工 程 问 题

合集下载

一元一次方程应用题(很系统,附答案)

一元一次方程应用题(很系统,附答案)

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1. 相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A 、B 两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000 x=22. 追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A 、B 两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A 、B 两地相距1000米,问几分钟后乙能追上甲?直线追击 200x+1000=300x x=102. .甲乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多少小时后与慢车相遇? 40*1.5+40x+80x=3003. 汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?去 :上坡路程x 下坡路程y352860123528x y y x +=++ 回 :上坡路程y 上坡路程x3. 环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.1 王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的 200X+400=300X X=42 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6X X=2004X+400=6X X=200 200*4=800 800/400=2圈3 有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完 第一铁桥所需的时间为600x 分 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程得x=100∴2x-50=2×100-50=1504.·顺(逆)风(水)行驶问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。

一元一次方程之行程问题AB共53题全

一元一次方程之行程问题AB共53题全

行程问题A组题1、一艘轮船从甲乙码头顺流行驶用了两个小时;从乙码头返回甲码头逆流行驶用了2.5小时。

已知水流的速度是3千米/时,求船在静水中的平均速度。

2、一只轮船航行于甲、乙两地之间,顺水用3小时,逆水用的时间比顺水多用30分钟,已知船在静水中的速度是每小时26千米,求水流的速度和甲、乙两地的距离。

3、一架飞机在两城之间飞行,风速为24千米/时。

顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航行速度和两城之间的航程。

4、某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A、C两地距离为2千米,求A、B两地之间的距离。

5、甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.(1) 两列火车同时开出,相向而行,经过多少小时相遇?(2) 快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?(3) 若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?(4) 若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千米?6、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速各是多少?7、2008年年初,我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修.维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.8、小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.9、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?10、甲乙两人登一座山,甲每分登高10米并且先出发30分,乙分每登高15米,两人同时登上山顶。

行程问题工程问题

行程问题工程问题

工程问题+行程问题典型应用题工程问题+行程问题首先给大家讲下分数工程问题,这种题一般不给出总量。

这种题的解法重点是:1 把总工作量看做单位“1”2 工作效率*工作时间=工作量3 变式关系式:工作量÷工作效率=工作时间;工作量÷工作时间=工作效率4 比如一项工程甲单独做需要6天完成,乙单独做需要10天完成,那么甲的工作效率就是可1/6,乙的为1/10(即1天工作全部工程1/6或1/10)例题1一项工程,甲、乙队合作20天可以完成。

共同做了8天后,甲离开了,由乙继续做了18天才完成。

如果这项工程单独由甲队或乙队单独完成,各需要几天?思路导航:设这项工程为单位“1”,当甲离开后,乙做的工作量为:1-1/20*8=3/5乙单独做这项工程的时间为18除以3/5 18÷3/5=30天甲单独做的时间:1÷(1/20-1/30)=60天例题2师傅和徒弟合做一件工作要15天才能完成。

若让师傅先做10天,则剩下的工作,徒弟单独做还需要17天才能完成。

徒弟单独做这件工作需要多少天才能完成?思路导航:由于给出条件是“合做15天完成”,所以,将分开做的转化成为合做10天共做多少:1/15*10;还剩下多少:1-1/15*10=1/3。

徒弟单独做几天完成:(17-10)/1/3=21天。

写下解析就是:1-1/15*10=1/317-10=77÷1/3=21当然可以解方程,但是比较麻烦:1/X+1/Y=1/1510/X+17/Y=1例题3一批稿件,甲单独做20分钟打完;乙单独30分钟打完。

现在两人合打这批稿件,合做中,甲因有事离开了5分钟,乙休息了若干分钟,这样共用了16分钟打完。

乙休息了多少分钟?思路导航:由于不知16分钟有多少是在合作,也不知道甲、乙各自单独做了几分钟,因此,假设既没有离开也没有休息,16分钟全部在工作,次题就好做了。

甲、乙合作不休息16分钟能打:(1/20+1/30)*16=4/34/3-1=1/3-------表示甲5分钟打的加上乙为休息做的甲5分钟能打多少?5*1/20=1/4乙休息的时间能打多少?1/3-1/4=1/12乙休息了多少时间?1/12÷1/30=5/2即乙休息了5/2分钟。

实际问题与一元一次方程(工程与行程问题)

实际问题与一元一次方程(工程与行程问题)

60×
28 60
+60x+80x=448
解得:x=3
答:快车开出3小时后,两车相遇。
例4、A、B两站间的路程为448千米,一列慢车从A站出发,每小 时行驶60千米,一列快车从B站出发,每小时行驶80千米,问: (3)两车同时、同向而行,如果慢车在前,出发后多长时间快 车追上慢车?
画图分析 快车行驶路程
顺水航行速度= 水流速度 +静水航行速度.
逆水航行速度=静水航行速度-水流速度.
解:设船在静水中的平均速度为x千米/小时,则船顺水的速 度为(x+3)千米/小时,而逆水的速度为(x-3)千米/小时。 则依题意可得: 2(x+3)=2.5(x-3) 解得:x=27
答:该船在静水中的速度为27千米/小时。
工程问题 与
行程问题
一元一次 方程应用
(二)
探究1:工程问题
1.一件工作,若甲单独做2小时完成,那么
1
甲单独做1小时完成全部工作量的2 .
2.一件工作,若甲单独做a小时完成,则甲单独做
1
1小时,完成全部工作量的 a ,m小时完成全部
m
工作量的 a .a小时完成全部工作量的 1 .
3.一件工作,若甲单独做7天完成,乙单
①几小时后两车相遇? ②若吉普车先开40分钟,那么客车开出多长时间两车相遇?

相 遇
丙 40分钟 乙
分析:若吉普车先出发40分钟(即2/3小时),则等量 关系为:吉普车先行的路程+吉普车后行路程+客车 的路程=1500
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍.

