数电重点
数电重要知识点总结
数电重要知识点总结一、数字信号与模拟信号的区别1. 数字信号数字信号是用离散的数值来表示的信号,通常用0和1来表示。
数字信号是通过数模转换器将模拟信号转换成数字信号,然后再通过模数转换器将数字信号转换成模拟信号。
数字信号的特点是具有高抗干扰能力和便于存储和传输的优点。
2. 模拟信号模拟信号是连续变化的信号,其数值可以在一定范围内连续变化。
模拟信号在传输和处理过程中容易受到噪声和干扰的影响,信号传输的质量也容易受到衰减。
模拟信号的特点是具有较高的精度和灵活性。
二、数字电路的基本组成数字电路由数字元件、数字逻辑电路和数字系统组成。
1. 数字元件数字元件是数字电路的基本组成部件,主要包括数字信号源、数字信号的采集和产生设备、数字信号的处理设备等。
数字元件的功能是采集、处理和产生数字信号,保证数字信号在电路中的传输和处理。
2. 数字逻辑电路数字逻辑电路是由逻辑门、触发器、计数器、移位寄存器等数字元件组成的电路,用于实现数字信号的逻辑处理。
数字逻辑电路根据逻辑门的输出状态来确定电路的工作方式。
3. 数字系统数字系统是由数字元件和数字逻辑电路相互配合形成的系统,用来完成特定的数字信号处理任务。
数字系统有多种不同的结构和形式,主要包括组合逻辑系统、时序逻辑系统和计算机系统等。
三、布尔代数布尔代数是一种用于描述逻辑函数的代数系统,它是由乔治·布尔引入的。
布尔代数的基本概念包括布尔变量、布尔常量、布尔函数、布尔表达式、逻辑和、逻辑或、逻辑非等。
布尔代数用于描述逻辑门和数字逻辑电路的工作原理和逻辑关系。
1. 布尔变量布尔变量是用于表示逻辑状态的变量,通常用字母或符号表示。
布尔变量的取值只能是0或1,表示逻辑假和逻辑真。
2. 布尔函数布尔函数是用来描述布尔变量之间逻辑关系的函数,其返回值也是布尔值。
布尔函数可以表示成表达式、真值表或卡诺图等形式。
3. 布尔表达式布尔表达式是由布尔变量和逻辑运算符组成的表达式,用于描述逻辑函数的等价关系。
数电重点知识总结
数电重点知识总结
以下是数电重点知识总结:
1. 逻辑代数基本定理:包括代入定理、反演定理、对偶定理。
2. 逻辑函数:描述输入与输出之间的函数关系,通过真值表、逻辑函数表达式、逻辑图、波形图和卡诺图来表示。
3. 最小项和最大项:最小项是n变量m个因子的乘积,最大项是m个因子的和。
4. 化简方法:包括公式法、并项法、吸收法、消项法、消因子法和配项法等。
5. 卡诺图法:用于将逻辑函数化为最小项之和的形式,通过画出卡诺图并找出可合并项来进行化简。
6. 门电路:包括与门、或门、非门、与非门、或非门等,以及它们的互补输出。
7. 三态门:具有高、低和开路三种状态。
8. 组合逻辑电路:任意时刻的输出仅仅取决于该时刻的输入,与之前的电路状态无关。
9. 常用的组合逻辑电路:包括编码器、译码器、数据选择器和加法器等。
10. 组合逻辑电路的竞争与冒险:可能产生尖峰脉冲,有竞争不一定有竞争
冒险,可以通过加滤波电容、引入选通脉冲或修改逻辑等方式消除竞争冒险。
11. 二进制数的算术运算:无符号二进制数的加法运算与十进制加法相同,减法同十进制减法,不够减借位;乘法由左移被乘数与加法运算组成;除法由右移除数与减法运算组成。
带符号二进制数的算术运算中,负数通常用补码表示,可以通过补码和反码计算得到。
以上内容仅供参考,如需更多信息,建议查阅相关教材或咨询专业人士。
数电知识点总结
数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。
数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。
本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。
1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。
数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。
1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。
组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。
常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。
常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。
1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。
时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。
在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。
在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。
2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。
数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。
2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。
信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。
2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。
(完整版)数电知识点总结(整理版)
数电复习知识点第一章1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);第三章1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);4、掌握逻辑函数的常用化简法(代数法和卡诺图法);5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);第四章1、了解包括MOS在内的半导体元件的开关特性;2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;4、掌握OD门、OC门及其逻辑符号、使用方法;5、掌握三态门及其逻辑符号、使用方法;6、掌握CMOS传输门及其逻辑符号、使用方法;7、了解正逻辑与负逻辑的定义及其对应关系;8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);第五章1、掌握组合逻辑电路的分析与设计方法;2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);4、掌握用集成译码器实现逻辑函数的方法;5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;第六章1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);2、了解各种RS触发器的约束条件;3、掌握异步清零端Rd和异步置位端Sd的用法;2、了解不同功能触发器之间的相互转换;第七章1、了解时序逻辑电路的特点和分类;2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;4、了解异步时序逻辑电路的简单分析;5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;6、掌握集成计数器实现任意进制计数器的方法;7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;第八章1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;第九章1、了解ROM和RAM的基本概念;2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。
数电知识点
数电知识点数字电路知识点一:数字电路的概念与分类•数字电路:用离散的电信号表示各种信息,通过逻辑门的开关行为进行逻辑运算和信号处理的电路。
