陕西中考数学压轴题

合集下载

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)

一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。

陕西中考数学压轴题

陕西中考数学压轴题

陕西中考数学历年压轴题1、(15)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。

2、(14)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。

求此时BQ 的长; 问题解决(3)有一山庄,它的平面为③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳。

已知∠A=∠E=∠D=90°。

AB=270m 。

AE=400m ,ED=285m,CD=340m,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长;若不存在,请说明理由。

┓② ③C A A B C F ED CAA B E D A3、(13)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.M D B P DB A(第25题图) ① ② ③4、(12)如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''E F P N ,且使正方形''''E F P N 的面积最大(不要求写作法); (2)求(1)中作出的正方形''''E F P N 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.5、(2011)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF 称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个等腰三角形(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?6、(2010)问题探究(1)请你在图①中做一条..直线,使它将矩形ABCD分成面积相等的两部分;(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。

陕西2023中考数学最后一道压轴题的典型例题讲解

陕西2023中考数学最后一道压轴题的典型例题讲解

陕西2023中考数学最后一道压轴题的典型例题讲解1. 引言陕西2023年中考数学考试备受关注,其中最后一道压轴题更是备受瞩目。

本文将对这一典型例题进行全面讲解,以帮助同学们更好地理解题目背后的数学原理。

2. 题目描述题目如下:已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),求\(\alpha\)的一个确定值。

3. 排除法解题这道题的解法可以有多种,其中一种比较简单的方法是使用排除法。

通过对一元二次方程的解的性质进行分析,我们可以排除一些不符合条件的根的取值,从而得到\(\alpha\)的确定值。

一元二次方程\(ax^2+bx+c=0\)的根可以通过求根公式得到:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]由于给定的一元二次方程为\(3x^2+4x-5=0\),所以\(a=3, b=4, c=-5\)。

根据求根公式,我们可以得到两个根:\[x=\frac{-4\pm\sqrt{4^2-4*3*(-5)}}{2*3}=\frac{-4\pm\sqrt{16+60}}{6}=\frac{-4\pm\sqrt{76}}{6}\]显然,给定的一元二次方程的根不满足问题中给定的条件,所以我们可以排除掉这组根。

进过排除法,我们知道\(\alpha\)的确定值不在\(\frac{-4\pm\sqrt{76}}{6}\)中。

4. 求和乘积解题除了排除法外,我们还可以利用一元二次方程根的特性进行解题。

根据一元二次方程的根与系数的关系,我们可以得到一元二次方程的两个根的和和积分别为:\(x_1+x_2=\frac{-b}{a}, x_1x_2=\frac{c}{a}\)将给定的一元二次方程\(3x^2+4x-5=0\)的系数代入上面的公式,可以得到:\(x_1+x_2=\frac{-4}{3}, x_1x_2=-\frac{5}{3}\)根据题目要求,已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),所以另一个根可以表示为\(\frac{-4}{3}-\alpha\)根据这两根的特性,我们可以得到以下的等式:\(\alpha+\frac{-4}{3}-\alpha=\frac{-4}{3}\)\(\alpha*\frac{-4}{3}=-\frac{5}{3}\)通过解以上方程组,可以得到\(\alpha=-\frac{1}{3}\)5. 总结与回顾通过以上的讲解,我们可以得出一元二次方程的根的确定值为\(\alpha=-\frac{1}{3}\)。

陕西中考数学压轴题

陕西中考数学压轴题

陕西中考数学历年压轴题1、(15)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。

2、(14)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。

求此时BQ 的长; 问题解决(3)有一山庄,它的平面为③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳。

已知∠A=∠E=∠D=90°。

AB=270m 。

AE=400m ,ED=285m,CD=340m,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长;若不存在,请说明理由。

┓② ③C A A B C F ED CAA B E D A3、(13)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.MD B P DB A(第25题图) ① ② ③4、(12)如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法); (2)求(1)中作出的正方形''''EFPN 的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.5、(2011)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个等腰三角形(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?6、(2010)问题探究(1)请你在图①中做一条..直线,使它将矩形ABCD分成面积相等的两部分;(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。

陕西省西安市中考数学压轴题总复习(附答案解析)

陕西省西安市中考数学压轴题总复习(附答案解析)

2021年陕西省西安市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;
(1)若P(1,√3),求点P的“等边对称点”的坐标.
(2)若P点是双曲线y=2
x(x>0)上一动点,当点P的“等边对称点”点C在第四象
限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.
2.如图,抛物线y=ax2+9
4x+c交x轴于A,B两点,交y轴于点C.直线y=−
3
4x+3经过
点B,C.
(1)求抛物线的解析式;
(2)点P从点O出发以每秒2个单位的速度沿OB向点B匀速运动,同时点E从点B 出发以每秒1个单位的速度沿BO向终点O匀速运动,当点E到达终点O时,点P停止运动,设点P运动的时间为t秒,过点P作x轴的垂线交直线BC于点H,交抛物线于点Q,过点E作EF⊥BC于点F.
①当PQ=5EF时,求出t值;
②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.。

陕西省商洛市中考数学压轴题总复习(附答案解析)

陕西省商洛市中考数学压轴题总复习(附答案解析)

