CMOS Logic Circuit

合集下载

TTL电路与CMOS电路

TTL电路与CMOS电路

TTL电路与CMOS电路2009-10-28 22:28一、TTL和CMOS电路TTL电路是晶体管-晶体管逻辑电路的英文缩写(Transister-Transister-Logic ),是数字集成电路的一大门类。

它采用双极型工艺制造,、具有高速度低功耗和品种多等特点。

CMOS是金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。

由MOS管构成的集成电路称为MOS集成电路,而由PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC(Complementary MOS Integrated Circuit)。

1、TTL电平:输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。

而且具有很宽的噪声容限。

二、TTL和CMOS电路的比较1)TTL电路是电流控制器件,而CMOS电路是电压控制器件。

2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。

CMOS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。

CMOS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。

3)CMOS电路的锁定效应:CMOS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。

这种效应就是锁定效应。

当产生锁定效应时,CMOS的内部电流能达到40mA以上,很容易烧毁芯片。

防御措施:1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。

2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。

3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。

CMOS逻辑电路设计

CMOS逻辑电路设计

CMOS逻辑电路设计CMOS(Complementary Metal-Oxide-Semiconductor)逻辑电路是现代集成电路中广泛应用的一种电路结构。

它由N沟道MOS(NMOS)和P沟道MOS(PMOS)互补组成,具有低功耗、高噪声抑制和高速运算等优势。

在本文中,我们将探讨CMOS逻辑电路的设计原理和方法。

一、CMOS逻辑门的基本结构CMOS逻辑门是由一对互补的MOS管组成的。

其中,NMOS管是由N沟道与P+掺杂的互补金属氧化物半导体(CMOS)结构形成,而PMOS管是由P沟道与N+掺杂的CMOS结构形成。

CMOS逻辑电路通过控制这些NMOS管和PMOS管的某些管子通断来实现逻辑运算。

二、CMOS逻辑门的基本原理CMOS逻辑门的基本原理是利用MOS管在开关状态时流过的电流来实现信号的逻辑运算。

当NMOS管的门极接收到高电平信号(逻辑1)时,通常情况下,NMOS管导通,PMOS管截止。

相反,当NMOS 管的门极接收到低电平信号(逻辑0)时,NMOS管截止,PMOS管导通。

通过这种控制逻辑,CMOS逻辑门可以实现与门、或门、非门等基本逻辑运算。

三、CMOS逻辑电路的设计方法在进行CMOS逻辑电路设计时,需要遵循以下步骤:1. 确定逻辑功能:根据所需的逻辑运算,确定需要设计的CMOS逻辑门类型。

2. 绘制逻辑图:根据所需的逻辑功能,用逻辑符号绘制电路的逻辑图。

3. 分析逻辑功能:根据逻辑图,分析逻辑门输入和输出之间的关系,确定每个逻辑门的输入和输出真值表。

4. 选择器件尺寸:根据所需的逻辑门延迟、功耗和面积等要求,选择合适的管子尺寸。

5. 进行布线:根据所选用的管子尺寸,进行电路的布线设计。

6. 进行模拟仿真:使用电路设计软件,进行CMOS逻辑电路的仿真,验证其功能和性能。

7. 进行物理实现:根据设计结果,进行CMOS逻辑电路的物理实现,包括掩膜制作、晶圆制作和封装测试等过程。

四、CMOS逻辑电路的优势与应用CMOS逻辑电路具有以下优势:1. 低功耗:由于CMOS逻辑电路的特殊结构,只有在发生信号变换时才会有较大电流流过。

高性能CMOS数字电路芯片说明书

高性能CMOS数字电路芯片说明书

Features Array•Full Range of Matrices with up to 480K Gates•0.5 µm Drawn CMOS, 3 Metal Layers, Sea of Gates•RAM and DPRAM Compilers•Library Optimized for Synthesis, Floor Plan and Automatic Test Generation (ATG)• 3 and 5 Volts Operation; Single or Dual Supply Mode•High Speed Performances:–450 ps Max NAND2 Propagation Delay at 4.5V, 720 ps at 2.7V and FO = 5–Min 610 MHz Toggle Frequency at 4.5V, 320 MHz at 2.7V•Programmable PLL Available upon Request•High System Frequency Skew Control through Clock Tree Synthesis Software•Low Power Consumption:–1.96 µW/Gate/MHz at 5V–0.6 µW/Gate/MHz at 3V•Integrated Power On Reset•Matrices with a Max of 484 Fully Programmable Pads•Standard 3, 6, 12 and 24 mA I/Os•Versatile I/O Cell: Input, Output, I/O, Supply, Oscillator•CMOS/TTL/PCI Interface•ESD (2 kV) and Latch-up Protected I/O•High Noise and EMC Immunity:–I/O with Slew Rate Control–Internal Decoupling–Signal Filtering between Periphery and Core–Application Dependent Supply Routing and Several Independant Supply Sources •Wide Selection of MQFPs and MCGA Packages up to 472 Pins•Delivery in Die Form with 94.6 µm Pad Pitch•Advanced CAD Support: Floor Plan, Proprietary Delay Models, Timing Driven Layout, Power Management•Cadence®, Mentor®, Vital® and Synopsys® Reference Platforms•EDIF and VHDL Reference Formats•Available in Military and Space Quality Grades (SCC, MIL-PRF-38535)•No Single Event Latch-up below an LET threshold of 80MeV/mg/cm2•Tested up to a Total Dose of 60 Krad (Si) according to MIL STD 883 Method 1019•QML Q and V with SMD 5962-00B02DescriptionThe MG2RT series is a 0.5 micron, array based, CMOS product family. Several arrays up to 480K gates cover most system integration needs. The MG2RT is manufactured using a 0.5 micron drawn, 3 metal layer CMOS process, called SCMOS 3/2RT.The base cell architecture of the MG2RT series provides high routability of logic with extremely dense compiled memories: RAM and DPRAM. ROM can be generated using synthesis tools.Accurate control of clock distribution can be achieved by PLL hardware and CTS (Clock Tree Synthesis) software. New noise prevention techniques are applied in the array and in the periphery: three or more independent supplies, internal decoupling, customiszation dependent supply routing, noise filtering, skew controlled I/Os, low swing differential I/Os, all contribute to improve the noise immunity and reduce the emission level.The MG2RT is supported by an advanced software environment based on industry standards linking proprietary and commercial tools. Verilog, Modelsym and Design Compiler are the reference front-end tools. Floor planning associated with timing-driven layout provides a short back-end cycle.24115L–AERO–06/05MG2RTThe MG2RT library allows straight forward migration from the MG1RT and MG1 Sea of Gates.A netlist based on this library can be simulated as either MG2RT or MG2RTP. It can also be sim-ulated as MG2 provided there are no SEU hardened cells.Note:Not available for new designs.LibrariesThe MG2RT cell library has been designed to take full advantage of the features offered by both logic and test synthesis tools.Design testability is assured by the full support of SCAN, JTAG (IEEE 1149) and BIST methodologies.More complex macro functions are available in VHDL, such as Two-wire Interface (TWI), UART,Timer.Block GeneratorsBlock generators are used to create a customer specific simulation model and metallisation pat-tern for regular functions like RAM and DPRAM. The basic cell architecture allows one bit per cell for RAM and DPRAM. The main characteristics of these generators are summarised below.Table 1. List of Available MG2RT MatricesType Total Gates Typical UsableGatesTotal PadsMaximum Programmable I/OMG2044E (1)4461631200173150MG2091E 9146464000237214MG2194E (1)193800135600333310MG2265E 264375185000385362MG2360E (1)361680253100445422MG2480E481143336800507484Function Maximum Size (bits)Bits/WordTypical Characteristics (16 Kbits) at 5VAccess Time (ns)Used CellsRAM 32K 