最短路径问题教学设计课题
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
13.4课题学习 最短路径问题教学设计
13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。
2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。
从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。
本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。
本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。
体会数学在实际生活中的价值。
2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。
三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。
课题学习最短路径问题教案人教版八年级数学上册
13.4课题学习最短路径问题【教学目标】1.知识与技能:通过对最短路径的探索,进一步理解和掌握两点之间线段最短和垂线段最短的性质.2.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径的思想方法.3.情感态度与价值观:在数学学习活动中,获得成功的体验,树立自信心.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力;难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【教学方法】情境学习法、探究实践法.【教学过程】新课导入:创设情境,提出问题:问题1:如图,连接A,B两点的所有连线中,哪条最短?为什么?答:②最短,因为两点之间,线段最短问题2:如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?答:PC最短,因为垂线段最短.“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.深入学习最短路径问题.由复习相关问题入手,为后面学习做好铺垫.新课讲授:(一)牧人饮马问题问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?把实际问题抽象为数学作图问题:在直线l上求作一点C,使AC+BC最短问题.动手探究:探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.探究2:如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探究3:你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.②AC +BC= AC +B′C = AB′,② AC′+BC′= AC′+B′C′.在②AB′C′中,AB′<AC′+B′C′,②AC +BC<AC′+BC′.即AC +BC最短.例1:如图,已知点D,点E分别是等边三角形ABC中BC,AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值.解:△ABC为等边三角形,点D是BC边的中点,∴AD⊥BC,AB=BC,BD=CD,∴点B与点C关于直线AD对称.∵点F 在AD 上,∴BF =CF ,∴BF +EF =CF +EF ,∴连接CE ,线段CE 的长即为BF +EF 的最小值.∵当CE ⊥AB 时,CE 最小,∴当CE ⊥AB 时,BF +EF 的最小值.∵12AB ·CE =12BC ·AD ,∴CE =AD =5, ∴BF +EF 的最小值是5.归纳结论:求线段和的最小值问题:找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.(二)造桥选址问题活动探究:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?抽象出数学习题思考:N 在直线b 的什么位置时,AM +MN +NB 最小?由于河岸宽度是固定的,因此当AM +NB 最小时,AM +MN +NB 最小.AM 沿与河岸垂直的方向平移,点M 移到点N ,点A 移到点A ′,则AA ′ = MN ,AM + NB = A ′N + NB . 这样问题就转化为:当点N 在直线b 的什么位置时, A ′N +NB 最小?如图,连接A ′B 与b 相交于N ,N 点即为所求.试说明桥建在M ′N ′上时,从A 到B 的路径AMNB 增大.(两点之间线段最短)例2:如图,荆州古城河在CC ′处直角转弯,河宽相同,从A 处到B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?