工程问题(知识点+典型例题)

工程问题(知识点+典型例题)

行程问题知识点一、基本数量关系路程= (已知速度和时间,求路程)时间= (已知路程和速度,求时间)速度= (已知路程和时间,求速度)知识点二、路程、速度、时间的理解1、速度:是在每小时(或者每分钟、每秒钟等单位时间里)所行的路程。

如:每小时行200千米⎩⎨⎧时千米每200读作:小时/千米200写作:千米200每小时行;⎩⎨⎧米每每10.4读作:秒/米10.4写作: 米10.4每秒 2、路程:一共行了多长的路,叫做路程;3、时间:行了几小时(或几分钟等),叫做时间。

知识点三、行程问题1、相遇问题(1)定义:相遇问题是指两个运动的物体以不同的地点为出发点做相向运动的问题。

(2)路程关系:甲路程+乙路程=两地的距离(3)相遇问题数量关系:路程=速度和×相遇时间 相遇时间=路程÷速度和速度和=路程÷相遇时间(4)关系图:2、追及问题(1)定义:追及问题是指同向运动的物体或人相隔一定的距离,后面的速度快,前面的速度慢,经过一段时间,后者追上前者。

(2)路程关系:两者的路程之差=两地的距离(3)追及问题数量关系:追及路程÷速度差=追及时间 追及路程÷追及时间=速度差速度差×追及时间=追及路程仔 细 填 一 填(4)关系图:3、应用题解题技巧①看题:弄明白数据的含义:路程、速度、时间②画图:题目较长,或数据较多,可画图帮助理解③求中间值:用已知推出中间值,再推出答案。

认真想一想【例】甲、乙两站相距480公里,一列慢车从甲站开出,每小时行80公里,一列快车从乙站开出,每小时行120公里.(1)两车同时开出,相背而行多少小时后两车相距600公里?(2)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(3)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?疯狂操练一、列竖式计算7.83÷9 1.35÷2.7 54.4÷0.16 27÷1.86.76÷0.52 245.7÷13 1.89÷0.547.1÷0.2522.78÷3.4 2.525÷25 8.4÷5.6 140.7÷3.5二、应用(行程问题)1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每千米走4千米。

人教版七年级上册《一元一次方程》应用题分类练习(一)

人教版七年级上册《一元一次方程》应用题分类练习(一)

《一元一次方程》应用题分类练习(一)一.行程问题:1.列方程解应用题:已知A,B两地相距60千米,甲骑自行车,乙骑摩托车都沿一条笔直的公路由A地匀速行驶到B地,乙每小时比甲多行30千米,甲比乙早出发3小时,乙出发1小时后刚好追上甲.(1)求甲的速度;(2)问乙出发之后,到达B地之前,何时甲乙两人相距6千米;(3)若丙骑自行车与甲同时出发,沿着这条笔直的公路由B地匀速行驶到A地,经过小时与乙相遇,求此时甲、丙两人之间距离.2.甲、乙两人在笔直的道路上练习赛跑,甲每秒跑7m,乙每秒跑6.5m,若甲让乙先跑了一段距离后,则甲在60s后追上了乙,试求甲让乙先跑的距离.3.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?4.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?5.小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?二.配套问题:6.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?7.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?三.数字问题:8.一个两位数,十位数字是个位数字的两倍,将这个两位数的十位数字与个位数字对调后得到的两位数比原来的两位数小27,求这个两位数.9.小明参加启秀期末考试时的考场座位号是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为2;(2)把千位上的数字2向右移动,使其成为个位数字,那么所得的新数比原数的2倍少1478,求小明的考场座位号.四.数轴问题:10.如图,A,B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP+OQ=5时的运动时间t的值.11.如图1,数轴上点A分别表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.五.积分问题:12.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 88D14 6 64E10 10 40(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?13.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进14 10 4 24光明14 9 5 23远大14 m n22卫星14 4 10 a钢铁14 0 14 14 请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.六.方案问题:14.某小区建完之后,需要做内墙粉刷装饰,现有甲、乙两个工程队都想承包这项工程,已知甲工程队每天能粉刷160个房间,乙工程队每天能粉刷240个房间.且单独粉刷这些墙面甲工程队比乙工程队要多用20天,在粉刷的过程中,该开发商要付甲工程队每天费用1600元,付乙工程队每天费用2600元.(1)求这个小区共有多少间房间?(2)为了尽快完成这项工程,若先由甲、乙两个工程队按原粉刷速度合作一段时间后,甲工程队停工了,而乙工程队每天的粉刷速度提高25%,乙工程队单独完成剩余部分,且乙工程队的全部工作时间是甲工程队的工作时间的2倍还多4天,求乙工程队共粉刷多少天?(3)经开发商研究制定如下方案:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:按(2)问方式完成:请你通过计算帮开发商选择一种既省时又省钱的粉刷方案.15.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案1.解:(1)设甲速度为x千米/小时,则乙速度为(x+30)千米/小时由题意可列方程:4x=x+30解得:x=10所以,甲速度为10千米/时;(2)由(1)可知,甲速度为10千米/小时,乙速度为10+30=40千米/小时,设乙出发后t小时甲乙相距6千米,则甲出发(t+3)小时,相遇前:甲比乙多行驶6千米,可列方程10(t+3)﹣40t=6,解得:t=0.8,相遇后:乙比甲多行驶6千米,可列方程40t﹣10(t+3)=6,解得t=1.2,综上所述,乙出发0.8小时或1.2小时,甲乙相距6千米;(3)设丙的速度为a千米/小时,丙与甲同时出发,所以丙行驶小时,乙行驶了﹣3=(小时).根据题意可列方程a+×40=60,解得:a=10,所以丙的速度为10千米/小时,经过小时,丙行驶×10=36(千米),甲行驶×10=36(千米),所以两人相距36+36﹣60=12(千米).2.解:设甲让乙先跑的距离为xm,依题意,得:7×60=6.5×60+x,解得:x=30.答:甲让乙先跑的距离为30m.3.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.4.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.5.解:(1)设出发x分钟后,小明、小杰第一次相遇,依题意,得:300x+220x=400,解得:x=.答:出发分钟后,小明、小杰第一次相遇.(2)①设出发y分钟后,小明、小杰第一次相遇,依题意,得:300y﹣220y=100,解得:y=.答:出发分钟后,小明、小杰第一次相遇.②设出发z分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z﹣220z+20=100,解得:z=1.答:出发1分钟后,小明、小杰的路程第一次相距20米.6.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.7.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.8.解:设这个两位数的个位数字为x,则十位数字为2x,原两位数为(10×2x+x),十位数字与个位数字对调后的数为(10x+2x),依题意,得:(10×2x+x)﹣(10x+2x)=27,解得:x=3,∴2x=6,∴10×2x+x=63.答:这个两位数为63.9.解:设原来数字为x,2x﹣1478=(x﹣2000)×10+2解得,x=2315答:小明的考场号是2315.10.解:(1)A、B两点之间的距离是:4﹣(﹣12)=16.故答案为16;(2)分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP+OQ=5,∴12﹣5t+4﹣2t=5,解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP+OQ=5,∴5t﹣12+3(t﹣2)=5,∴t=,综上所述,当OP+OQ=5时的运动时间t的值为或.11.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,x=﹣4或4,∴点D表示的数为﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点E表示的数为7,∴n=EG+FG=9+3=12,综上所述:m的值为6或12.故答案为:10.12.解:(1)由参赛选手A可得:答对1题得100÷20=5(分),设答错一题扣x分,根据参赛选手B的得分列得:19×5﹣x=94,解得:x=1,则答对一道题得5分,答错一道题扣1分;(2)设参赛选手F答对y道题,根据题意得:5y﹣1×(20﹣y)=76,解得:y=16,则参赛选手F答对16道题.13.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.14.解:(1)设乙工程队要刷x天,由题意得:240x=160(x+20),解得:x=40,240×40=9600(间),答:这个小区共有9600间房间;(2)设甲工程队的工作时间为y天,则乙工程队的工作时间(2y+4)天,由题意得:160y+240y+240(1+25%)×(2y+4﹣y)=9600,解得:y=12,2y+4=2×12+4=28(天),答:乙工程队共粉刷28天;(3)方案一:由甲工程队单独完成,时间:40+20=60(天),60×1600=96000(元);方案二:由乙工程队单独完成需要40天,费用:40×2600=104000(元);方案三:按(2)问方式完成,时间:28天,费用:12×(1600+2600)+(28﹣12)×2600=92000(元),∵28<40<60,且92000<96000<104000,∴方案三最合适,答:选择方案三既省时又省钱的粉刷方案.15.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

