发动机曲轴位置传感器的电路设计
03-1曲轴位置传感器(损坏)P0335故障诊断流程
03-1曲轴位置传感器P0335故障诊断流程-截图(传感器内部元件损坏故障)一、前期准备1.清洁工作场地,将被修车辆就位停放。
2.工具、量具、检测仪器及相关辅助材料准备。
3.目视车辆停放位置,确定工位安全。
4.填写车辆识别VIN代码。
(丰田卡罗拉VIN码在右前门的门柱上)5.安装底盘垫块。
6.安装车轮档块。
7.安装尾气抽气管。
8.打开左前车门,安装车内三件套,(并拉紧手制动,将变速杆放置在P档位置,降下前车窗玻璃)9.拉开引擎盖锁,下车后打开引擎盖,安装车外三件套。
二、安全检查10.检查记录机油液位,记录:机油液位正常。
(若发现不足应及时加注)11.检查记录冷却液液位,记录:冷却液液位偏低,应加注。
12.检查记录制动液液位,记录:制动液液位偏低,应加注。
13.拆卸发动机罩盖﹑蓄电池罩板及散热器上的空气道流板,放置于零件箱内。
14.取出万用表和表笔,连接后进行阻值校对。
(即:校对红黑两表笔之间所存在的电阻差值)记录:两表笔的阻值为:0.021Ω,正常。
(若发现阻值不正常,则应及时检查或更换)。
15.测量记录蓄电池电压,(若发现蓄电池电压低于规定值11V则应及时进行补充充电)。
记录:蓄电池电压为:12.61V,正常。
16.检查蓄电池电极桩柱的连接状况,(若发现松动和有硫化物时应及时紧固和处理)。
记录:电极桩柱连接正常,没有硫化物。
三、仪器连接及故障现象确认17.打开故障诊断仪盒,取出故障诊断仪,选择OBD—Ⅱ专用插头及专用传输线后连接故障诊断仪。
18.打开左前车门,进入车内,踩紧制动踏板后启动发动机,观察仪表显示状态及发动机各工况的运行状态。
(即:发动机是否能启动,或启动是否困难,怠速是否稳定,加速时是否流畅,故障指示灯是否常亮等。
)19.关闭点火开关,填写故障症状及故障现象记录表。
记录:发动机不能启动,故障指示灯常亮。
20.打开故障诊断DLC3插座盖,确认点火开关处于0FF位置后,将故障诊断仪插头连接到故障诊断插座上。
阐述霍尔式曲轴位置传感器组成和工作原理
阐述霍尔式曲轴位置传感器组成和工作原理
霍尔式曲轴位置传感器是一种常用于检测发动机曲轴位置的传感器。
它由霍尔元件、磁铁和电路等组成。
1. 霍尔元件:霍尔元件是一种半导体器件,可以测量磁场的变化。
它通常由霍尔效应晶体管组成,能够将磁场强度转换成电压信号。
2. 磁铁:在曲轴上安装一个永磁体(通常是磁铁),它的位置与曲轴角度有关。
当曲轴旋转时,磁铁距离霍尔元件的距离也会发生变化。
3. 电路:传感器的电路通常由两个部分组成:放大电路和输出电路。
放大电路用于放大霍尔元件产生的微弱信号,使其能够被输出电路读取和处理。
输出电路则用于将检测到的曲轴位置转化成电压或数字信号输出给车辆控制系统。
工作原理:
当曲轴旋转时,磁铁会产生磁场,这个磁场的强度和方向变化会影响到附近的霍尔元件。
在霍尔元件中,由于霍尔效应的作用,会产生电荷分离,从而形成一个电压。
这个电压的大小和方向与磁场的强度和方向有关。
根据霍尔元件旁边磁场的变化,输出电路会将电压信号进行相应的处理,从而得到曲轴的准确位置信息。
这个信息可以用于引擎控制系统中的点火、燃油喷射等操作,以确保引擎正常运
行。
总结起来,霍尔式曲轴位置传感器通过测量曲轴旋转时在霍尔元件上产生的磁场变化,从而获得曲轴位置信息。
这种传感器具有快速、精确和可靠的特点,被广泛应用于汽车等领域中。
霍尔式曲轴位置传感器的工作原理
霍尔式曲轴位置传感器的工作原理霍尔式曲轴位置传感器是一种常用的传感器,它可以测量发动机曲轴的位置和转速,是现代汽车电子控制系统中不可或缺的一部分。
本文将从工作原理、结构和应用等方面介绍霍尔式曲轴位置传感器。
一、工作原理霍尔式曲轴位置传感器是利用霍尔效应来测量曲轴位置和转速的。
霍尔效应是指当电流通过一定材料时,会在材料内产生磁场,当磁场与材料内的电子相互作用时,会产生电势差。
这种现象被称为霍尔效应。
霍尔式曲轴位置传感器由霍尔元件、磁铁和信号处理电路组成。
磁铁固定在曲轴上,当曲轴转动时,磁铁也会随之转动。
霍尔元件安装在发动机上,当磁铁靠近霍尔元件时,会产生电势差,信号处理电路会将这个电势差转换成数字信号,从而测量曲轴位置和转速。
二、结构霍尔式曲轴位置传感器的结构比较简单,主要由霍尔元件、磁铁和信号处理电路组成。
1. 霍尔元件霍尔元件是测量曲轴位置和转速的核心部件,它是一种半导体器件,可以将磁场转换成电势差。
霍尔元件通常由铁、硅和铝等材料组成,具有高灵敏度、高精度和高可靠性等特点。
2. 磁铁磁铁是固定在曲轴上的,它的作用是产生磁场,当磁场与霍尔元件相互作用时,会产生电势差。
磁铁通常由永磁体或电磁体组成,具有较强的磁性和稳定性。
3. 信号处理电路信号处理电路是将霍尔元件产生的电势差转换成数字信号的部件,它通常由运算放大器、比较器、滤波器和AD转换器等组成。
信号处理电路可以将电势差转换成数字信号,从而实现曲轴位置和转速的测量。
三、应用霍尔式曲轴位置传感器广泛应用于汽车电子控制系统中,主要用于测量发动机曲轴的位置和转速。
它可以实时监测发动机的运行状态,从而保证发动机的正常工作。
霍尔式曲轴位置传感器还可以应用于其他领域,如工业自动化、航空航天、医疗设备等。