•数字电路的分类:1.组合逻辑电路:根据输入信号的组合,通过逻辑门进行转换得到输出信号。
2.时序逻辑电路:除了根据输入信号的组合,还根据时钟信号的变化进行状态的存储和更新。
知识点二:数字电路的逻辑门•逻辑门:由晶体管等元器件组成的能实现逻辑运算的电路。
•逻辑门的种类:1.与门(AND gate):输出为输入信号的逻辑乘积。
2.或门(OR gate):输出为输入信号的逻辑和。
3.非门(NOT gate):输出为输入信号的逻辑反。
4.与非门(NAND gate):输出为与门输出的逻辑反。
5.或非门(NOR gate):输出为或门输出的逻辑反。
6.异或门(XOR gate):输出为输入信号的逻辑异或。
7.同或门(XNOR gate):输出为异或门输出的逻辑反。
知识点三:数字电路的布尔代数•布尔代数:逻辑运算的数学表达方式,适用于数字电路的设计和分析。
•基本运算:1.与运算(AND):逻辑乘积,用符号“∙”表示。
2.或运算(OR):逻辑和,用符号“+”表示。
3.非运算(NOT):逻辑反,用符号“’”表示。
•定律:1.与非定律(德摩根定理):a∙b = (a’+b’)‘,a+b =(a’∙b’)’2.同一律:a∙1 = a,a+0 = a3.零律:a∙0 = 0,a+1 = 14.吸收律:a+a∙b = a,a∙(a+b) = a5.分配律:a∙(b+c) = a∙b+a∙c,a+(b∙c) = (a+b)∙(a+c)知识点四:数字电路的设计方法•数字电路设计的基本步骤:1.确定输入和输出信号的逻辑关系。
2.根据逻辑关系,使用布尔代数推导出逻辑表达式。
3.根据逻辑表达式,使用逻辑门进行电路设计。
4.进行电路的逻辑仿真和验证。
5.实施电路的物理布局和连接。
知识点五:数字电路的应用•数字电路的应用领域:1.计算机:CPU、内存、硬盘等。
数电 知识点总结
数电知识点总结数电(数字电子技术)是电子信息科学与技术领域的一门基础学科,它研究数字信号的产生、传输、处理和应用。
数电主要涉及数字电路的设计、逻辑运算、组合逻辑、时序逻辑、存储器设计等方面的内容。
以下是对数电常见知识点的总结,共计1000字。
一、数字电路基础1. 二进制:介绍二进制数表示、二进制与十进制的转换、二进制加减法运算等。
2. 逻辑门电路:介绍与门、或门、非门、异或门等基本逻辑门的实现及其真值表。
3. 真值表和卡诺图:介绍真值表和卡诺图的作用,以及如何利用卡诺图简化布尔函数。
二、组合逻辑电路1. 组合逻辑的基本概念:介绍组合逻辑电路的基本概念和逻辑功能的表示方法。
2. 组合逻辑电路设计:介绍组合逻辑电路的设计方法,包括常见逻辑门的设计、多路选择器的设计、编码器和解码器的设计等。
3. 多级逻辑电路:介绍多级逻辑电路的设计原理,包括选择器、加法器、减法器等。
三、时序逻辑电路1. 时序逻辑电路的基本概念:介绍时序逻辑电路的基本概念和时序逻辑元件的特点,如锁存器、触发器等。
2. 触发器:介绍RS触发器、D触发器、JK触发器的工作原理、真值表和特性方程。
3. 时序逻辑电路设计:介绍时序逻辑电路的设计方法,包括计数器、移位寄存器等。
四、存储器设计1. 存储器的分类:介绍存储器的分类,包括RAM(随机访问存储器)和ROM(只读存储器)。
2. RAM:介绍RAM的基本工作原理和特点,包括静态RAM (SRAM)和动态RAM(DRAM)。
3. ROM:介绍ROM的分类和工作原理,包括PROM、EPROM和EEPROM。
五、数字系统设计1. 数字系统的层次结构:介绍数字系统的层次结构,包括数字系统组成元件和模块的概念。
2. 数据流图:介绍数据流图的绘制方法和用途。
3. 状态图:介绍状态图的绘制方法和应用,用于描述有限状态机的行为。
六、数字信号处理1. 数字信号的采样和量化:介绍数字信号的采样和量化方法,以及采样定理的原理。
数电重点整理
5.锁存器和触发器
教学基本要求: 1.掌握RS、JK、D、T、T’触发器的逻辑功能及 描述方法。(特征方程、功能表、状态转 换图、波形图)
带异步清零和异步置一的触发器画波形,触 发上沿或下沿要看清楚 2.掌握触发器的动作特征
6.时序逻辑电路
教学基本要求: 1.掌握时序逻辑电路的逻辑功能的描述方法:逻辑函数法,三种方程组的含义 3.掌握同步时序电路的设计方法(自启动的检查,状态图的含义,和状 态转换表,状态转换真值表的关系) 4.掌握计数器中的同步、异步、加法、减法计数及可逆等概念 5.掌握计数器(74LVC161异步清零同步预置,74LVC163同步清零同步预 置)移位寄存(74HC194)的逻辑功能及其应用(并串和串并转换, 用移位寄存器形计数器模N,扭环形计数器模2N) 预置数(同步预置数,异步预置数的差别) 清零(同步清零,异步清零的差别) 6.掌握用MSI器件(如74HC161)设计N进制计数器的方法包括大于十六进 制的计数器设计(TC进位位的含义和应用) 7.掌握根据所给时序MSI器件的功能表会分析,设计电路
4.组合逻辑电路
教学基本要求: 1.掌握用逻辑门构成的组合电路的分析方法 2.掌握用逻辑门构成的组合电路的分析方法 3.掌握判断电路是否会产生竞争冒险 4.掌握译码器(74138、74139)的逻辑功能及应用:实现 逻辑函数,数据分配器,扩展 5.掌握数据选择器(74151,74153)的逻辑功能,并能用数 据选择器实现逻辑函数,扩展,序列信号发生器 掌握优先编码器的功能和扩展,七段显示译码器的功能, 四位比较器的功能和扩展 半加器和一位全加器的功能和表达式
1.数字逻辑概论
教学基本要求: 1.掌握常用二——十、二——八、二——十六进制 的转换 掌握8421BCD码、格雷码、余三码 2、掌握基本逻辑运算与、或非得逻辑表达功能及 表达方式 3、掌握逻辑问题的四种表达方式及其相互转化 (真值表、表达式、逻辑图、卡洛图)
数电主要知识点总结
数电主要知识点总结一、存储器单元存储器单元是数字电路的基本元件之一,它用来存储数据。
存储器单元可以是触发器、寄存器或存储器芯片。
触发器是最简单的存储器单元,它有两个状态,分别为1和0。
寄存器是一种多位存储器单元,它可以存储多个位的数据。
存储器芯片是一种集成电路,它可以存储大量的数据。
存储器单元的作用是存储和传输数据,它是数字电路中的重要组成部分。
二、逻辑门逻辑门是数字电路的另一个重要组成部分,它用来执行逻辑运算。
逻辑门有与门、或门、非门、异或门等。
与门用于执行逻辑与运算,或门用于执行逻辑或运算,非门用于执行逻辑非运算,异或门用于执行逻辑异或运算。
逻辑门可以组成各种复杂的逻辑电路,比如加法器、减法器、乘法器、除法器等。
逻辑门的作用是执行逻辑运算,它是数字电路中的核心部分。
三、数字电路的分类数字电路可以分为组合逻辑电路和时序逻辑电路。
组合逻辑电路是一种没有反馈的逻辑电路,它的输出完全由输入决定。
组合逻辑电路的设计是固定的,不受时间影响。
时序逻辑电路是一种有反馈的逻辑电路,它的输出不仅受输入决定,还受上一次的输出影响。
时序逻辑电路的设计是随时间变化的,受时间影响。
四、数字电路的应用数字电路在计算机、通信、控制等领域有广泛的应用。
在计算机中,数字电路用于执行逻辑和算术运算,控制数据存储和传输。
在通信中,数字电路用于信号处理、调制解调、编解码等。
在控制中,数字电路用于逻辑控制、定时控制、序列控制等。
五、数字电路的设计数字电路的设计是一个复杂的过程,需要考虑多种因素。
首先要确定系统的功能和性能要求,然后选择适当的存储器单元和逻辑门,设计适当的逻辑电路,进行仿真和验证,最后进行集成和测试。
六、数字电路的发展数字电路的发展经历了多个阶段。
从最初的离散元件到集成电路,再到超大规模集成电路,数字电路的集成度越来越高,性能越来越强。
数字电路的发展推动了计算机、通信、控制等领域的快速发展,改变了人们的生活方式,促进了社会的进步。
数电知识点总结
数电知识点总结数字电子技术(简称数电)是电子信息类专业的一门重要基础课程,它主要研究数字信号的传输、处理和存储。
下面为大家总结一些关键的数电知识点。
一、数制与码制数制是指用一组固定的数字和一套统一的规则来表示数的方法。
常见的数制有十进制、二进制、八进制和十六进制。
十进制是我们日常生活中最常用的数制,它由 0、1、2、3、4、5、6、7、8、9 这十个数字组成,遵循“逢十进一”的原则。
二进制则只有 0 和 1 两个数字,其运算规则简单,是数字电路中最常用的数制,遵循“逢二进一”。