四下 行程、工程、经济、面积应用题 教案+练习

四下 行程、工程、经济、面积应用题 教案+练习
5、张老师买了9盒水彩笔、30张绘画纸和4块画板。水彩笔每盒13元,绘画纸每张4元,画板每块23元。(先按购买物品的品种整理条件,再解答下面的问题)
水彩笔

每盒元
绘画纸

每张元
画板

每块元
(1)买水彩笔比买绘画纸少用了多少元?
(2)买水彩笔比买画板多用了多少元?
6、商店运来32盒皮球,每盒6个;还运来28袋乒乓球,每袋5个。运来的皮球和乒乓球一共有多少个?
二、工程问题
工作总量=工作效率×时间
工作效率=工作总量÷时间
时间=工作总量÷工作效率
1、修一条长960米的水渠,每天修85米,修了8天,剩下的要在2天内修完,平均每天修多少米?
2、李村修一条水渠,计划每天修32米,15天修完。实际每天比计划多修8米,实际几天就修完了?
3、工程队铺一条柏油路,计划每天铺90米,20天铺完,实际18天铺完,实际每天比计划多铺多少米?
4、工程队铺一条长1800米的柏油路,计划20天完成。实际每天比计划多铺10米,实际多少天铺完?
5、工程队修一条路,已经修了16天,每天修30米,正好完成一半,剩下的要在12天内完成,平均每天要修多少米?
6、修一条1450米的公路,修了5天,每天修80米。剩下的每天修70米,还要多少天才能修完?
7、一本故事书,丁丁前3天平均每天看23页,后6天平均每天看28页,这本故事书有多少页?
课后作业
1、30袋大米相当于50袋面粉的重量,每袋大米25千克,每袋面粉重多少千克?
2、商店运来32盒皮球,每盒6个;还运来28袋乒乓球,每袋5个。运来的皮球和乒乓球一共有多少个?
3、一辆卡车4小时行驶320千米,一辆客车5小时行驶550千米。这辆客车每小时比这辆卡车多行多少千米?

七年级一元一次方程应用题

七年级一元一次方程应用题

七年级一元一次方程应用题一、行程问题1. 例题:甲、乙两人从相距240千米的A、B两地同时出发,相向而行,3小时后相遇。

已知甲每小时行45千米,求乙每小时行多少千米?解析:设乙每小时行公式千米。

根据路程 = 速度×时间,甲行驶的路程为公式千米,乙行驶的路程为公式千米。

由于两人是相向而行,总路程为240千米,所以可列方程公式。

解方程:首先对公式进行移项,得到公式。

即公式,解得公式。

答案:乙每小时行35千米。

2. 追及问题例题:甲、乙两人在同一条路上同向而行,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,问甲几小时能追上乙?解析:设甲公式小时能追上乙。

乙先走2小时,则乙先走的路程为公式千米。

公式小时后,甲走的路程为公式千米,乙走的路程为公式千米。

当甲追上乙时,他们所走的路程相等,可列方程公式。

解方程:移项得公式。

即公式,解得公式。

答案:甲5小时能追上乙。

二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要公式天完成。

把这项工程的工作量看作单位“1”。

甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。

根据工作量 = 工作效率×工作时间,两人合作的工作效率为公式,可列方程公式。

解方程:先对括号内进行通分,公式。

则方程变为公式,解得公式。

答案:两人合作需要6天完成。

2. 例题:一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在两队合作,其间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。

问乙队休息了几天?解析:设乙队休息了公式天。

甲队单独做20天完成,甲队每天的工作效率为公式;乙队单独做30天完成,乙队每天的工作效率为公式。

甲队工作了公式天,甲队完成的工作量为公式。

乙队工作了公式天,乙队完成的工作量为公式。

两队完成的工作量之和为单位“1”,可列方程公式。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

专题06 方程与不等式的实际运用【考点巩固】(解析版)

专题06  方程与不等式的实际运用【考点巩固】(解析版)