它可以测量旋转物体的位置和转速,从而实现自动控制和监测。
四、总结霍尔式曲轴位置传感器是一种常用的传感器,它可以测量发动机曲轴的位置和转速,是现代汽车电子控制系统中不可或缺的一部分。
汽车发动机曲轴位置传感器(CKP)原理及检测
汽车发动机曲轴位置传感器(CKP)原理及检测曲轴位置传感器曲轴位置传感器(CKP)一般安装在曲轴前方或者后方,与连接在曲轴上的信号脉冲盘相对应,用于检测曲轴转角位置及其旋转速度。
随着发动机曲轴的转动,带磁的信号板齿的齿尖靠近、对准、远离传感器的检测端部,从而导致GMR电阻值的变化。
GMR元件检测到的磁场变化在CKP的内部信号处理电路中被转换为方波,然后作为CKP输出信号输入到ECM。
当发动机转速增加,方波信号的频率也随之增大;反之,方波的频率会减小。
与霍尔传感器相比,采用GMR元件的CKP传感器提高了信号的稳定性,且信号幅度更宽。
在CKP传感器中,方波电压信号的外形特性也根据信号板齿的形状而改变,ECM就是根据CKP的这些外形特性还判断曲轴转角位置,并与凸轮轴位置传感器信号进行,判断发动机的配气相位。
信号曲轴位置传感器故障现象及诊断:当曲轴位置传感器信号出现异常时,可能导致起动困难、起动后熄火等故障。
曲轴位置传感器的主要故障原因包括:1.传感器内部损坏。
2.传感器头部损坏/脏(金属屑等易受磁化的物体会吸附到传感器上)。
3.连接器或线路断路/短路。
性能检查:CKP传感器性能好坏的测量方法,主要有目测检查、电阻测量与波形测量等方法。
1.目测检查:(1)检查O形圈是否有损坏。
(2)检查传感器端面和信号轮板齿是否有金属颗粒和损坏。
(3)检查传感器的安装与信号板齿之间的间隙是否正常,应在1mm左右。
2.电阻检查:使用12V蓄电池(1),将其正极端子连接到“Vin”端子(2),而负极端子连接到传感器的“接地”端子(3)。
然后在保持同CKP传感器大约1毫米(0.03英寸)的情况下利用电阻表,通过磁性物质(5)来测量传感器“Vout”端子(4)同蓄电池负极端子之间的电阻。
检测CKP传感器电阻:电阻变化从小于220Ω(ON)到无穷大(OFF),或者从无穷大(OFF)到小于220Ω(ON)。
如果电阻变化同下面规定不相符,应当更换CKP传感器。
汽车发动机维修 曲轴位置传感器的检测与更换
二、实 践 操 作
1.实践准备
丰田卡罗拉发动机台架4台、丰田卡罗拉轿车1辆、故障诊断仪4台,数字万 用表4个,208接线盒4盒,专用工具及工具车4套,维修手册,实训工单等。
2.技术要求与注意事项
(1)先关闭点火开关,再拔下曲轴位置传感器连接器。 (2)连接传感器端子时,先关闭点火开关,再连接端子。 (3)严禁短路或试火。 (4)汽车在发动时不能断开蓄电池,以免烧坏电脑。 (5)不能用试灯去测试任何和电脑相连接的电气装置。 (6)不能带电拔插解码器插头。 (7)不得在测试过程中随意起动或加速,应严格按照测试要求进行。
一、理论知识准备
曲轴位置传感器是发动机电子控制系统中最主要的传感器之一,它提供点火 时刻(点火提前角)、确认曲轴位置的信号,用于检测活塞上止点、曲轴转角及 发动机转速。丰田卡罗拉发动机曲轴位置传感器安装在曲轴皮带轮附近,位置如 图13-1所示。
图13-1 曲轴位置传感器安装位置
一、理论知识准备
1.曲轴位置传感器的作用
曲轴位置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。它通常要 配合凸轮轴位置传感器一起来确定基本点火时刻和喷油时刻。
2.曲轴位置传感器的类型
曲轴传感器主要有三种类型:磁电感应式、霍尔效应式和光电式。它通常安 装在曲轴前端、凸轮轴前端、飞轮上或分电器内。 1)磁电感应式
磁电感应式曲轴位置传感器(丰田又称NE 传感器,如图13-2所示),由曲 轴位置传感器齿板和感应线圈组成。传感器齿板有34 个齿,被安装在曲轴上。磁 电感应式传感器曲轴位置传感器的工作原理如图13-3所示。感应线圈由缠绕的铜 线、铁芯和磁铁构成。传感器齿板旋转,每个齿通过感应线圈时,产生脉冲信号。 发动机每转动一转,感应线圈就产生34 个信号。根据这些信号,ECM 计算曲轴 位置以及发动机的转速。利用这些计算值,燃油喷射时间和点火正时得到控制。
《曲轴位置传感器》课件
05
案例分析与应用
曲轴位置传感器在汽车发动机中的应用
曲轴位置传感器在汽车发动机中主要 用于检测曲轴的转速和位置,从而控 制点火和喷油时刻,实现发动机的精 准控制。
曲轴位置传感器在汽车发动机中的应 用提高了发动机的效率和性能,同时 减少了排放和油耗。
曲轴位置传感器通过与曲轴连接的齿 盘产生信号,传感器接收到信号后将 其传输给发动机控制单元,实现对发 动机的精确控制。
采用更先进的信号处理算 法,提高曲轴位置传感器 的测量精度和稳定性。
应用领域的拓展
新能源汽车
随着新能源汽车市场的不断扩大 ,曲轴位置传感器在混合动力和 纯电动汽车中的应用将更加广泛
。
智能驾驶
在智能驾驶系统中,曲轴位置传感 器可用于监测车辆状态、控制发动 机工作,提高驾驶的安全性和舒适 性。
工业自动化
稳定。
动态调试
在发动机运转过程中, 观察传感器信号变化, 调整传感器参数以获得
最佳性能。
测试与验证
进行发动机性能测试, 确保传感器工作正常且 对发动机性能无不良影