2021年陕西省商洛市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.
(1)求抛物线的表达式;
(2)过点A的直线交抛物线于点M,交直线BC于点N.
①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点
M的坐标;若不存在,请说明理由.
②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的
横坐标.
2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y轴于点C,且经过点D(﹣6,﹣6),连接AD,BD.
(1)求该抛物线的函数关系式;
(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;
(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于.(直接写出答案)。

2022中考数学压轴题-陕西卷

2022中考数学压轴题-陕西卷

2022中考数学压轴题-陕西卷
这题就是一道送分题,成绩不错的同学考试中应该几分钟就解决了。

(1)△APC等腰,顶角∠PAC=30°
无脑计算可得∠APC=75°
(2)根据条件不难发现,如果连接PC,则△PAC就是一个等边三角形
PE其实就是BC的垂直平分线
∴四边形OECA的面积割补法随便用
如果仔细观察,会发现如果过C向AB作垂线,连接OC,会将△ABC分成几个部分,可得△OBE的面积为△ABC的六分之一则只需要搞定△OBE的面积,即可得四边形OECA的面积
不能搞定△OBE的面积=(3√3)/2
则四边形OECA的面积=(15√3)/2
(3)这一小题刚开始的时候可能会吓人一跳,不过仔细一看就是让证明∠BAP=15°的,那么只需要∠PAC=30°即可
根据条件,我们知道∠ACD=90°,
只需要过P向AC作垂线,假设垂足为F,如图
则PECF为矩形,PF=CE=CD/2=AC/2=AP/2
∴△APF其实就是含30°角的直角三角形
则∠PAF=30°
∴∠BAP=15°
符合要求
题目确实很简单,所以有时候最后一道题可能真的是来送分的。

陕西中考数学压轴题归类

陕西中考数学压轴题归类

《第25题几何压轴题归类》考点:类型一:线段最值问题(从定点入手,利用轴对称思想解决)考点二:利用隐形圆探究满足特殊角的点问题(常见的题目有:求一个固定的角,求最大角,求二倍角等)类型三:等分面积问题(难点是不规则图形的面积等分,有时会牵涉到既等分周长又等分面积)类型四:面积最值问题(利用二次函数思想解决较常见,也有利用极值思想解决的,还有利用圆的知识求解,面积最大周长最小也会考)类型一:线段最值问题1.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在AC 上移动,则PB 的最小值是_____.2.如图,点C 在以AB 为直径的半圆上,AB=10,cos ∠CBA=54,点D 为线段AB 上一点,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F ,则线段EF 的最小值为____.3.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边中点,E 是AB 上一动点,则EC+ED 的最小值为_____.4.如图,在矩形ABCD中, AB=6,BC=8,连接AC,点M是AC上一动点,点N是BC上的一动点,则BN+MN 的最小值为________.5.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是______.6.如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA´B´,连接BB´,则BB´=_______.问题探究:4的等边三角形,以BC为边向外作等边△BCD.P为△ABC 如图②,已知△ABC为边长为3内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q,连接DQ、BP.(1)求证△DCQ≌△BCP;(2)求PA+PB+PC的最小值.实际应用如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?7.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A′.②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE周长的最小值______.(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值______.类型二:利用隐形圆探究满足特殊角的点问题例1.问题探究(1)如图①,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图②,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;问题解决如图③,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,并求出△BPC的面积的最大值及此时AP的长,保留作图痕迹.练习1.问题探究(1)如图①,在矩形ABCD中,AB=2,BC=4,如果BC边上存在一点P,使△APD为直角三角形,那么请画出满足条件的一个直角三角形,并求出此时AP的长;(2)如图②,在四边形ABCD中,AB∥CD,∠B=90°,AD=10,AB=7,CD=1,点P在边BC 上,且∠APD=90°,求BP的长.问题解决(3)如图③,在平面直角坐标系中,点A、B、C分别是某单位的门房及两个仓库,其中OA=100m,AB=200m,OC=300m,单位负责人想选一点P安装监控装置,用来监控AB,使△APB的面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.例3. 问题探究(1)如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,填空:①∠AEB的度数为_____;②线段AD、BE之间的数量关系是______.(2)问题解决如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2.若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离.例4.问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由问题解决(3)如图③,已知足球门宽AB约为52米,一球员从距B点52米的C点(点A、B、C 均在球场的底线上),沿与AC成45°的CD方向带球.试问,该球员能否在射线CD上找一点P,使得点P最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.练习问题探究(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点P ,并说明理由;(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由; 问题解决(3)如图③,现有一块矩形钢板ABCD ,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB=∠CP ′D=60°,请你在图③中画出符合要求的点P 和P ′,并求出△APB 的面积。

陕西省聚焦中考数学--压轴题

陕西省聚焦中考数学--压轴题

(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax2+bx+
c,∴
a-b+c=2, 16a+4b+c=2, c=0,
解得
a=12, b=-32, c=0,
∴所求抛物线的表达式为y=
1 2
x2-32x
(3)由题意,知AB∥x轴,设抛物线上符合条件的点P到AB的距
离为d,则S△ABP=
5,∵m>0,∴m=1+2
5,∴F(3+2