1-368.620K DPRAM32K1-369.223K34115L–AERO–06/05MG2RTI/O Buffer InterfacingI/O Flexibility All I/O buffers may be configured as input, output, bi-directional, oscillator or supply. A level translator is located close to each buffer.InputsInput buffers with CMOS or TTL thresholds are non-inverting and feature versions with and with-out hysteresis. The CMOS and TTL input buffers may incorporate pull-up or pull down terminators. For special purposes, a buffer allowing direct input to the matrix core is available. OutputsSeveral kinds of CMOS and TTL output drivers are offered: fast buffers with 3, 6, 12 and 24 mA drive at 5V, low noise buffers with 12 mA drive at 5V.Clock Generation and PLLClock GenerationAtmel offers 6 different types of oscillators: 4 high frequency crystal oscillators and 2 RC oscilla-tors. For all devices, the mark-space ratio is better than 40/60 and the start-up time less than 10ms.PLLContact factory.Oscillators Frequency (MHz)Typical Consumption (mA)Max 5V Max 3V5V 3V Xtal 7M 127 1.20.4Xtal 20M 2817 2.50.8Xtal 50M 704072Xtal 100M 13075165RC 10M 101021RC 32M323231.544115L–AERO–06/05MG2RTPower Supply and Noise ProtectionThe speed and density of the SCMOS3/2RT technology cause large switching current spikes for example when: •either 16 high current output buffers switch simultaneously,•or 10% of the 480,000 gates are switching within a window of 1 ns.Sharp edges and high currents cause some parisitic elements in the packaging to become sig-nificant. In this frequency range, the package inductance and series resistance should be taken into account. It is known that an inductor slows down the settling time of the current and causes voltage drops on the power supply lines. These drops can affect the behavior of the circuit itself or disturb the external application (ground bounce).In order to improve the noise immunity of the MG core matrix, several mechanisms have been implemented inside the MG arrays. Two kinds of protection have been added: one to limit the I/O buffer switching noise and the other to protect the I/O buffers against the switching noise coming from the matrix.I/O Buffers Switching ProtectionThree features are implemented to limit the noise generated by the switching current: •The power supplies of the input and output buffers are separated.•The rise and fall times of the output buffers can be controlled by an internal regulator. •A design rule concerning the number of buffers connected on the same power supply line has been imposed.Matrix Switching Current Protection This noise disturbance is caused by a large number of gates switching simultaneously. To allow this without impacting the functionality of the circuit, three new features have been added:•Decoupling capacitors are integrated directly on the silicon to reduce the power supply drop.•A power supply network has been implemented in the matrix. This solution reduces the number of parasitic elements such as inductance and resistance and constitutes an artificial VDD and Ground plane. One mesh of the network supplies approximately 150 cells. •A low pass filter has been added between the matrix and the input to the output buffer. This limits the transmission of the noise coming from the ground or the VDD supply of the matrix to the external world via the output buffers.54115L–AERO–06/05MG2RTPackagingAtmel offers a wide range of packaging options which are listed below:Note: 1.Contact Atmel local design centers to check the availability of the matrix/package combination.Package Type (1)Pinsmin/max Lead Spacing(mils)MQFP100132196256352252525202064115L–AERO–06/05MG2RTDesign Flows and ToolsDesign Flows and Modes A generic design flow for an MG2RT array is illustrated below.A top down design methodology is proposed which starts with high level system description andis refined in successive design steps. At each step, structural verification is performed whichincludes the following tasks: •Gate level logic simulation and comparison with high level simulation results.•Design and test rules check.•Power consumption analysis.•Timing analysis (only after floor plan).The main design stages are:•System specification, preferably in VHDL form.•Functional description at RTL level.•Logic synthesis.•Floor planning and bonding diagram generation.•Test/Scan insertion, ATG and/or fault simulation.•Physical cell placement, JTAG insertion and clock tree synthesis.•Routing.To meet the various requirements of designers, several interface levels between the customer and Atmel are possible.For each of the possible design modes a review meeting is required for data transfer from the user to Atmel. In all cases the final routing and verifications are performed by Atmel.The design acceptance is formalized by a design review which authorizes Atmel to proceed with sample manufacturing.74115L–AERO–06/05MG2RTFigure 1. MG2RT Design FlowGate Level System SpecificationsRTL SimulationLogic synthesisFloor Plan Bonding diagramScan insertionATG and Fault SimulationJTAG insertion Clock Tree SynthesisRouting + ExtractBackannotated SimulationSign-off Samples Manufacturing and TestPlacementSimulation84115L–AERO–06/05MG2RTDesign Tool and Design Kits (DK)The basic content of a design kit is described in the table below.The interface formats to and from Atmel rely on IEEE or industry standard: •VHDL for functional descriptions •VHDL or EDIF for netlists•Tabular, log or .VCD for simulation results •SDF (VITAL format) and SPF for back annotation •LEF and DEF for physical floor plan informationThe design kits supported for several commercial tools are listed below.Design Kit Support•Cadence/Verilog (RTL and gate), Logic Design Planner•Mentor/Modelsim (RTL and gate), Velocity, BSD Architect, Flex Test •Synopsys, Design Compiler, PrimeTime •VitalTable 2. Design Kit DescriptionDesign Tool or library Atmel Software Name Third Party ToolsDesign manual and libraries (1)Synthesis library(1)Gate level simulation library (1)Design rules analyser STAR Power consumption analyser COMETFloor plan library (1)Timing analyser library (1)Package and bonding software PIMScan path and JTAG insertion (1)ATG and fault simulation library(1)Note: 1.Refer to “Design kits cross reference tables” ATD-TS-WF-R018194115L–AERO–06/05MG2RTElectrical CharacteristicsAbsolute Maximum RatingsDC CharacteristicsAmbient temperature under bias (TA)Military......................................................