八进制由0、1、2、3、4、5、6、7 这八个数字组成,“逢八进一”。
十六进制由 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 这十六个数字和字母组成,“逢十六进一”。
码制是指用不同的代码来表示不同的信息。
常见的码制有BCD 码、格雷码等。
BCD 码用四位二进制数来表示一位十进制数,有 8421 BCD 码、5421 BCD 码等。
格雷码的特点是相邻两个编码之间只有一位发生变化,这在数字电路中可以减少错误的产生。
二、逻辑代数基础逻辑代数是数字电路分析和设计的数学工具。
基本逻辑运算包括与、或、非三种。
与运算表示只有当所有输入都为 1 时,输出才为 1;或运算表示只要有一个输入为 1,输出就为 1;非运算则是输入为 1 时输出为 0,输入为 0 时输出为 1。
逻辑代数的基本定律有交换律、结合律、分配律、反演律和吸收律等。
这些定律在逻辑函数的化简和变换中经常用到。
逻辑函数的表示方法有真值表、逻辑表达式、逻辑图、卡诺图等。
真值表是将输入变量的所有可能取值组合及其对应的输出值列成的表格;逻辑表达式是用逻辑运算符将输入变量连接起来表示输出的式子;逻辑图是用逻辑门符号表示逻辑函数的电路图;卡诺图则是用于化简逻辑函数的一种图形工具。
三、门电路门电路是实现基本逻辑运算的电子电路。
常见的门电路有与门、或门、非门、与非门、或非门、异或门和同或门等。
数字电子技术各章知识要点
数电课程各章重点 第一章 逻辑代数基础知识要点一、二进制、十进制、十六进制数之间的转换;二、逻辑代数的三种基本运算以及5种复合运算的图形符号、表达式和真值表:与、或、非 三、逻辑代数的基本公式和常用公式、基本规则逻辑代数的基本公式 逻辑代数常用公式:吸收律:A AB A =+消去律:B A B A A +=+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A •=+ B A AB B A B A +=+ 基本规则:反演规则和对偶规则 四、逻辑函数的三种表示方法及其互相转换逻辑函数的三种表示方法为:真值表、函数式、逻辑图 会从这三种中任一种推出其它二种五、逻辑函数的最小项表示法:最小项的性质; 六、逻辑函数的化简:要求按步骤解答1、 利用公式法对逻辑函数进行化简2、 利用卡诺图对逻辑函数化简3、 具有约束条件的逻辑函数化简 例1.1利用公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+C D B ++= )(D D A D =+ 例1.2 利用卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第二章 门电路知识要点一、三极管开、关状态1、饱和、截止条件:截止:T be V V <, 饱和:βCSBS B I I i =>2、反相器饱和、截止判断 二、基本门电路及其逻辑符号与门、或非门、非门、与非门、OC 门、三态门、异或; 传输门、OC/OD 门及三态门的应用 三、门电路的外特性1、输入端电阻特性:对TTL 门电路而言,输入端通过电阻接地或低电平时,由于输入电流流过该电阻,会在电阻上产生压降,当电阻大于开门电阻时,相当于逻辑高电平。
数电考试知识点总结
数电考试知识点总结一、数字电路的基本概念1.1 信号与信号的分类信号是一种描述信息的表现形式,它可以是数学函数、电流、电压或其他物理量。
信号可以分为模拟信号和数字信号两种。
模拟信号是连续的,它的值可以在一定范围内连续变化;数字信号是离散的,它的值只能取有限的几种状态。
1.2 二进制码二进制码是一种用“0”和“1”来表示信息的编码方式,是数字电路中常用的编码方式。
二进制码可以表示数字、文字、图像等各种信息,是数字系统的基础。
1.3 逻辑门逻辑门是用来进行逻辑运算的元器件,它可以实现与、或、非、异或等逻辑运算。
常见的逻辑门有与门、或门、非门、与非门、或非门、异或门等多种类型。
二、组合逻辑电路2.1 组合逻辑电路的基本结构组合逻辑电路是由逻辑门组成的电路,它的输出只依赖于输入的当前值,而不考虑输入的历史状态。
组合逻辑电路可以用来实现各种逻辑运算和信息处理功能。
2.2 真值表真值表是用来描述逻辑运算结果的一种表格形式,它列出了各种可能的输入组合所对应的输出值。
真值表可以用来验证逻辑电路的正确性,也可以用来设计逻辑电路。
2.3 编码器和解码器编码器是用来将多个输入信号编码成一个二进制输出信号的电路,解码器则是用来将一个二进制输入信号解码成多个输出信号的电路。
编码器和解码器在数字通信和信息处理中有着重要的应用。
2.4 多路选择器和数据选择器多路选择器是一种能够从多个输入中选择一个输出的电路,数据选择器则是一种对输入数据进行选择的电路。
多路选择器和数据选择器在信息处理和信号传输中有着广泛的应用。
2.5 码变换器和位移寄存器码变换器是一种能够将一个编码转换成另一个编码的电路,位移寄存器则是一种能够实现数据位移操作的电路。
码变换器和位移寄存器在数字信号处理和通信中有着重要的作用。
三、时序逻辑电路3.1 时序逻辑电路的基本概念时序逻辑电路是在组合逻辑电路的基础上加入了时钟信号控制的一种电路。
它的输出不仅依赖于输入的当前值,还可能依赖于输入的历史状态。
数电知识点总结框架
数电知识点总结框架1. 电子与电路的基本概念2. 电子元器件的分类与特性3. 电路的基本知识4. 半导体材料与电子器件二、信号与系统1. 信号与系统的基本概念2. 时域分析与频域分析3. 信号的采样与量化4. 数字信号处理与滤波器设计三、数字逻辑电路1. 数制与编码2. 布尔代数及逻辑运算3. 组合逻辑电路4. 时序逻辑电路四、模拟电路1. 基本电路理论2. 放大器设计与应用3. 滤波器设计4. 模拟信号处理技术五、集成电路1. 集成电路的基本知识2. 数字集成电路设计3. 模拟集成电路设计4. 混合信号集成电路设计六、数字信号处理1. 数字信号处理基础2. 时域与频域的数字信号处理3. 数字滤波器设计4. 数字信号处理应用七、通信与信息1. 信号传输与调制技术2. 数字通信技术3. 通信系统设计4. 信息理论与编码技术八、控制系统1. 控制系统基础2. 传统控制理论3. 现代控制理论4. 控制系统应用与设计九、电力电子与功率电子1. 电力电子与功率变换器2. 电能质量与谐波控制技术3. 电力电子应用4. 智能电网与新能源技术十、电路与系统仿真1. 电路仿真工具及应用2. 信号处理仿真工具及应用3. 控制系统仿真工具及应用4. 通信系统仿真工具及应用十一、应用案例分析1. 数字电路应用案例2. 模拟电路应用案例3. 控制系统应用案例4. 电力电子应用案例十二、发展趋势与展望1. 数字电子技术的发展趋势2. 模拟电子技术的发展趋势3. 通信与信息技术的发展趋势4. 新能源与电力电子技术的发展趋势以上框架列举了数电知识点总结的主要内容,通过系统的学习,掌握这些知识点将有助于理解数电基础理论与实际应用,为进一步深入学习和研究打下良好的基础。
数电知识点总结
数电知识点总结数电,即数字电子技术,是现代电子科学和技术的重要组成部分。
它研究如何使用数字信号来处理和传输信息。
在这篇文章中,我们将对数电的一些基本概念和知识点进行总结和讨论。
一、数电基础理论1. 二进制二进制是计算机中常用的数字表示方式,使用0和1来表示数字。
它是整个数电系统中的基础。
2. 逻辑门逻辑门是数电中常用的基本单元。
有与门、或门、非门等。
通过组合不同的逻辑门可以实现各种电路功能。
3. 真值表真值表是描述逻辑门输入输出关系的表格。
它能够帮助我们清晰地了解逻辑门的工作原理和功能。
4. 布尔代数布尔代数是一种逻辑系统,它基于二进制值和逻辑运算。
它能够简化和优化逻辑电路的设计。
二、数电电路设计1. 加法器加法器是数电中重要的电路,用于实现数字的加法运算。
全加器是最基本的加法器。
2. 编码器编码器用于将一个多位数字编码为一个较小的码。
常见的是4-2编码器和8-3编码器等。
3. 解码器解码器正好与编码器相反,它用于将一个码解码为一个多位数字。
常见的是2-4解码器和3-8解码器等。
4. 翻转器翻转器是一种存储元件,可以存储和改变输入信号的状态。
常见的有RS触发器、D触发器和JK触发器等。
三、数电应用领域1. 计算机计算机是数电应用最广泛的领域之一。
计算机内部的逻辑电路和芯片基于数电原理。
2. 通信数字通信是现代通信技术的基础。