5,1+2
5),∵点E,F关于
直线x=1对称,∴E的坐标为(1-2
5,1+2
5 )
【点评】本题是二次函数的综合题,题中涉及等腰直角三角形的 证明和性质等知识点,解题时要注意数形结合数学思想的运用, 是各地中考的热点和难点.
[对应训练] 1.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的 坐标是(-1,2). (1)求点B的坐标; (2)求过点A,O,B的抛物线的表达式; (3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.
=-45t+4,则G(t,-45t+4),此时:NG=-45t+4-(45t2-254t+4)=-45t2
+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=
1 2
OF×NG+
1 2
NG×
CF=
1 2
NG·OC=
1 2
×(-
4 5
t2+4t)×5=-2t2+10t=-2(t-
5 2
,∴P(3,
8 5
)
(3)在直线AC的下方的抛物线上存在点N,使
△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2-254t+4)(0<t< 5),如图2,

2021年陕西中考数学压轴题24题

2021年陕西中考数学压轴题24题

2021 年陕西中考数学压轴题 24 题二次函数与几何图形综合题【第一讲】二次函数与图形面积问题基础技能1、如图,在平面直角坐标系中,已知A(-2,0)、B(2,0)、C(-1,3),求△A BC 的面积.2、如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1)、B(2,-1)、C(3,2),求△ABC 的面积.13、如图,在平面直角坐标系中,四边形 OABC 的边 OA、OC 分别在 x轴、y 轴上,且A(4,0)、B(3,2)、C(0,3),求四边形OABC 的面积.4、如图,抛物线y =-x2 +bx +c 与x 轴交于点 A、B(1,0)两点,与 y轴交于点 C,且对称轴为直线 x=-1,连接 AC、BC,点 P 是抛物线上一点(不与C 重合),若S ABP=S ABC,求点P 的坐标.25、如图,已知抛物线y =x2 - 2x - 3 与x 轴正半轴交于点 A,与 y 轴交于点 B,点 P 是第四象限内抛物线上一动点,连接 AP、BP、AB,△ABP的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.3针对演练1、抛物线y=ax2+bx+c经过点A(-1,0)、B(4,0)、C(0,2),点D(x,y)为抛物线上第一象限内一动点.(1)求抛物线的表达式;(2)当△BCD 面积为 3 时,求点 D 的坐标.2、在平面直角坐标系中,已知抛物线L 经过(6,0)、(-2,0)、(0,-6)三点.(1)求抛物线 L 关于原点 O 对称的抛物线 L1 的函数表达式;(2)设抛物线L1 与x 轴交于A、B 两点(点A 在点B 的左侧),与y轴交于点 C,该抛物线上是否存在点 P,使得△PCA的面积为 12?若存在,请求出 P 点的坐标;若不存在,请说明理由.43、已知抛物线y=ax2+bx+3与x 轴交于点A(-1,0)、B(3,0)两点,与 y 轴交于点 C.(1)求抛物线的表达式;(2)点 P 是第一象限内抛物线上的一个动点,连接 AP 交 BC 与点 D,连接 AC、CP,设△CDP 面积为 S ,△ACD 的面积为 S ,求S1 的最大值.1 2S24、在平面直角坐标系中,抛物线y =mx2 + 2mx +n 经过点 A(-4,0)和点 B(0,3).(1)求抛物线的表达式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点 B,求平移后抛物线的表达式;(3)在(2)的条件下,记平移后点 A 的对应点为 A′,点 B 的对应点为 B′,试问:在平移后的抛物线上是否存在一点 P,使△OA′P的面积与四边形AA′B′B的面积相等?若存在,求出点 P 的坐标;若不存在,请说明理由.5。

2024年陕西中考数学最后一卷

2024年陕西中考数学最后一卷

2024年陕西中考数学最后一卷一、单选题1.下列实数是无理数的是( )AB C .12 D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为( )A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为( )A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是( )A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围( ) A .2k <- B .2k >- C .0k > D .0k < 6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为( )A .12B .16C .20D .247.如图,在O e 中,半径OA ,OB 互相垂直,点C 在劣弧AB 上.若26BAC ∠=︒,则ABC ∠=( )A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为( )A .2B .12C .3D .32二、填空题910.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题14()202441---. 15.解方程:32544x x =---. 16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩ 17.已知:如图,ABC V .求作:以AC 为弦的O e ,使O 到AB 和BC 的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题. 20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1 图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