解:作AF ②CD ,且AF =河宽,作BG ②CE ,且BG =河宽,连接GF ,与河岸相交于E ′,D ′.作DD ′,EE ′即为桥.理由:由作图法可知,AF //DD ′,AF =DD ′,则四边形AFD ′D 为平行四边形,于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF最小.归纳结论:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.课堂练习:A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.解:如图所示,AP+PQ+BQ最短.2.(1)如图②,在AB直线一侧C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在②AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由.(3)如图②,在②AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案:课堂小结:说一说哪些问题是线段最短问题.说一说牧民饮马问题的解决方法和原理.说一下造桥选址类问题的解决方法和原理.作业布置:1.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)答案:A2.完成本节配套习题.【板书设计】最短路径问题的解题原理:线段公理和垂线段最短.最短路径问题的分类:饮马问题和造桥选址问题.饮马问题的解题方法:轴对称知识+线段公理.造桥选址问题的解题方法:关键是将固定线段“桥”平移.【课后反思】创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,尽可能的让学生动手实践,通过探索交流获取作图方法.。
课程设计最短路径问题
课程设计最短路径问题一、课程目标知识目标:1. 让学生掌握最短路径问题的基本概念,理解其在现实生活中的应用。
2. 学会运用Dijkstra算法和Floyd算法解决最短路径问题。
3. 了解最短路径问题与其他优化问题的联系,拓展知识视野。
技能目标:1. 培养学生运用算法解决问题的能力,提高逻辑思维和计算思维能力。
2. 培养学生团队合作意识,学会在团队中分工合作,共同解决复杂问题。
3. 提高学生运用计算机软件(如Excel、编程语言等)处理数据的能力。
情感态度价值观目标:1. 培养学生面对问题的积极态度,勇于尝试和克服困难。
2. 增强学生对数学学科的兴趣和自信心,认识到数学在生活中的重要作用。
3. 培养学生具备良好的道德品质,遵循学术规范,尊重他人成果。
课程性质:本课程属于数学学科,以算法和实际应用为主线,结合计算机软件辅助教学。
学生特点:学生处于高年级阶段,具备一定的数学基础和逻辑思维能力,对算法和编程有一定了解。
教学要求:结合学生特点,课程要求注重理论与实践相结合,以学生为主体,引导他们主动探索和解决问题。
同时,关注学生的个性化差异,提供有针对性的指导和帮助。
通过本课程的学习,使学生能够达到上述课程目标,并在实际生活中运用所学知识解决问题。
二、教学内容1. 导入:通过实际生活中的最短路径问题(如导航系统、物流配送等)引出本节课的主题。
2. 基本概念:介绍最短路径问题的定义,包括加权图、路径长度等基本概念。
教材章节:第二章 图论基本概念3. 算法原理:a. Dijkstra算法:介绍单源最短路径算法原理,阐述其适用范围和限制。
b. Floyd算法:介绍多源最短路径算法原理,分析其时间复杂度。
教材章节:第三章 算法设计与分析4. 实践操作:a. 应用Dijkstra算法解决实际问题,如校园内两点间的最短路径。
b. 应用Floyd算法解决实际问题,如城市间最短路径规划。
教材章节:第四章 图论应用5. 计算机软件应用:运用Excel、编程语言(如Python、C++等)实现最短路径算法,分析实际数据。
人教版八年级数学上册《课题学习 最短路径问题(第2课时)》示范教学设计
课题学习最短路径问题(第2课时)教学目标1.利用平移、轴对称解决最短路径的问题,进一步感悟化归思想.2.将实际问题抽象成几何图形的过程中,培养学生用符号语言和图形语言表达数学问题的能力.教学重点利用平移、轴对称解决最短路径的问题.教学难点体会图形的变化在解决最短路径问题中的作用,感悟化归思想.教学过程知识回顾上节课我们研究了两类最短路径问题:1.点A,B在直线l异侧:2.点A,B在直线l同侧:【师生活动】教师提出问题,学生作答.【设计意图】通过复习已研究过的最短路径问题,为引出本节课的课题“造桥选址问题”作铺垫.新知探究一、探究学习【问题】(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【师生活动】教师提问:1.这是一个实际问题,想一想可以把它抽象为怎样的数学问题?