-55 to +125°C Junction temperature....................................TJ < 175°C Storage temperature.................................-65 to +150°C TTL/CMOS:Supply voltage VDD...................................-0.5V to +7V I/O voltage......................................-0.5V to VDD + 0.5VNote:Stresses above those listed may cause permanent damage to the device. Exposure to absolute maxi-mum rating conditions for extended period may affect device reliability.Table 3. DC Characteristics - Specified at VDD = +5V ± 10%SymbolParameterMinTypMax UnitConditionsVILInput LOW voltage (3)CMOS input TTL input001.50.8VVIHInput HIGH voltage (3)CMOS input TTL input3.52.2VDD VDD V VOL Output LOW voltage 0.4V IOL =24, 12, 6, 3 mA (1)VOHOutput HIGH voltage3.9VIOL =-24, -12, -6, -3 mA (1)VT+Schmitt trigger positive threshold CMOS input TTL input3.61.8VVT-Schmitt trigger negative threshold CMOS input TTL input1.21.0VDelta V CMOS hysteresis 25°C/5V TTL hysteresis 25°C/5V 1.90.6VILInput leakage No pull up/down Pull up Pull down-5-5579-69125+5-120330µA µA µA IOZ3-State Output Leakage current -5+5µAIOSOutput Short circuit currentIOSN IOSP90180270540mABOUT3BOUT6BOUT12BOUT24ICCSB Leakage current per cell 1.010.0nA ICCOPOperating current per cell0.390.58µA/MHz/gateNotes:1.According buffer: Bout24, Bout12, Bout6, Bout3.2.Supplied as a design limit but not guaranteed or tested. No more than one output at a time may be shorted for a maximumduration of 10 seconds.3.Without Schmitt trigger.104115L–AERO–06/05MG2RTTable 4. DC Characteristics - Specified at VDD = +3V ± 0.3VSymbolParameterMinTypMax UnitConditionsVILInput LOW voltage (3)LVCMOS input LVTTL input 000.3 VDD 0.8VVIH Input HIGH voltage (3)LVCMOS input LVTTL input 0.7 VDD 2.0VDD VDDVVOLOutput LOW voltage LVTTL0.4VIOL=12, 6, 3, 1.5 mA (1)VOHOutput high voltage LVTTL2.4VIOH= -8, -4, -2, -1 mA (1)VT+Schmitt trigger positive threshold LVCMOS input LVTTL input2.21.2VVT-Schmitt trigger negative threshold LVCMOS input LVTTL input0.90.8VDelta V CMOS hysteresis 25°C/3V TTL hysteresis 25°C/3V 0.80.2VILInput leakage No pull up/down Pull up Pull down-1-20322442+1-60150µA µA µA IOZ3-State Output Leakage current ±1µAIOSOutput Short circuit currentIOSN IOSP90180270540mABOUT3BOUT6BOUT12BOUT24ICCSB Leakage current per cell 0.65nA ICCOPOperating current per cell0.20.25µA/MHz/gateNotes:1.According buffer: Bout24, Bout12, Bout6, Bout3.2.Supplied as a design limit but not guaranteed or tested. No more than one output at a time may be shorted for a maximumduration of 10 seconds.3.Without Schmitt trigger.114115L–AERO–06/05MG2RTAC CharacteristicsTable 5. AC Characteristics - TJ = 25°C, Process typical (all values in ns)Buffer DescriptionLoad TransitionVDD5V 3V BOUT12Output buffer with 12 mA drive60 pfTplh2.533.91Tphl 2.76 3.64BOUT3Output buffer with 3 mA drive60 pfTplh4.637.22Tphl 4.86 6.36BOUTQLow noise output buffer with 12 mA drive60 pfTplh2.974.48Tphl 4.36 6.24B3STA33-state output buffer with 3 mA drive60 pfTplh4.737.35Tphl 4.89 6.44B3STA123-state output buffer with 12 mA drive60 pfTplh2.644.07Tphl 2.79 3.72B3STAQLow noise 3-state output buffer with 12 mA drive60 pfTplh3.014.61Tphl4.426.34124115L–AERO–06/05MG2RTTable 6. AC Characteristics - TJ = 25°C, Process typical (all values in ns)Cell Description Load TransitionVDD5V 3V BINCMOSCMOS input buffer15 fanTplh0.771.14Tphl 0.75 1.06BINTTLTTL input buffer16 fanTplh0.91.31Tphl 0.7 1.1INVInverter12 fanTplh0.520.8Tphl 0.420.53NAND22 - input NAND12 fanTplh0.731.11Tphl 0.660.9FDFFD flip-flop, Clk to Q8 fanTplh 0.8 1.21Tphl0.681.02Ts 0.330.44Th -0.12-0.24BUF4XHigh drive internal buffer51 fanTplh0.761.1Tphl 0.580.81NOR22-Input NOR gate8 fanTplh0.651.08Tphl 0.370.45OAI224-input OR AND INVERT gate8 fanTplh0.681.14Tphl 0.420.54 OSFFD flip-flop with scan input, Clk to Q8 fanTplh 0.83 1.23Tphl1.001.38Ts 0.560.8Th-0.34-0.64115L–AERO–06/05© Atmel Corporation 2005. All rights reserved. Atmel ®, logo and combinations thereof, are registered trademarks, and Everywhere You Are ®are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.Atmel CorporationAtmel Operations2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 487-2600Regional HeadquartersEuropeAtmel SarlRoute des Arsenaux 41Case Postale 80CH-1705 Fribourg SwitzerlandTel: (41) 26-426-5555Fax: (41) 26-426-5500AsiaRoom 1219Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong KongTel: (852) 2721-9778Fax: (852) 2722-1369Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JapanTel: (81) 3-3523-3551Fax: (81) 3-3523-7581Memory2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314Microcontrollers2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311Fax: 1(408) 436-4314La Chantrerie BP 7060244306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18Fax: (33) 2-40-18-19-60ASIC/ASSP/Smart CardsZone Industrielle13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00Fax: (33) 4-42-53-60-011150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Scottish Enterprise Technology Park Maxwell BuildingEast Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000Fax: (44) 1355-242-743RF/AutomotiveTheresienstrasse 2Postfach 353574025 Heilbronn, Germany Tel: (49) 71-31-67-0Fax: (49) 71-31-67-23401150 East Cheyenne Mtn. Blvd.Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300Fax: 1(719) 540-1759Biometrics/Imaging/Hi-Rel MPU/High Speed Converters/RF DatacomAvenue de Rochepleine BP 12338521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00Fax: (33) 4-76-58-34-80Literature Requests/literature。