西安中考数学压轴题2023

西安中考数学压轴题2023

西安中考数学压轴题2023西安中考数学压轴题2023近日,西安市中考数学压轴题2023公布,引起了广大考生和家长的关注。

这道题目以其独特的设计和高难度而备受瞩目,成为了今年中考数学试卷的一大亮点。

这道题目要求考生利用已知条件,求解一个复杂的几何问题。

题目描述了一个三角形ABC,其中AB=AC,角BAC=60°。

在三角形ABC内部有一点P,使得∠APB=∠BPC=∠CPA=120°。

考生需要根据这些已知条件,求解出三角形ABC的各边长和角度。

这道题目的难度在于它要求考生综合运用几何知识和推理能力来解决问题。

首先,考生需要利用已知条件推导出一些等式或者关系式。

例如,根据∠APB=∠BPC=∠CPA=120°可以得出BP=CP=AP,并且三角形PBC、PCA、PAB都是等边三角形。

然后,考生需要利用这些等边三角形的性质来进一步推导出其他的等式或者关系式。

最后,通过解方程组或者运用特殊三角形的性质来求解出所需的边长和角度。

这道题目的出现,不仅考察了考生对几何知识的掌握程度,更重要的是考察了考生的逻辑思维和问题解决能力。

解决这道题目需要考生具备良好的数学思维和推理能力,能够灵活运用所学知识解决实际问题。

同时,这道题目也对考生的时间管理能力提出了挑战,因为在有限的时间内完成这道题目需要高效地组织思路和计算。

对于广大考生来说,面对这样一道高难度的数学题目,首先要保持冷静和自信。

不要被题目表面上的复杂性所吓倒,要相信自己已经掌握了足够的数学知识和解题技巧。

其次,要善于分析问题和提炼关键信息。

通过仔细阅读题目描述,找出已知条件,并将其转化为等式或者关系式。

最后,要有条理地进行推理和计算。

可以先从简单的等边三角形入手,逐步推导出其他等式或者关系式,并运用合适的方法求解出所需答案。

总之,西安中考数学压轴题2023是一道具有挑战性的数学题目,要求考生综合运用几何知识和推理能力来解决问题。

面对这样的题目,考生需要保持冷静和自信,善于分析问题和提炼关键信息,并有条理地进行推理和计算。

陕西中考数学压轴题2023

陕西中考数学压轴题2023

陕西中考数学压轴题2023陕西中考数学压轴题2023是每年都备受关注的一项考试内容,它对于考生来说具有重要的指导意义和备考价值。

通过对该题目的分析和解答,我们可以了解到中考数学试题的难度和要求,对于提高数学成绩和顺利通过中考有着重要的帮助。

下面将从题目背景、题目要求和解题思路等方面对陕西中考数学压轴题2023进行详细的阐述和分析。

题目背景:今年的陕西中考数学压轴题重点突出了几何学的知识点。

该题目涉及到了平行线的性质和相关定理,以及与平行线有关的角的性质。

这些知识点是中考数学试题中常见的内容,对于学生来说具有一定的基础性。

通过解答该题目,可以检验学生对于这些知识点的掌握和应用能力。

题目要求:题目要求考生根据所给的图形,计算出相关角度的数值,并填写在对应的位置上。

要求考生熟练运用平行线的性质和相关定理,准确地进行计算。

同时,要求考生注意解题过程的合理性,保证解题思路的清晰和正确性。

解题思路:在解答陕西中考数学压轴题2023时,我们可以采取以下步骤来解答。

第一步,观察图形并分析题目所给的条件。

通过观察图形,我们可以看到有多组平行线和相关角度,同时还有一些已知条件的数值。

第二步,根据已知条件和相关性质写出等式。

根据题目给定的条件,我们可以运用平行线及其相关定理,写出相关角度之间的等式。

这些等式将成为解题的关键。

第三步,根据等式解方程,计算出所求的角度数值。

根据前面所得到的等式,我们可以设立方程,并进行求解,最终得到所求角度的数值。

第四步,检查解答结果的合理性。

在得到解答结果后,我们需要对结果进行检查,确保计算过程和答案的准确性。

同时,我们还需要根据题目的要求,确认是否填写到正确的位置上。

从解题步骤中我们可以看出,陕西中考数学压轴题2023注重的是对平行线和角度性质的理解和应用能力。

通过这道题目的解答,考生可以加深对于平行线及其相关定理的理解,提高解决几何问题的能力。

总结:陕西中考数学压轴题2023围绕平行线和角度性质展开,要求考生能够准确地应用相关知识和定理,进行解题。

陕西省宝鸡市,2020~2021年中考数学压轴题精选解析

陕西省宝鸡市,2020~2021年中考数学压轴题精选解析

陕西省宝鸡市,2020~2021年中考数学压轴题精选解析陕西省宝鸡市中考数学压轴题精选~~第1题~~(2020扶风.中考模拟) (问题探究)(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求 AM+MC的最小值;(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路。