响。
常见故障与排除方法
01
02
03
信号不稳定
检查传感器与曲轴的相对 位置,确保无松动或错位 现象;检查线束连接是否 牢固。
传感器无信号
检查电源供应是否正常; 检查传感器是否损坏,如 有需要更换。
《曲轴位置传感器》ppt课件
目 录
• 曲轴位置传感器概述 • 曲轴位置传感器的类型与特点 • 曲轴位置传感器的安装与调试 • 曲轴位置传感器的发展趋势与展望 • 案例分析与应用
01
曲轴位置传感器概述
定义与作用
定义
曲轴位置传感器是一种用于检测 曲轴转角位置和速度的传感器, 也称为曲轴转角传感器。
霍尔式曲轴位置传感器的工作原理
霍尔式曲轴位置传感器的工作原理一、引言霍尔式曲轴位置传感器是一种用于测量发动机曲轴位置的传感器。
它可以通过检测磁场变化来确定曲轴的位置,从而帮助发动机控制系统实现更精确的喷油和点火时机控制。
本文将详细介绍霍尔式曲轴位置传感器的工作原理。
二、基本原理1. 磁场感应定律霍尔式曲轴位置传感器利用了磁场感应定律,即当一个导体在磁场中运动时,会在导体两端产生电势差。
这个电势差称为霍尔电压,它与磁场强度和导体速度成正比。
2. 霍尔效应霍尔效应是指当一个导体被放置在垂直于它运动方向的磁场中时,导体两端会产生电势差。
这个效应是由于磁场使得电子在导体内部偏转而产生的。
3. 曲轴位置检测原理发动机控制系统需要知道曲轴的精确位置才能正确地控制喷油和点火时机。
为了实现这个目标,可以在曲轴上安装一个或多个磁铁。
当曲轴旋转时,磁铁会产生磁场变化。
霍尔式曲轴位置传感器就是利用这个原理来检测曲轴位置的。
三、工作原理1. 传感器结构霍尔式曲轴位置传感器通常由一个霍尔元件、一个磁敏元件和一个信号处理电路组成。
其中霍尔元件用于检测磁场变化,磁敏元件用于产生磁场,信号处理电路则将检测到的信号转换为数字信号输出给发动机控制系统。
2. 磁场变化检测当曲轴旋转时,它上面的磁铁也会随之旋转,从而产生磁场变化。
这个变化会被磁敏元件检测到,并通过霍尔元件转换为电压信号。
这个电压信号的大小与曲轴位置有关。
3. 信号处理接下来,电压信号将被送入信号处理电路中进行处理。
这个过程包括放大、滤波和数字化等步骤。
最终,处理后的数字信号将被输出给发动机控制系统。
4. 曲轴位置计算发动机控制系统可以利用从霍尔式曲轴位置传感器接收到的数字信号来计算曲轴的位置。
这个计算过程通常需要使用一些数学模型和算法来实现。
四、应用范围霍尔式曲轴位置传感器广泛应用于汽车、摩托车和船舶等内燃机控制系统中。
它可以帮助发动机控制系统实现更精确的喷油和点火时机控制,从而提高发动机的燃油效率和性能。
霍尔式曲轴位置传感器的工作原理
霍尔式曲轴位置传感器的工作原理简介霍尔式曲轴位置传感器是一种常用的非接触式传感器,用于测量发动机曲轴的旋转位置信息。
本文将深入探讨霍尔式曲轴位置传感器的工作原理及其应用。
传感器的基本原理霍尔式曲轴位置传感器利用霍尔元件的磁敏特性来测量磁场的变化,从而确定曲轴的旋转位置。
其基本原理如下:1.霍尔元件霍尔元件是一种基于霍尔效应的磁传感器,由霍尔片、电流源和输出端组成。
当霍尔片中通过的电流受到磁场的作用时,会在霍尔片两侧产生电势差,即霍尔电压。
这个电势差与磁场的强度和方向成正比,因此可以利用霍尔元件来测量磁场的变化。
2.磁场感知霍尔式曲轴位置传感器将一个或多个霍尔元件放置在曲轴附近,使其能够感知磁场的变化。
通常情况下,传感器会使用一个或多个磁极来产生磁场,曲轴上安装有一个或多个磁性标记,当曲轴旋转时,标记会经过霍尔元件,从而改变其感知到的磁场。
3.信号处理传感器会将从霍尔元件感知到的电势差转换为数字信号,通常使用模数转换器(ADC)来完成这一过程。
通过对电势差进行测量和转换,可以得到曲轴的旋转位置信息,例如相位、角度或转速。
传感器的工作过程霍尔式曲轴位置传感器的工作过程可以分为以下几个步骤:1.磁场感知传感器通过布置在曲轴附近的霍尔元件感知磁场的变化。
当曲轴上的磁性标记经过霍尔元件时,会改变其感知到的磁场,进而引起霍尔电压的变化。
2.电势差测量传感器将霍尔元件感知到的电势差转换为数字信号,以便进行后续的处理和分析。
通常情况下,传感器会内部集成模数转换器(ADC),用于将连续的电势差转换为离散的数字值。
3.数字信号处理传感器会对转换后的数字信号进行处理和分析,提取出曲轴的旋转位置信息。
这包括计算相位差、角度或转速等参数,以满足不同应用的需求。
4.输出结果传感器将提取出的曲轴旋转位置信息输出给控制系统或其他设备。
这些输出可以用于控制发动机的点火时机、燃油喷射等操作,以实现更精确的运行控制。
传感器的应用领域霍尔式曲轴位置传感器在汽车、电机等领域广泛应用。
基于STM32的发动机曲轴位置传感器的电路设计
2 2年 4月 01
华
北
水
利
水
电
学
院
学
报
V0. . 133 No 2
Ap . 2 2 r 01
J u n l fNot h n n t u e o ae o s r a c n d o lc r o e o r a r C i a I s tt fW trC n ev n y a d Hy r ee t c P w r o h i i
个 速度元 素来计 算发 动 机转 速 的 , n个 速 度元 素 把
2 3 滤 波 电路设计 .