数电提供了快速、准确和可靠的数字信号处理方法。
3. 数字电视机数字电视机通过数电技术将模拟信号转换为数字信号,并在数字领域进行处理。
4. 数字音频设备数字音频设备使用数电技术处理和转换音频信号,提供更高的音频质量和灵活性。
结语数电是现代科技的基石之一,它通过数字信号的处理和传输,推动了科学技术的发展。
本文简要总结了数电的基础理论、电路设计和应用领域等知识点。
深入了解数电原理和应用,不仅能够更好地理解数字技术的工作原理,而且可以为我们进行相关领域的研究和应用提供帮助。
希望本文对读者有所启发和帮助。
数电知识点总结(整理版)
数电知识点总结(整理版).doc数电知识点总结(整理版)一、引言数字电子技术是电子工程领域的一个重要分支,它涉及使用数字信号处理电子设备中的信息。
本文档旨在总结数字电子学的核心知识点,以帮助学生和专业人士复习和掌握这一领域的基础。
二、数字逻辑基础数字信号数字信号是离散的,可以是二进制(0和1)或多电平信号。
逻辑门基本的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)和同或门(NAND)。
逻辑运算逻辑运算是数字电路中的基本操作,包括布尔代数和逻辑表达式的简化。
三、组合逻辑电路多输入逻辑门如四输入与门、或门,以及更复杂的逻辑功能。
编码器和解码器编码器将输入信号转换为二进制代码,解码器则相反。
加法器用于执行二进制加法运算的电路。
比较器比较两个二进制数的大小。
四、时序逻辑电路触发器基本的存储单元,可以存储一位二进制信息。
寄存器由多个触发器组成的电路,用于存储多位二进制信息。
计数器用于计数事件的时序电路。
移位寄存器可以按顺序移动存储的数据。
五、存储器RAM(随机存取存储器)可以读写的数据存储器。
ROM(只读存储器)存储固定数据的存储器,内容在制造时写入。
PROM(可编程ROM)用户可以编程的只读存储器。
EEPROM(电可擦可编程ROM)可以通过电信号擦除和重新编程的存储器。
六、数字系统设计设计流程包括需求分析、逻辑设计、电路设计、仿真、实现和测试。
硬件描述语言如VHDL和Verilog,用于设计和模拟数字电路。
仿真工具用于在实际硬件实现之前测试电路设计的工具。
七、数字信号处理采样将模拟信号转换为数字信号的过程。
量化将连续的信号值转换为有限数量的离散值。
编码将采样和量化后的信号转换为数字代码。
八、数模转换和模数转换数模转换器(DAC)将数字信号转换为模拟信号的设备。
模数转换器(ADC)将模拟信号转换为数字信号的设备。
九、数字通信基础调制在发送端,将数字信号转换为适合传输的形式。
解调在接收端,将接收到的信号转换回原始的数字信号。
数电重点、难点及考点
本章重点:
1、施密特触发器、单稳态触发器、多谐振荡器典型电路的工作原理,以及电路参数和性能的定性关系;
2、555定时器的应用;
3、脉冲电路的分析方法;
本章难点:
本章的难点是脉冲电路的分析方法,分析脉冲电路时使用的是分析非线性电路过渡过程的方法,而且在分析电路时必须考虑集成电路在不同工作状态下输入端和输出端的等效电路。
2、A/D转换器的主要类型(并联比较型、逐次渐近型、双积分型),它们的基本工作原理和综合性能的比较;
3、D/A、A/D转换器的转换速度与转换精度及影响它们的主要因素。
在讲授D/A转换器时,以一种电路(例如倒T形D/A转换器)为例,讲清D/A转换的基本原理和输出电压的定量计算,其他各种D/A转换器电路作为一般性了解的内容简单介绍。
数字电子技术课程考点
基础
第1章:二进制代码
第2章:逻辑代数代数化简、卡诺图化简
第3章:各种门电路之间的接口问题
组合逻辑电路
第4章:分析、设计
穿插考查1、2章知识点
触发器
第5章:各类触发器特性
时序逻辑电路
第6章:分析、设计
穿插考查5章知识点
存储器
第7章:基本概念和存储空间的计算
触发器应用:波形变换
第8章:多谐振荡品、单稳态、施密特触发器、555定时器
第七章半导体存储器
本章重点:
1、存储器的基本工作原理、分类和每种类型存储器的特点;
2、扩展存储器容量的方法;
3、用存储器设计组合逻辑电路的原理和方法。
因为存储器几乎都作成LSI器件,所以这一章的重点内容是如何正确使用这些器件。存储器内部的电路结构不是课程的重点。动态存储器和串的知识进行回忆、复习,了解用“三要素”法求解一阶RC电路暂态响应的一般方法;在RC充、放电回路的基础上,利用电路的“三要素”法求得输出脉宽tw以及多谐振荡器T1、T2、T和f的值.。
数电知识点总结复习
数电知识点总结复习数字电子技术是现代电子技术中的一个重要分支,它是指利用数字信号和数字逻辑技术进行信息的存储、处理和传输的一种技术。
数字电子技术已经深入到我们的日常生活中,无论是计算机、通信、电子设备还是家用电器,都离不开数字电子技术的支持。
因此,掌握数电知识对于电子工程师来说是非常重要的。
下面,我们就来总结一下数电知识点,帮助大家进行复习。
一、数字逻辑电路1. 布尔代数布尔代数是数字逻辑电路设计的基础。
它是一种处理逻辑关系的代数系统,其中变量的值只有“0”和“1”,运算只有“与”、“或”、“非”三种基本运算。
在数字逻辑电路设计中,可以利用布尔代数进行逻辑函数的化简和设计。
2. 逻辑门逻辑门是数字逻辑电路中最基本的电路组件,常见的逻辑门有与门、或门、非门、异或门等。
它们是按照逻辑运算的功能来设计的,可以实现逻辑运算的功能,如与门可以实现“与”运算,或门可以实现“或”运算。
3. 组合逻辑电路组合逻辑电路是由逻辑门按照一定的逻辑运算关系连接而成的电路。
在组合逻辑电路中,逻辑门的输出只取决于当前的输入信号,不受以前的输入信号和输出信号的影响。
4. 时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上加入了时钟信号控制的逻辑电路。
它的输出不仅依赖于当前的输入信号,还受到时钟信号的控制,因此在时序逻辑电路中,输出信号是有记忆功能的。
5. 计数器计数器是一种能够对输入信号进行计数的时序逻辑电路。
它可以实现二进制或者十进制的计数功能,常见的计数器有同步计数器和异步计数器。
6. 寄存器寄存器是一种能够存储数据的时序逻辑电路。
它可以存储多位的二进制数据,并且能够根据控制信号对数据进行读写操作。
7. 存储器存储器是用于存储大量数据的器件,它有随机存取存储器和只读存储器两种类型。
随机存取存储器可以对数据进行读写操作,而只读存储器只能读取数据,不能进行写操作。
8. 逻辑运算器逻辑运算器是能够进行逻辑运算的电路,常见的逻辑运算器有加法器、减法器、乘法器、除法器等。
数电知识点总结
数电知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压或电流信号,代表信息的二进制状态(0和1)。
- 模拟信号:连续变化的电压或电流信号,可以表示无限多的状态。
2. 二进制系统- 数字电路使用二进制数制,基于0和1的组合。
- 二进制的运算规则包括加法、减法、乘法和除法。
3. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)和同或(XNOR)。
- 逻辑门的真值表描述了输入和输出之间的关系。
4. 组合逻辑与时序逻辑- 组合逻辑:输出仅依赖于当前输入,不依赖于历史状态。
- 时序逻辑:输出依赖于当前输入和历史状态。
二、组合逻辑电路1. 基本组合逻辑电路- 半加器:实现两个一位二进制数的加法。
- 全加器:实现三个一位二进制数(包括进位)的加法。
2. 多路复用器(MUX)- 选择多个输入信号中的一个,根据选择信号。
3. 解码器(Decoder)- 将二进制输入转换为多个输出信号,每个输出对应一个唯一的二进制输入组合。
4. 编码器(Encoder)- 将多个输入信号编码为一个二进制输出。
5. 比较器(Comparator)- 比较两个数字信号的大小。
三、时序逻辑电路1. 触发器(Flip-Flop)- SR触发器:基于设置(S)和重置(R)输入的状态。
- D触发器:输出取决于数据输入(D)和时钟信号。
2. 寄存器(Register)- 由一系列触发器组成,用于存储数据。
3. 计数器(Counter)- 顺序触发器的集合,用于计数时钟脉冲。
4. 有限状态机(FSM)- 由状态和状态之间的转换组成的电路,根据输入信号和当前状态决定输出和下一个状态。