CMOS超大规模集成电路设计英文版第四版教学设计 (2)

CMOS超大规模集成电路设计英文版第四版教学设计 (2)

CMOS Super Large Scale Integrated Circuit Design Teaching Plan (4th Edition English Version) IntroductionThe study of CMOS (Complementary Metal-Oxide-Semiconductor) Super Large Scale Integrated Circuit (SLIC) design is essential forelectronics and integrated circuit engineering students. This teaching plan provides a roadmap for instructing CMOS SLIC design in the fourth edition of the English version of the textbook.ObjectivesThe primary objective of this teaching plan is to equip studentswith the necessary skills and knowledge of designing CMOS SLICs. The underlying goal is for students to apply systematic design methodologies with an emphasis on understanding the theories, concepts, and principles of SLIC design. This will enable students to develop solutions to practical problems in a variety of fields.Course OutlineWeek 1 - Introduction to CMOS SLIC Design•Definition of CMOS technology•Brief history of CMOS technology•Advantages and disadvantages of CMOS technology•Introduction to SLIC design conceptsWeek 2 - CMOS Device Physics•MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) physics•CMOS inverter operation•Non-ideal effects in MOSFETWeek 3 - CMOS Circuit Design Fundamentals•CMOS Logic design•CMOS transmission gate design•CMOS Tristate buffer designWeek 4 - CMOS Circuit Design Advanced Topics•CMOS Operational Amplifier design•Dynamic Logic•Low power CMOS designWeek 5 - Layout Design•Introduction to Layout Design•Stick diagram and layout design•CMOS Gate layout designWeek 6 - Simulation and Verification•Circuit and layout simulation tools•Verification of CMOS circuits using SPICEWeek 7 - Project Work•Design, simulation and layout of a CMOS circuit•Evaluating CMOS circuit performance•Project report and presentationTextbookThe recommended textbook for learning CMOS SLIC design is the。

CMOS介绍

CMOS介绍
相对于其他逻辑系列,CMOS逻辑电路具有以下优点:
1.允许的电源电压范围宽,方便电源电路的设计
2.逻辑摆幅大,使电路抗干扰能力强
3.静态功耗低
4.隔离栅结构使CMOS期间的输入电阻极大,从而使CMOS期间驱动同类逻辑门的能力比其他系列强得多
CMOS(本意是指互补金属氧化物半导体存储器,是一种大规模应用于集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯片,主要用来保存当前系统的硬件配置和操作人员对某些参数的设定。CMOSRAM芯片由系统通过一块后备电池供电,因此无论是在关机状态中,还是遇到系统掉电情况,CMOS信息都不会丢失。
在今日,CMOS制造工艺也被应用于制作数码影像器材的感光元件,尤其是片幅规格较大的单眼数码相机。虽然在用途上与过去CMOS电路主要作为固件或计算工具的用途非常不同,但基本上它仍然是采取CMOS的工艺,只是将纯粹逻辑运算的功能转变成接收外界光线后转化为电能,再透过芯片上的模数转换器(ADC)将获得的影像讯号转变为数码讯号输出。
早期分离式CMOS逻辑元件只有“4000系列”一种(RCA 'COS/MOS'制程),到了后来的“7400系列”时,很多逻辑芯片已经可以利用CMOS、NMOS,甚至是BiCMOS(双载子互补式金氧半)制程实现。
早期的CMOS元件和主要的竞争对手BJT相比,很容易受到静电放电(ElectroStatic Discharge,ESD)的破坏。而新一代的CMOS芯片多半在输出入接脚(I/O pin)和电源及接地端具备ESD保护电路,以避免内部电路元件的闸极或是元件中的PN接面(PN-Junction)被ESD引起的大量电流烧毁。不过大多数芯片制造商仍然会特别警告使用者尽量使用防静电的措施来避免超过ESD保护电路能处理的能量破坏半导体元件,例如安装内存模组到个人电脑上时,通常会建议使用者配戴防静电手环之类的设备。

CMOS异或门集成电路课程设计.

CMOS异或门集成电路课程设计.