如果同样的物资在每千米公路上的运费是铁路上的两倍。

那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)~~第2题~~(2020凤翔.中考模拟)(1)问题提出:如图①在中,是边的高,点E是上任意一点,若则的最小值为_________;(2)如图②,在等腰中,是的垂直平分线,分别交于点,,求的周长;(3)问题解决:如图③,某公园管理员拟在园内规划一个区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路和,满足点到的距离为 .为了节约成本,要使得之和最短,试求的最小值(路宽忽略不计).~~第3题~~(2020岐山.中考模拟)(1) [问题发现]如图1,半圆O的直径是半圆O上的一个动点,则面积的最大值是________.(2) [问题解决]如图2所示的是某街心花园的一角.在扇形中,米,在围墙和上分别有两个入口C和D且米,D是的中点,出口E在上.现准备沿从入口到出口铺设两条景观小路,在四边形内种花,在剩余区域种草.①出口设在距直线多远处可以使四边形的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是元问:在上是否存在点E,使铺设小路和的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.~~第4题~~(2020凤翔.中考模拟)(1)问题提出如图,是的弦,点是上的一点,在直线上方找一点,使得,画出,并说明理由;(2)问题探究如图,是的弦,直线与相切于点,点,是直线上异于点的任意一点,请在图中画出图形,试判断的大小关系;并说明理由;(3)问题解决如图,有一个平面图为五边形ABCDE的展览馆,其中,, .展览馆保卫人员想在线段上选一点安装监控装置,用来监视边,现只要使最大,就可以让监控装置的效果达到最佳,问在线段上是否存在点,使最大?若存在,请求出符合条件的的长,若不存在,请说明理由.~~第5题~~(2020渭滨.中考模拟) 我们知道,三角形的三条角平分线交于一点,这个点称为三角形的内心(即三角形内切圆的圆心) .现在规定,如果四边形的四条角平分线交于一点,我们把这个点称为“四边形的内心”.问题提出(1)如图1,在△ABC中,∠C=90°,点O为△ABC的内心,若直线DE分别交边AC、BC于点D、E,且点O仍然为四边形ABED的内心,这样的直线DE可以画多少条?请在图1中画出一条符合条件的直线DE,并简要说明画法.(2)如图2,在△ABC中,∠C=90°, AC=3, BC=4,若满足(1)中条件的一条直线DE// AB,求此时线段DE的长;(3)如图3,在△ABC中,∠C=90°, AC=3,BC=4,问满足(1)中条件的线段DE是否存在最小值?如果存在,请求出这个值;如果不存在,请说明理由.~~第6题~~(2019宝鸡.中考模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AB=8,∠A=60°,求BD的长.~~第7题~~(2019岐山.中考模拟) 问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC 外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC (3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.~~第8题~~(2019岐山.中考模拟)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2 ,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.~~第9题~~(2019金台.中考模拟) 问题探究:(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE= BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.(3)为了迎接新年的到来,西安城墙举办了迎新年大型灯光秀表演.其中一个镭射灯距城墙30米,镭射灯发出的两根彩色光线夹角为60°,如图③,若将两根光线(AB,AC)和光线与城墙的两交点的连接的线段(BC)看作一个三角形,记为△ABC,那么该三角形周长有没有最小值?若有,求出最小值,若没有,说明理由.~~第10题~~(2019宝鸡.中考模拟) 如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰△CEF,且满足∠B+∠F=180°,则称三角形CEF为四边形ABCD的“伴随三角形”.(1)如图1,若△CEF是正方形ABCD的“伴随三角形”:①连接AC,则∠ACF=;②若CE=2BC,连接AE交CF于H,求证:H是CF的中点;(2)如图2,若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,M是线段AE的中点,连接DM、FM,猜想并证明D M与FM的位置与数量关系.陕西省宝鸡市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:答案:解析:答案:解析:。

陕西省咸阳市,2020~2021年中考数学压轴题精选解析

陕西省咸阳市,2020~2021年中考数学压轴题精选解析

陕西省咸阳市,2020~2021年中考数学压轴题精选解析陕西省咸阳市中考数学压轴题精选~~第1题~~(2020乾.中考模拟) 问题提出(1)如图,是的中线,则 ________ ;(填“ ”“ ”或“ ”)(2)如图,在矩形中,,点E为的中点,点F为上任意一点,当的周长最小时,求的长;(3)如图,在矩形中,,点O为对角线的中点,点P为上任意一点,点Q为上任意一点,连接,是否存在这样的点Q,使折线的长度最小?若存在,请确定点Q的位置,并求出折线的最小长度;若不存在,请说明理由.~~第2题~~(2020咸阳.中考模拟) 如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)如果D点是BC的中点,⊙O的半径为 3cm,求的长度.(结果保留π)~~第3题~~(2020乾.中考模拟) 问题提出(1)如图①,AD是△ABC的中线,则AB+AC 2AD;(填“>”“<”或“=”)(2)问题探究如图②,在矩形ABCD中,CD=3,BC=4,点E为BC的中点,点F为CD上任意一点,当△AEF的周长最小时,求CF 的长;(3)问题解决如图③,在矩形ABCD中,AC=4,BC=2,点O为对角线AC的中点,点P为AB上任意一点,点Q为AC上任意一点,连接PO、PQ、BQ,是否存在这样的点Q,使折线OPQB的长度最小?若存在,请确定点Q的位置,并求出折线OPQB的最小长度;若不存在,请说明理由。

陕西省咸阳市中考数学压轴题答案解析~~第1题~~答案:解析:答案:解析:~~第3题~~答案:解析:。

陕西中考数学十年压轴题汇总

陕西中考数学十年压轴题汇总

25.(本题满分12分)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点。

(1)如图①,线段PM、QN夹在平行直线a 和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等。

(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ =m,下底MN=n,且m<n。

现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草请说明理由。

25.(本题满分12分)王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。

(1)求FC的长;(2)利用图②求出矩形顶点B所.对的..距离顶点..到BC边的时,)(cmx为多少矩形的面积最大最大面积时多少(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