专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别 承包了杨家坪地区的A 工程、B 工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴 天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了 天.【分析】根据题意找出两个等量关系:①甲工程队晴天所做的工程量+雨天所做的工程量=总工程量;①乙工程队晴天所做的工程量+雨天所做的工程量=总工程量.设工程总量为1,则甲工程队晴天工作效率为114,雨天工作效率为1−30%14;乙工程队晴天工作效率为115,雨天工作效率为1−20%15,根据等量关系列出方程组求解即可.【详解】解:设两工程队各工作了x 天,在施工期间有y 天有雨,由题意得:{114(x −y)+1−30%14y =1115(x −y)+1−20%15y =1, 解得:{x =17y =10.即两工程队各工作了17天. 故答案为:17.2.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330. (1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米. 【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得. 【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟,由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米. 题型2:行程问题3.某体育场的环形跑道长400m ,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔 30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次.则甲的速度是 m /s .【分析】设甲的速度为xm /s ,乙的速度为ym /s ,根据“某体育场的环形跑道长400m ,如果反向而行,他们每隔30s 相遇一次.如果同向而行,那么每隔80s 乙就追上甲一次”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【解答】解:设甲的速度为xm /s ,乙的速度为ym /s , 依题意,得:{30x +30y =40080y −80x =400,解得:{x =256y =556.故答案为:256.4.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.【答案】25分钟 【分析】设走路线一到达太原机场需要x 分钟,用含x 的式子表示路线一、二的速度,再根据路线二平均速度是路线一的53倍列等式计算即可. 【详解】解:设走路线一到达太原机场需要x 分钟. 根据题意,得5253037x x ⨯=-.解得:25x =.经检验,25x =是原方程的解.答:走路线一到达太原机场需要25分钟.5.(2021·湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km 的洞庭湖博物馆参观.小明从家骑自行车先走,1h 后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h . 【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论. 【详解】解:设妈妈开车的平均速度为x km/h ,则小明的速度为4xkm/h ,根据题意得, 161614x x -= 解得,48x =经检验,48x =是原方程的根, 答:妈妈开车的平均速度是48km/h .题型3:历史文献问题6.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( ) A .3(2)29y xy x-=⎧⎨-=⎩B .3(2)29y xy x+=⎧⎨+=⎩C .3(2)29y xy x-=⎧⎨+=⎩D .3(2)29y xy x -=⎧⎨+=⎩【答案】C 【分析】设共有x 人,y 辆车,由每3人坐一辆车,有2辆空车,可得()32,y x -= 由每2人坐一辆车,有9人需要步行,可得:29,y x += 从而可得答案. 【详解】解:设共有x 人,y 辆车,则3(2)29y xy x -=⎧⎨+=⎩故选:.C7.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两) 【答案】46 【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解. 【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.8.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱. 【答案】53 【分析】设人数为x ,再根据两种付费的总钱数一样即可求解. 【详解】 解:设一共有x 人 由题意得:8374x x -=+ 解得:7x =所以价值为:78353⨯-=(钱) 故答案是:53. 题型4:数字问题9.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5 【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为x ,则最大数为+8x ,结合已知,利用最大数与最小数的乘积为65列出方程求解即可. 【详解】解:设这个最小数为x . 根据题意,得()865x x +=.解得15=x ,213x =-(不符合题意,舍去). 答:这个最小数为5.题型5:增长率问题10.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( ) A .()50712833.6x += B .()50721833.6x ⨯+=C .()25071833.6x += D .()()250750715071833.6x x ++++=【答案】C 【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程. 【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件, 2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++, 根据题意,得:()25071833.6x += 故选C .11.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】()26521960x += 【分析】根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值,按照数量关系列方程即可得解. 【详解】解:根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值列方程得:()26521960x +=, 故答案为:()26521960x +=.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A .(50﹣2x )(40﹣2x )=3000B .(50+2x )(40+2x )=3000C .(50﹣x )(40﹣x )=3000D .(50+x )(40+x )=3000【答案】B【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.13.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【答案】(1)养鸡场的宽是10m,长为15m;(2)围成养鸡场的面积不能达到200m2,见解析【详解】解:(1)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=150,解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为x m,根据题意得:x(35﹣2x)=200,整理得:2x2﹣35x+200=0,①=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.题型7:方案问题14.(2021·江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4①3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【分析】(1)设一、二等奖奖品的单价分别是4x,3x,根据等量关系,列出分式方程,即可求解;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为8543m-件,根据4≤m≤10,且8543m-为整数,m为整数,即可得到答案.【详解】解:(1)设一、二等奖奖品的单价分别是4x,3x,由题意得:60012756002543x x-+=,解得:x=15,经检验:x=15是方程的解,且符合题意,①15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为127560854453m m--=件,①4≤m≤10,且8543m-为整数,m为整数,①m=4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.15.(2021·黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件 【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m 的一元一次不等式组,求解即可得到m 的范围,从而根据实际意义确定出m 的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可; (3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可. 【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元.根据题意,得2 3.533x y x y +=⎧⎨+=⎩,解得: 1.50.5x y =⎧⎨=⎩,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元. (2)根据题意,得 1.50.5(10)9.81.50.5(10)12m m m m +-≥⎧⎨+-≤⎩,解得:4.87m ≤≤, ①m 为整数, ①m 可取5、6、7, ①有三种方案:方案一:购买甲种农机具5件,乙种农机具5件; 方案二:购买甲种农机具6件,乙种农机具4件; 方案三:购买甲种农机具7件,乙种农机具3件. 设总资金为W 万元,则()1.50.5105W m m m =+-=+,①10k =>,①W 随m 的增大而增大,①当5m =时,5510W =+=最小(万元),①方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为50.750.2 4.5⨯+⨯=(万元),降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a 台甲种,b 台乙种,则:0.80.3 4.5a b +=,由题意,a ,b 均为非负整数,①满足条件的解为:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩, ①节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.16.(2021·黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,然后根据题意可得2 3.533x y x y +=⎧⎨+=⎩,进而求解即可;(2)由(1)及题意可得购进乙种农机具为(10-m )件,则可列不等式组为()9.8 1.50.51012m m ≤+-≤,然后求解即可;(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,由题意得:2 3.533x y x y +=⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, 答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m )件,①()9.8 1.50.51012m m ≤+-≤,解得:4.87m ≤≤,①m 为正整数,①m 的值为5、6、7,①共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,①1>0,①w 随m 的增大而增大,①当m =5时,w 的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.题型8:利润问题17.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18①要尽可能减少库存,①x 2=18不合题意,故舍去①T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+①当x =10时,M 最大值=4000元①销售单价:40+10=50元①当服装店将销售单价50元时,得到最大利润是4000元.18.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,①当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;①设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问; ()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.①设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,①当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.题型9:一般问题19.(2021·辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.【分析】(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意列出二元一次方程组,求解即可;(2)设购买手绘纪念册a 本,则购买图片纪念册()40a -本,根据题意列出不等式,求解不等式即可.【详解】解:(1)设每本手绘纪念册x 元,每本图片纪念册y 元,根据题意可得:413552225x y x y +=⎧⎨+=⎩, 解得3525x y =⎧⎨=⎩,答:每本手绘纪念册35元,每本图片纪念册25元;(2)设购买手绘纪念册a 本,则购买图片纪念册()40a -本,根据题意可得:()3525401100a a +-≤,解得10a ≤,①最多能购买手绘纪念册10本.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨, 由题意得:202052x x-=,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?【答案】(1)1050元;(2)50元【详解】解:(1)(4530)[80(4540)2]1050-⨯--⨯=(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x 元,则每天的销售量是[802(40)]x --件,依题意,得(30)[802(40)]1200x x ---=,整理,得2x 110x 30000-+=,解得1250,60x x ==(不合题意,舍去).答:每件工艺品售价应为50元.题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?【分析】(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,根据“小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用小军家4月份的电费=第一档电价×4月份的用电量和小军家5月份的电费=第一档电价×180+第二档电价×(5月份的用电量﹣180),即可求出结论.【解答】解:(1)设第一档的电价为x 元/度,第二档的电价为y 元/度,依题意,得:{180x +(200−180)y =119180x +(210−180)y =125.4, 解得:{x =0.59y =0.64. 答:第一档电价为0.59元/度,第二档的电价为0.64元/度.(2)0.59×160=94.4(元),0.59×180+0.64×(230﹣180)=138.2(元).答:小军家4月份的电费为94.4元,5月份的电费为138.2元.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨 15吨及以下a 超过15吨但不超过25吨的部分b 超过25吨的部分 5(1)小王家今年3月份用水20吨,要交水费 元;(用a ,b 的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.【分析】(1)根据题意列出代数式即可;(2)根据题意列方程组,即可得到结论;。