课程设计任务书学生姓名:王帅军专业班级:电子1103班指导教师:封小钰工作单位:信息工程学院题目:CMOS异或门初始条件:计算机、ORCAD软件、L-EDIT软件要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:2周2、技术要求:(1)学习ORCAD和L-EDIT软件。

(2)设计一个CMOS异或门电路。

(3)利用ORCAD和L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:2014.12.29布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。

2014.12.29-12.31学习ORCAD和L-EDIT软件,查阅相关资料,复习所设计内容的基本理论知识。

2015.1.1-1.8对CMOS异或门电路进行设计仿真工作,完成课设报告的撰写。

2015.1.9提交课程设计报告,进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:目录摘要............................................................................... I•...Abstract ...................................................................................... 1J... 1绪论 (1)2异或门介绍 (2)3仿真电路设计 (3)3.1ORCAD软件介绍 (3)3.2仿真电路原理图 (4)3.3仿真分析 (5)4版图设计 (8)4.1L-EDIT软件介绍 (8)4.2版图绘制 (8)4.3 CMOS异或门版图DRC检查 (10)5心得体会 (11)参考文献 (12)附录 (123)摘要性能优越的异或门是实现各种运算集成电路的基础,可广泛应用于全加器,乘法器和算术逻辑单元等电路中。

CMOS 模拟集成电路课件完整

CMOS 模拟集成电路课件完整

• SPICE仿真器:
– HSPICE;SPECTRE;PSPICE;ELDO – WinSPICE;Spice OPUS
2020/5/9
23
2.5 SPICE仿真
2020/5/9
24
– 例子: 采用SPICE仿真MOSFET的I/V特性
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
– MOS器件的寄生电容
• CBD和CBS是漏区/源区与衬底之间的PN结耗尽区电 • C2是栅与沟道之间的氧化层电容 • C4是沟道与衬底之间的耗尽层电容,其会随偏压的变化而变化 • C1、C3和C5是多晶硅栅与源区或漏区交叠而产生的交叠电容
2020/5/9
17
等效电容:
D
rD
CBD
CGD
vBD
G CGS
2020/5/9
3
1.1 模拟电路与数字电路
Why Analog Integrated Circuits?
Why CMOS Analog Integrated Circuits?
2020/5/9
4
• 1.2 电路抽象层次
2020/5/9
5
• 1.3 模拟集成电路设计
分析
系统/电路
属性/规范
2020/5/9
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7

DesignofAnalogCMOSIntegratedCircuits教学设计

DesignofAnalogCMOSIntegratedCircuits教学设计

Design of Analog CMOS Integrated Circuits教学设计一、教学目标本次教学旨在使学生:1.了解模拟CMOS集成电路的基本知识和基本原理;2.掌握模拟CMOS集成电路的设计流程和方法;3.能够使用Cadence软件进行模拟CMOS集成电路设计和仿真;4.熟悉电源噪声、晶体管噪声、放大器噪声等的设计和控制方法;5.熟练掌握基于模拟CMOS集成电路的深入科研工作。

二、教学内容2.1 模拟CMOS集成电路基础知识1.CMOS电路介绍;2.模拟电路基础知识;3.英文文献阅读。

2.2 模拟CMOS集成电路设计流程1.需求分析、电路拓扑结构设计;2.器件参数选择、偏置电路设计;3.放大器、滤波器、振荡器等电路设计;4.电路布局、射频布局、供电布局、信号路划分;5.手工设计和自动化设计等的比较。

2.3 Cadence软件的使用1.Cadence软件界面和设计流程;2.Cadence软件电路仿真和验证;3.Cadence软件自动化设计工具使用。

2.4 模拟CMOS集成电路噪声1.电源噪声和设计方法;2.晶体管噪声和设计方法;3.放大器噪声和设计方法。

2.5 模拟CMOS集成电路的应用1.医疗设备;2.通信设备;3.音频设备;4.视频设备等。

三、教学方法本次教学采用项目化、案例教学、实验探究相结合的教学方法,其中,采用研究性学习为主要教学模式,学生既要参与课堂讲解、案例讲解,也要参与设计、布局、仿真、验证等实验和项目,探究不同模拟CMOS集成电路领域的问题和解决方法,为深入科研工作做好准备。

四、教学成果通过本次教学,学生将掌握模拟CMOS集成电路的基础知识、设计流程和方法,能够使用Cadence软件进行模拟CMOS集成电路设计和仿真,并熟悉电源噪声、晶体管噪声、放大器噪声等的设计和控制方法。

同时,学生将具备基于模拟CMOS集成电路开展深入科研工作的能力和素养,为获得更好的研究成果做好提前准备。

CMOS模拟集成电路分析与设计

CMOS模拟集成电路分析与设计

1.1 MOS管几何结构与工作原理(5)
以增强型NMOS管为例:
截止区:VGS=0 源区、衬底和漏区形成两个背靠背的PN结,不管VDS的极性 如何,其中总有一个PN结是反偏的,此时漏源之间的电阻
很大。
没有形成导电沟道,漏电流ID为0。 亚阈值区:Vth> VGS>0
B
S VGS G
NMOS D
PMOS S
NMOS D
PMOS D
NMOS D
PMOS S
G
BG
BG
G
G
G
G
G
S
S
S
D
S
S
S
D
1.2 MOS管的极间电容(1)-“本征栅电容”
“本征栅电容”:
本征电容指的是一些不能避免而在器件工作时 必需考虑的电容。
还要注意存在着大量的外在的与工艺相关的电 容。
按不同的工作区讨论本征栅电容: MOS管打开:线性区与饱和区 MOS管“关断”:截止区与亚阈值区
1.2 MOS管的极间电容(1)-“本征栅电容”(ON)
假设长沟道模型,工作于饱和区时如改变源极 电压,则有:
在漏极端口的栅与沟道的电压差保持不变(Vth), 但源极端口的电压差发生了改变。
这意味着电容的“底板”不是均匀改变。 详细的分析可以得到此时Cgs=(2/3)WLCOX
假设长沟道模型,工作于饱和区时如改变漏极 电压则不会改变沟道电荷,即Cgd=0(忽略二 次效应及外部电容)。
1、有源器件
主要内容:
1.1 几何结构与工作原理 1.2 极间电容 1.3 电学特性与主要的二次效应 1.4 低频及高频小信号等效模型 1.5 有源电阻
1.1 MOS管几何结构与工作原理(1)

