面的圆心,因此圆锥的轴与将轴截面分成了两个全等的三角形,因此,轴截面应该是等腰三角形.故选B.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.5.(2004•泸州)如图,从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为()A.600B.599C.598D.597【答案】A【解析】由图象可知,挖去小正方体后,其实剩下的图形的表面积与原正方体的面表积是相等的.解:由图象可知,挖去小正方体后,其实剩下的图形的表面积与原正方体的面表积是相等的,因此,剩下图形的表面积=600.故选A.点评:本题主要考查正方体的截面.挖去的正方体中相对的面的面积都相等.6.(2003•金华)在下列几何体中,轴截面是等腰梯形的是()A.圆锥B.圆台C.圆柱D.球【答案】B【解析】首先可排除C、D,再根据圆锥、圆台的形状特点判断即可.解:圆锥的轴截面是等腰三角形,圆柱的轴截面是长方形,球的轴截面是圆.因为根据圆台的定义:以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.旋转轴叫做圆台的轴.那么它的轴截面就应该是等腰梯形.故选B.点评:本题考查几何体的截面,关键要理解面与面相交得到线.注意圆台的定义.7.用平面截下列几何体,相应的截面形状是()A. B. C.【答案】C【解析】利用已知物体的形状以及平面与结合体的位置关系进而得出答案.解:如图所示:用平面截此几何体,可得相应的截面形状是梯形.故选:C.点评:本题考查几何体的截面,关键要理解面与面相交得到线.8.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.9.把正方体的八个角切去一个角后,余下的图形有()条棱.A.12或15B.12或13C.13或14D.12或13或14或15【答案】D【解析】分四种不同的切法来讨论,分别切去相邻三条棱的全部或者部分.解:分为四种不同的切法:第一种:切去相邻的三条棱.那么余下的图形仍然是12条棱;第二种:切去相邻的三条棱中的两条棱,第三条棱切去一部分,那么余下的图形是13条棱;第三种:切相邻三条棱中的一条棱和另两条棱的一部分,那么余下的图形是14条棱;第四种:切去相邻三条棱中每条棱的一部分,那么余下的图形是15条棱.故选D.点评:本题主要考查截一个几何体的问题,截面的形状随截法的不同而改变,所以要分不同的情况讨论.10.用一个平面去截一个长方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】长方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选D.点评:本题考查正方体的截面.长方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.。
度北师大版版数学七年级上册同步练习: 1.3 截一个几何体(word解析版)
2019-2019学年度北师大版版数学七年级上册同步练习1.3 截一个几何体(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥2.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A.B.C.D.3.下列几何体的截面形状不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱4.用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.5.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11 B.7,11 C.7,12 D.6,126.经过圆锥顶点的截面的形状可能是()A.B. C.D.7.用一个平面分别去截下列几何体,截面不能得到圆的是()A.B.C.D.8.一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A.球体B.圆柱C.圆锥D.球体或圆锥9.用一平面去截下列几何体,其截面可能是长方形的有()A.4个 B.3个 C.2个 D.1个10.用一个平面去截如图的长方体,截面不可能为()A.B.C.D.11.用一个平面按照如图所示的位置与正方体相截,则截面图形是()A.B.C.D.12.用平面去截如图所示的三棱柱,截面形状不可能是()A.三角形B.四边形C.五边形D.六边形二.填空题(共10小题)13.如图是一个三棱柱,用一个平面去截这个三棱柱,形状可能的截面的序号是.14.用平面截一个几何体,若截面是圆,则几何体是(写出两种)15.如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.16.在正方体的截面中,最多可以截出边形.17.用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是.18.要锻造一件长100mm,宽60mm,高25mm的长方体毛坯刚需要横截面积为50×50mm2的方钢长度为mm.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.21.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.22.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为cm2.三.解答题(共3小题)23.如图所示,长方形ABCD的长AB为10cm,宽AD为6cm,把长方形ABCD 绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.24.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.25.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?2019-2019学年度北师大版版数学七年级上册同步练习:1.3 截一个几何体(word解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】根据正方体、棱柱、圆锥、圆柱的特点判断即可.【解答】解;A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、用垂直于地面的一个平面截圆柱截面为矩形,不符合题意;D、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.2.【分析】根据球的主视图只有圆,即可得出答案.【解答】解:∵球的主视图只有圆,∴如果截面是三角形,那么这个几何体不可能是球.故选:B.3.【分析】根据圆柱、圆锥、球、棱柱的形状特点判断即可.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选D.4.【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.5.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.6.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.7.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截圆锥或圆柱,截面可能是圆,用一个平面去截球,截面是圆,但用一个平面去截棱柱,截面不可能是圆.故选:C.8.【分析】通过观察可以发现:在正方体内部的圆自下而上由大圆逐渐变成小圆、点.【解答】解:这个长方体的内部构造为:长方体中间有一圆锥状空洞或一个球体,故选:D.9.【分析】根据圆柱、长方体、圆锥、四棱柱、圆台的形状判断即可,可用排除法.【解答】解:圆锥、圆台不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、长方体、四棱柱,一共有3个.故选:B.10.【分析】长方体的每个面都是平面,交线不可能垂直,故此截面不可能是直角.【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得斜三角形,故此截面可以是斜三角形、梯形,矩形,平行四边形,故A、B、C正确;故D错误.故选:D.11.【分析】用平面去截正方体时与三个面相交得三角形.【解答】解:用一个平面按如图所示方法去截一个正方体,则截面是三角形,故选:A.12.【分析】根据截面经过几个面,得到的多边形就是几边形判断即可.