二元一次方程组应用题类型题

二元一次方程组应用题类型题

是x、y岁根据题意,得
年龄大于乙的年龄
y-(x- y)=4 X+(x-y)=61
x=42 解得 y=23
答:甲、乙现在的年龄分别是42、23岁
第三十五页,编辑于星期五:十点 三十二分。
随着我国人口增长速度的减慢,初中 入学学生数量每年按逐渐减少的趋势发
展。某区2003年和2004年初中入学学 生人数之比是8:7,且2003年入学人 数的2倍比2004年入学人数的3倍少1500 人,某人估计2005年入学学生人数将 超过2300人,请你通过计算,判断他 的估计是否符合当前的变化趋势。
一张方桌由1 个桌面、4条桌腿组成,如果 1立方米木料可以做方桌的桌面50个,或桌 腿300条,现有5立方米的木料,那么用多 少立方米木料做桌面、多少立方米木料做 桌腿,做出的桌面和桌腿恰好配成方桌? 能配成 多少方桌?
根据题意 ,得
x+y=5 4×50x=300y 解得
X=3
Y=2
所以用3立方米做桌面 ,2立方米做桌腿,恰 能配成方桌,共可做成150张方桌。
x+y=48 5x=3y
解得 X=18
Y=30
所以每天安排18人挖土,30 人运土正
好能使挖的土及时运走
第二十八页,编辑于星期五:十点 三十二分。
五、配套与物质分配问题
第二十九页,编辑于星期五:十点 三十二分。
用白钢铁皮做头,每张铁皮可做盒身25 个,
或做盒底40个,一个盒身与两个盒 底配成一套,
船在顺水中的速度=船在静水中的速度+水流的速度
水流方向
轮船航向
第十六页,编辑于星期五:十点 三十二分。
例5.已知A、B两码头之间的距离为 240km,一艏船航行于A、B两码头之间, 顺流航行需4小时 ;逆流航行时需6小时, 求船在静水中的速度及水流的速度.

分式方程解决实际问题常见的几种类型

分式方程解决实际问题常见的几种类型

列分式方程解决实际问题常见的几种类型一、行程问题例题、小明和小亮进行百米比赛。

当小明到达终点时,小亮距离终点还有5米,如果小明比小亮每秒多跑0。

35米,你知道小明百米跑的平均速度是多少吗?解:设小明百米跑的平均速度为xm/s ,那么小亮百米跑的平均速度是(x —0.35)m/s ,根据题意得,10010050.35x x -=- 解这个方程得7x =经检验:7x =是原方程的解。

答:小明百米跑的平均速度是米/秒。

二、工程问题某工程队承建一所希望小学。

在施工过程中,由于改进了工作方法,工作效率提高了20%,因此,比原定工期提高了1个月完工。

问这个工程队原计划用几个月建成这所希望小学? 解:设这个工程队原计划用x 个月建成这所希望小学,根据题意得11(120%)1x x +=- 解这个方程得6x =经检验:6x =是原方程的解。

答:这个工程队原计划用6个月建成这所希望小学。

三、数字问题今年父亲的年龄是儿子年龄的3倍,再过5年,父亲与儿子的年龄的比是22:9.求今年父亲和儿子的年龄。

解:设今年儿子的年龄是x 岁,则父亲的年龄是3x 岁,根据题意得352259x x +=+ 解这个方程得x=13经检验:x=13时原方程的解3x=3×13=39答:今年父亲和儿子的年龄分别是13岁和39岁。

四、利润问题某超市市场销售一种钢笔,每枝售价为11.7元.后来,钢笔的进价降低了6.4%,从而使超市销售这种钢笔的利润提高了8%。

这种钢笔原来每枝是多少元?解:设这种钢笔原来每枝的进价为x 元,根据题意得11.711.7(1 6.4%)100%8%100%(1 6.4%)x x x x---⨯+=⨯- 解这个方程得x=10经检验:x=10时原方程的解答:这种钢笔原来每枝是10元。

五、几何问题如图所示某村计划开挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,下底宽1。

2米,坡角为45°。

10六年级工程、行程、浓度问题专练

10六年级工程、行程、浓度问题专练

六年级典型问题专题训练潘红锦 徐乃玉 郭庆强工程问题工程问题是有关工作总量、工作效率和工作时间的问题,它的具体特点是常常不给出工作总量的具体数量,只是提出一项工程、一件工作,一本书等等词语。

解答时要把工作总量看作单位“1”,而工作效率则用(1/时间)来表示。

工程问题的基本关系:工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 工作总量÷工作效率和=合作时间工程问题例题讲解例1、一项工程,甲队独做需20天,乙队独做需30天,现在两队合作若干天后,余下的由乙队10天做完,甲乙两队合作了多少天?解:要求甲乙两队合作了多少天,必须求出甲乙两队合作的工作总量和工效和,这项工程中除过乙10天单独做的,剩下的就是甲乙两队合作的工作总量,即1-1/30×10=1-1/3=2/3,再由甲乙两队合作的工作总量÷工效和即2/3÷(1/20+1/30)=8(天)。

例2、一件工作,甲独做要20天完成,乙独做要12天完成。

这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天。

这件工作由甲先做了几天?解:假设这14天都由乙来做,那么完成的工作量就是1/12×14,比总工作量多了1/12×14-1=1/6,乙每天的能够做量比甲每天的工作量多了1/12-1/20=1/30,因此甲做了1/6÷1/30=5(天)例3、一个水池有甲、乙、丙三根水管。