学生思考并回答:可以把河的两岸看成两条平行线a和b(如图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M.当点N在直线b的什么位置时,AM+MN+NB最小?教师提问:2.问题是否可以转化?学生回答:由于河岸宽度是固定的(MN长度固定),当AM+NB最小时,AM+MN +NB最小.所以问题可以转化为:当点N在直线b的什么位置时,AM +NB最小.教师提问:3.能否通过图形的变化将问题转化为之前研究过的问题呢?教师提示:可以考虑将问题转化为两点在直线异侧,连接A,B两点,与直线的交点即为N.依据:两点之间,线段最短.根据提示,学生思考并回答:将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.所以问题转化为:当点N在直线b的什么位置时,A′N+NB最小?教师提问:4.这是我们上节课讲的哪种类型?问题应该怎样解决?学生回答:这是我们研究的两点在直线异侧时求最短路径问题.在连接A′,B两点的线中,线段A′B最短.线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN,所得路径AMNB是最短的.教师提问:5.试着说一下作图过程.学生独立思考后,尝试画图,寻求符合条件的点,然后小组交流,学生代表汇报交流结果,师生共同补充.作法:(1)将A沿与河岸垂直的方向平移到A′,使AA′的长度等于桥长;(2)连接A′B,交直线b于点N,点N即为所求;(3)过N作NM⊥a于M,线段MN即为桥的位置.此时从A到B的路径AMNB最短.教师提问:6.你能试着证明一下吗?师生共同分析,然后学生说明证明过程,教师板书.证明:在直线b上任取一点N′,过点N′作N′M′⊥a,连接AM′,A′N′,N′B,由平移性质可知,AM=A′N,AM′=A′N′.所以AM+NB=A′N+NB=A′B,AM′+N′B=A′N′+N′B.由“两点之间,线段最短”可知:A′B<A′N′+N′B,即AM+NB<AM′+N′B,即AM+MN+NB<AM′+M′N′+N′B.【归纳】在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.【设计意图】通过证明得出新知,让学生进一步体会作法的正确性,提高逻辑思维能力.二、典例精讲【例题】已知线段a,点A,B在直线l的同侧,在直线l上求作两点P,Q(点P在点Q的左侧)且PQ=a,使得四边形APQB的周长最小.【师生活动】教师分析:先在直线l上取PQ=a(如图),连接AP,QB,AB,此时在四边形APQB中,线段PQ和线段AB的长度是固定的,所以当AP+QB最小时,四边形APQB的周长最小.学生根据分析尝试说出作图过程,教师板书.【答案】作法:(1)将点A沿直线l的方向平移到A′,使得AA′=a;(2)作A′关于直线l的对称点A′′;(3)连接A′′B,与直线l交于一点Q,Q即为所求点;(4)在点Q左侧取点P,使得PQ=a,P即为所求点.连接AP,AB,所得四边形APQB的周长最小.【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.课堂小结板书设计一、将军饮马问题(复习)二、造桥选址问题。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
课题学习 最短路径问题教案(教学设计)
课题学习最短路径问题【教学目标】1.亲历最短路径问题的探索过程,体验分析归纳得出最短路径问题的解决方法,进一步发展学生的探究、交流能力。
2.熟练运用轴对称、平移等变化解决最短路径问题。
【教学重难点】重点:理解最短路径问题。
难点:运用轴对称、平移等变化解决最短路径问题。
【教学过程】一、直接引入师:今天这节课我们主要学习最短路径问题,这节课的主要内容有最短路径问题,如何运用所学知识选择最短路径,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解最短路径问题内容,形成初步感知。
(2)首先,我们先来学习最短路径问题,它的具体内容是:“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂直线最短”等的问题,我们称为最短路径问题。
在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例:如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地。
牧马人到河边的什么地方饮马,可使所走的路径最短?如果把河边近似地看出一条直线,C为直线l上的一个动点,那么上面的问题就可以转化为:当C在直线l上的什么位置时,AC与CB的和最小。
'=。
在连接,A B'两点如图,作B关于l的对称点B',利用轴对称的性质,可以得到CB CB的线中,线段AB'最短。
因此,线段AB'与直线l的交点C的位置即为所求。