【解答】解:用平面去截如图所示的三棱柱,截面形状可能是三角形、四边形、五边形,不可能是六边形.故选:D.二.填空题(共10小题)13.【分析】用平面取截三棱柱,当横截时,截面为①三角形,竖着截时截面为②长方形或③梯形.【解答】解:用平面取截三棱柱,当横截时,截面为①三角形;竖着截时截面为②长方形或③梯形;因此选择①②③.故答案为:①②③14.【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【解答】解:用平面去截一个几何体,若截面是圆,则几何体是球或圆柱.故答案为:球或圆柱(答案不唯一).15.【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.16.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【解答】解:用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.故答案为:六.【分析】分别根据正方体、长方体、圆柱、圆锥的特殊性得出即可.【解答】解:用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是圆锥.故答案为:圆锥.18.【分析】等量关系为:长方体毛坯的体积=截面积为50×50mm2的方钢的体积,把相关数值代入即可求解.【解答】解:设需要截面50×50mm2的方钢xmm,由题意得:100×60×25=50×50x,解之得:x=60,答:需要截面50×50mm2的方钢60mm.故答案是:60.19.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.20.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【分析】新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.【解答】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.22.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.三.解答题(共3小题)23.【分析】长方形ABCD绕直线AB旋转一周得到一个圆柱体,沿线段AB的方向截所得的几何体其中轴截面最大.【解答】解:由题可得,把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为6cm,高为10cm,∴截面的最大面积为6×2×10=120(cm2).24.【分析】(1)根据平移的性质可得出S1与S的大小关系;(2)利用立方体的性质得出得出棱长之间的关系;(3)利用立方体的侧面展开图的性质得出即可.【解答】解:(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是相等;故选:B;(2)设大正方体棱长为1,小正方体棱长为x,那么l1﹣l=6x.只有当x=时,才有6x=3,所以小明的话是不对的;(3)如图所示:25.【分析】根据长方体的切割特点可知,切割成三段后,表面积是增加了4个长方体的侧面的面积,由此利用增加的表面积即可求出这根木料的侧面积,再利用长方体的体积公式即可解答问题.【解答】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3).。
北师大版七年级上册《1.3截一个几何体》同步练习含答案
北师大新版七年级上学期《1.3截一个几何体》同步练习一.选择题(共7小题)1.下列说法上正确的是()A.长方体的截面一定是长方形B.正方体的截面一定是正方形C.圆锥的截面一定是三角形D.球体的截面一定是圆2.如图,正方体的棱长为cm,用经过A、B、C三点的平面截这个正方体,所得截面的周长是()A.2cm B.3cm C.6cm D.8cm 3.一个圆柱形蛋糕,三刀最多切成()A.3块B.4块C.6块D.8块4.图中长方体的截面是()A.B.C.D.5.长方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()A.B.C.D.7.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有()A.26条B.30条C.36条D.42条二.填空题(共6小题)8.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是;(2)截面是;(3)截面是;(4)截面是.9.一个正方体的8个顶点被截去后,得到一个新的几何体,这个新的几何体有个面,个顶点,条棱.10.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是(填写序号即可)11.用一个平面去截一个三棱柱,截面可能是.(填一个即可)12.把一个长方体切去一个角后,剩下的几何体的顶点个数为.13.用一个平面截一个圆柱,如果能得到一个截面是正方形,那么圆柱的底面直径d与圆柱的高h之间的关系.三.解答题(共2小题)14.一个物体的外形是圆柱,但不清楚它的内部结构,现在用一组水平的平面去截这个物体,从上至下的五个截面依次如图所示,则这个物体可能是下列选项中的哪一个?15.如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?参考答案一.选择题1.D.2.C.3.D.4.B.5.C.6.B.7.C.二.填空题8.正方形;正方形;长方形;长方形.9.14、24、36.10.①②⑤.11.三角形(答案不唯一).12.7,8,9,1013.h=d.三.解答题14.解:这个圆柱的内部构造为:圆柱中间有一双侧圆台状空洞.故选B.15.解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:。
初中数学七年级上册《1.3截一个几何体》习题
初中数学七年级上册《1.3截一个几何体》习题一、基础过关1.如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.您C.事D.成2.如图给定的是纸盒的外表面,下面能由它折叠而成的是()3.用平面去截一个正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形4.如图所示的图形可以被折成一个长方体,则该长方体的表面积为cm2.5.如图,将正方体沿面AB′C剪下,则截下的几何体为.6.已知小立方块面A,B,C的对面上分别写有数字4,5,6,如图所示,小立方块沿平面上写有数字1→2→3→4→5→6→7→8的方向滚动,那么当小立方块滚动到8时,小立方块最上面的面写的是.二、综合训练7.如图是一个棱柱形状的食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称.(2)根据图中所标的尺寸,计算这个多面体的侧面积.8.如图是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)(3)如果C面在右面,D面在后面,那么哪一个面会在上面?(字母朝外)三、拓展应用9.如图1,大正方体上截去一个小立方块后,可得到图2的几何体.(1)设原大正方体的表面积为S,图2中几何体的表面积为S′,那么S′与S的大小关系是()A.S′>SB.S′=SC.S′<SD.不确定(2)小明说:“设图1中大正方体各棱的长度之和为c,图2中几何体各棱的长度之和为c′,那么c′比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小立方块的棱长为x,请问x 为何值时,小明的说法才正确?(3)如果截去的小立方块的棱长为大正方体棱长的一半,那么图3是图2中几何体的展开图吗?如有错误,请在图3中修正.参考答案一、基础过关1.D.2.B.3. D.4. 885.三棱锥6. 6二、综合训练7. (1)共有3个长方形组成侧面,2个三角形组成底面,故是三棱柱.(2)因为AB=5,AD=3,BE=4,DF=6,所以侧面积为3×6+5×6+4×6=18+30+24=72.8.由图可知,“A”与“F”相对,“B”与“D”相对,则“C”与“E”相对.(1)因为面“A”与面“F”相对,所以A面是长方体的底部时,F面在上面.(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,因为“C”与“E”相对,所以C面会在上面.(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,因为“A”与“F”相对,所以A面会在上面.三、拓展应用(1)选B.因截去的是小立方块,且截掉的是小立方块的3个面,在大正方体中又“截出”的面是小立方块的另外3个面,而正方体的6个面相等,故表面积不变.(2)由题意得:6x=3,所以x=12,所以x为12时,小明的说法才正确.(3)不正确,如图:。