单开甲管6小时可以把空池注满,单开乙管4小时可以把空池注满,单开丙管12小时可以把满池水排完,三管齐开,几小时可以把空池注满?解:这是一道“有入有出”的工程问题, 三管齐开,每小时的实际注水量应该从甲乙两管的和中减掉丙管每时排掉的水量,1/6+1/4-1/12=1/3,工作总量÷工作效率=工作时间,可以求出三管齐开,几小时可以把空池注满,即:1÷1/3=3(时)。

一元二次方程应用题(3)-行程工程

一元二次方程应用题(3)-行程工程

一元二次方程应用题(3)-行程工程——行程问题、工程问题、储蓄问题行程问题例1.汽车需行驶108km的距离,当行驶到36km处时发生故障,以后每小时的速度减慢9km,到达时比预定时间晚24min,求汽车原来的速度。

练习:行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇。

问甲、乙的速度各是多少2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.工程问题例2.甲、乙两建筑队完成一项工程,若两队同时开工,12天可以完成全部工程,乙队单独完成该工程比甲队单独完成该工程多用10天,问单独完成该工程,甲、乙各需多少天?练习1:搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间?(列式子)2、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米纯度问题例3.一个容器盛满纯酒精20升,第一次倒出纯酒精若干升后,加水注满,第二次倒出相同数量的酒精,这时容器内的纯酒精只是原来的14,问第一次倒出纯酒精多少升?练习:从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.问每次倒出溶液的升数?剖析:第一次倒出的是纯酒精,而第二次倒出的就不是纯酒精了.若设每次倒出某升,则第一次倒出纯酒精某升,第二次倒出纯酒精(20某20·某)升.根据20升纯酒精减去两次倒出的纯酒精,就等于容器内剩下的纯酒精的升数.20-某-20某20·某=5.储蓄问题:例4、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)练习:王明同学将100元第一次按一年定期储蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的50元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的一半,这样到期后可得本金利息共63元,求第一次存款时的年利率.解:设第一次存款时的年利率为某,根据题意,得[100(1+某)-50](1+12某)=63.整理,得50某2+125某-13=0.解得某11=10,某132=-5.∵某132=-5不合题意,∴某=110=10%.答:第一次存款时的年利率为10%.说明:要理解“本金”“利息”“利率”“本息和”等有关的概念,再找清问题之间的相等关系.例5.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加某(8+某)(12+某)=96+69某=3增加了3行3列例 6.某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合作,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的23(l)求甲、乙两队单独完成此工程所需的时间;(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案:方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合作完成此工程.以上三种方案哪一种费用最少?——行程、工程、纯度、储蓄问题2022-8-315008620708(李老师)姓名:1.一支正方形队伍参加比赛,由于服装不够,只好减少23人,使横竖各减少一排。

工程问题

工程问题

工程问题填空题1.甲村与乙村要开挖一条长580米的水渠,甲村比乙村每天可以多挖2米,于是乙村先开工5天,然后甲村再动工与乙村一起挖,从开始到完成共用了35天,那么乙村每天挖()米,甲村每天挖()米。

2.用计算机录入一份书稿,甲单独做10天可以完成,乙单独做15天可以完成,现在由甲乙二人合做,由于乙中途生病休息了若干天,结果一共用了8天才完成任务,那么乙中途休息了()天。

3.两个师傅和四个徒弟一天可以完成一批零件的3/10,8个师傅和10个徒弟一天就能把这批零件做完,应要徒弟()个。

4.师徒二人合作生产一批零件,6天可以完成任务,师傅先做了5天,因事外出,由徒弟接着做3天,共完成任务的7/10,那么师傅单独做这批零件要()天。

5.一件水利工程,甲工程队单独做63天甲工程队单独做63天,再由乙工程队单独做28天可以完成,两队合做需要48天完成任务,先由甲工程队单独做42天再由乙工程队接着做,一共需要()天。

6.一件工程甲单独做6小时完成,乙单独做要10小时完成,如果按甲、乙、甲、乙……顺序交替工作,每次工作一小时,那么要()分钟才能完成。

应用题1.一件工程甲乙合做6天可以完成,现甲先做8天后,余下的由乙独做3天完成任务,全部工程由甲乙独做各需多少天?2.某项工程甲乙丙队合做要18天完成,由乙丙丁队合做要15天完成,由甲乙丁队合做要12天完成,由甲丙丁队合做用20天完成,由甲队单独做用多少天完成?3.两队拖拉机合耕一块地,计划用12小时耕完,由于乙队拖拉机每小时比计划少耕5公顷,这样两队拖拉机合耕9小时后,已耕的比这块地的5/7少18公顷,求这块地有多少公顷?4.一个水池,装有甲、乙两个管子。

单开甲管30分钟可将空池注满水;单开乙管40分钟,可将满池水放尽。

当池中无水时,同时打开甲、乙两管需要多少分钟才能将池水注满?5. 打印一份稿件,甲工人需要8小时,乙工人需要12小时,现在由甲、乙两人合打,经过3.2小时还剩168页,求这份稿件共有多少页?6.单独完成一项工程,甲队要24天,乙队要30天,现在甲、乙两队合作2天后,丙队加入,三人合作经7天完成全工程。