根据例题的解题方法,让学生自己动手练习。
练习:如图,A B,在直线L的两侧,在L上求一点P,使得PA PB+最小。
解:连接AB,线段AB与直线L的交点P,就是所求。
(根据:两点之间线段最短)三、课堂总结1.这节课我们主要讲了(1)“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂直线最短”等的问题,我们称为最短路径问题。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
八年级数学人教版上册13.4课题学习最短路径问题(第一课时)优秀教学案例
(五)作业小结
1.作业布置:布置一些有关最短路径问题的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
2.作业反馈:对学生的作业进行及时批改和反馈,指出其中的错误和不足,给予肯定和建议。
3.课后拓展:鼓励学生参加数学竞赛、研究性学习等活动,拓宽视野,培养创新精神。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
2.利用多媒体展示典型实例,让学生更好地理解和掌握最短路径问题的解决方法。
3.鼓励学生积极参与课堂讨论,培养他们的合作精神和团队意识。
4.注重个体差异,给予学生个性化的指导,帮助他们在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让他们感受到数学在生活中的实际应用,提高学生学习数学的积极性。
4.反思与评价:引导学生进行自我反思和同伴评价,培养学生的批判性思维和自我改进的能力。同时,教师对学生的学习过程和结果进行评价,注重鼓励性评价,激发学生的学习兴趣和自信心。
5.课后拓展与情感态度培养:布置相关的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
五、案例亮点
1.生活情境导入:通过生活情境导入新课,使学生能够直观地感受到最短路径问题的实际意义,激发学生的学习兴趣和积极性。
2.多媒体辅助教学:利用多媒体展示典型的最短路径问题实例,使抽象的问题具体化、形象化,有助于学生更好地理解和掌握知识。
3.问题导向与小组合作:提出具有挑战性的问题,引导学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
八年级数学人教版上册13.4最短路径问题(第一课时)优秀教学案例
(一)知识与技能
1.理解最短路径问题的实际应用背景,认识到最短路径问题在生活中的重要性。
2.掌握利用图的性质寻找最短路径的方法,能够运用所学知识解决实际问题。
3.了解最短路径问题的基本概念,如路径、权重、最短路径等。
4.学会使用图论中的算法求解最短路径问题,如迪杰斯特拉算法。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.生活情境引入:通过展示城市交通网络图,引导学生关注实际生活中的最短路径问题,激发学生的学习兴趣。
2.创设问题情境:提出问题:“如何在城市交通网络中找到从一个地点到另一个地点的最短路径?”引导学生思考和提出解决问题的方法。
(二)讲授新知
1.图的基本概念:介绍图的定义、图的节点和边等基本概念,为学生理解最短路径问题打下基础。
5.知识拓展与延伸:在教学过程中,不仅关注学生对知识的掌握程度,还注重引导学生思考最短路径问题在其他领域的应用,激发学生的学习兴趣和拓展思维。通过知识拓展与延伸,学生能够更好地将所学知识应用于实际生活中,提高他们的数学应用能力。
在教学过程中,我以城市交通网络为背景,设计了一系列具有挑战性的问题,引导学生从实际情境中发现问题、提出问题,激发学生的探究兴趣。同时,我充分发挥学生的主体作用,组织学生进行合作探究,引导他们通过画图、讨论等方式,寻找解决问题的策略。
在教学评价方面,我注重过程性评价与终结性评价相结合,不仅关注学生对知识的掌握程度,更注重培养学生的数学思维能力和解决问题的能力。通过本节课的教学,使学生能够运用所学的知识解决实际生活中的最短路径问题,提高他们的数学应用意识。
3.评价原则:评价应具有客观性、发展性、指导性,能够激发学生的学习动力和自我提升意识。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
13.4课题学习《最短路径问题》教学设计教学目标:知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短。
过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想好方法。
情感态度与价值观:在数学学习活动中活动成功的体验,树立自信心,激发学习的兴趣,感受到数学与现实生活的密切联系。
教学重点:运用所学知识解决最短路径问题。
教学难点:选择合理的方法解决问题。