【精编版】最新北师大版七年级数学上册第1章《丰富的图形世界》同步练习及答案—1.3截一个几何体(4)
北师大版七年级数学上册第1章《丰富的图形世界》同步练习及答案—1.3截一个几何体(4)1.截面定义:用一个平面去截一个几何体,截出的面叫做截面.如图所示,阴影部分就是截面.谈重点截面的理解①由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.②截面的形状与所截几何体有关,也与所截角度和方向有关.③对于同一个几何体,截面的方向不同,得到的截面形状一般也不相同.同一个几何体可能有多种不同形状的截面.【例1】下列关于截面的说法正确的是( ).A.截面是一个平面图形B.截面的形状与所截几何体无关C.同一个几何体,截面只有一个D.同一个几何体,截面的形状都相同解析:根据截面的定义“用一个平面去截几何体,截出的面叫做截面”可知,A是正确的;截面与几何体的形状有关,B是错误的;从不同的角度和方向去截同一个几何体,所得的截面一般不同,所以C,D是错误的.故选A.答案:A2.正方体的截面正方体截面的形状:如图所示,正方体的截面的形状可以是:(1)三角形(包括等腰三角形、等边三角形和一般三角形),如图①.(2)四边形(包括正方形、长方形、梯形等),如图②③④.(3)五边形,如图⑤.(4)六边形,如图⑥.正方体中不同形状的截面的截法:(1)沿竖直或水平方向截正方体,截面为正方形.(2)图①中的截面是等边三角形,与该平面平行,能截正方体三条棱的平面,都能截出等边三角形.(3)过正方体同一个面上不相邻的两个顶点和一条棱上的一点,可截出等腰三角形(如图),且与该面平行的能截正方体三条棱的平面,都能截出等腰三角形.(4)分别过正方体的上、下底面,且与任何棱都不平行的截面,可截出梯形.(5)只要截面与五个面相交或与六个面相交,即可截出五边形或六边形.【例2】下列说法正确的是( ).①正方体的截面可以是等边三角形②正方体不可能截出七边形③用一个平面截正方体,当这个平面与四个平面相交时,所得的截面一定是正方形④正方体的截面中边数最多的是六边形A.①②③④ B.①②③C.①③④ D.①②④解析:过正方体三个不相邻顶点的截面是等边三角形,①正确;正方体只有六个面,所以最多与六个面相交,截面最多是六边形,②正确;当一个平面与四个平面相交时,截面也可能是长方形和梯形,③错误;正方体有六个面,当与六个面都相交时,截面是六边形,④正确.答案:D3.圆柱、圆锥、球的截面(1)圆柱的截面用一个平面去截一个圆柱,可得到的截面形状是长方形、圆、椭圆、椭圆的一部分.(2)圆锥的截面用一个平面去截圆锥,可得到的截面形状是三角形、圆、椭圆及椭圆的一部分.(3)球体的截面用一个平面去截球体,可得到的截面形状是圆.【例3】下列几何体的截面分别是__________、________、________、________.解析:观察时要注意平面截几何体的方向和角度,找出它与几何体的几个面相交,同时注意截面是否与底面平行或垂直.答案:圆长方形三角形圆4.根据截面判断几何体(1)常见几何体截面的比较常见几何体主要是棱柱、圆柱、圆锥和球体.棱柱包括正方体、长方体、三棱柱、五棱柱、六棱柱……其中以正方体为代表.各种几何体的截面如下表:(2)根据截面判断原几何体的方法:①截面中有曲线,则原几何体一定有曲面.例如截面形状是圆的几何体可能是圆柱、圆锥、球或圆台.②若一个几何体的各面都是平面,则所得截面一定是多边形;若几何体有曲面,则所得截面可能是多边形,也可能是由直线和曲线组成的图形,还可能是由曲线组成的图形.【例4-1】一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( ).A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥解析:球的截面只能是圆形;圆柱的截面可以是圆、长方形、椭圆和椭圆的一部分;正方体和圆锥都可以截出三角形,故选C.答案:C【例4-2】一个几何体,用水平的面去截,所得截面都是圆,用竖直的面去截,所得截面是长方形,判断这个几何体的名称(写出一种几何体的名称即可).分析:本题考查由截面的形状判断几何体.用水平面截,所得截面都是圆,该几何体可能是圆柱、圆锥、球;用竖直的面去截,所得截面是长方形,该几何体可能是棱柱、圆柱、正方体、长方体.综合两个条件可得该几何体可能是圆柱.解:这个几何体可能是圆柱.点评:同一个几何体可能有多个不同的截面图形,只有综合考虑不同的截面图形,才能准确判断出几何体的形状.5.判断截后剩余几何体的顶点数、棱数和面数一个棱柱,截去一部分后,剩余几何体的顶点数、棱数和面数与该图形的形状有关.【例5-1】__________个.解析:过一个顶点截掉一个角后,去掉了一个顶点,又增加了两个,实际上比原来的长方体增加了一个顶点,有9个.答案:9【例5-2】如图,用一个平面截掉正方体的一条棱,剩下的几何体有________个顶点,有________条棱,有________个面.解析:剩下的部分是一个五棱柱,故有10个顶点,15条棱,7个面.答案:10 15 76.截面的应用把一个长方体木块锯成几段,可以看成用几个平面去截长方体,其截面的面积等于与截面平行的底面的面积.如图所示.【例6】72平方厘米,则这根木料原来的体积是多少?分析:木料被锯成4段,实际上可以看成用3个平面去截一个长方体,每个截面处增加2个相等的面,共增加了3×2=6个面,这6个面的面积和是72平方厘米,可先求出每个面的面积,再求体积.解:因为将木料锯成4段,则表面积多出6个面,且每个面的面积相等,所以72÷6=12(平方厘米).所以原木料的体积是12×200=2 400(立方厘米).答:这根木料原来的体积为2 400立方厘米.点评:①长方体的体积=横截面的面积×长;②注意本题单位要统一.。
北师大版七年级数学上册《截一个几何体》课后作业(含答案)
1.3 截一个几何体1.如图,用一个平面去截长方体,则截面形状为()2.棱长是1 cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是()A.36 cm2B.33 cm2C.30 cm2D.27 cm23.如图中几何体的截面是()4.如图所示,用平面截圆锥,所得的截面形状是()5.用一个平面去截圆柱得到的图形不可能是()6.在医学诊断上,有一种医学影像诊断技术叫CT,它的工作原理是______________.7.用一个平面截一个正方体,所得截面是一个三角形,则留下的较大的一块几何体一定有________个面.8.如图中几何体是一个圆锥被一平面截下的,由________个面围成,面与面的交线有________条,其中直线有____条.底面形状是________.9.下面几何体的截面分别是什么?10.如图给出一个圆锥,用一个平面去截这个圆锥,若要得到下列图形,应怎样去截?11.如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?12.将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?(2015·温州模拟)把一个边长为2 cm的立方体截成八个边长为1 cm的小立方体,至少需要截______次.课后作业参考答案1.B截面形状为长方形.2.A几何体共有36个面,即面积是36 cm2.3.B截面是长方形.4.D考查截面形状.5.D圆柱的截面不可能是三角形.6.利用射线截几何体,图象重建原理.7.78.343有可能是半圆,有可能是弓形,但不可能是扇形9.长方形圆长方形圆10.解:如图所示.11.解:如图所示.12.图形面(个) 棱(条) 顶点(个)②7 15 10③7 14 9④7 13 8⑤7 12 7中考链接3上表面截两次中间截一次.。
北师大版七年级数学上册 第一章3节 截一个几何体测试题(附答案)