小学工程施工问题教师

小学工程施工问题教师

一:简单工程问题(工作总量=工作效率*工作时间)生产同一种零件,甲要小时,乙要小时,丙要12分钟,甲乙丙三人中工作效率最高的是()A.甲B.乙C.丙【考点】简单的工程问题.【分析】要求甲乙丙三人中工作效率最高的是谁,就要分别求出各自的工作效率,然后比较即可.【解答】解:12分钟=小时.甲的工作效率:1÷=6;乙的工作效率:1÷=7;丙的工作效率:1÷=5.答:乙的工作效率最高.故选:B.两个修路队5天合修2500米长的一段路,乙队每天修300米,甲队每天修多少米?正确列式是()A.2500÷5﹣300 B.(2500﹣300)÷5 C.2500﹣300×5【考点】简单的工程问题.【专题】工程问题.【分析】用路的总长度除以时间就是工作效率的和减去乙队每天修的米数,得到的差就是甲队每天修的米数.【解答】解:2500÷5﹣300=500﹣300=200(米)答:甲队每天修200米.故选:A.小东4分钟跳绳356下,小茜3分钟跳绳291下,他们两人小茜跳得快一些.【考点】简单的工程问题.【专题】工程问题.【分析】首先分别求出小东和小茜每分钟各跳多少下,然后进行比较即可.【解答】解:356÷4=89(下),291÷3=97(下),97>89,答:小茜跳的快一些.故答案为:小茜.从8时到12时,王师傅共加工640个零件,平均每时加工160个零件.【考点】简单的工程问题.【专题】工程问题.【分析】先推算出从8时到12时是多长时间,再用加工的零件总数除以经过的时间即可求解【解答】解:12时﹣8时=4小时640÷4=160(个)答:平均每时加工160个零件.故答案为:160.如果将一根木料锯成3段,小明要用6分钟,爸爸锯木料的速度是小明的3倍,由爸爸将这根木料锯成5段,需要4分钟.【考点】简单的工程问题.【分析】锯成3段,锯了(3﹣1)次,先用“6÷(3﹣1)计算出小明锯一次需要3分钟”,然后根据“爸爸锯木料的速度是小明的3倍”得出:爸爸锯一次的时间是小明所用时间的,进而得出爸爸锯一次的时间;锯成5段,锯(5﹣1)次,然后根据“锯一次用的时间×锯的次数”即可得出结论.【解答】解:[6÷(3﹣1)×]×(5﹣1),=1×4,=4(分钟);答:需要4分钟;故答案为:4.甲、乙两管同时打开,10分钟就能注满水池.现在先打开甲管,9分钟后再打开乙管,再过4分钟就注满了水池.已知甲管比乙管每分钟多注入0.28立方米的水,那么这个水池的容积是8.4立方米.【考点】简单的工程问题.【分析】把水池的容量看成单位“1”,那么甲和乙合作的工作效率就是,由题意可知,后4分钟是甲乙合作的,那么这4分钟的工作量就是×4=,前9分钟甲单开时的工作量就是1﹣=,用这个工作量除以9分钟就是甲单开时的工作效率,即÷9=;那么乙的工作效率就是甲乙合作的工作效率﹣甲的工作效率,即;甲比乙多干的工作效率就是=,它对应的量就是0.28立方米,求单位“1”用除法,即0.28.【解答】解:×4=1﹣=÷9==0.28=8.4(立方米)故填8.4服装厂要加工495套服装,原计划11天完成,实际每天比计划多做10套,实际用了多少天?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】要际用了多少天,需知道生产任务(已知)与实际每天生产的套数(未知),要际每天生产的套数,需求得计划每天生产的套数;由此找出条件列出算式解决问题.【解答】解:495÷(495÷11+10)=495÷(45+10)=495÷55=9(天)答:实际用了9天.一项工程,甲单独完成要10天,乙单独完成要8天.两队合作完成这项工程的要多少天?列式不正确的是()A.B.C.1÷【考点】简单的工程问题.【分析】本题先据两队独做需要的时间求出两队的工作效率之和,然后再据工作量÷工作效率=工作时间求出完成工程的需要的时间.列式为÷().也可先求出完成全部工程需要多少天,求出总天数的是多少:1÷.【解答】解:据题意列式为:÷()或1÷.所以选项A列式不正确故选:A.一条水渠长3.3米,甲单独修要5小时,乙单独修要6小时,两队合修,要几小时完成?列式正确的是:1、3.3÷(+)2、1÷(+)3、3.3÷(3.3÷5+3.3÷6)()A.全对B.1和2 C.1和3 D.2和3E.都不对【考点】简单的工程问题.【专题】工程问题.【分析】方法一:先用3.3米除以甲需要的时间,求出甲每小时可以修多少米,同理求出乙每小时可以修多少米,然后求出两人的工作效率和,再用工作总量3.3除以甲乙的工作效率和即可求出合修需要的时间;方法二:把这条水渠的总长度看成单位“1”,甲的工作效率是,乙的工作效率是,用1除以甲乙的工作效率和即可求出需要的时间.【解答】解:方法一:3.3÷(3.3÷5+3.3÷6)=3.3÷(0.66+0.55)=(小时)方法二:1÷(+)=1÷=(小时)答:两队合修,要小时完成.只有2、3两种方法是正确的.故选:D.甲乙两队合做某一项工程,12天可以完成,如果甲队工作2天,乙队工作3天,他们只能完成这项工程的,甲乙两队单独完成这项工程,各需多少天?【考点】简单的工程问题.【专题】工程问题.【分析】甲乙两队合做某一项工程,12天可以完成,则两天合作每天完成这项工作的,如果甲队工作2天,乙队工作3天,可看作两队合作了2天,乙队单独做了3﹣2=1天,则乙1天做了这项工程的﹣=,进而根据工作时间=工作量÷工作效率可求出乙单独完成需要的时间,进而求出甲单独做需要的时间.【解答】解:(﹣)÷(3﹣2)=()÷1=÷1=1÷=30(天)1÷()=1÷=20(天)答;甲队单独做需要20天,乙队单独做需要30天.一条公路由甲、乙合修要12天完成.现甲队修3天后,乙队又修了一天,共修这条路的,这条路由甲、乙独修各需多少天?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】首先根据题意,甲队修3天后,乙队又修了一天,相当于甲乙两队合作1天,甲队单独修2天的工作量;然后用减去两队的工作效率之和,求出甲队单独修2天完成了这条公路的几分之几,进而求出甲队每天修这条公路的几分之几,再用1除以甲队的工作效率,求出甲队独修需要几天;最后用两队的工作效率之和减去甲的工作效率,求出乙的工作效率,再用1除以乙队的工作效率,求出乙队独修需要几天即可.【解答】解:(﹣)÷(3﹣1)=÷2=1=30(天)1÷()=1÷=20(天)答:甲队独修需要30天,乙队独修需要20天.一项工程,甲独做10天可完成,乙独做25天可完成,现两人合作,多少天完成这项工程的?剩下的由乙单独做,还需要多少天?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】首先根据工作效率=工作量÷工作时间,分别用甲、乙完成的工作量除以用的时间,求出甲、乙的工作效率各是多少;然后根据工作时间=工作量÷工作效率,用除以甲、乙的工作效率之和,求出两人合作,多少天完成这项工程的;最后用剩下的工作量除以乙的工作效率,求出剩下的由乙单独做,还需要多少天即可.