教学过程:最短路径问题(1)出示如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?两点之间,线段最短(2)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例1:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?:解:如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.归纳:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例2:如图,如果A,B在燃气管道L的同旁,泵站应修在管道的什么地方,可使所用的输气管线最短?分析:点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.归纳:求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.练习:1 在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.(实际应用题)某中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短。
13.4 课题学习 最短路径问题教学设计2022-2023学年人教版八年级上册
13.4 课题学习最短路径问题教学设计一、教学目标1.了解最短路径问题的概念和应用;2.掌握常见最短路径算法的基本原理和实现方法;3.能够分析和解决实际问题中的最短路径问题。
二、教学重点1.理解最短路径问题的本质;2.掌握常见最短路径算法的基本原理。
三、教学过程1. 导入新知识通过引入一个实际生活中的例子,如从家到学校的最短路径,引发学生对最短路径问题的思考和兴趣。
让学生自己分享他们认为怎样才能找到最短路径的方法。
2. 引入最短路径问题解释最短路径问题是在图中找到两个顶点之间的最短路径的问题,并给出一个简单的图例进行说明。
3. 最短路径算法3.1 迪杰斯特拉算法介绍迪杰斯特拉算法的基本思想和原理,以及算法的步骤。
给出一个示例图,让学生手动跟随算法的步骤找到最短路径。
3.2 弗洛伊德算法介绍弗洛伊德算法的基本思想和原理,以及算法的步骤。
给出一个示例图,让学生手动跟随算法的步骤找到最短路径。
3.3 贝尔曼-福特算法介绍贝尔曼-福特算法的基本思想和原理,以及算法的步骤。
给出一个示例图,让学生手动跟随算法的步骤找到最短路径。
4. 应用案例分析给出一些实际问题的案例,如物流配送问题、电网规划问题等,引导学生分析并使用最短路径算法解决这些问题。
5. 总结与拓展总结所学内容,强调最短路径问题的应用领域和意义。
引导学生思考如何进一步拓展和优化最短路径算法。
四、教学评估1. 课堂练习在课堂上布置一些练习题,要求学生使用所学算法找到最短路径并计算路径长度。
2. 作业布置布置一些习题作为作业,要求学生使用所学算法解决实际问题。
作业完成后,教师可以对学生的答案进行评估,并给予必要的指导和反馈。
五、教学资源1.PowerPoint幻灯片;2.教材《数学八年级上册》。
六、教学延伸为了进一步拓展学生对最短路径问题的理解和应用能力,可以组织一些相关的竞赛或项目,让学生在实践中运用所学知识解决实际问题。
也可以介绍一些相关的研究论文和经典算法,并与学生进行深入讨论和交流。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
最短路径问题教学设计课题
《最短路径问题》教学设计一、课标分析2011版《数学课程标准》指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
”随着现代信息技术的飞速发展,极大地推进了应用数学与数学应用的发展,使得数学几乎渗透到每一个科学领域及人们生活的方方面面。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,数学建模难度大、涉及面广,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。
新课标强调从生产、生活等实际问题出发,引导学生运用数学知识,去解决实际问题,培养应用意识与能力。
因此,数学建模是初中数学的重要任务之一,它是培养学生应用数学的意识和能力的有效途径和强有力的教学手段。
但从教学的反馈信息看,初中学生的数学建模能力普遍很弱,这与课堂教学中忽视对学生数学建模能力的培养不无关系。
要想提高学生的建模能力,我们就要在课堂教学中引导学生从生活经验和已有的知识出发,从社会热点问题出发,让学生直接接触数学建模,培养学生抽象能力以及运用数学知识能力。
现实生活中问题是很复杂的,有些问题表面看来毫无相同之处,但抽象为数学模型,本质都是相同的,这些问题都可以用类似的方法解决。
本节课的教学中注重模型归类,多题一模,训练学生归纳能力,培养学生数学建模能力。