TTL电路特点

TTL电路特点

TTL全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路,应用较早,技术已比较成熟。

TTL主要有BJT (Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快的特点。

最早的TTL门电路是74系列,后来出现了74H系列,74L 系列,74LS,74AS,74ALS等系列。

但是由于TTL功耗大等缺点,正逐渐被CMOS 电路取代。

TTL门电路有74(商用)和54(军用)两个系列,每个系列又有若干个子系列。

TTL电平信号:TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V等价于逻辑“0”,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。

TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。

这是由于可靠性和成本两面的原因。

因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响。

TTL输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

TTL电路是电流控制器件,TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。

CMOS(Complementary Metal Oxide Semiconductor),互补金属氧化物半导体,电压控制的一种放大器件。

CMOS Logic Circuits

CMOS Logic Circuits

(i) The entire surface is again covered with an i l ti layer of silicon dioxide. insulating l f ili di id
(j) The insulating oxide layer is then patterned in order to provide contact windows for the drain and source junctions.1
4
Integrated Circuit Components (Ctʹd) g p
(a)
(b)
Sample layout of resistive-load inverter circuits with (a) diffused ( ) p polysilicon resistor. resistor and (b) undoped p y
W
L
17
Summary
• MOSFET is an acronym for Metal‐Oxide Semiconductor Field Effect Transistor. The name “MOSFET” is derived from its Effect Transistor The name MOSFET is derived from its physical structure. It is also commonly known as MOS. • In this course, we will only focus of the enhancement‐mode MOSFET. As such, an N‐channel enhancement‐mode MOSFET shall be denoted as nMOS and a P‐channel p enhancement‐mode MOSFET shall be denoted as pMOS. • A MOS consists of 4 terminals: the Gate terminal (G), the Source terminal (S), the Drain terminal (D) and the Body terminal (B). t i l (B Cutoff Region

什么是CMOS和TTL电路

什么是CMOS和TTL电路

TTL电路是晶体管-晶体管逻辑电路的英文缩写(Transister-Transister-Logic ),是数字集成电路的一大门类。

它采用双极型工艺制造,具有高速度低功耗和品种多等特点。

CMOS是:金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。

由 MOS管构成的集成电路称为MOS集成电路,而由PMOS管和NMOS管共同构成的互补型MOS集成电路即为 CMOS-IC( Complementary MOS Integrated Circuit)。

CMOS集成电路的性能特点:微功耗—CMOS电路的单门静态功耗在毫微瓦(nw)数量级。

高噪声容限—CMOS电路的噪声容限一般在40%电源电压以上。

宽工作电压范围—CMOS电路的电源电压一般为1.5~18伏。

高逻辑摆幅—CMOS电路输出高、低电平的幅度达到全电为VDD,逻辑“0”为VSS。

高输入阻抗--CMOS电路的输入阻抗大于108Ω,一般可达1010Ω。

高扇出能力--CMOS电路的扇出能力大于50。

低输入电容--CMOS电路的输入电容一般不大于5PF。

宽工作温度范围—陶瓷封装的CMOS电路工作温度范围为- 55 0C ~ 125 0C;塑封的CMOS电路为– 40 0C ~ 85 0C。

1、TTL电平:输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

2、CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。

而且具有很宽的噪声容限。

TTL和COMS电路比较:1)TTL电路是电流控制器件,而coms电路是电压控制器件。

2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。

COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。

cmos逻辑门电路

cmos逻辑门电路

CMOS逻辑门电路1. 什么是CMOS逻辑门电路?CMOS(Complementary Metal-Oxide-Semiconductor)逻辑门电路是一种常用的数字电路设计技术。

它由两种类型的晶体管组成:N型金属氧化物半导体场效应晶体管(NMOS)和P型金属氧化物半导体场效应晶体管(PMOS)。

CMOS逻辑门电路采用了这两种晶体管的互补特性,能够实现低功耗、高噪声容限和高抗干扰性能。

2. CMOS逻辑门电路的基本原理CMOS逻辑门电路是通过控制晶体管的导通与截止状态来实现不同逻辑功能的。

当输入信号为高电平时,PMOS导通,NMOS截止;当输入信号为低电平时,PMOS截止,NMOS导通。

通过合理地设计和连接这些晶体管,可以实现与门、或门、非门等基本逻辑功能。

3. CMOS逻辑门电路的基本结构3.1 NMOS与PMOS晶体管NMOS和PMOS晶体管是构成CMOS逻辑门电路的基本元件。

NMOS由一个N型沟道和控制栅极组成,PMOS由一个P型沟道和控制栅极组成。

NMOS的导通与截止由栅极电压控制,当栅极电压高于阈值电压时,NMOS导通;PMOS的导通与截止也由栅极电压控制,但是当栅极电压低于阈值电压时,PMOS导通。

3.2 CMOS逻辑门的实现CMOS逻辑门由一组串联或并联的NMOS和PMOS晶体管组成。

以下是几种常见的CMOS逻辑门实现方式:•与门(AND Gate):将多个输入信号分别通过NMOS与PMOS晶体管连接,在输出端通过串联的NMOS和PMOS晶体管实现与运算。

•或门(OR Gate):将多个输入信号分别通过NMOS与PMOS晶体管连接,在输出端通过并联的NMOS和PMOS晶体管实现或运算。

•非门(NOT Gate):将输入信号通过一个NMOS晶体管接入输出端,并在输出端再接入一个PMOS晶体管,实现非运算。

4. CMOS逻辑门电路的特点4.1 高抗干扰性CMOS逻辑门电路采用了互补型结构,输入信号只需驱动其中一种晶体管,另一种晶体管处于截止状态,因此输入信号的干扰对输出信号的影响较小。

一种高性能的CMOS电压比较器设计

一种高性能的CMOS电压比较器设计

【关键词】电压比较器高增益低功耗失调电压模拟集成电路中比较器是一个基本模块,广泛应用于模拟信号到数字信号的转换。

在a/d 转换器中,电压比较器的增益,带宽,功耗,失调电压的特性严重影响整个转换器的转换速度和精度,传统的电压比较器采用多级结构,使用输入失调存储技术(ios)和输出失调存储技术(oos)对失调电压进行消除,增加了电路结构的复杂度和功耗,芯片面积也越来越大。