四、存储器1. 随机存取存储器(RAM)- 可读写存储器,允许对任何地址进行直接访问。
2. 只读存储器(ROM)- 存储器内容在制造过程中确定,用户不能修改。
3. 存储器的组织- 存储单元的排列方式,如字节、字等。
五、数字系统设计1. 数字系统的基本组成- 输入接口、处理单元、存储器和输出接口。
数电知识点总结详细
数电知识点总结详细一、逻辑门逻辑门是数字电子学的基本单元,它能够根据输入的电信号产生特定的输出信号。
常见的逻辑门有与门、或门、非门、异或门等。
逻辑门的输入和输出都是逻辑电平,通常用0和1表示逻辑低电平和逻辑高电平。
逻辑门可以通过晶体管、集成电路等器件来实现,其原理基于基本的布尔代数。
二、组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,其输出只依赖于输入信号的组合。
组合逻辑电路没有存储元件,因此输出只在输入信号变化时才会改变。
组合逻辑电路常用于数字系统中的信号处理和转换,比如加法器、减法器、编码器、译码器等。
三、时序逻辑电路时序逻辑电路是由组合逻辑电路和存储元件组成的电路,其输出不仅依赖于输入信号的组合,还依赖于时钟信号。
时序逻辑电路可以实现状态的存储和控制,常用于数字系统中的时序控制和时序处理。
四、数字系统设计数字系统设计是数字电子学的重要内容,它涉及到数字系统的结构、功能和性能的设计和实现。
数字系统设计需要考虑逻辑门、组合逻辑电路、时序逻辑电路、存储元件、时钟信号、计数器、寄存器、状态机等因素,以实现特定的功能和性能要求。
五、应用领域数字电子学在信息技术、通信技术、计算机技术、控制技术等领域有着广泛的应用。
它在数字电路设计、数字信号处理、数值计算、数字通信、数字控制等方面发挥着重要作用。
数字电子学技术的发展也推动了数字产品的不断创新和应用,比如数字电视、数字音频、数字相机、数字手机等。
综上所述,数字电子学是现代电子科学中的重要分支,它研究数字信号的产生、传输、处理和存储。
数字电子学的基本概念包括逻辑门、组合逻辑电路、时序逻辑电路、数字系统设计等,其应用领域涵盖信息技术、通信技术、计算机技术、控制技术等。
通过对数字电子学的学习和应用,可以有效地设计和实现各种数字系统,满足不同领域的需求。
(完整版)数电知识点总结(整理版)
数电复习知识点第一章1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换;2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等);第三章1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号;2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立;3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等);4、掌握逻辑函数的常用化简法(代数法和卡诺图法);5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则;6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换);第四章1、了解包括MOS在内的半导体元件的开关特性;2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析;3、了解拉电流负载、灌电流负载的概念、噪声容限的概念;4、掌握OD门、OC门及其逻辑符号、使用方法;5、掌握三态门及其逻辑符号、使用方法;6、掌握CMOS传输门及其逻辑符号、使用方法;7、了解正逻辑与负逻辑的定义及其对应关系;8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等);第五章1、掌握组合逻辑电路的分析与设计方法;2、掌握产生竞争与冒险的原因、检查方法及常用消除方法;3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器);4、掌握用集成译码器实现逻辑函数的方法;5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法;第六章1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等);2、了解各种RS触发器的约束条件;3、掌握异步清零端Rd和异步置位端Sd的用法;2、了解不同功能触发器之间的相互转换;第七章1、了解时序逻辑电路的特点和分类;2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程);3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;4、了解异步时序逻辑电路的简单分析;5、掌握移位寄存器、计数器的功能、工作原理和实际应用等;6、掌握集成计数器实现任意进制计数器的方法;7、掌握用移位寄存器、计数器以及其他组合逻辑器件构成循环序列发生器的原理;第八章1、掌握门电路和分立元件构成的施密特触发器、单稳态触发器、多谐振荡器的电路组成及工作原理,掌握相关参数的计算方法;2、掌握用555电路构成施密特触发器、单稳态触发器、多谐振荡器的方法以及工作参数的计算或者改变方法;第九章1、了解ROM和RAM的基本概念;2、了解存储器容量的表示方法和扩展方法,了解存储容量与地址线、数据线的关系。
数字电路重点与难点
第一章逻辑代数基础一、重点1、逻辑代数(de)基本公式、常用公式和定理.2、逻辑函数(de)表示方法及相互转换(de)方法.3、最小项(de)定义及其性质,逻辑函数(de)最小项之和表示法.4、逻辑函数(de)化简5、无关项在化简逻辑函数中(de)应用二、难点1、约束项、任意项和无关项.约束项和任意项是两个不同(de)概念.在分析一个逻辑函数时经常会遇到这样一类情况,就是输入逻辑变量(de)某些取值始终不会出现,在这些取值下等于1(de)那些最小项将始终为0.这些取值始终为0(de)最小项,就叫做该函数(de)约束项.有时还可能遇到另外一种情况,就是在输入变量(de)某些取值下,逻辑函数值等于1还是等于0都可以,对电路(de)逻辑功能没有影响,在某些变量取值下等于1(de)那些最小项,就叫做这个逻辑函数(de)任意项.约束项和任意项统称为逻辑函数式中(de)无关项,这些最小项是否写入逻辑函数式无关紧要,可以写入也可以删除.三、主要题型及解题方法1、不同进制数之间(de)转换2、逻辑函数不同表示方法之间(de)转换从真值表写出逻辑函数式(de)一般方法:将真值表中使函数值为1(de)那些输入变量取值组合对应(de)最小项相加.从逻辑式列出真值表:将输入变量(de)所有组合状态逐一代入逻辑式求出函数值,列成表.从逻辑式画出逻辑图:用图形符号代替逻辑式中(de)运算符号,就可以画出逻辑图.从逻辑图写出逻辑式:从输入端到输出端逐级写出每个图形符号对应(de)逻辑式.从逻辑式画出卡诺图:将逻辑函数化成最小项和(de)标准形式,在对应(de)位置上添1,其余为0.3、逻辑等式(de)证明1)分别列出等式两边逻辑式(de)真值表,若真值表完全相同,则等式成立. 2)若能利用逻辑代数(de)公式和定理将等式两边化为完全相同(de)形式,则等式成立.3)分别画出等式两边逻辑式(de)卡诺图,若卡诺图相同,则等式成立.4、逻辑函数(de)化简1)公式化简法利用逻辑代数(de)公式和定理进行逻辑运算,以消去逻辑函数式中多余(de)乘积项和每项中多余(de)因子.如果有无关项,则可以将无关项写入逻辑式,也可以从逻辑式中删除,以使化简结果更加简单.2)卡诺图化简法1画出表示逻辑函数(de)卡诺图2合并最小项(画圈)每个圈内为1(de)相邻最小项(de)个数必须是2i(i=0,1,2…).一个最小项可被多个圈圈,但每个圈至少有一个独有(de)最小项.圈(de)个数尽可能少(乘积项越少),圈尽量大(圈(de)最小项越多,乘积项因子越少).必须把所有(de)最小项圈完.3将合并后(de)最简乘积项相加,写出最简与或式5、逻辑函数式(de)变换利用公式进行变换.第二章门电路一、重点1、半导体二极管和三极管(de)开关特性2、TTL门电路3、CMOS门电路二、难点1、判断双极型三极管(de)工作状态可近似地认为VI ≤VON时三极管截止.iB=0、ic=0.