P QM Nab第25题图ab 第25题图ab第25题图P QM Nab第25题图S1S2S3 S4nm25.(本题满分12分) 如图,O e 的半径均为R .(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形;(2)如图③,在O e 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示);(3)若线段AB CD ,是O e的两条弦,且AB CD ==,你认为在以点A B C D,,,为顶点的四边形中,是否存在面积最大的四边形请利用图④说明理由.12解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。

2024陕西中考数学二轮专题训练 题型二 小几何压轴题 (含答案)

2024陕西中考数学二轮专题训练 题型二 小几何压轴题 (含答案)

2024陕西中考数学二轮专题训练题型二小几何压轴题类型一与线段有关的问题1.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8.若点E 、F 是BC 边上的两个动点,以EF 为边的等边△EFP 的顶点P 在△ABC 内部或边上,则等边△EFP 的周长的最大值为________.第1题图2.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,点D 、E 分别在AB 、BC 上,且以DE 为直径的圆与AC 相切,则DE 的最小值为________.第2题图3.如图,在菱形ABCD 中,AB =AC =10,对角线AC 、BD 相交于点O ,点M 在线段AC上,且AM =3,点P 为线段BD 上的一个动点,则MP +12PB 的最小值是__________.第3题图4.如图,在四边形ABCD 中,AB =6,AD =BC =3,E 为AB 边的中点,且∠CED =120°,则边DC 长度的最大值为________.第4题图5.如图,在四边形ABCD 中,AB =9,∠A +∠B =90°,以CD 为斜边向内作等腰直角△CDE ,使得直角顶点E 在AB 边上,若AE =2BE ,则AD +CB 的值为________.第5题图6.如图,在菱形ABCD中,AB=12,∠B=60°,AE⊥CD于点E,点F为AB上一点,且AB,P为AE上一点,连接PC、PD、PF,则PC与PD之间的数量关系为________,AF=13PC+PF的最小值为________.第6题图类型二与面积有关的问题1.如图,在等边△ABC内部有一个半径为2的动圆,则动圆不能覆盖的面积为________.第1题图2.如图,已知四边形ABCD内接于半圆O,AB为半圆O的直径,AB=8,CD=4,点E 是CD的中点,连接AE、BE,则△ABE面积的最大值为________.第2题图3.如图,已知AB是⊙O的直径,AB=10,点P是⊙O上一点,连接AP、BP,OE⊥AP于点E,OF⊥BP于点F,则四边形OEPF面积的最大值为________.第3题图4.如图,在▱ABCD中,E、F是AD边上的两点,且AE=DF=14AD.点G为BC边上一点,连接EG交BF于点H.若EG平分四边形ABCD的面积,BH=6,则BF的长为________.第4题图5.如图,在四边形ABCD中,∠ABC=90°,AB=2,BC=23,点E、F分别是AD、CD 的中点,若四边形ABCD的面积为43,则△BEF的面积为________.第5题图6.如图,在菱形ABCD中,∠B=60°,点E、F分别在BC、CD边上,且∠EAF=60°,连接EF.若AB=4,则△CEF面积的最大值为________.第6题图类型三与角度有关的问题1.如图,在正方形ABCD中,AC与BD相交于点O,点P是正方形边上或对角线上一点,若∠BPC=60°,则满足条件的点P的个数为________.第1题图2.如图,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,则点P到点A的距离为________.第2题图3.如图,在4×4的正方形网格中,四边形ABCD的顶点都在格点上,则tan∠ACD的值为________.第3题图4.如图,在四边形ABCD中,AB=AD=2,∠BAD=∠BCD=90°,连接A C.若AC=6,则∠ABC的大小为________.第4题图5.如图,在正方形ABCD中,AB=8,点E是AD边上一点,连接BE、CE,过点B作BF⊥CE 于点F,当∠EBF最小时,AE的长为________,BF的长为________.第5题图参考答案类型一与线段有关的问题1.632.125【解析】如解图,设切点为P ,连接BP ,过点B 作BH ⊥AC 于点H ,由垂线段最短可知BP ≥BH ,∵DE 是该圆的直径,∴DE ≥BP ≥BH ,即DE 的最小值为BH 的长.∵S △ABC=12AB ·BC =12AC ·BH ,AC =AB 2+BC 2=5,∴BH =AB ·BC AC =125.即DE 的最小值为125.第2题解图3.732【解析】如解图,过点P 作PQ ⊥BC 于点Q ,过点M 作MN ⊥BC 于点N .∵四边形ABCD 是菱形,∴AB =BC .∵AB =AC =10,∴△ABC 是等边三角形,∴∠ABC =∠ACB=60°,∴∠OBC =30°,∴PQ =12BP ,∴MP +12PB =MP +PQ .由两点之间线段最短可知,当M 、P 、Q 三点共线,即点Q 与点N 重合时,MP +PQ 取得最小值,最小值为MN 的长.∵AM =3,∴CM =AC -AM =7.∵∠ACB =60°,∴MN =32CM =732,∴MP +12PB 的最小值为732.第3题解图4.9【解析】如解图,分别作点A 关于DE 的对称点A ′,点B 关于CE 的对称点B ′,连接A ′D ,A ′E ,B ′C ,B ′E ,A ′B ′,则A ′D =AD =3,A ′E =AE =3,B ′C =BC =3,B ′E =BE =3,∠A ′ED =∠AED ,∠B ′EC =∠BEC ,∵∠CED =120°,∴∠AED +∠BEC =180°-∠CED =60°,∴∠A ′ED +∠B ′EC =60°,∴∠A ′EB ′=∠DEC -(∠A ′ED +∠B ′EC )=60°.∵A ′E =B ′E =3,∴△A ′EB ′是等边三角形,∴A ′B ′=A ′E =3.由两点之间线段最短可得DC ≤A ′D +A ′B ′+B ′C =9,∴DC 长度的最大值为9.第4题解图5.35【解析】∵AB =9,AE =2BE ,∴AE =6,BE =3.∵ED =EC ,∠DEC =90°,∴如解图,将△ECB 绕点E 逆时针旋转90°得到△EDF ,∴EF =EB =3,DF =BC ,∠EDF =∠ECB .∵∠A +∠B =90°,∠EDC =∠ECD =45°,∴∠ADE +∠ECB =180°,∴∠ADE +∠EDF =180°,∴A 、D 、F 三点共线,∴AD +CB =AD +DF =AF .在Rt △AEF 中,AF =AE 2+EF 2=35,∴AD +CB 的值为3 5.第5题解图6.PC =PD ,413【解析】如解图,连接AC ,FD ,∵四边形ABCD 为菱形,∠B =60°,∴△ADC 为等边三角形.