但随着应用速度越来越高,功耗要求越来越低,ios和oos要求放大器有足够高的增益和带宽,这些因素对于其发展有一定的制约作用。

本文设计的电压比较器电路结构简单,采用了两级放大结构,前级放大采用差分放大电路,利用差分电路抑制共模信号的干扰,提高了共模抑制比,减少了信号中噪声的干扰,第二级放大采用共源共栅电路对失调电压进行了很好的控制,使电路的失调电压达到150μv,输出级采用推挽输出电路提升了输出的驱动能力,整个比较器的功耗非常低,芯片整个面积仅为29.56μm×25.68μm。

该比较器设计主要用于高精度时间测量芯片中,通过比较器产生一个低延时的门控信号,对于整个时间测量电路达到一个精准的控制。

通过仿真结果得知,该电压比较器满足应用需求。

1 电压比较器结构如图1所示为cmos电压比较器原理图,该比较器由偏置电路、差分放大器、共源放大器和推挽级输出电路组成。

其中,m1管和m2管组成偏置电压电路,为差分放大器和共源放大器提供偏置电压。

通过调节m1管和m2管的宽长比,让差分放大器和共源放大器得到合适的工作电流,合理设计差分放大器和共源放大器,主要考虑输入失调电压、输入共模范围、输出信号的增益和带宽的影响,设计出一个性能最优的比较器电路。

m10管和m11管组成一个推挽输出级电路,提升输出信号的驱动能力,为了能更好的和其它电路进行协同工作。

该电压比较器的工作原理如下:是同相输入端,是反相输入端。

当输入电压高于时,m3管导通,,m3管和m7管的电流相同,m8管又与m7管为镜像电流关系,m8管导通,使,b点为高电平,c点为低电平,vo输出高电平。

CMOS LOGIC CIRCUIT

CMOS LOGIC CIRCUIT

专利名称:CMOS LOGIC CIRCUIT发明人:ICHINOSE KATSUKI,SHINOHARA HIROSHI 申请号:JP8160587申请日:19870401公开号:JPS63246925A公开日:19881013专利内容由知识产权出版社提供摘要:PURPOSE:To attain high speed operation without increasing the input capacitance by providing an input logic threshold value adjustment means to increase the input logic threshold value in a 1st state more than the input logic threshold value in the state other than the 1st state. CONSTITUTION:The factor of conductance of both P-channel transistors (TRs) 5, 6 is effective more than that of an N-channel TR 8 and an input logic treshod value is higher than VCC/2. In such a state, the input signal (a) starts changing from H to L level and the input signal (a) is lower than the input logic threshold value V2, then the output signal line 2 is charged by the P-channel TRs 5, 6. Moreover, the switching TR 10 is turned off to decrease a through-current and to increase the charging current, and the output signal (b) rises quickly. The output signal (c) of the delay circuit 11 rises with a delay and the switching P-channel TR 7 is turned off and the switching N-channel TR 10 is turned on. Thus, the high speed operation is attained without increasing the input capacity.申请人:MITSUBISHI ELECTRIC CORP更多信息请下载全文后查看。

cmos读出电路工作原理

cmos读出电路工作原理

cmos读出电路工作原理The CMOS readout circuit is a crucial component in digital imaging systems, as it is responsible for converting the charge accumulated by photodiodes into a digital signal that can be processed and displayed. This circuit consists of various transistors, capacitors, and amplifiers that work together to efficiently read and amplify the signal generated by the photodiodes.CMOS读出电路是数字成像系统中的重要组成部分,它负责将光电二极管积累的电荷转换成可处理和显示的数字信号。

该电路由各种晶体管、电容器和放大器组成,它们共同工作,有效地读取和放大光电二极管产生的信号。

One of the key components in the CMOS readout circuit is the sample-and-hold circuit, which is responsible for capturing and holding the charge from the photodiodes during the readout process. This circuit uses switches and capacitors to sample the charge and then hold it steady while the signal is being processed. The sample-and-hold circuit plays a crucial role in ensuring the accuracy and reliability of the readout process.在CMOS读出电路中的一个关键组件是采样保持电路,它负责在读出过程中捕获和保持光电二极管中的电荷。

基于Cadence的CMOS反相器的特性分析与仿真

基于Cadence的CMOS反相器的特性分析与仿真

研制开发CMOS反相器的特性分析与仿真钱香,陆亚青(无锡科技职业学院,江苏无锡管和PMOS管,电路结构简单且规则,静态功耗非常小,在集成电路中逻辑电路的基本单元之一,为了分析其直流特性和瞬态特性,用反相器的上升时间和下降时间表达式得到瞬态特性的影响因素,通过软件反相器;电压传输特性;上升时间;下降时间Characteristic Analysis and Simulation of CMOS Reverter Based on CadenceQIAN Xiang, LU Yaqing(Wuxi Professional College of Science and Technology, WuxiAbstract: CMOS circuits are composed of NMOS tube and PMOS tube.The circuit structure is simple and regular, the static power consumption is very small, and more is used in integrated circuits.CMOS inverter is one of the basicanalyze the DC and transient characteristicsCMOS 反相器电源电压为5 V ,输出端增加一个2 pF的负载电容,输入信号设置为周期为1 μs 的方波,对电路进行瞬态仿真,得到CMOS 反相器的瞬态特性曲线。

由瞬态特性曲线可知输入信号为高电平时输出为低电平,输入信号为低电平时输出为高电平,电路实现反相的功能。

由CMOS 反相器的电路图分析可以得到,在输出高电平状态或输出低电平状态时,CMOS 反相器中只有一个MOS 晶体管导通,理论上不存在直流导通电流,没有静态功耗,这是CMOS 电路的最大优点[9,10]。