该 系统发 动机转 速 最高 达 到 60 0 rm n 信 号 0 / i ,
发 生器 齿数 =3 , 4 系统 的最 高频 率 为 2 . H , 0 4 k z 即 截止 频 率. 系统 使 用 R C滤 波 , 中电 阻 R 其 8和 电容
机在 怠速 空转 时 , 曲轴位 置 传 感 器输 入 信 号 周期 即
较长 时 , C 12 N V 14能输 出 与 曲轴 位 置 传感 器 频 率 相
同 的方波 信号 .
2 2 接 口 电 路 设 计 .
形 限幅及 频率跟 踪 , 能够 准 确 地将 需 要 的信 号传 输
给 S M3 T 2芯 片.
10V. 以电 阻值 要 大 于 1 0 1 5 所 5 / 2=1 . Q, 确 2 5k 故
曲轴 位 置传 感 器 的信 号是 连续 的正 弦信 号 . 因 为发 动机 转速 的变 化 , 曲轴 位 置 传感 器 绕 组 产生 的
定为 1 n. R 5k 由 C低通滤波公式 f=12rR, /, r 可知 当 C f 。= 0 4k z , 05 04n , 择 C= 7 F o 2 . H 时 C= .2 F 选 4 2P .
曲轴凸轮轴位置传感器结构原理简介
4、丰田车-有分电器
G信号是用于辨别气缸及检测活塞上止点位置 (压缩上止点前10 ° )
G信号发生器的结构及波形
Ne信号是检测曲轴转角位置及发动机转 速的信号。
Ne信号发生器结构与波形
G、Ne信号与曲轴转角的关系
电磁式凸轮轴/曲轴位置传感器电路
5、富康-无分电器
信号转子
58个凸齿 57个齿缺 1个大齿缺 (2个凸齿+3个齿缺) (58+2)+(57+3) =120 360°/120=3° 每个齿缺/凸齿占3° 大齿缺占15°
(1)曲轴转速检测
• 信号转子转一周,凸齿产生58个信 号送给ECU 若 1minECU接到曲轴位置信号 116000个 转速为: 116000/58=2000r/min
(2)曲轴转角检测
• 信号转子转动一周,产生1个大齿 缺信号,所占时间长,对应1缸 /4缸上止点
• 当ECU得到大齿缺信号后,按照 每个凸齿和齿缺所占3°的信息, 得到曲轴转角的信号。
遮光盘旋转,当外圈孔对准光源时,光接收器导 通,输出高电平;当孔离开光源时,光接收器截 止,输出低电平。遮光盘不停旋转,产生脉冲信 号。
日产汽车
1.结构 信号盘 信号发生器
光电式曲轴位置传感器的结构示意图
信号盘
• 遮光盘(转盘):安装在 分电器轴上,随分电器轴 一起转动,外围均布有 360个光孔,靠内均布有 6个光孔,其中有一个较 宽的光孔。
• 测量传感器电阻:传感器2和 3间的电阻,480Ω~1000Ω。
V
• 测量间隙:传感器与信号盘凸
Ω
齿间隙与规定相符。信号盘应
无缺损。
• 测量屏蔽线:线束端子1与搭 铁间的电阻,应为0Ω。
汽车曲轴位置传感器工作原理
汽车曲轴位置传感器工作原理
汽车曲轴位置传感器是一种用于检测曲轴转动位置的传感器,它的工作原理基于霍尔效应。
该传感器通常由霍尔元件、磁铁和电子电路组成。
首先,霍尔元件是一种半导体器件,它具有特殊的电子结构,当有磁场作用于它时,会引发电子效应。
这意味着当磁场的方向和强度变化时,霍尔元件会产生相应变化的电压信号。
在汽车曲轴位置传感器中,磁铁通常安装在曲轴上,而霍尔元件则固定在发动机上。
当曲轴转动时,由于磁铁的存在,产生的磁场会传导到霍尔元件上。
这导致霍尔元件内部的电荷分布发生变化,从而产生电压信号。
通过电子电路对传感器产生的电压信号进行处理,可以得到曲轴当前的转动位置。
这些电路会将信号转换为数字信号,并发送给发动机控制单元(ECU)进行进一步的处理。
ECU根据传感
器提供的曲轴位置信息来控制燃油喷射和点火时机等关键参数,以确保发动机的正常工作。
总结而言,汽车曲轴位置传感器的工作原理是通过霍尔元件感知磁场,并将其转换为电压信号,最终提供曲轴位置信息给发动机控制单元。
这种工作原理的应用可以帮助发动机实现更精准的喷油和点火控制,提高燃油效率和减少排放。
霍尔式曲轴位置传感器工作原理
霍尔式曲轴位置传感器工作原理引言霍尔式曲轴位置传感器是一种常用于测量发动机曲轴位置的装置。
它通过检测磁场的变化来确定曲轴的位置,从而实现对发动机的精确控制。
本文将详细介绍霍尔式曲轴位置传感器的基本原理,包括霍尔效应、传感器结构、工作过程及其在发动机控制系统中的应用。
1. 霍尔效应霍尔效应是指当电流通过具有磁场时,垂直于电流方向的方向上会产生电压差。
这种现象是由美国物理学家爱德华·霍尔于1879年首次发现并描述的。
在霍尔式曲轴位置传感器中,霍尔效应被利用来检测磁场变化,进而确定曲轴的位置。