北师大版七年级数学上册第一章第3节截一个几何体测试题一、选择题1.一个正方体锯掉一个角后,顶点的个数是A. 7个或8个B. 8个或9个C. 7个或8个或9个或10个D. 7个或8个或9个2.一个四棱柱,用刀切去一部分,则剩下的部分可能是A. 四棱柱B. 三棱柱C. 五棱柱D. 以上都有3.用一个平面去截圆柱体,则截面形状不可能是A. 椭圆形B. 三角形C. 长方形D. 圆形4.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为A. 正方体B. 圆柱C. 圆锥D. 三棱柱5.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是A. B. C. D.6.如图所示,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是.A. 相同;相同B. 相同;相同C. 相同;相同D. 都不相同7.用平面去截一个几何体,如果截面的形状是圆,那么原来的几何体的形状是.A. 圆柱B. 圆锥C. 球D. 以上都有可能8.如图,用平面去截圆锥,所得截面的形状图是A. B. C. D.9.如图所示,用一个平面去截一个圆柱体,截面不可能是.A. B. C. D.10.用一个平面去截如图所示的长方体,截面不可能为.A. B. C. D.11.下图中几何体的截面是长方形的是.A. B.C. D.12.用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,那么截面可能是A. 三角形B. 四边形C. 五边形D. 六边形13.下列几何体的截面分别是A. 圆、五边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、五边形、三角形、三角形14.用一个平面去截一个几何体,得到的截面是八边形,这个几何体可能是A. 四棱柱B. 五棱柱C. 六棱锥D.七棱柱15.如图,用平面截圆锥,所得的截面图形不可能是A. B. C. D.二、填空题16.如图所示的三个几何体的截面分别是:________;________;________.17.用平面去截一个六棱柱,截面的形状最多是_______边形.18.用一个平面分别去截长方体、三棱柱、圆柱和圆锥,其中不能截出三角形的几何体是________.三、解答题19.如图,图是正方体木块,把它切去一块,可能得到、、、所示的图形,问、、、图中切掉的部分可能是其他几块中的哪一块?20.如图是一个粮仓,已知粮仓底面直径为6m,粮仓顶部顶点到地面的垂直距离为7m,粮仓下半部分高为4m,观察并回答下列问题:粮仓是由两个几何体组成的,他们分别是______、______;用一个平面去截粮仓,截面可能是______填序号;三角形圆形四边形五边形梯形如图,将下面的图形分别绕虛线旋转一周,其中______能形成粮仓.求出该粮仓的容积结果精确到,取答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】B6.【答案】A7.【答案】D8.【答案】D9.【答案】B10.【答案】D11.【答案】A12.【答案】A13.【答案】B14.【答案】D15.【答案】C16.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.17.【解答】解:用平面去截六棱柱时最多与8个面相交得八边形,最多可以截出八边形.故答案为八.18.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.故答案为圆柱.19.【答案】解:图切掉的部分可能是图和图,图切掉的部分可能是图,图切掉的部分可能是图.20.【答案】圆锥圆柱D【解析】解:粮仓是由两个几何体组成的,他们分别是圆锥、圆柱;故答案为圆锥、圆柱;用一个平面去截粮仓,截面可能是圆形、四边形、梯形.故答案为圆形、四边形、梯形;将如图的图形分别绕虛线旋转一周,其中D能形成粮仓.故选D粮仓的容积为:圆柱体积圆锥体积.答:粮仓的容积为.。
七年级数学北师大版上册1.3--截一个几何体(含答案)
供应保障监督工作总结会
近年来,供应保障监督工作在我国取得了显著的成绩,为保障市场供应和消费
者权益发挥了重要作用。
为了总结过去一段时间的工作经验,探讨未来的发展方向,我国举行了一次供应保障监督工作总结会。
会上,与会代表就过去一年的工作进行了深入的总结和分析。
他们一致认为,
供应保障监督工作在市场供应和消费者权益保护方面取得了积极成果,但也存在一些问题和不足。
比如,一些地区和行业的监督力度不够,导致市场供应不稳定,消费者权益受损。
此外,一些企业存在违法违规行为,严重影响了市场秩序和消费者利益。
针对这些问题,与会代表提出了一系列解决方案和改进措施。
他们强调加强监
督力度,加大对违法违规行为的打击力度,严格执行相关法律法规,保障市场供应和消费者权益。
同时,要加强行业协调,促进供应链的畅通和稳定,确保市场供应的稳定性和可持续性。
此外,还要加强宣传教育,提高消费者的权益意识,引导消费者理性消费,维护自身权益。
在总结会上,与会代表还就未来的工作重点和发展方向进行了讨论。
他们一致
认为,未来供应保障监督工作要继续加大力度,加强监督力度,促进市场供应的稳定和有序发展。
同时,要加强行业协调,推动供应链的优化和升级,提高市场供应的质量和效率。
此外,还要加强国际合作,借鉴国际先进经验,推动我国供应保障监督工作的国际化和专业化发展。
总之,供应保障监督工作总结会的召开,为我国未来的工作提供了重要的指导
和借鉴,必将推动我国供应保障监督工作取得更大的成就,为市场供应和消费者权益保护作出更大的贡献。
截一个几何体检测题
截一个几何体检测题一、选择题1.竖直放置的正四棱柱(即底面是水平放置的),用不平行底面的平面去截所得的截口的形状不会是()A.长方形或正方形;B.三角形或梯形;C.圆;D.六边形。
2.用平面截三棱柱,所得截口的形状最多是()A.三边形B.四边形C.五边形D.六边形3.竖直放置的圆柱体,用一个平面去截,所得的截口的形状是()A.圆形B.椭圆形C.长方形或正方形D.以上都正确4、用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A、正方体B、棱柱体C、圆柱D、圆锥5、用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆6、用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球7、截去四边形的一个角,剩余图形可能是()A.三角形; B.四边形; C.五边形; D.三角形或五边形。
8、用一个平面去截圆锥,得到的平面不可能是()9、用一个平面去截一个圆柱,得到的图形不可能是()二、填空题:1、用一个平面去截n棱柱,边数最多的截面是_______边形.2、用一个平面去截几何体,若截面是三角形,这个几何体可能是________.三、判断题1.用平面截正方体得到的截口是正方形.()2.用平面截长方体能够得到三角形截口.()3.用平面无论怎样截五棱柱体,得到的截口都是五边形.()4.用平面截圆柱体能够得到三角形截口.()5、用平面截一个球体,无论如何截取,截面都是圆形。
()四、用平面截下列几何体,找出相应的截面形状.在对应的图上画“√”。
最新北师大版七年级数学上册《截一个几何体》课时练习及解析
北师大版数学七年级上册第一章第3节截一个几何体课时练习一、单选题(共15小题)1、用一个平面去截一个圆柱体,截面不可能的是()A、B、C、D、2、下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A、B、C、D、3、用一平面去截下列几何体,其截面可能是长方形的有()A、1个B、2个C、3个D、4个4、长方体的截面中,边数最多的多边形是()A、四边形B、五边形C、六边形D、七边形5、如图中,几何体的截面形状是()A、B、C、D、6、用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到截面是圆的图有()A、①②④B、①②③C、②③④D、①③④7、如图所示的正方体,用一个平面截去它的一个角,则截面不可能是()A、锐角三角形B、等腰三角形C、等腰直角三角形D、等边三角形8、如图是正方体分割后的一部分,它的另一部分为下列图形中的()A、B、C、D、9、用平面去截下列几何体,不能截出三角形的是()A、B、C、D、10、用平面去截一个三棱柱不能得到()A、三角形B、四边形C、五边形D、六边形11、下列说法正确的是()A、球的截面可能是椭圆B、组成长方体的各个面中不能有正方形C、五棱柱一共有15条棱D、正方体的截面可能是七边形12、下面几何体截面一定是圆的是()A、圆柱B、圆锥C、球D、圆台13、用一个平面分别去截:①球;②四棱柱;③圆锥;④圆柱;⑤正方体.截面可能是三角形的有()A、4个B、3个C、2个D、1个14、下列几何体中:正方体,长方体,圆柱,六棱柱,圆锥,球,截面的形状可以为长方形的个数为()A、3个B、4个C、5个D、6个15、用平面去截一个几何体,如果截面是圆形,则原几何体可能是()A、正方体、球B、圆锥、棱柱C、球、长方体D、圆柱、圆锥、球二、填空题(共5小题)16、用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱________.(写出所有正确结果的序号).17、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是选项中的________(填序号)18、如图,截去正方体一角变成的多面体有________条棱.19、如图中几何体的截面分别是________.20、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是________。