二、教材分析本节课是在学习了基本事实:“两点之间线段最短”和轴对称的性质、勾股定理的基础上,引导学生探究如何综合运用知识解决最短路径问题。
它既是轴对称、勾股定理知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用.对于本节课的内容,青岛版教材没有独立编排,只是随着学生数学学习的不断推进,逐步添加了部分题目来逐步渗透,这也使大部分学生忽视了这一知识点。
人教版八年级上册13.4课题学习最短路径问题13.4:最短路径问题课程设计 (2)
人教版八年级上册13.4课题学习最短路径问题13.4:最短路径问题课程设计课程背景最短路径问题是高中数学中的经典问题,而在八年级上册也有短暂的涉及。
本课程旨在深入讲解最短路径问题,让学生能够运用所学的知识解决实际问题。
教学目标1.了解最短路径问题的背景和应用场景;2.掌握最短路径问题的基本概念和解题方法;3.运用所学知识解决实际最短路径问题;4.培养学生的逻辑思维和数学建模能力。
教学重点1.最短路径问题的基本概念和解题方法;2.运用所学知识解决实际最短路径问题。
教学难点1.如何运用所学知识解决实际最短路径问题。
教学内容预习1.让学生预览教材第13章第4节的最短路径问题内容,掌握最短路径问题的基本概念和应用场景;2.提醒学生课外需要多多练习实际最短路径问题。
教学Part1:最短路径问题的基本概念1.通过具体示例,讲解最短路径问题的基本概念,如图中两点的距离、多点之间的最短距离;2.讲解如何利用图论的相关知识形式化表示最短路径问题。
Part2:最短路径问题的解法1.讲解最短路径问题的解法,如迪杰斯特拉算法、弗洛伊德算法等;2.比较不同算法的优缺点和应用场景。
Part3:实际案例分析1.通过实例分析,展示最短路径问题的实际应用,如导航、物流配送等;2.教授学生如何利用所学知识解决实际最短路径问题。
练习与总结1.布置最短路径问题的相关习题,加深对所学知识的理解;2.让学生总结所学知识和解题方法,获取更好的学习成果。
教学方式1.展示教学课件,讲解最短路径问题的基本概念和解法;2.分组进行实际案例分析,培养学生的团队协作能力;3.辅导学生课外习题和解题方法,及时纠正学生的错误。
课程评估1.考试成绩:通过考试考察学生对最短路径问题的掌握程度;2.课程表现:综合考虑学生的听课表现、课堂参与情况等。
教学参考1.人教版八年级上册数学教材;2.网络资源:最短路径问题相关博客、论文等。
结语最短路径问题作为高中数学的重要知识点,不仅在理论中有广泛的应用,在实际生活中也有着重要的应用场景。
《13.4 课题学习 最短路径问题》教学设计(湖北省县级优课)
最短路径问题【教学目标】(1)知识与技能:能利用轴对称,两点之间线段最短等知识解决简单的最短路径问题。
(2)过程与方法:在将实际问题抽象成数学问题的过程中,提高学生分析问题、解决问题的能力。
(3)情感与价值观:通过有趣的实际问题提高学生学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性。
【教学重难点】重点:利用轴对称将最短路径问题转化为两点之间,线段最短问题。
难点:(1)如何将实际问题中的最短路径转化为数学问题,进而利用轴对称将同侧点转化为异侧点,并利用两点之间,线段最短知识解决数学问题,最终解决实际问题。
(2)如何证明点C即为所求。
【教学过程】一创设情景引出课题三道复习题,师生共同完成并复习前面所学最短路径知识,之后引出课题。
二引导探究合作交流1、出示实际问题:老师简述“将军饮马”这个经典故事,引出实际问题。
2、转为数学问题:(1)解决实际问题先要干什么?(2)你能将它转成一个什么数学问题呢?(3)小组讨论将实际问题用数学语言描述(4)老师课件展示,强调将最短路径问题转化为线段和最小问题。
3、解决数学问题:(1)老师引导学生将实际问题转化为数学问题,课件出示数学问题。
(2)设问:怎么解决呢?解决问题之前老师先在黑板上出示直线异侧两点的最短路径问题,和学生共同解决问题。
通过对这个问题的探讨,思考怎么解决今天遇到的这个问题呢?如果能将点B“移”到直线的另一侧B′,并使直线l上的任意一点C,都有CB=CB′,那么问题是不是就简化呢?结合问题师生共同探究完成。
(3)学生分组讨论,得出解决方案:利用轴对称知识将同侧点转化为异侧点。
(4)老师展示动态图,说明动点C在直线l上运动AC+BC的长度变化。
4、证明最短路径问题:(1)你能证明为什么在点C时AC+BC最短?学生分组讨论,老师提示:若不在C点,就应该在直线l的另一点C′,老师给出一个C′的位置,学生指出这时的线段和为AC′+BC′。
(2)学生在草稿本上画出线段AC 、BC、 AC′、BC′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最短路径问题》教学设计一、课标分析2011版《数学课程标准》指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