这时三极管(de)c-e之间就相当于一个断开(de)开关.VBE >(硅三极管(de)VON),而且VCE< 时,三极管工作在饱和区.当Ib ≥IBS=(VCC-VCE(sat))/RCβ时,三极管深度饱和导通,VCE≈0、三极管(de)c-e之间就相当于一个闭合(de)开关.2、计算TTL门电路输入端并联(de)总输入电流时,为什么有时按输入端(de)数目加倍,有时按门(de)数目加倍.与逻辑关系是通过T1(de)多发射极结构实现(de),当n个输入端并联时,若输入为低电平,输入电流为流过T1基极(de)电阻R1(de)电流(Vcc-VB1)/R1;而输入为高电平时,T1工作在倒置放大状态,相当于n个倒置放大(de)三极管并联,所以输入电流为单个输入端高电平输入电流(de)n倍.3、为什么TTL电路(de)推拉式输出结构(de)输出电阻都很小.当输出为低电平时,输出端(de)晶体三极管T4 截止,T5饱和导通,其输出电阻很小.当输出为高电平时,T5截止,T4工作在射极输出状态,输出电阻也很小.三、主要题型及解题方法1、双极型三极管工作状态(de)计算在三极管开关电路中,为了使三极管工作在开关状态,必须保证输入为低电平时三极管工作在截止状态,而输入为高电平时三极管工作在饱和导通状态.因此可以利用戴维南定理将三极管(de)基极和发射极之间(de)输入电路简化为等效(de)VE 与RE(de)串联电路.计算输入vi为低电平时(de)VE 值,应该小于VON,三极管截止;计算输入vi 为高电平时(de)VE和i B ,VE应该大于VON,iB应大于临界饱和基极电流IBS,则三极管饱和导通.2、集成门电路逻辑功能(de)分析首先将电路划分为若干个基本功能结构模块:TTL 电路划分为与、或、倒相、非几个模块,CMOS 电路划分为反相器、与、或、传输门等模块.然后从输入到输出依次写出每个电路模块输出与输入(de)逻辑关系式,最后就得到了整个电路逻辑功能(de)表达式.3、输入特性和输出特性(de)应用:包括TTL 电路扇出系数(de)计算、TTL 电路输入端串联电阻允许值(de)计算、三极管接口电路(de)电路参数计算、OC 门和OD 门外接上拉电阻阻值(de)计算.驱动门都必须能为负载门提供合乎标准(de)高、低电平和足够(de)驱动电流,驱动门负载电流必在允许范围,即要满足下列条件:第三章 组合逻辑电路一、重点1、组合逻辑电路在逻辑功能和电路结构上(de)特点2、组合逻辑电路(de)分析方法和步骤3、组合逻辑电路(de)设计方法和步骤4、几种常用中规模集成组合逻辑电路(de)逻辑功能和使用方法5、定性了解组合逻辑电路中(de)竞争--冒险现象及常用(de)消除方法.二、难点1、使用中规模集成器件设计组合逻辑电路时,如何选择器件(de)类型.用n 位地址输入(de)数据选择器,可以产生任何形式(de)输入变量数不大于n+1(de)组合逻辑函数.可以把数据选择器看作通用组合逻辑函数发生器,但它只有一个输出端,只能用于产生单输出逻辑函数.二进制译码器是通用(de)最小项发生器,要用附加(de)或门(或与非门)将所需(de)那些最小项相加,就可以得到所需要(de)逻辑电路了.n 位二进制译码器可以产生输入变量数不大于n(de)组合逻辑函数.加法器(de)逻辑功能是将两个(或两组)输入按二进制数(de)数值相)()(,(max)(max)(max)(max)(max)(max)(min)(min)的个数为负载电流中的个数为负载电流中IL IL OL IH IH OH IL OL IH OH I m mI I I n nI I V V V V ≥≥≤≥加.若要产生(de)函数能化成输入变量与输入变量或输入变量与常量在数值上相加(de)形式,可用加法器实现.数值比较器(de)逻辑功能是比较两个输入二进制代码(de)数值,给出大于、小于和相等(de)输出信号.只能用来判断两个代码是否相同或者数值(de)大小关系.编码器是把每个输入端(de)高、低电平信号转换为一个对应(de)输出代码,因此只能用在需要把一组开关信号转换为一组二进制代码(de)地方.2、逻辑图形符号输入端(de)小圆圈(de)含义,怎样分析这种图形符号(de)逻辑功能.在某些具体(de)逻辑电路中,有(de)输入逻辑变量是以低电平作为有效信号(de).这时为了强调“低电平有效”,便在信号输入端画上小圆圈,并在信号名称上加“非”号.从逻辑功能上讲,这个小圆圈所代表(de)含义是输入信号经过反向后才加到后边(de)逻辑符号上(de),所以它代替了输入端(de)一个反相器. 在分析这类逻辑图形符号(de)功能时,只要用反相器代替输入端(de)小圆圈就可以了.三、主要题型及解题方法1、分析用小规模集成门电路组成(de)组合逻辑电路从输入端到输出端依次写出每一级门电路输出(de)逻辑式,最后在输出端得到表示整个电路输出与输入之间关系(de)逻辑函数式.2、分析用常用中规模集成电路组成(de)组合逻辑电路根据所用器件本身固有(de)逻辑功能,写出表示输入与输出之间关系(de)逻辑函数式.用加到输入端(de)变量名称和输出端(de)变量名称代替上述逻辑函数式中对应端(de)名称,就得到了所分析电路(de)逻辑函数式.为了更直观地显示电路(de)逻辑功能,有时还需要列出逻辑真值表.3、设计组合逻辑电路组合逻辑电路设计步骤:(1)、进行逻辑抽象:分析因果关系,确定输入(原因)、输出(结果)变量;逻辑状态赋值,定义0、1逻辑状态(de)含义;列出真值表.(2)、写出逻辑表达式(3)、选定器件类型,化简或变换逻辑函数式(4)、画出逻辑电路图.用小规模集成门电路设计组合逻辑电路时,要将逻辑函数式化为最简形式.用中规模集成电路设计组合逻辑电路时,须把要产生(de)逻辑函数变换成与所用器件(de)逻辑函数式类似(de)形式,将变换后(de)逻辑函数式与选用器件(de)函数式对照比较,确定所用器件各输入端应当接入(de)变量或常量(1或0)以及各片间(de)连接方式.第四章触发器一、重点1、触发器逻辑功能(de)分类和逻辑功能(de)描述方法(特性表、特性方程和图形符号).2、触发器(de)不同电路结构及各自(de)动作特点.3、触发器(de)电路结构类型和逻辑功能类型之间(de)关系.二、难点1、触发器(de)分类方法和各自(de)特点.按电路结构形式分为基本RS触发器、同步RS触发器、主从触发器、维持阻塞触发器和CMOS边沿触发器.电路结构不同,它们(de)动作特点不同.按逻辑功能分为RS触发器、D触发器、JK触发器和T触发器等.逻辑功能不同,信号(de)输入方式以及触发器状态随输入信号变化(de)规律不同.根据存储原理分为静态和动态触发器.静态触发器靠电路(de)自锁存储数据,动态触发器是通过MOS管栅极输入电容上存储电荷来存储数据(de).2、触发器(de)电路结构和逻辑功能之间(de)关系.触发器(de)电路结构和逻辑功能是两个不同(de)概念,两者没有固定(de)对应关系.同一逻辑功能(de)触发器可以用不同(de)电路结构实现,电路结构不同,动作特点不同;用同一种电路结构形式可以实现不同(de)逻辑功能(de)触发器.例如:有同步RS触发器、主从RS触发器、维持阻塞结构RS触发器,它们在稳态下(de)逻辑功能相同,但电路结构不同,动作特点不同.又如维持阻塞结构可以做成D触发器,也可做成JK触发器.3、主从结构触发器(de)动作特点主从触发器翻转分两步完成:CP=1时,主触发器接收输入信号,置成相应状态;CP下降沿从触发器翻转.主触发器是一个同步触发器,在CP=1(de)全部时间里输入信号都对主触发器起控制作用.主从RS触发器,CP=1期间主触发器可以变化多次.主从JK触发器,由于Q和/Q接回到了输入门,在Q=0时主触发器只接受置1输入信号,Q=1 时主触发器只接受置0信号, 使得CP=1期间主触发器只能变化一次.因此在CP=1期间输入信号发生过变化后,从触发器(de)状态不一定决定于CP下降沿时(de)输入状态值,必须考虑CP=1整个期间(de)输入信号(de)变化过程.第五章时序逻辑电路一、重点1、时序逻辑电路在逻辑功能和电路结构上(de)特点,以及时序逻辑电路逻辑功能(de)描述方法.2、同步时序逻辑电路(de)分析方法和设计方法.3、几种常见中规模集成时序逻辑电路(de)逻辑功能和使用方法二、难点1、时序逻辑电路(de)结构中为什么必须含有一个存储电路,而且存储电路(de)输出还必须与输入变量一起决定电路(de)输出.