2. 传感器结构霍尔式曲轴位置传感器通常由以下几个部分组成:2.1 磁铁磁铁通常安装在发动机转子上,并随着转子一起旋转。
磁铁会产生一个稳定且与转子运动相关联的磁场。
2.2 霍尔元件霍尔元件是传感器的核心部分,它由霍尔片和电路组成。
霍尔片是一种半导体材料,在其表面有多个引脚用于连接电路。
当霍尔片受到磁场的作用时,会产生一个与磁场强度相关的电压差。
2.3 信号处理电路信号处理电路用于放大、滤波和解码从霍尔元件获取的信号。
它将模拟信号转换为数字信号,并通过输出端口提供给发动机控制系统使用。
3. 工作过程下面将详细介绍霍尔式曲轴位置传感器的工作过程:3.1 磁场感知当发动机运转时,磁铁随着转子旋转,产生一个稳定且与转子运动相关联的磁场。
这个磁场会被传感器中的霍尔元件感知到。
3.2 霍尔效应测量当磁场作用于霍尔片时,霍尔片上会形成一个电势差。
这个电势差与磁场强度成正比,并且与磁场方向垂直。
通过测量电势差的大小,可以确定磁场的强度和方向,从而得知曲轴的位置。
3.3 信号处理从霍尔元件获取到的模拟信号会经过信号处理电路进行放大、滤波和解码。
放大可以增强信号的幅度,使其更容易被检测和解码。
滤波可以去除噪声和干扰,提高信号的可靠性。
解码将模拟信号转换为数字信号,并输出给发动机控制系统使用。
4. 应用霍尔式曲轴位置传感器在发动机控制系统中起着至关重要的作用。
霍尔式曲轴位置传感器工作原理
霍尔式曲轴位置传感器工作原理一、引言霍尔式曲轴位置传感器是一种常用的汽车发动机控制系统中的传感器,它能够准确测量曲轴的转速和位置信息,并将这些信息传递给ECU (发动机控制单元),从而实现对发动机的精确控制。
本文将详细介绍霍尔式曲轴位置传感器的工作原理。
二、霍尔效应为了理解霍尔式曲轴位置传感器的工作原理,我们首先需要了解霍尔效应。
霍尔效应是指当一个电流通过一块导体时,在导体内部会产生电场,如果在导体两侧施加一个垂直于电场方向的磁场,那么就会在导体两侧产生一个电势差,这个现象就叫做霍尔效应。
三、霍尔元件霍尔元件是利用霍尔效应测量磁场强度和方向的一种半导体元件。
它通常由三个部分组成:P型半导体、N型半导体和中间夹层。
当一个电流通过P型半导体时,在P型半导体中形成了一个正电荷区域;同样地,当一个电流通过N型半导体时,在N型半导体中形成了一个负电荷区域。
当这两个区域接触时,它们会形成一个电势差,这个电势差就是霍尔电压。
四、霍尔式曲轴位置传感器的构造霍尔式曲轴位置传感器通常由霍尔元件、磁铁和信号调制电路组成。
其中,磁铁被安装在曲轴上,而霍尔元件则被安装在发动机上的一个支架上。
当曲轴转动时,磁铁也会随之转动,并在霍尔元件的旁边产生一个磁场。
这个磁场会影响到霍尔元件内部的电流流向和大小,从而产生一个电势差。
信号调制电路会将这个电势差转换为数字信号,并将其发送给ECU。
五、工作原理当发动机启动时,ECU会向霍尔式曲轴位置传感器发送一个起始脉冲信号。
随后,在每个曲轴旋转周期的开始和结束时,ECU都会发送一系列脉冲信号给传感器。
这些脉冲信号包含了关于曲轴当前位置和速度的信息。
当磁铁靠近霍尔元件时,霍尔元件内部的电流流向会发生变化,并产生一个电势差。
信号调制电路会将这个电势差转换为数字信号,并将其发送给ECU。
ECU通过分析这些数字信号,就能够确定曲轴的当前位置和速度信息。
六、总结霍尔式曲轴位置传感器是一种常用的汽车发动机控制系统中的传感器,它能够准确测量曲轴的转速和位置信息,并将这些信息传递给ECU,从而实现对发动机的精确控制。
曲轴位置传感器的工作原理
曲轴位置传感器的工作原理
曲轴位置传感器是一种用于测量发动机曲轴位置和转速的装置。
其工作原理可以简述如下:
1. 曲轴位置传感器通常安装在发动机曲轴的靠近转盘的一侧。
它由一个磁铁和一个感应线圈组成。
2. 磁铁固定在曲轴的转盘上,随着曲轴的旋转,磁铁也一起旋转。
3. 当磁铁靠近感应线圈时,磁场会通过线圈产生感应电流。
4. 感应电流的大小与磁场的强弱成正比,而磁场的强弱与曲轴的位置有关。
5. 感应线圈将感应电流转换为电压信号,并通过连接线传输到发动机控制单元(ECU)。
6. ECU利用接收到的电压信号来确定曲轴的位置和转速,以
便对发动机的点火和喷油时机进行精确控制。
总的来说,曲轴位置传感器利用磁铁和感应线圈的相互作用,通过测量磁场的变化来确定曲轴的位置和转速。
这些数据对于发动机的正常运行和性能调整至关重要。
电磁式曲轴位置传感器工作原理
电磁式曲轴位置传感器是一种常用于发动机控制系统中的传感器,它能够准确地检测发动机曲轴的位置和转速,从而帮助控制系统实现精准的点火和供油。