北师大版七年级1.3截一个几何体作业【河南实验中学】
北师大版七年级第一章第三节截一个几何体作业1.用一个平行于底面的平面截一个圆锥,则截面的形状是_________.经过圆锥顶点且垂直于底面的平面截这个圆锥,截面的形状是_________.2. 在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.3.一个平行于五棱柱的底面的截面截这个五棱柱,则这个截面形状是_________.4.指出下面几何体的截面形状:____________________________________5.一个几何体被一平面所截后,得一圆形截面,则原几何体的形状是 ( )A.圆柱B.圆锥C.圆台D.球E.以上都可以6.请指出图甲中几何体截面的形状的标号 ( )7.用一个平面去截一个正方体,则截面的形状不可能为( )A.四边形B.七边形C.六边形D.三角形8.如果用一个平面去截一个几何体,无论从什么角度,得到的截面形状总相同,那么这个几何体是()A.长方体B.正方体C.圆柱D.球9.用一个平面去截几何体,如果截面是一个长方形,则这个几何体不可能是()A.正方体B.圆柱C.圆锥D.十棱柱10.用一个平面去截一个棱柱,截面的边数最多是8,则这个棱柱有( )条棱。
.8 C11.把一根长2.4米的长方体木料锯成5段,如图表面积比原来增加了96平方厘米,这根木料原来的体积是多少?12.一个正方体的体积是64立方厘米,用三刀将它切成8个完全相同的小正方体,那么这些小正方体的棱长之和是多少,表面积之和是多少?13.如果用一个平面截掉正方体的一个角,剩下的几何体有几个顶点,几条棱,几个面?答案:1.圆,等腰三角形2.正三角形3.五边形4.三角形,圆,长方形,梯形5.E 点拨:根据几何体的特征6.C 点拨:根据几何体的特征7.B 点拨:根据几何体的特征8.D9.C10.D11.2880平方厘米解析:96÷8 = 12平方厘米,12×240 = 2880平方厘米12.192厘米, 192平方厘米解析:小正方体的棱长为2厘米,2×12×8 = 192厘米,2×2×6×8 = 192平方厘米13. 分为四种情况,分别为:7个顶点,7个面,12条棱8个顶点,7个面,13条棱9个顶点,7个面,14条棱10个顶点,7个面,15条棱。
1.3_截一个几何体(含答案)-
1.3 截一个几何体一、选择题1.一个几何体被一平面所截后,得一圆形截面,则原几何体是什么形状( )A.圆柱B.圆锥C.圆台D.球E.以上都可以2.请指出图甲图中几何体截面的形状的标号________.( )3.用一个平面去截一个正方体,图中画有阴影的部分是截面,•哪个画法是错误的( )(A) (B) (C) (D)4.用一个平面去截一个正方体,则截面的形状不可能为( )A.四边形B.七边形C.六边形D.三角形5.如图,一正方体截去一角后,剩下的几何体有____个面,____条棱( )A.6,14B.7,14C.7,15D.6,15二、填空题6.•用平面去截一个几何体,•如果得出的是长方形,•那么所截的这个几何体是________.7.如图,用一个平面去截一个正方体,_______的截面与_______的截面相同,________与__________的截面不同.8.图 (•1)•中的截面的形状是______,•图 (•2)•中的截面的形状是________.(第7题) (第8题)9.一个正方体的8•个顶点被截去后,•得到一个新的几何体,•这个新的几何体有____个面,_______个顶点,_______条棱.10.在医学诊断上,有一种医学影像诊断技术叫CT;它的工作原理与_______.三、解答题11.用一个平面去截一个三棱柱(如图),能截出一个梯形吗?动手试一试.12.用平面去截一个圆锥,能截出一个圆吗?能截出一个等腰三角形?画图说明.13.用平面截一个正方体能够得到哪些多边形?画出截面边数最多的图形来.14.用一平面去截一个圆柱,其截面的形状可能有哪些?15.如图,正方体截去一角后,剩下的几何体有多少条棱?多少个面?•多少个顶点?16.将图1的长方体,用过A、B、C、D的平面切开,得到两个什么几何体?•说出它们的名称.将图2的三棱柱用过A、B、C的平面切开,得到两个什么几何体?•说出它们的名称.(1) (2)答案:一、1.E 2.C 3.A 4.B 5.C二、6.棱柱,圆柱,棱锥 7.(1)与(2),(2)与(3)8.(1)是等腰三角形 (2)•圆 9.14,24,36 10.截“几何体”类似三、11.能,如图答案所示12.能13.三边形(等边三角形,等腰三角形) 四边形(正方形、长方形、梯形、•平行四边形) 五边形、六边形14.圆、椭圆、长方形、曲边形、如图答15.有13条棱,7个角,8个顶点16.两个三棱柱一个四棱锥与一个三棱锥。
【北师大版】七年级上册数学:1.3《截一个几何体》课时练习(含答案)
1.3截一个几何体01基础题知识点用平面去截几何体1.如图所示,该几何体截面的形状是( )2.如图所示几何体的截面是( )A.四边形B.五边形C.六边形D.五棱柱3.下列关于截面的说法正确的是( )A.截面是一个平面图形B.截面的形状与所截几何体无关C.同一个几何体,截面只有一个D.同一个几何体,截面的形状都相同4.用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A.球B.圆锥C.圆柱D.正方体7.如图所示的几何体是由一个正方体截去一部分后形成的,这个几何体是由________个面围成的,其中正方形有________个,长方形有________个.8.截几何图形:(a)用刀将马铃薯、萝卜等切出正方体、长方体、圆柱、圆锥、圆台;(b)用刀去截正方体、长方体、圆柱、圆锥、圆台.讨论:(1)截面各有几种形状?(2)截面是圆的几何体有哪些?02中档题9.如图是将正方体切去一个角后的几何体,则该几何体有( )A.7个面,14条棱B.6个面,12条棱C.7个面,12条棱D.8个面,13条棱10.用一平面去截如图5个几何体,能得到长方形截面的几何体的个数是( )A.4 B.3 C.2 D.111.下列说法正确的是( )①正方体的截面可以是等边三角形;②正方体不可能截出七边形;③用一个平面截正方体,当这个平面与四个平面相交时,所得的截面一定是正方形;④正方体的截面中边数最多的是六边形.A.①②③④B.①②③C.①③④D.①②④12.用平面截几何体可得到平面图形,在下列表示几何体的字母后填上它可以截出的平面图形的号码.如A(1、5、6),则B();C();D().13.一个圆柱的底面半径是10 cm,高是18 cm,把这个圆柱放在水平桌面上,如图所示.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.03综合题14.(华新中考)如图1至图3是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间的关系;(3)根据猜想计算,若一个几何体的顶点有2 016个,棱有4 029条,试求出它的面数.参考答案基础题1.B 2.B 3.A 4.D 5.B 6.圆柱长方体、三棱柱长方体、三棱柱、圆柱7.8248.(1)正方体和长方体的截面可能是三角形,四边形,五边形,六边形;圆柱的截面可能是圆,椭圆,正方形,长方形;圆锥的截面可能是圆,三角形,椭圆;圆台的截面可能是圆,等腰梯形,椭圆.(2)截面是圆的几何体有圆柱、圆锥、圆台.中档题9.A10.B11.D12.B长方体,截面有可能是三角形,四边形(长方形,正方形,梯形),五边形,六边形;C球体,截面只可能是圆;D圆柱,截面有可能是正方形,长方形,圆,椭圆,因此应填写B(1、2、3、4);C(5);D(3、5、6).13.(1)所得的截面是圆.(2)所得的截面是长方形.(3)当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大.这时,长方形的一边等于圆柱的高,长方形的另一边等于圆柱的底面直径.则这个长方形的面积为:10×2×18=360(cm2).图略.综合题14.(1)7914681271015(2)f+v-e=2.(3)因为v=2 016,e=4 029,f+v-e=2,所以f+2 016-4 029=2.解得f=2 015,即它的面数是2 015.。
1.3 截一个几何体练习卷
节清 1.3 截一个几何体练习卷
一、填空题
1.用一个平面去截一个球体所得的截面图形是__________.
2.如图1,长方体中截面BB 1D 1D 是长方体的对角面,它是__________.