时序逻辑电路区别于组合逻辑电路(de)根本特征在于它任意时刻(de)输出不仅取决于当时(de)输入,而且还取决于电路原来(de)状态.为了实现上述逻辑功能,时序电路就必须有记忆能力,把电路原来(de)状态保存下来,这就需要用存储电路.同时,为了使输出“不仅取决于当时(de)输入,而且取决于电路原来(de)状态”,那么就必须将存储器(de)输出加到输出电路上,与输入(de)逻辑信号共同决定输出(de)逻辑状态.2、可以说CP信号是计数器(de)输入逻辑变量吗计数器(de)工作过程是每次时钟脉冲到来后便按照状态转换图一次从一个状态转换为下一个状态.时钟脉冲只是让计数器从一个状态转到下一个状态(de)操作信号,而计数器(de)具体状态与时钟信号没有任何逻辑关系.因此,时钟信号不是输入逻辑变量.3、设计实际时序电路时(de)逻辑抽象.时序电路(de)逻辑功能上(de)特点是任意时刻(de)输出不仅取决于当时(de)输入,同时还取决于电路所处(de)状态,这就要求逻辑函数能描述逻辑事件(de)全部过程.为此,逻辑抽象工作必须包括以下内容:1)确定所设计电路(de)输入变量和输出变量.2)通过对逻辑要求(de)分析,找出在事件发生过程中所可能出现(de)逻辑状态.这些状态需要分别用电路(de)状态表示,即逻辑状态(de)数目就是电路必须具备(de)状态数.3)定义输入、输出逻辑状态(de)含义,并将逻辑状态编码.4)分析设计要求,找出每个逻辑状态在各种可能(de)输入信号下(de)输出状态和应当转到(de)次态.第六章脉冲波形(de)产生和整形一、重点1、施密特触发器、单稳态触发器、多谐振荡器典型电路(de)工作原理,电路中各元器件(de)作用以及电路元件参数与电路性能之间(de)定性关系.2、脉冲电路(de)分析计算方法.3、555定时器(de)应用二、难点1、这一章(de)施密特触发器和第四章(de)各种触发器(de)区别.“施密特触发器”是“Schmitt Trigger”,而第四章中(de)各种“触发器”是“Flip-Flop”,所指(de)是两种根本不同性质(de)电路.只是在翻译成中文时没有加以区分,所以容易混淆.第四章讲(de)各种触发器都具有两个可以自行保持(de)稳定状态,并且可以根据需要置成0或1状态.而施密特触发器(de)输出状态始终都是由当时(de)输入状态决定(de),没有记忆状态.它(de)性能特点仅在于输入电压在上升过程中引起输出状态改变时(de)阈值电压V T+和下降过程中引起输出状态改变时(de)阈值电压V T--不相同,而且由于输出状态改变过程中有正反馈作用,所以输出电压变化(de)边沿很陡.2、分析计算脉冲电路(de)方法分析计算脉冲电路常采用波形分析法,其步骤为:1)分析电路(de)工作过程,定性地画出电路中各点电压(de)波形,找出决定电路状态发生转换(de)控制电压.2)画出电容充、放电(de)等效电路.3)确定控制电压充放电(de)初值、终值和转换值.4)代入公式: 计算充、放电时间,求出结果.这种波形分析法(de)关键是能否正确地画出电路各点(de)电压波形,能否正确地画出电容充、放电(de)等效电路.第七章 半导体存储器一、重点1、存储(de)分类,每一类存储器(de)主要特点及工作原理2、存储器(de)扩展接法.3、用存储器设计组合逻辑电路(de)方法.二、难点TH c c cV v v v RC t -∞-∞=)()0()(ln1、这一章讲(de)存储器和第五章讲(de)寄存器(de)区别存储器和寄存器都是用来存储信息(de),但它们(de)结构和工作是不同(de).寄存器电路结构(de)特点是每个存储单元(de)输入和输出都接到一个引脚上,可以直接与外界连接,它可以最方便、快捷地与外电路交换数据.由于制作工艺(de)限制,集成电路(de)引脚数目不可能太多,所以每个寄存器(de)集成电路里包含(de)存储单元数目不会太大,无法实现大量数据(de)存储.存储器电路(de)结构特点是采用了公用(de)输入与输出电路,只有被输入地址代码指定(de)存储单元才能通过输入与输出电路(de)外电路数据交换.因此,就可以在不增加输入与输出引脚(de)条件下大量(de)增加集成电路内部(de)存储单元,制成大存储容量(de)存储器芯片.存储器(de)写入和读出操作就不像寄存器那样简单而直接.首先要输入指定地址(de)代码,经过地址译码器译码后找到对应(de)存储单元,然后才能对指定(de)存储单元进行写入或读出操作.2、用存储器来设计组合逻辑电路时,应当如何选取变量输入端和函数输出端用存储器设计组合逻辑电路时,在知道了组合逻辑函数(de)真值表以后,如果把输入变量看作存储器(de)地址输入信号,把存储器(de)数据输出端看作是函数输出端,那么函数(de)真值表也就是存储器(de)数据表.因此选地址输入端作为变量输入端,选数据输出端作为函数输出端.第八章可编程逻辑器件(PLD)重点1、各种PLD在逻辑功能上(de)共同特点.2、PLD(de)分类及各自(de)特点.3、采用PLD设计逻辑电路时需要使用哪些工具.第九章数—模和模—数转换一、重点1、权电路和到T型D/A转换器(de)工作原理,输出电压(de)定量计算.2、双极性输出D/A转换器(de)工作原理,电路接法,输出电压(de)定量计算.3、A/D转换器(de)主要类型,基本工作原理,性能和比较4、D/A和A/D转换器转换精度和转换速度(de)表示方法和主要影响因素.二、难点D/A转换器(de)应用1.用于组成波形发生器1)分析给定(de)波形发生器电路:首先找出D/A转换器输入(de)数字序列数值,然后算出与这些数字量对应(de)输出模拟电压数值,再将这些模拟电压作为输出波形(de)幅值,按时间顺序画出波形,就得到了输出电压波形.2)设计产生指定波形(de)波形发生器电路:在一个完整(de)波形周期内按一定(de)时间间隔取一系列(de)采样点;选定一个最小量化单位,将每个采样点上波形(de)幅值量化,算出对应(de)数字量;将这些数字量顺序地存入存储器(de)地址中,并将存储器(de)数据输出作为D/A转换器(de)数字量输入;顺序地读出存储器(de)数据并不断(de)循环,在D/A转换器(de)输出端就得到了所要求(de)电压波形.2.用于组成增益可编程放大器负反馈电压放大器中,电压放大倍数(增益)为AV = - RF/ R1.只要以D/A转换器作为可编程电阻取代R1或RF,就能构成增益可编程放大器.这里所说(de)“编程”就是为D/A转换器设定输入数字量D,通常是将数字量D 存入一个寄存器中,然后将寄存器(de)输出加到D/A转换器上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-9】将下列十进制数转换成BCD码。
(1)25;(2)34;(3)78;(4)152解:(1)25=(0010 0101)BCD(2)34=(0011 0100)BCD(3)78=(0111 1000)BCD(4)152=(0001 0101 0010)BCD第2章习题与参考答案【题2-13】 对如下逻辑函数式实行摩根定理变换。
(1)1Y A B =+;(2)2Y AB =;(3)3Y AB C D =+();(4)4Y A BC CD BC =+++()解:(1)B A B A Y =+=1 (2)B A B A Y +==2(3)D C B A D C B A D C BA Y ++=++=+=)()(3 (4)BC B A BC C B A BC D C B A C B A BC D C C B A BC CD C B A Y +=+=++=++=+++=)(()(4【题2-16】 试用代数法将如下逻辑函数式化简成最简与或式。
(1)1()Y A BC A B C A B CD =++++;(2)2Y ABCD ABCD ABCD =++;(3)3(())Y ABC AB C BC AC =++解:(1)1()Y A BC A B C A B CD =++++=B A(2)2Y ABCD ABCD ABCD =++=CD AB + (3)3(())Y ABC AB C BC AC =++=ABC【题2-20】 试用卡诺图化简如下具有任意项的逻辑函数式。