”随着现代信息技术的飞速发展,极大地推进了应用数学与数学应用的发展,使得数学几乎渗透到每一个科学领域及人们生活的方方面面。
为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,数学建模难度大、涉及面广,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。
新课标强调从生产、生活等实际问题出发,引导学生运用数学知识,去解决实际问题,培养应用意识与能力。
因此,数学建模是初中数学的重要任务之一,它是培养学生应用数学的意识和能力的有效途径和强有力的教学手段。
但从教学的反馈信息看,初中学生的数学建模能力普遍很弱,这与课堂教学中忽视对学生数学建模能力的培养不无关系。
要想提高学生的建模能力,我们就要在课堂教学中引导学生从生活经验和已有的知识出发,从社会热点问题出发,让学生直接接触数学建模,培养学生抽象能力以及运用数学知识能力。
现实生活中问题是很复杂的,有些问题表面看来毫无相同之处,但抽象为数学模型,本质都是相同的,这些问题都可以用类似的方法解决。
本节课的教学中注重模型归类,多题一模,训练学生归纳能力,培养学生数学建模能力。
二、教材分析本节课是在学习了基本事实:“两点之间线段最短”和轴对称的性质、勾股定理的基础上,引导学生探究如何综合运用知识解决最短路径问题。
它既是轴对称、勾股定理知识运用的延续,又能培养学生自主探究,学会思考,在知识与能力转化上起到桥梁作用.对于本节课的内容,青岛版教材没有独立编排,只是随着学生数学学习的不断推进,逐步添加了部分题目来逐步渗透,这也使大部分学生忽视了这一知识点。
设计整合了一些以三角形、四边形、圆、函数、立体图形为背景的最短路径问题,让学生直面数学模型,体会数学的本质,有利于学生系统的学习知识。
学习目标:1.能够利用基本事实“两点之间线段最短”和“轴对称的性质”,从复杂的图形中抽象出“最短路径”问题的基本数学模型,体会轴对称的“桥梁”作用。
2.能将立体图形中的“最短路径问题”转化为平面图形来解决,感悟转化思想.3、通过训练,提高综合运用知识的能力。
教学重点:通过利用轴对称将最短路径问题转化为“连点之间,线段最短”问题,学会从知识内容中提炼出数学模型和数学数学方法。
教学难点:从复杂的图形中抽象出“最短路径”问题的基本数学模型。
突破难点的方法:对应模型,找出本质问题。
突出重点的方法:通过设置问题、引导思考、探究讨论、例题讲解方式突出重点。
突破难点的方法:勾股定理、线段公理和轴对称性质的灵活运用和提升是个难点,加上指导学生学会思考还在培养之中,仅靠学生是不能完成的,所以在教学中要充分运用多媒体教学手段,通过启发引导,小组讨论,例题讲解,变式提升、归纳总结来帮助学生理解知识的应用和方法的提升,层层深入,逐一突破难点。
三、学情分析对于九年级的学生来说,已学过一些关于空间与图形的简单推理知识,具备了一定的合情推理能力,能应用勾股定理、线段公理、轴对称的性质等知识解决简单的问题,但演绎推理的意识和能力还有待加强,思维缺乏灵活性.最短路径问题,学生在八年级已经有所接触。
对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,受已有经验和知识基础的影响,部分学生在八年级学习时很茫然,找不到解决问题的思路。
进入中考复习阶段,随着一些以三角形、四边形、圆、函数、立体图形为背景的最短路径问题的出现,更是让学生感到陌生,无从下手。
从平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,学生学得累。
所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,以达到提高学习能力的目的.四、教学设计(一)创设情景相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能用所学的知识解决这个问题吗?【学生活动】学生思考教师展示问题,并观察图片,获得感性认识.【设计意图】从生活中问题出发,唤起学生的学习兴趣及探索欲望.(二)知识回顾1.如图所示:从A 地到B 地有三条路可供选择,选择哪条路距离最短?你的理由是什么?2.你能说出轴对称的性质吗?3.勾股定理。
【学生活动】在教师的引导下回顾旧知识。
【设计意图】为本节课的学习扫清知识障碍。
(三)模型建构1.如图,要在燃气管道L 上修建一个泵站,分别向A 、B 两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?【设计意图】通过一个很简单的实际问题,让学生认识到数学来源于生活,服务与生活,曾庆学生的应用意识。
2.你能解决“将军饮马问题”吗?活动1:观察思考,抽象为数学问题将A ,B 两地抽象为两个点,将河l 抽象为一条直 线.活动2: 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?【学生活动】学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地;B。