3.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.
二、选择题
4.用一个平面去截一个正方体,截面图形不可能是( )
A .长方形;
B .梯形;
C .三角形;
D .圆
5.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是(
) A .圆柱; B .圆锥; C .正方体; D .球
6.截去四边形的一个角,剩余图形不可能是( )
A .三角形;
B .四边形;
C .五边形;
D .圆
7.用一个平面去截圆锥,得到的平面不可能是( )
8.用一个平面去截一个圆柱,得到的图形不可能是( )
三、指出下列几何体的截面形状
.
___________ ___________
四.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.。
截一个几何体同步练习 2021-2022学年北师大版七年级数学上册
1.3截一个几何体2021-2022学年北师大版七年级数学上册A组(基础题)一、填空题1.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是______.2.用一个平面去截几何体,若截面是三角形,则这个几何体可能是______、______和______.3.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是______;(2)截面是______;(3)截面是______;(4)截面是______.二、选择题4.用一个平面去截下列选项中的几何体,截面不可能是圆的是()5.用一平面截一个正方体,不能得到的截面形状是()A.等边三角形B.长方形C.六边形D.七边形6.用平面去截一个几何体,如果截面的形状是三角形,则该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体7.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()8.在一个正方体的容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是()三、解答题9.如图所示,写出下列几何体截面(阴影部分)的形状.10.用一个平面去截一个圆柱:(1)所得截面可能是三角形吗?(2)如果能得到正方形的截面,那么圆柱的底面半径和高有什么关系?11.如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?B组(中档题)一、填空题12.用一个平面去截一个正方体,所得截面的边数最少是______,最多是______.13.如图,用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的序号.如A(______),则B(______);C(______);D(5);E(______).14.如图1是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图2),推导图1 几何体的体积为______(结果保留π).二、解答题15.如图1是一个正方体,不考虑边长的大小,它的平面展开图为图2,四边形APQC是截正方体的一个截面.问:截面的四条线段AC,CQ,QP,P A分别在展开图的什么位置上?C组(综合题)16.如图1,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色.(1)小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色面的呢?(2)如图2,如果每面切三刀,情况又怎样呢?(3)每面切n刀呢?图1图2参考答案1.3截一个几何体2021-2022学年北师大版七年级数学上册A组(基础题)一、填空题1.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是圆柱.2.用一个平面去截几何体,若截面是三角形,则这个几何体可能是圆锥、正方体和长方体.3.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是正方形;(2)截面是正方形;(3)截面是长方形;(4)截面是长方形.二、选择题4.用一个平面去截下列选项中的几何体,截面不可能是圆的是(C)5.用一平面截一个正方体,不能得到的截面形状是(D)A.等边三角形B.长方形C.六边形D.七边形6.用平面去截一个几何体,如果截面的形状是三角形,则该几何体不可能是(A)A.圆柱B.棱柱C.圆锥D.正方体7.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是(C)8.在一个正方体的容器内分别装入不同量的水,再把容器按不同方式倾斜一点,容器内水面的形状不可能是(A)三、解答题9.如图所示,写出下列几何体截面(阴影部分)的形状.解:①三角形;②等腰三角形;③长方形;④圆.10.用一个平面去截一个圆柱:(1)所得截面可能是三角形吗?(2)如果能得到正方形的截面,那么圆柱的底面半径和高有什么关系?解:(1)用一个平面去截一个圆柱,所得截面不可能是三角形.(2)圆柱的底面半径r与圆柱的高h之间的关系为0<h≤2r.11.如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:B组(中档题)一、填空题12.用一个平面去截一个正方体,所得截面的边数最少是3,最多是6.13.如图,用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的序号.如A(1,5,6),则B(1,3,4);C(1,2,3,4);D(5);E(3,5,6).14.如图1是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图2),推导图1 几何体的体积为63π(结果保留π).二、解答题15.如图1是一个正方体,不考虑边长的大小,它的平面展开图为图2,四边形APQC是截正方体的一个截面.问:截面的四条线段AC,CQ,QP,P A分别在展开图的什么位置上?解:线段AC,CQ,QP,P A分别在展开图的面ABCD,BCGF,EFGH,EFBA上.如图.C组(综合题)16.如图1,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色.(1)小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色面的呢?(2)如图2,如果每面切三刀,情况又怎样呢?(3)每面切n刀呢?图1图2解:(1)小立方体中三面红的有8块,两面红的12块,一面红的6块,没有红色面的1块.(2)如果每面切三刀,小立方体中三面红的有8块,两面红的24块,一面红的24块,没有红色面的8块.(3)每面切n刀,小立方体中三面红的有8块,两面红的12(n-1)块,一面红的6(n-1)2块,没有红色面的(n-1)3块.。
21--22学年北师大版七年级数学上册 1、3《截一个几何体》 一课一练(含答案)
1.3《截一个几何体》习题2一、选择题1.用一个平面去截一个圆锥,截面的形状不可能是( )A.圆B.矩形C.椭圆D.三角形2.用一个平面去截一个正方体,截面可能是( )A.七边形B.圆C.长方形D.圆锥3.用一个平面去截一个立体图形,当截取的角度和方向不同时,截面的形状随截法的不同而改变,下列截面中属于三角形的是( )A.B.C.D.4.圆锥的轴截面是( )A.梯形B.等腰三角形C.矩形D.圆5.一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( )A.圆柱和圆锥B.球体和圆锥C.球体和圆柱D.正方体和圆锥6.用一个平面按照如图所示的位置与正方体相截,则截面图形是( )A.B. C.D.7.用一个平面去截一个几何体,如果截面的形状是长方形,那么这个几何体不可能是( ).A.圆柱B.圆锥C.五棱柱D.正方体8.用一个平面去截一个正方体,截面不可能是( )A.梯形B.五边形C.六边形D.七边形9.用一个平面去截①圆锥、②圆柱、③球、④五棱柱,能得到的截面是圆的图形是( )A.②④B.①②③C.②③④D.①③④10.面几何体的截面图可能是圆的是( )A.圆锥 B.正方体 C.长方体 D.棱柱11.用一个平面去截下列3个几何体,能得到截面是长方形的几何体有( )A.0个B.1个C.2个D.3个12.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱. ( )A.①②③④B.①③④C.①④D.①②13.用一个平面取截一个几何体,得到的截面是四边形,这个几何体可能是( ) A.圆柱B.球体C.圆锥D.以上都有可能14.如图,用一个平面去截下列立体图形,截面可以得到三角形的立体图形有( )A.4个B.3个C.2个D.1个15.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是( )A.圆柱; B.圆锥; C.正方体; D.球16.如图,将正方体沿面AB′C剪下,则截下的几何体为( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱17.如图,一个有盖..的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是A.B.C.D.18.如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是( )A.圆B.长方形C.椭圆D.平行四边形二、填空题1.