解:(1)(,,,)(3,5,8,9,10,12)(0,1,2,13)F A B C D m d =+∑∑;AB CD 0001111000011110..X XX11111.1X..D C C A D B B A Y +++=1(2)(,,,)(4,5,6,13,14,15)(8,9,10,12)F A B C D m d =+∑∑;AB CD 0001111000011110..111X 11X1X.X...AB D B C B Y ++=2(3)(,,,)(0,2,9,11,13)(4,8,10,15)F A B C D m d =+∑∑AB CD 0001111000011110..1111X XX1.X...D B AD Y +=3【题3-24】 试确定图题3-24所示74LS 门电路的输出状态(设电源V CC 为5 V )。
图题3-24解:Y1=高电平;Y2=开路;Y3=高电平;Y4=高阻;Y5=高电平;Y6=高电平Y7=高电平;Y8=高阻;Y9=高电平;Y10=高电平【题3-25】 试确定图题3-25所示74HC 门电路的输出状态(设电源V CC 为5 V )。
图题3-25解:Y1=高电平;Y2=低电平;Y3=低电平【题3-29】 试说明如下各种门电路中哪些输出端可以直接并联使用 (1)具有推拉输出(图腾柱)的TTL 电路。
(2)TTL 电路OC 门。
(3)TTL 电路三态门。
(4)具有互补输出(非门)结构的CMOS 电路。
(5)CMOS 电路OD 门。
(6)CMOS 电路三态门。
解:(2)(3)(5)(6)可以。
第4章 习题与参考答案【题4-10】 用3线-8线译码器74LS138和与非门实现如下多输出函数。
1F AB C AB BC AC =++(,,) ∑=),,(),,(7522m C B A F 解:1F AB C AB BC AC =++(,,)= =76537653m m m m m BC A C B A C AB ABC ⋅⋅⋅==+++∑),,,( 7527522m m m m C B A F ⋅⋅==∑),,(),,(【题4-14】 试用8选1数据选择器74LS151实现如下函数。
1F C B AAB BC =+(,,) 2F D C B AABD ABC =+(,,,) 3F D C B AACD A BCD BC BC D =+++(,,,) 402357F D C B Am=∑(,,,)(,,,,) 解:CB BA A B C D F +==),,,(1367m m m A CB BA C CBA A CB CBA BA C CBA ++=++=+++=F11..AB C A DB A B C D F +=),,,(2)()()(A B C D A B C D A DCB A B C D A B C D A B C D A DCB ++=+++= )()()(A m A m A m 157++=F2...3F D C B AACD A BCD BC BC D =+++(,,,) B C D CB A B DC A C D A B C D F +++=),,,(3A B C D BA C D A CB D CBA D A DCB DCBA A B DC A B C D BA C D ++++++++=)()()()()()(A A B C D A A CB D A A DCB A B DC A B C D A B C D ++++++++= =)()()()()()(111317645m m m A m A m A m +++++F3....402357F D C B Am=∑(,,,)(,,,,) CBA D A B C D BA C D A B C D A B C D ++++=)()()()(A CB D A B C D A A B C D A B C D ++++= )()()()(A m A m m A m 32110+++=第5章 习题与参考答案[题5-9] 画出图题5-9所示的正边沿触发JK 触发器输出Q 端的波形,输入端J 、K 与CLK 的波形如图所示。
(设Q 初始状态为0)J KQQ....CLKJ KCLK .......C11J 1K SRSET RESET.SET RESET...图题5-9解:J KCLK .......SET RESET...............Q.....[题5-10] 画出图题5-10所示的JK 触发器输出端Q 端的波形, CLK 的波形如图所示。
(设Q 初始状态为0)11CLKC11J 1KQ 2.CLKQ 4.Q 5.CLKCLK.......图题5-10解:CLK....Q1Q2Q3Q4Q5Q6...[题5-13]试画出图题5-13所示T 触发器输出Q 端的波形,输入端CLK 的波形如图所示。
(设Q 初始状态为0)1C11T CLKQ 1.C11T CLKQ 2.CLK.......图题5-13CLK....Q2Q1.第6章 习题与参考答案[题6-5] 分析图题6-5所示的电路。
写出驱动方程、状态方程、输出方程,画出状态表和状态图,并说明是何种状态机。
..Y.图题6-5解FF0驱动方程: 1Q A K J ⊕== 状态方程:01010110Q Q A Q Q A Q Q A Q n ⊕⊕=⊕+⊕=+)()( FF1驱动方程:1 ==K J 状态方程:111Q Q n =+ 输出方程:10Q Q Y = 状态表如下:A Q Q Q Q n+1010********1...01n+11011111000010100..状态机如下:00100111A=1A=0A=1A=0A=0A=1A=1A=0Y=1Y=0Y=0Y=0....可以看出是摩尔状态机。
[题6-7] 分析图题6-7所示的电路。
写出驱动方程、状态方程、输出方程,画出状态表和状态图,并说明是何种状态机。
Y...图题6-7解:FF0驱动方程: X K X J == 状态方程:X Q X Q X Q n =+=+0010FF1驱动方程:X K X Q J == 0 状态方程:)(1011011Q Q X XQ Q XQ Q n +=+=+ 输出方程:1Q X Y = 该状态为梅里状态机。
状态表与状态图如下:XQ Q Q Q n+1010001110100...01n+11001001100110011......Y/0/0/1/1/0/0/0/000011110Q Q 01.X/Y0/01/01/01/00/00/11/00/1...[题6-26] 图题6-26所示为具有异步清除功能的同步四位二进制加法计数器74LS161组成的计数电路,试说明该计数电路是多少进制。
CLK....图题6-26解: 异步清零5进制计数器。
[题6-27] 图题6-27所示为具有同步预置功能的同步四位二进制加法计数器74LS161组成的计数电路,试说明该计数电路是多少进制。
CLK.....图题6-27解:该电路是同步置数6进制计数器。
[题6-28] 图题6-28所示为具有同步预置功能的同步四位二进制加法计数器74LS161组成的计数电路,试说明该计数电路是多少进制。
图题6-28解:该计数器是同步置数12进制。
置入数为3,数14时准备好置数条件,再加一个计数脉冲,置入数3。
第10章 习题与参考答案【题10-12】 用定时器555组成多谐振荡器,要求输出电压V O 的方波周期为1ms ,试选择电阻与电容的数值,并画出电路图。
解:周期T 计算如下:121269.0C R R T )(+=取C 1=μF ,R 2=Ω则有:Ω=⨯-⨯=⨯⨯-⨯⨯=-=--k R C T R 3.4102.101045.1101.52101.069.010269.034363211RESET V CCOUT DISCTH TRGNDCON(8)(4)(7)(6)(2)(3)(5)(1)555..R 5.1k ΩR 4.3k ΩC 0.1μF C 0.1μF1212Vo....第11章 习题与参考答案【题11-6】试计算图题11-6所示电路的输出电压V O图题11-6解:V VV D D V V n n REF O 5625.151********~24==-=-=)()(【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少分辨率是多少解:台阶电压为mV mV V STEP 5.192/50008==分辨率为:%39.00039.05000/5.195000/===mV V STEP【题11-15】 某10位A/D 转换器的参考电压为,该转换器能区分的输入模拟信号最小变化量为多少分辨率是多少解:最小变化量是4mV ,分辨率是1/1024=%。