∵AE ⊥CD ,∴点C 关于PE 的对称点为点D ,∴PC =PD ,∴PC +PF =PD +PF ≥FD ,∴当F ,P ,D 三点共线时,PC +PF 的值最小,最小值为FD 的长.过点F 作FH ⊥DA 交DA 的延长线于点H ,∵∠B =60°,∴∠HAF =60°.∵AB =12,AF =13AB ,∴AF =4,∴AH =2,FH =23,∴DH =14.在Rt △DHF 中,FD =FH 2+DH 2=(23)2+142=413,∴PC +PF 的最小值为413.第6题解图类型二与面积有关的问题1.123-4π【解析】如解图,图中阴影部分面积即为动圆不能覆盖的面积,由题意知⊙O 与AC ,AB 两边相切,切点分别为点E ,F ,连接OE ,OF ,AO ,则∠EAO =∠FAO =30°,∠EOF =120°,∴在Rt △AOE 中,AE =3OE =23,∴S △AOE =12×2×23=2 3.∵S 扇形EOF =120π×22360=4π3,∴动圆不能覆盖的面积=3(2×23-4π3)=123-4π.第1题解图2.83【解析】如解图,连接OC 、OE ,∵点E 为CD 的中点,∴CE =12CD =2,OE ⊥CD .∵OC =12AB =4,∴OE =OC 2-CE 2=2 3.过点E 作EH ⊥AB 于点H ,则S △ABE =12AB ·EH =4EH .∵EH ≤OE ,∴当EH =OE ,即当OE ⊥AB 时,△ABE 的面积最大,最大值为8 3.第2题解图3.252【解析】如解图,连接OP ,过点P 作PH ⊥AB 于点H ,∵AB 是⊙O 的直径,∴∠APB =90°.∵OE ⊥AP ,OF ⊥BP ,∴四边形OEPF 为矩形,AE =PE =12AP ,BF =PF =12BP ,∴S 四边形OEPF =PE ·PF =12AP ·12BP =14AP ·BP =14AB ·PH =14×10PH =52PH .∴当PH 最大时,四边形OEPF 的面积最大,∵PH ≤OP ,∴当PH =OP ,即当OP ⊥AB 时,四边形OEPF 的面积最大,此时PH =OP =12AB =5,S 四边形OEPF 最大=52PH 最大=252,即四边形OEPF 面积的最大值为252.第3题解图4.10【解析】∵四边形ABCD 为平行四边形,∴AD =BC .∵AE =DF =14AD ,∴EF =12AD .∵EG 平分▱ABCD 的面积,∴AE =CG =14AD .∴BG =34AD .∵AD ∥BC ,∴BH FH =BG EF =32,∴BH BF=35.∵BH =6,∴BF =10.5.332【解析】如解图,连接BD ,在△ABC 中,∵∠ABC =90°,AB =2,BC =23,∴S △ABC =12×2×23=2 3.∵四边形ABCD 的面积为43,∴S △ADC =2 3.∵E 为AD 的中点,F 为DC 的中点,∴S △ABE =S △DBE ,S △CFB =S △DFB ,∴S 四边形EBFD =S △EBD +S △FBD =12S 四边形ABCD =2 3.∵E 、F 分别为AD 、CD 的中点,∴EF =12AC ,EF ∥AC ,∴S △DEF S △DAC =(EF AC )2=(12)2=14.∵S △DAC =23,∴S △DEF =14×23=32,∴S △BEF =S 四边形EBFD -S △DEF =23-32=332.第5题解图6.3【解析】∵四边形ABCD 是菱形,且∠EAF =∠B =60°,∴∠BAC =∠ACF =∠B =60°,AB =BC ,∴∠BAE +∠EAC =∠EAC +∠CAF =60°,△ABC 是等边三角形,∴∠BAE =∠CAF ,AB =AC ,∴△ABE ≌△ACF ,∴AE =AF ,S △ACF =S △ABE ,∴△AEF 是等边三角形,S 四边形AECF =S △ABC ,∴S △CEF =S △ABC -S △AEF .∵AB =4,△ABC 是等边三角形,∴S △ABC =34×42=43,∴当S △AEF 最小时,S △CEF 最大.∵当AE ⊥BC 时,AE =4sin60°=23,S △AEF 最小,∴S △AEF 最小=34×(23)2=33,∴S △CEF 最大=43-33=3,即△CEF 面积的最大值为3.类型三与角度有关的问题1.4个【解析】如解图,在正方形内部作∠M =120°,且BM =MC ,以点M 为圆心,BM 为半径画圆,⊙M 与正方形ABCD 各边及对角线的交点即为满足条件的点P ,共4个.第1题解图2.2或8【解析】如解图,∵BC =10,∠BPC =90°.∴取BC 的中点O ,则OB >AB .∴以点O 为圆心,OB 长为半径作半圆O ,半圆O 一定与AD 相交于P 1、P 2两点,连接P 1B 、P 1O 、P 1C .∵∠BPC =90°,点P 不能在矩形外,∴△BPC 的顶点P 在BP ︵1或CP ︵2上.显然,当顶点P 在P 1或P 2位置时,△BPC 的面积最大.过点P 1作P 1E ⊥BC ,垂足为E ,则P 1E =4,∴OE =52-42=3,∴AP 1=BE =OB -OE =5-3=2.由对称性,得AP 2=8;综上所述,点P 到点A 的距离为2或8.第2题解图3.13【解析】如解图,连接BD 交AC 于点O ,设每个小正方形的边长为1,由勾股定理可知:AC =32+32=32,BD =12+12=2,AB =BC =CD =AD =22+12=5,∴四边形ABCD 为菱形,∴AC ⊥BD ,在Rt △OCD 中,tan ∠OCD =OD OC =12BD 12AC =12×212×32=13,∴tan ∠ACD =13.第3题解图4.60°【解析】如解图,将△ADC 绕点A 顺时针旋转90°,使得AD 与AB 重合,得到△ABE ,则∠ABE =∠ADC ,∠DAC =∠EAB ,AC =AE .∵∠BAD =∠BCD =90°,∴∠ADC +∠ABC =180°,∠EAC =∠BAD =90°,∴∠ABE +∠ABC =180°,∴C 、B 、E 三点共线.过点A 作AF ⊥CE 于点F ,在Rt △ACE 中,∵AE =AC =6,∴∠E =45°,∴AF = 3.在Rt △ABF 中,∵AB =2,AF=3,∴∠ABC =60°.第4题解图5.4,1655【解析】在Rt △BEF 中,要求∠EBF 最小时,BF 的长,即求∠BEF 最大时,BF 的长.如解图,过点B 、C 作⊙O ,与AD 相切于点E ,此时∠BEF 最大.连接EO 并延长,交BC 于点G ,则EG 垂直平分BC ,∴AE =12AD =4,CG =12BC =4,∴CE =42+82=45,∴12×8×8=12×45×BF ,解得BF =1655.第5题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西中考数学历年压轴题
1、(15)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,
∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长
的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值
最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。