把一个长方体切去一个角后,剩下的几何体的顶点个数为2.钻石原石看起来并不起眼,但经过精心设计、切割、打磨,就会成为璀璨夺目的钻石.钻石切割是多面体截面在实际生活中的一个应用.将已经加工成三棱柱形状的钻石原石进行切割,只切一刀,切截面的形状可能是___________.(填一种情况即可)3.如果用平面截掉一个长方体的一个角(即切去一个三棱锥),则剩下的几何体最多有_____顶点,最少有_____条棱.4.如图①是圆柱被一个平面斜切后得到的几何体,类比梯形面积公式的推导方法(如图②) ,推导图①中的几何体的体积为_________.5.爸爸给儿子阳阳买了一个生日蛋糕(圆柱形),阳阳想把蛋糕切成至少七块分给七位小朋友,若沿竖直方向切分,则至少需切________刀.6.小明的妈妈烙了一张大饼,需要切开吃,小方没有碰触大饼,而是直接用刀切了三次,她最多能把这张饼切成___________块.7.一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成__ 块相等体积的蛋糕,十刀最多可切成____块(要求:竖切,不移动蛋糕).三、解答题1.如图所示是一个圆柱体,它的底面半径为3cm,高为6cm.(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?2.如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.3.如图①是一个正方体,不考虑边长的大小,它的平面展开图为图②,四边形APQC是截正方体的一个截面.问截面的四条线段AC,CQ,QP,PA分别在展开图的什么位置上?4.一个圆柱的底面半径是10 cm,高是18 cm,把这个圆柱放在水平桌面上,如图所示.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.答案一、选择题1.B 2.C 3.B 4.B 5.C . 6.A 7.B 8.D 9.B 10.A11.D 12.B 13.A 14.B 15.C 16.A 17.D 18.B二、填空题1.7,8,9,102.长方形(或三角形,答案不唯一).3.10, 12.4.63π5.36.77.16 56三、解答题1.解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .2.解:由题可得,把长方形ABCD 绕AB 边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为6cm ,高为10cm ,∴截面的最大面积为6×2×10=120(cm 2).3.根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面:顶点:A −A ,C −C ,P 在EF 边上,Q 在GF 边上.边AC 在ABCD 面上,AP 在ABFE 面上,QC 在BCGF 面上,PQ 在EFGH 面上.如图:4.(1)所得的截面是圆;(2)所得的截面是长方形;(3)当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大.这时,长方形的一边等于圆柱的高,另一边等于圆柱的底面直径.如图所示:则这个长方形的面积为:10×2×18=360(cm2).。
_1、3《截一个几何体》一课一练 21-22学年北师大版七年级数学上册
1.3《截一个几何体》习题1一、选择题1.下列说法正确的是( )A.球的截面可能是椭圆。
B.组成长方体的各个面中不能有正方形。
C.五棱柱一共有15条棱。
D.正方体的截面可能是七边形。
2.用一个平面按如图所示方法去截一个正方体,则截面是( )A.B.C.D.3.粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是( )A.点动成线B.线动成面C.面动成体D.面与面相交得到线4.用平面截一个长方体,下列截面中:①正三角形②长方形③平行四边形④正方形⑤等腰梯形⑥七边形,其中一定能够截出的有( )A.2个B.3个C.4个D.5个5.用一个平面去截一个几何体,得到的截面形状是长方形,那么这个几何体可能是( ) A.正方体、长方体、圆锥B.圆柱、球、长方体C.正方体、圆柱、球D.正方体、长方体、圆柱6.用一个平面去截圆柱体,则截面形状不可能是( )A.正方形B.三角形C.长方形D.圆7.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( ) A.①②相同‘③④相同B.①③相同;②④相同C.①④相同;②③相同D.都不相同8.下面说法,错误的是( )A.一个平面截一个球,得到的截面一定是圆B.一个平面截一个正方体,得到的截面可以是五边形C.棱柱的截面不可能是圆D.甲、乙两图中,只有乙才能折成正方体9.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( )A.圆锥B.长方体C.八棱柱D.正方体10.用一个平面去截一个几何体,截面是三角形,这个几何体不可能...是( )A.三棱柱B.正方体C.圆锥D.圆柱11.用平面去截下列几何体,能截得长方形、三角形、等腰梯形三种形状的截面,这个几何体是( )A.B.C.D.12.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是( )A.B.C.D.13.如图,将小正方体切去一个角后再展开,其平面展开图正确的是( )A.B.C.D.14.一个物体的外形是圆柱,但不清楚它的内部结构,现用一组水平的平面去截这个物体,从上至下的五个截面依次如图所示,则这个物体可能是下列选项中的().A.B.C.D.二、填空题15.一张长方形的桌子有四个角,砍去一个角后,还剩下________个角.16.正方体切去一块,可得到如图几何体,这个几何体有______条棱.17.如图,用一个平面去截一个正方体,截面相同的是__________.18.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是____.三、解答题19.如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.20.如图,用一个平面去截一个几何体,请在几何体的下面的横线上,填写相应截面的形状.21.小学时,有一道趣味数学题:“稀奇稀奇真稀奇,4刀切成9块瓜,吃完剩下10块皮”,今天你能画图解释一下吗?22.将图①的正方体切去一块,不同的切法可以得到图②~⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如:A(1,5,6),则B(________);C(________);D(________).24.(1)用一个平面去截一个三棱柱,截面的边数最多是?(2)用一个平面去截一个四棱柱,截面的边数最多是?(3)用一个平面去截一个五棱柱,截面的边数最多是?(4)用一个平面去截一个n棱柱,截面的边数最多是?25.如图所示的是一个三棱柱,用一个平面先后三次截这个三棱柱.()1截得的截面能否是三个与该三棱柱的底面大小相同的三角形?若能,画图说明你的截法.()2截得的截面能否是三个长相等的长方形?若能,画图说明你的截法;()3截得的截面能否是梯形?若能.画图说明你的一种截法.26.如图是一个粮仓,已知粮仓底面直径为8m,粮仓顶部顶点到地面的垂直距离为9m,粮仓下半部分高为6m,观察并回答下列问题:(1)粮仓是由两个几何体组成的,他们分别是________;(2)用一个平面去截粮仓,截面可能是____________(写出一个即可);(3)如图,将下面的图形分别绕虚线旋转一周,哪一个能形成粮仓?用线连一连;(4)求出该粮仓的容积(结果精确到0.1, 取3.14).答案一、选择题1.C 2.B 3.B 4.D 5.D 6.B 7.A 8.D9.C 10.D 11.D 12.B 13.D 14.B二、填空题15.3或4或516.1217.①③18.13三、解答题19.∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条.20.解:依次填长方形,梯形,三角形,三角形,圆.21.解:西瓜按井字形分割,即横两刀、纵两刀,就可以分成九块,但井字形中间方形的那块在两端各有一块瓜皮,所以会剩下十块瓜皮.22.解析:23.B(正方体)的截面图形可能有(1,2,3,4);C(球体)的截面图形可能有(5);D(圆柱)的截面图形可能有(3,5,6).故答案为:B(1,2,3,4);C(5);D(3,5,6).24.(1)用一个平面截三棱柱,截面形状可能有:三角形或四边形或五边形,边数最多是5;(2)用一个平面截四棱柱,截面形状可能有:三角形或四边形或五边形或六边形,边数最多是6;(3)用一个平面截五棱柱,截面形状可能有:三角形或四边形或五边形或六边形或七边形,边数最多是7;(4)用平面截棱柱,规律为:①截面的形状既与被截的几何体有关,还与截面的角度和方向有关;②截面经过几个面,得到的形状就是几边形.所以:用一个平面去截一个n棱柱,截面的边数最多是(n+2).故本题的答案是:(1)5;(2)6;(3)7;(4)n+2.25.()1能;如图①所示;()2能;如图②所示;()3能;如图③所示.26.解:(1)粮仓上半部分是圆锥,下半部分是圆柱,故答案为:圆柱和圆锥;(2)用一个平面去截圆锥或圆柱,都可以得到一个圆,故答案为:圆;(3)连线如下:1 3=351.7m3.(4)粮仓的体积为3.14×42×6+3.14×42×3×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 截一个几何体
1.截面
定义:用一个平面去截一个几何体,截出的面叫做截面.