本文将从工作原理、结构组成和应用领域等方面对电磁式曲轴位置传感器进行详细介绍。
一、工作原理1. 电磁感应原理电磁式曲轴位置传感器利用电磁感应原理来实现对曲轴位置的检测。
当曲轴转动时,传感器内部的线圈会受到曲轴齿轮凸起的影响,导致磁场发生变化。
根据电磁感应定律,磁场的变化将上线圈中产生感应电动势,从而产生输出信号。
2. 信号处理传感器输出的感应电动势需要经过信号处理电路进行放大和滤波,以确保输出信号的稳定性和准确性。
经过信号处理后,传感器输出的信号将被送入发动机控制单元(ECU)进行进一步处理和运算。
3. 差动信号在部分设计中,电磁式曲轴位置传感器还会输出差动信号,这是因为在一些发动机设计中,需要对曲轴位置进行双重检测以提高系统的可靠性。
差动信号的产生方式是将两个传感器的输出信号进行比较,从而得到更为稳定和准确的曲轴位置信息。
二、结构组成1. 磁环电磁式曲轴位置传感器内部包含一个磁环,它通常由永磁材料制成,用来产生一定强度和稳定性的磁场。
2. 线圈磁环周围围绕着线圈,当曲轴齿轮凸起进入磁场时,会导致线圈中感应电动势的产生。
3. 信号处理电路传感器内部还包含有对输出信号进行放大、滤波和处理的电路,确保输出信号的稳定性和准确性。
4. 连接插头电磁式曲轴位置传感器的连接插头用于与发动机控制单元(ECU)进行连接,实现信号的传输和交换。
三、应用领域电磁式曲轴位置传感器主要应用于内燃机控制系统中,其主要功能是监测发动机的曲轴位置和转速,并将这些信息发送给发动机控制单元,从而控制点火时机和喷油时机。
这是现代发动机控制系统中一个至关重要的功能模块,它能够直接影响到发动机的燃烧效率、动力性能和排放水平。
电磁式曲轴位置传感器也逐渐应用于混合动力系统和电动汽车中,它能够准确地监测发动机的工作状态,从而实现更为精准的功率输出控制和能量回收。
第七节-曲轴凸轮轴位置传感器
.
信号发生器
• 光源(发光二极 管):两只发光二 极管通过遮光盘两 圈光孔正对着两只 光敏二、三极管。
• 光接收器(光敏二、 三极管):接收发 光二极管的光信号, 转换为电信号。
.
2、工作原理
• 信号盘上有360个透光孔,发动机每工作 一个循环,传感器输出360个方波信号, 每一个周期的方波信号占2°曲轴转角,高 低电位持续时间相同,因此各占1°曲轴转 角,ECU根据高低电位变化的方波信号, 可计算出曲轴转角信号。
曲轴位置传感器失效
不起动,熄火
.
凸轮轴传感器发送1缸压缩上止点位置,如果发 生故障,关闭爆震控制,推迟点火。 发动机仍然将继续运行,并且能再次起动(同时 点火,曲轴位置传感器有标记的)。
凸轮轴位置传感器失效
动力下降、熄火
.
第二章内容到此结束 继续奋斗吧
.
.
1)结构
信号盘 、霍尔传感器、永久磁铁
.
2)工作原理
• 信号盘随着曲轴转动时,缺齿与霍尔传感 器正对时导致气隙变化,霍尔电压为高电 平。
• 信号盘每转动一周,ECU会接收到8个 /12个脉冲信号,根据此信号可以计算出 发动机的转速。
• 但是无法判断1缸上止点位置,所以必须和 凸轮轴位置传感器配合使用。
.
(1)曲轴转速检测
• 信号转子转一周,凸齿产生58个信 号送给ECU 若 1minECU接到曲轴位置信号 116000个 转速为: 116000/58=2000r/min
.
(2)曲轴转角检测 • 信号转子转动一周,产生1个大齿 缺信号,所占时间长,对应1缸 /4缸上止点 • 当ECU得到大齿缺信号后,按照 每个凸齿和齿缺所占3°的信息, 得到曲轴转角的信号。
曲轴位置传感器工作原理
曲轴位置传感器工作原理
曲轴位置传感器是一种用来检测内燃机曲轴位置的传感器。
它基于霍尔效应或磁阻效应等原理,通过感应曲轴上的磁场变化来测量曲轴的旋转位置。
具体工作原理如下:
1. 磁场感应原理:曲轴位置传感器通常由一个定子和一个转子组成,定子上装有一对霍尔元件或磁阻元件。
转子则是一个带有磁体的曲轴齿轮。
当曲轴旋转时,磁体会随之旋转,通过定子上的霍尔元件或磁阻元件感应磁场的变化。
2. 信号输出:霍尔元件或磁阻元件感应到磁场变化后,会输出相应的电信号。
霍尔元件通常输出一个脉冲信号,而磁阻元件则输出一个模拟电压信号。
3. 信号处理:输出的电信号经过信号处理电路进行放大、滤波和处理,得到稳定的、可用于测量的信号。
4. 位置计算:根据输出的信号与曲轴旋转的关系,可以计算出曲轴的具体位置。
曲轴位置的测量结果通常以角度或旋转的角度值进行表示。
总之,曲轴位置传感器通过感应曲轴上的磁场变化来测量曲轴的旋转位置,并将测量结果转化为电信号输出。
这些信号经过处理,最终可以用来控制和监测内燃机的工作状态。
(整理)发动机电控电路.