根据上升时间和下降时间的定义,可以得到上升时间和下降时间的表达式分别为:()()pp r r p 2p p 0.1 1.921ln 0.10.90.1211t αατααα −− =+≤≤ − −,(1)()()()()p N N f f N 2N N 0.12110.11 1.92ln 0.10.9210.11t αααατααα − −−− =+≤≤ − − , (2)式中,L r P DD C K V C τ=;L r P DDL f N DDK VC K V τ=;N DD TP P DD K V V V α=;DD TP N DD V V V α=。

cml电路工作原理

cml电路工作原理

cml电路工作原理CML电路(Current Mode Logic Circuit)是一种常见的数字电路,其工作原理与传统的CMOS电路有所不同。

CML电路以电流作为信号传输的基础,具有高速、低功耗的特点,在高速通信和数字信号处理等领域得到广泛应用。

CML电路的工作原理主要涉及到两个方面:电流模式逻辑和差分放大器的结合。

电流模式逻辑是CML电路的核心。

在CML电路中,信号以电流的形式进行传输,而不是以电压的形式。

这种电流传输的方式可以显著提高电路的工作速度,因为电流的传输速度远快于电压。

同时,CML电路还具有较低的功耗,因为电流的功耗要远低于电压。

差分放大器在CML电路中起到了关键的作用。

差分放大器可以将输入信号进行放大,并产生差分输出。

CML电路中的差分放大器通常由两个晶体管组成,一个作为输入信号的放大器,另一个用于控制输出电流。

通过调整输入信号和控制信号之间的差异,差分放大器可以实现高速、低功耗的信号放大。

CML电路的工作过程可以简单描述如下:首先,输入信号通过差分放大器进行放大,产生差分输出。

然后,差分输出经过电流源进行偏置,形成最终的输出信号。

在这个过程中,控制信号的变化可以调节输出电流的大小,从而实现不同的逻辑功能。

CML电路具有多种逻辑门电路,如与门、或门、非门等。

这些逻辑门电路可以通过不同的连接方式实现各种复杂的数字逻辑功能。

在CML电路中,逻辑门电路的输入和输出均为电流,因此可以直接连接多个逻辑门电路,实现高速、低功耗的数字信号处理。

除了逻辑门电路,CML电路还可以用于数字模拟转换器(ADC)和数字信号处理器(DSP)等应用。

在ADC中,CML电路可以实现高速、高精度的模拟信号转换;在DSP中,CML电路可以实现高速、低功耗的数字信号处理。

CML电路以电流模式逻辑和差分放大器的结合为基础,实现了高速、低功耗的数字电路。

CML电路在高速通信和数字信号处理等领域具有广泛的应用前景。

随着技术的不断发展,CML电路将进一步提高其性能,并推动数字电路的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


画出图5-2,5-3的真值表
This structure is less limited than the bipolar equivalent would be, but there are still some practical limits.One of these is the combined resistance of the MOSFETs in series.As a result, CMOS totem poles are not made more than four inputs high. Gates with more than four inputs are built as cascading structures rather than single structures. However, the logic is still valid.

当输入是逻辑1时,输出是多少?
In this circuit, if both inputs are low, both P-channel MOSFETs will be turned on, thus providing a connection to +V. Both Nchannel MOSFETs will be off, so there will be no ground connection. However, if either input goes high, that P-channel MOSFET will turn off and disconnect the output from +V, while that N-channel MOSFET will turn on, thus grounding the output.

当输入为逻辑0时,输出是多少?
When input A is at + V (logic 1) , the P-channel MOSFET is off and the N-channel MOSFET is on, thus pulling the output down to ground (logic 0). Thus, this circuit correctly performs logic inversion, and at the same time provides active pull-up and pull-down, according to the output state. This concept can be expanded into NOR and NAND structures by combining inverters in a partially series,partially parallel structure.The circuit shown in Figure 5-2 is a practical example of a CMOS 2 of the main problems with CMOS gates is their speed. They cannot operate very quickly, because of their inherent input capacitance. B-series devices help to overcome these limitations to some extent, by providing uniform output current, and by switching output states more rapidly, even if the input signals are changing more slowly.

1、CMOS门电路是由什么组成? 2、在图5-1中标出栅极、源级、漏极。
The two MOSFETs are designed to have matching characteristics. Thus, they are complementary to each other. When off, their resistance is effectively infinite; when on, their channel resistance is about 200Ω . Since the gate is essentially an open circuit, it draws no current, and the output voltage will be equal to either ground or to the power supply voltage, depending on which transistor is conducting.

这些门在__________中十分有用?他的工作范围是多少?
CMOS gates are all based on the fundamental inverter circuit shown in Figure 5-1.Note that both transistors are enhancement- mode MOSFETs; one N-channel with its source grounded, and one P-channel with its source connected to +V. Their gates are connected together to form the input, and their drains are connected together to form the output.
Even with this limit, the totem pole structure still causes some problems in certain applications. The pull-up and pull-down resistances at the output are never the same, and can change significantly as the inputs change state, even if the output does not change logic states. The result is uneven and unpredictable rise and fall times for the output signal. This problem was addressed, and was solved with the buffered, or B-series CMOS gates.

MOSFET 在截止时,其电阻为 ______ ,而导通时的通道电 阻约为______.
When input A is grounded (logic 0) , the N-channel MOSFET is unbiased, and therefore has no channel enhanced within itself. It is an open circuit, and therefore leaves the output line disconnected from ground. At the same time, the P-channel MOSFET is forward biased, so it has a channel enhanced within itself. This channel has a resistance of about 200Ω , connecting the output line to the +V supply. This pulls the output up to +V (logic 1).
The structure can be inverted, as shown in Figure 53. Here we have a two-input NAND gate, where a logic 0 at either input will force the output to logic 1, but it takes both inputs at logic 1 to allow the output to go to logic 0.
Unit 5 CMOS Logic Circuit
CMOS logic is a newer technology, based on the use of complementary MOS transistors to perform logic functions with almost no current required. This makes these gates very useful in battery-powered applications. The fact that they will work with supply voltages as low as 3 Volts and as high as 15 Volts is also very helpful.
The technique here is to follow the actual NAND gate with a pair of inverters, as shown in Figure 5-4. Thus, the output will always be driven by a single transistor, either P- channel or N-channel.Since they are as closely matched as possible, the output resistance of the gate will always be the same, and signal behavior is therefore more predictable.
相关文档
最新文档