2、(14)问题探究
(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;
(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。

求此时BQ 的长; 问题解决
(3)有一山庄,它的平面为③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳。

已知∠A=∠E=∠D=90°。

AB=270m 。

AE=400m ,ED=285m,CD=340m,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长;若不存在,请说明理由。


② ③
C A A
B C F E D C
A
A B E D A
3、(13)问题探究
(1) 请在图①中作出两条直线,使它们将圆面四等分;
(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直
线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.
M
D B C
A P D
B C A
(第25题图) ① ② ③
4、(12)如图,正三角形ABC 的边长为3+3.
(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形
''''EFPN 的面积最大(不要求写作法)
; (2)求(1)中作出的正方形''''EFPN 的边长;
(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.
5、(2011)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个等腰三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
6、(2010)问题探究
(1)请你在图①中做一条
..直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。

问题解决
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。

为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由
7、(2009)问题探究
(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由. 问题解决
(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).
D C B A ① D C B
A ③ D C
B A ② (第25题图)
8、(2008)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。

如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。

点B在点M的北偏西30°的3km处,
点A在点M的正西方向,点D在点M的南偏西60
°的处。

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。

综上,你认为把供水站建在何处,所需铺设的管道最短?
图①
9、(2007)如图,O e 的半径均为R .
(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形;
(2)如图③,在O e 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是O e 的两条弦,
且AB CD ==
,你认为在以点A B C D
,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
10、(2006)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm 下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;
图②
(第25题图①) (第25题图②) (第25题图③) (第25题图④)
(2)利用图②求出矩形顶点B 所对的顶点.....到BC 边的距离)(cm x 为多少时,矩形的面积最大?最大面积时多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

相关文档
最新文档