电路图电路图略图
(1/2)
PTO加速踏板位置传感器
怠速传感器
加速踏板位置传感器1
加速踏板位置传感器2
大气压传感器
进气温度/MAF传感器
DPD差压传感器
过滤器入口
排气温度传感器
催化剂入口排气温度传感器
车速传感器或者EHCU
DPD开关
冷冻机开关
离合器开关
排气制动开关
预热开关
空压机继电器空调压力开关
冷凝器风扇继电器
空调单元空调开关
驻车/空档开关
驻车制动开关
PTO开关
发动机油位开关
转速记录表
排气制动电磁阀
起动机继电器
起动机切断继电器
预热塞
预热继电器
机油压力开关
发动机故障警报灯
排气制动显示灯
预热显示灯
DPD显示灯(橙色)
油压警报灯
壳体GND(接地)
降压电阻器
起动机开关(ON)
起动机开关(起动)
主继电器
钥匙开关
蓄电池
仪表
ECM
(2/2)
曲轴位置传感器
增压传感器进气节气门位置传感器发动机冷却液温度传感器
燃油温度传感器
EGR电机
EGR位置传感器
凸轮轴位置传感器
共轨压力传感器
防盗控制单元
(ICU)
进气节气门电机
喷油器驱动信号1(第1汽缸)
喷油器驱动信号3(第4汽缸)
喷油器驱动信号2(第3汽缸)
喷油器驱动信号4(第2汽缸)
吸入控制阀门(SCV)
排气节气门电磁阀
ECM
端子排列
81针式接头(J14)
40 针式接头(E12)
ECM 接线图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第33卷第2期2012年4月华北水利水电学院学报Journal of North China Institute of Water Conservancy and Hydroelectric PowerVol.33No.2Apr.2012收稿日期:2011-12-27基金项目:2009年郑州市科技创新人才专项项目;郑州市技术研究与开发项目(096SYJH25086).作者简介:司爱国(1968—),男,河南浚县人,副教授,硕士,主要从事车辆工程方面的研究.文章编号:1002-5634(2012)02-0101-03基于STM32的发动机曲轴位置传感器的电路设计司爱国,李辉,路斌,曹永娣(华北水利水电学院,河南郑州450011)摘要:为满足人们对汽车的舒适性、稳定性的要求,从发动机电子控制系统的精确性出发,以发动机曲轴位置传感器信号作为研究对象,选用了电磁式曲轴位置传感器NCV1124作为信号处理芯片,选用STM32作为ECU 主控芯片,对其信号传输的精确性、实时性进行了实验研究.实验结果表明,NCV1124能够稳定精确地完成对信号的处理,与主芯片STM32结合可以很好地完成其下续控制信号的运算工作.关键词:发动机;电子控制;NCV1124汽车技术得以迅猛发展是以电子技术的发展为依托.用16位单片机作为汽车发动机的核心芯片已得到普遍应用,用32位单片机作为汽车发动机核心芯片成为当前的研究方向.STM32的内核是ARM 公司的Cortex -M3内核.Cortex -M3是首款基于ARMv -7体系结构的32位标准处理器,具有低功耗、少门数、短中断延迟、低成本等优点[1],专门用于微控制、汽车车身、工业控制和无线网络等对功耗和成本敏感的应用领域.其大大简化了编程的复杂性,集高性能、低功耗、低成本于一体.STM32的标准外设包括10个定时器、2个12位1-Msample /s 模数转换器(交错模式下2-Msample /s )、2个12位数模转换器、2个I2C 接口、5个USART 接口和3个SPI 端口.新产品外设共有12条DMA 通道,还有1个CRC 计算单元,像其他STM32微控制器一样,支持96位唯一标识码.笔者基于STM32的曲轴位置传感器电路的开发主要涉及STM32的定时器功能.1曲轴位置传感器的信号控制原理发动机的曲轴位置传感器是用来产生发动机转速信号和曲轴位置的信号,常配合凸轮轴位置传感器一起来确定发动机喷油和点火正时.系统拟选用磁电式曲轴位置传感器,其外形如图1所示.曲轴位置传感器安装在飞轮壳体上,它的磁头与飞轮的触发齿轮的轮齿保持一定距离,如图2所示.发动机工作时,触发轮的轮齿不断地通过磁头,这样传感器的磁头和触发轮之间的间隙不断变化,从而不断改变绕组的磁通量[2-3].磁通量的变化使绕组线圈产生连续变化的电压值.最后通过处理电路处理后将信号传给ECU ,和其他信号一同控制发动机的运转.2传感器信号处理电路的设计2.1处理电路的芯片选择曲轴位置传感器的信号是连续的正弦信号.因为发动机转速的变化,曲轴位置传感器绕组产生的电压值最低在5V以下,最高可达到150V,差值过大,超出STM32单片机的承受能力.基于发动机转速信号的特点,在曲轴位置传感器的信号处理电路中应该包括限幅、滤波、放大、整形.对信号处理的效果将直接影响后期对发动机喷油点火等一系列动作的控制,关系到发动机运转的各种性能指标的稳定.结合电路的特点,实验选择的芯片是NCV1124.NCV1124是一个单片集成的元件,被广泛应用到旋转部件传感器的处理电路中,可以将传感器输出的正弦波转化为频率相同且占空比适当的方波.该芯片有很好的电磁兼容性,能够有效地抑制噪声干扰.芯片内部集成了动态钳位电路,能将传感器输出电压信号幅值成功控制在3 5V之间.最后,当发动机在怠速空转时,即曲轴位置传感器输入信号周期较长时,NCV1124能输出与曲轴位置传感器频率相同的方波信号.2.2接口电路设计NCV1124是一个双通道芯片.如图3所示,曲轴位置传感器一端直接接地,另一端接NCV1124的IN1脚.由NCV1124内部集成的动态钳位电路,将信号电压成功钳位到-0.2 4.8V,经试验验证,经过NCV1124处理过的信号能够严格符合STM32管脚对电平的要求.NCV1124将不断变化的曲轴传感器信号送入STM32的计数器管脚PA8.考虑到曲轴位置传感器信号在发动机工作时会受到较大的电磁干扰,以及信号发生器上毛刺的影响,需要在传感器信号进入处理芯片前进行滤波.