A lBAl F E D C BA(2)在河边饮马的地点有无穷多处,把这些地点与A ,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设P 为直线上的一个动点,上面的问题就转化为:如图,点A ,B 在直线l 的同侧,点P 是直线上的一个动点,当点P 在l 的什么位置时,PA+PB 最小?强调:将最短路径问题抽象为“线段和最小问题”【设计意图】让学生经历观察、叙述、画图等过程,培养学生把生活问题抽象为数学问题的能力。
活动3:尝试解决数学问题你能利用轴对称的知识解决这个问题吗?【学生活动】学生独立思考,画图分析,并尝试回答,互相补充。
教师适当提示。
作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点P 。
则点P 即为所求. 如图所示:【学生活动】在教师的引导下,积极思考,同伴交流,尝试解决实际问题。
【设计意图】学以致用,利用轴对称知识解决问题,及时进行学法指导,引导学生进行方法规律的提炼总结。
lB。
Al3.模型分析已知直线l 和A 、B 两点,点P 是直线上的一个动点,当点P 在l 的什么位置时,PA+PB 最小?(1)A 、B 两点在直线异侧时:(2)A 、B 两点在直线同侧时:【设计意图】引导学生梳理总结从实际问题中抽象出来的数学模型,形成认知结构,增强从复杂问题中找出基本图形的能力。
(四)模型应用典型例题(一)如图,在平面直角坐标系中,一次函数y=-2x+4的图象与x 、y 轴分别交于点A 、B 两点,OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,当△PCD 的周长最小时,求P 点坐标.【设计意图】(1)帮助学生灵活的从复杂的图形中抽出基本模型(2)引导学生找出模型中已知直线L 和A 、B 两点,提高学生分析题目的能力,提升思维的层次。
题组(一)1.如图1,在边长为1的等边三角形ABC 中,点D 是AC 的中点,AE ⊥BC ,点P 是AE 上任一点,则PC+PD 的最小值为 。
2.如图2,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。
l· AB · B ·lA ·图1 图2典型例题(二)如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为________cm .【学生活动】(1)将立体图形转化为平面图形。
(2)在教师的引导下从问题的情境中逐步得出问题的本质:点A ,C 在直线L 的同侧,点P 是直线上的一个动点,当点P 在l 的什么位置时,PA+PB 最小? (3)综合运用数学模型和勾股定理解决问题。
【设计意图】引导学生将立体图形转化为平面图形,利用“最短路径”数学模型来解决问题。
训练学生的思维,提高分析问题的能力,培养模型思想。
题组(二)1.如图,在棱长为1的立方体的右下角A 处有一只蚂蚁,欲从立方体的侧面爬行去吃右上角B 处的食物,问怎样爬行路径最短,最短路径是多少?2.如图,圆锥的底面半径为1,母线长为4,一只蚂蚁要从底面圆周上一点B 出发,沿圆锥侧面爬行一周再回到点B,问它爬行的最短路线是多少?(五)反思小结本节课我学会了……AB C B A AB · DE【设计意图】引导学生从知识、方法、数学思想方面进行归纳总结:1、解决上述问题运用了什么知识?(知识)2、在解决问题的过程中运用了什么方法?(方法)3、运用上述方法的目的是什么?体现了什么样的数学思想?(数学思想)(六)拓展提升如图,在长为5、宽为3、高为4的长方体的右下角A处有一只蚂蚁,欲从长方体的外表面爬行去吃右上角B处的食物,问怎样爬行路径最短,最短路径是多少?5【设计意图】思维变式训练,提升学生的思维层次,让学生学会思考,学会提问。
五、效果分析本节课的活动设计与评测练习有利于教学目标的实现,很好的突出了重点,突破了难点。
具体标志如下:1.学生能够把“将军饮马”的问题转化为数学中的“点、线”问题,并利用轴对称的性质将其转化为“两点之间线段最短”的问题。
2.能够抽象出“最短路径问题”数学模型,在探索最算路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.3、能从一些以三角形、四边形、圆、函数、立体图形为背景的复杂题目中抽象出“最短路径”问题的基本数学模型。
六、观评记录(一)生活情境创设本节可通过创设“将军饮马”这样一个具有思考性的故事情境,激发了学生的学习兴趣,迅速把学生引入本节课的教学问题之中,为接下来的进一步学习奠定基础,真正体现课标理念中数学活动的深入有效开展。
(二)任务层次结构本设计将教学任务设计成若干个教学活动。
除了考虑活动本身的设计之外,还充分考虑子活动之间坡度、连贯、衔接等特点,过渡自然、思路清晰,能够提供思考和发现的时间和空间。