如图所示,阴影部分就是截面.
谈重点截面的理解
①由前面的知识我们知道“面与面相交得到线”,而用平面去截几何体,所得的截面就是
这个平面与几何体每个面相交的线所围成的图形.②截面的形状与所截几何体有关,也与所截
角度和方向有关.③对于同一个几何体,截面的方向不同,得到的截面形状一般也不相同.同
一个几何体可能有多种不同形状的截面.
【例1】下列关于截面的说法正确的是( ).
A.截面是一个平面图形B.截面的形状与所截几何体无关
C.同一个几何体,截面只有一个D.同一个几何体,截面的形状都相同
解析:根据截面的定义“用一个平面去截几何体,截出的面叫做截面”可知,A是正确的;截面与几何体的形状有关,B是错误的;从不同的角度和方向去截同一个几何体,所得的
截面一般不同,所以C,D是错误的.故选 A.
答案:A
2.正方体的截面
正方体截面的形状:
如图所示,正方体的截面的形状可以是:
(1)三角形(包括等腰三角形、等边三角形和一般三角形),如图①.
(2)四边形(包括正方形、长方形、梯形等),如图②③④.
(3)五边形,如图⑤.
(4)六边形,如图⑥.
正方体中不同形状的截面的截法:
(1)沿竖直或水平方向截正方体,截面为正方形.
(2)图①中的截面是等边三角形,与该平面平行,能截正方体三条棱的平面,都能截出等边
三角形.
(3)过正方体同一个面上不相邻的两个顶点和一条棱上的一点,可截出等腰三角形(如图),且与该面平行的能截正方体三条棱的平面,都能截出等腰三角形.
(4)分别过正方体的上、下底面,且与任何棱都不平行的截面,可截出梯形.
(5)只要截面与五个面相交或与六个面相交,即可截出五边形或六边形.
【例2】下列说法正确的是( ).
①正方体的截面可以是等边三角形②正方体不可能截出七边形③用一个平面截正方体,当这个平面与四个平面相交时,所得的截面一定是正方形④正方体的截面中边数最多的
是六边形
A.①②③④B.①②③C.①③④D.①②④解析:过正方体三个不相邻顶点的截面是等边三角形,①正确;正方体只有六个面,所以
最多与六个面相交,截面最多是六边形,②正确;当一个平面与四个平面相交时,截面也可能
是长方形和梯形,③错误;正方体有六个面,当与六个面都相交时,截面是六边形,④正确.答案:D
3.圆柱、圆锥、球的截面
(1)圆柱的截面
用一个平面去截一个圆柱,可得到的截面形状是长方形、圆、椭圆、椭圆的一部分.
(2)圆锥的截面
用一个平面去截圆锥,可得到的截面形状是三角形、圆、椭圆及椭圆的一部分.
(3)球体的截面
用一个平面去截球体,可得到的截面形状是圆.
【例3】下列几何体的截面分别是__________、________、________、________.
解析:观察时要注意平面截几何体的方向和角度,找出它与几何体的几个面相交,同时注
意截面是否与底面平行或垂直.
答案:圆长方形三角形圆
4.根据截面判断几何体
(1)常见几何体截面的比较
常见几何体主要是棱柱、圆柱、圆锥和球体.棱柱包括正方体、长方体、三棱柱、五棱
柱、六棱柱,,其中以正方体为代表.各种几何体的截面如下表:
(2)根据截面判断原几何体的方法:
①截面中有曲线,则原几何体一定有曲面.例如截面形状是圆的几何体可能是圆柱、圆
锥、球或圆台.
②若一个几何体的各面都是平面,则所得截面一定是多边形;若几何体有曲面,则所得截
面可能是多边形,也可能是由直线和曲线组成的图形,还可能是由曲线组成的图形.
【例4-1】一个几何体的一个截面是三角形,则原几何体一定不是下列图形中的( ).
A.圆柱和圆锥B.球体和圆锥
C.球体和圆柱D.正方体和圆锥
解析:球的截面只能是圆形;圆柱的截面可以是圆、长方形、椭圆和椭圆的一部分;正方
体和圆锥都可以截出三角形,故选 C.
答案:C
【例4-2】一个几何体,用水平的面去截,所得截面都是圆,用竖直的面去截,所得截面
是长方形,判断这个几何体的名称(写出一种几何体的名称即可).
分析:本题考查由截面的形状判断几何体.用水平面截,所得截面都是圆,该几何体可能
是圆柱、圆锥、球;用竖直的面去截,所得截面是长方形,该几何体可能是棱柱、圆柱、正方
体、长方体.综合两个条件可得该几何体可能是圆柱.
解:这个几何体可能是圆柱.
点评:同一个几何体可能有多个不同的截面图形,只有综合考虑不同的截面图形,才能准
确判断出几何体的形状.
5.判断截后剩余几何体的顶点数、棱数和面数
一个棱柱,截去一部分后,剩余几何体的顶点数、棱数和面数与该图形的形状有关.
用一个平面截掉正方体的一个角,剩余部分的顶点数、棱数和面数情况:
截面过顶
顶点数棱数面数
点的个数
010157
19147
28137
37127
【例5-1】如图所示,过长方体的一个顶点,截掉长方体的一个角,则剩余部分的顶点有
__________个.
解析:过一个顶点截掉一个角后,去掉了一个顶点,又增加了两个,实际上比原来的长方
体增加了一个顶点,有9个.
答案:9
【例5-2】如图,用一个平面截掉正方体的一条棱,剩下的几何体有________个顶点,有________条棱,有________个面.
解析:剩下的部分是一个五棱柱,故有10个顶点,15条棱,7个面.
答案:10 15 7
6.截面的应用
把一个长方体木块锯成几段,可以看成用几个平面去截长方体,其截面的面积等于与截面平行的底面的面积.如图所示.
截面与增加的面积的关系:
分成的段数截面数增加的面积
212个截面的面积
324个截面的面积
436个截面的面积
548个截面的面积
n
n-1
(n≥2)
2×(n-1)个
截面的面积
【例6】如图所示,一根长2米的长方体木料锯成4段,这根木料的表面积比原来增加了
72平方厘米,则这根木料原来的体积是多少?
分析:木料被锯成4段,实际上可以看成用3个平面去截一个长方体,每个截面处增加2个相等的面,共增加了3×2=6个面,这6个面的面积和是72平方厘米,可先求出每个面的面积,再求体积.
解:因为将木料锯成4段,则表面积多出6个面,且每个面的面积相等,所以72÷6=12(平方厘米).
所以原木料的体积是12×200=2 400(立方厘米).
答:这根木料原来的体积为 2 400立方厘米.
点评:①长方体的体积=横截面的面积×长;②注意本题单位要统一.。