图3NCV1124接口电路2.3滤波电路设计该系统发动机转速最高达到6000r/min,信号发生器齿数z=34,系统的最高频率为20.4kHz,即截止频率.系统使用RC滤波,其中电阻R8和电容C16构成RC滤波电路[4].由于NCV1124可以接受的电流值在-12 +12mA之间,而传感器的感应电动势最高是150V.所以电阻值要大于150/12=12.5kΩ,故确定为15kΩ.由RC低通滤波公式f=1/2πCR,可知当fmax=20.4kHz时,C=0.5204nF,选择C=472PF.3实验结果及分析当发动机转速处于较高值时,传感器的输出幅值和频率都比较大;当发动机转速较低时,则反之.当节气门全开时,测得的曲轴位置传感器的信号如图4所示,该正弦波的幅值在10V左右,周期大约保持在0.06ˑ10-3s.硬件工作稳定没有异常现象,所以在发动机最大负荷情况下,硬件系统可以正常工作.经过NCV1124滤波后的波形如图5所示.整形后的波形为方波,其频率同整形前一样,而幅值被钳位到4V左右,该电压是STM32可以接受的电平.对比整形前后的波形图可知:整形后的波形比整形前的迟滞了0.2个周期左右,这个是由NCV1124内嵌的迟滞电压比较器电路产生的.实验证明,该系统能够很好地完成对磁电式曲轴位置传感信号的整形限幅及频率跟踪,能够准确地将需要的信号传输给STM32芯片.图4整形前、后及叠加对比波形4对曲轴位置传感器信号的处理STM32内部集成了高级控制定时器TIM1和通用定时器TIMX,2种定时器是完全独立的.高级定时器包含一个可编程的预分频器驱动的自动载入的16位计数器[5],可以轻松地完成信号的采集计数及输出波形PWM.NCV1124处理后的波形传入STM32的PA8管脚后,使用高级控制定时器TIM1启动计数器模式,可在该环节确定出曲轴位置传感器的脉冲个数,以此计算出发动机的转速[6].因为发动机转速是一个实时性较强的数据,所以应该在较短的时间内测得.本系统是以信号发生器每转过z个齿的速度作为一个速度元素来计算发动机转速的,把n个速度元素的速度平均值作为发动机转速.设z t为信号发生器总齿数,速度元素v i=60z/z t,发动机转速v=(v1+v2+…+vn)/n,计算得发动机转速v被用来控制发201华北水利水电学院学报2012年4月动机的下一步动作,即喷油点火.5结语实验表明,NCV1124能够突破传统曲轴位置传感器处理电路滞后时间相对较长的缺点,适合运用到发动机的标定测试系统;能更好地将传感器输出信号的幅值电压限制在3 5V 之间,以便与处理芯片兼容.STM32是一款运算速度非常快的32位ARM 芯片,优秀的运算速度能更好地满足实时性要求很高的发动机电子控制系统.芯片还集成大数量的优秀外设,可以由它设计出整个发动机电子控制系统.参考文献[1]上海科技信息公司.UM0306参考手册STM32F101XX和STM32F103XX ———基于ARM 处理器[Z ].2007.[2]蹇小平,麻友良.汽车电子与电子技术[M ].北京:人民交通出版社,2006.[3]李富荣.基于MC9S12微控制器的汽车发动机电子控制系统的研究[D ].济南:山东大学,2010.[4]秦曾煌.电工学[M ].6版.北京:高等教育出版社,2004.[5]牛冲.基于STM32的脉冲变极性弧焊控制系统设计[J ].电子技术应用,2010(3):2-3.[6]王道静,张红光,刘凯,等.车用CNG 发动机电控系统的开发[J ].小型内燃机与摩托车,2010,39(3):2-3.The Circuit Design of Engine Crankshaft Position Sensor Based on STM32SI Ai-guo ,LI Hui ,LU Bin ,CAO Yong-di(North China Institute of Water Conservancy and Hydroelectric Power ,Zhengzhou 450011,China )Abstract :The comfort and stability of the automobiles have become increasingly important to today's people.In order to meet the re-quirement ,this paper researches the engine crankshaft position sensor signal from the aspect of the accuracy of the electronic engine control system.In the experiment ,the electromagnetic crankshaft position sensor NCV1124is chosen as signal processing chip ,and STM32as the ECU master control chip.Then the accuracy and instantaneity of the signal transmission is tested and researched.The experiment results show that NCV1124can stably and accurately process the signal ,and it can also accomplish the computing work of the follow-up control signal together with STM32.Key words :engine ;electronic control ;NCV1124(责任编辑:杜明侠)301第33卷第2期司爱国,等:基于STM32的发动机曲轴位置传感器的电路设计。