【解答】解:÷()=÷()=÷=10(天)(1﹣)÷()=÷=50(天)一项任务,师徒合作2天完成全部任务的,接着师傅因故障停工2天后继续与徒弟合作,已知师傅的工作效率是徒弟的2倍,问完成这一任务一共用几天?【考点】简单的工程问题.【专题】应用题;行程问题.【分析】师徒合作2天完成全部任务的,则两人合作一天能完成全部任务的÷2=,由于师徒工作效率之比为2:1,所以徒弟的工作效率为×=,则徒弟独做两天完成了全部的×2=,此时还剩全部的1﹣﹣=,师徒弟合作需要÷=天,所以前后共需2+2+=4天.【解答】解:(1﹣﹣÷2××2)÷(÷2)+2+2=(1﹣﹣××2)÷+4=(1﹣﹣)×+4=×+4=4(天)答:完成这一任务一共用4天.二:工程问题+比的应用,百分比的实际应用,方程思想一项工程,甲独做要10天,乙独做要8天,甲乙两队工作效率比是()A.10:8 B.5:4 C.:D.4:5【考点】简单的工程问题;比的应用.【专题】比和比例;工程问题.【分析】依据工作总量一定,工作时间和工作效率成反比,求出两队的工作时间比即可解答.【解答】解:8:10=4:5,答:甲乙两队工作效率比是4:5,故答案为:D.一项工程,甲单独做要20分钟,乙单独做要15分钟,甲的工作效率比乙低()A.33.3% B.20% C.25%【考点】简单的工程问题;百分数的实际应用.【专题】工程问题.【分析】首先根据工作效率=工作量÷工作时间,分别求出甲乙的工作效率是多少;然后求出甲乙的工作效率之差是多少,再用它除以乙的工作效率,求出甲的工作效率比乙低多少即可.【解答】解:==0.25=25%答:甲的工作效率比乙低25%.故选:C.一项工程,甲队10天做完,乙队12天做完,甲队的工效是乙队的120%.【考点】简单的工程问题.【专题】工程问题.【分析】甲的工作效率是,乙的工作效率是,用甲队的工作效率除以乙队的工作效率,就是甲队的工效是乙队的百分之几.据此解答.【解答】解:÷=120%答:甲队的工效是乙队的120%.故答案为:120.某剪纸小组有5人,平均每人每天剪16个灯笼,照这样计算,15天可以剪1200个灯笼.【考点】简单的工程问题.【专题】工程问题.【分析】先用每人每天剪灯笼的个数乘上5人,求出5人每天剪多少个灯笼,再用5人每天剪的灯笼数乘上15天即可求解.【解答】解:16×5×15=80×15=1200(个)答:15天可以剪1200个灯笼.故答案为:1200.一只公鸡、一只母鸡和一只小鸡一起啄食了1001粒稻谷,当小鸡啄食1粒稻谷时,母鸡啄食2粒,公鸡啄食4粒,每只鸡分别啄食多少粒稻谷?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】根据题意,设小鸡啄x粒,则母鸡啄2x粒,公鸡啄4x粒,由题意得:x+2x+3x=1001,解此方程即可.【解答】解:设小鸡啄x粒,则母鸡啄2x粒,公鸡啄4x粒,由题意得:x+2x+3x=10017x=10017x÷7=1001÷7x=1432x=2×143=286,4x=4×143=572,答:小鸡啄143粒、母鸡啄286粒、公鸡啄572粒.一个加工车间要加工875个零件,已经加工了3.5小时,每小时加工50个,剩下的平均每小时加工70个,还要几小时完成任务?【考点】简单的工程问题.【专题】工程问题.【分析】设还需要x小时完成,原来已经完成了50×3.5个,剩下需要完成70x个,它们的和就是总数量875个,由此列出方程求解.【解答】解:设还需要x小时完成,由题意得:50×3.5+70x=875175+70x=87570x=700x=10答:还需要10小时完成任务.三:单位“1”的运用一项工程甲、乙合作完成了全工程的,剩下的由甲单独完成,甲一共做了10天,这项工程由甲单独做需15天,如果由乙单独做,需()天.A.18 B.19 C.20 D.21【考点】简单的工程问题.【专题】应用题;逻辑推理;工程问题.【分析】把这项工程的工作总量看成单位“1”,甲的工作效率是,先求出甲独自完成的部分是工作总量的几分之几,用这部分工作量除以甲的工作效率求出这部分工作量甲需要的时间,继而求出合作时用的时间;再用合作时甲的工作效率乘甲的工作时间,求出甲在合作中完成的工作量,进而求出合作中乙完成的工作量,用乙完成的工作量除以乙的工作时间就是乙的工作效率,进而求出乙独做需要的时间.【解答】解:(1﹣)÷=÷=4(天)10﹣4=6(天)﹣×6=﹣=1÷(÷6)=1÷=20(天)答:如果由乙单独做,需20天.故选:C.一项工程,甲单独做要a小时,乙单独做要b小时,则甲乙合作所需时间为()小时.A.+B.C.D.【考点】简单的工程问题;用字母表示数.【专题】用字母表示数;工程问题.【分析】把这项工程的工作量看作单位“1”,再运用工作总量除以工作效率的和就是合作的工作时间.【解答】解:1÷(),=1÷()=1,=;故应选:C.一项工程,甲单独做需14天完成,乙队单独做需7天完成,丙队单独做需要6天完成.现在乙、丙两队合做3天后,剩下的由甲单独做,还要()天才能完成任务.A.1 B.2 C.3 D.4【考点】简单的工程问题.【专题】工程问题.【分析】首先根据工作效率=工作量÷工作时间,分别求出甲、乙、丙的工作效率各是多少;然后根据工作量=工作效率×工作时间,求出乙、丙两队合做3天完成了几分之几;最后根据工作时间=工作量÷工作效率,用剩下的工作量除以甲的工作效率,求出余下的甲还需多少天完成即可.【解答】解:[1﹣()×3]==1(天)答:余下的甲单独做还需1天完成.故选:A.修一条小路,3天修了这条路的,照这样计算修完这条路需18天.【考点】简单的工程问题.【专题】综合填空题;工程问题.【分析】把这条小路看作单位“1”,首先根据工作量÷工作时间=工作效率,求出每天的工作效率,再根据工作量÷工作效率=工作时间,据此解答.【解答】解:1÷(÷3)===1×18=18(天),答:照这样计算修完这条路需18天.故答案为:18.录入一份稿件,甲单独录入12小时可以完成,乙单独录入15小时可以完成,现在甲、乙一起录入,多少小时可以完成这份稿件的?【考点】简单的工程问题.【专题】应用题;代数方法;工程问题.【分析】把一份稿件的总量看作单位“1”,由此可得两人的工作效率,根据工作量÷效率和=合作时间列式解答即可.【解答】解:÷(+)=÷=(小时)答:小时可以完成这份稿件的.一项工程,甲单独做20天完成,乙单独做30天完成.甲先做了一些天后,余下的甲、乙合做了9天,完成了任务.甲先做了几天?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】把工作量看作单位“1”,表示出两人的工作效率:甲的工作效率为,乙的工作效率为,那么甲、乙合做9天完成(+)×9,然后求出剩余工作量,再除以甲的工作效率,解决问题.【解答】解:[1﹣(+)×9]÷=[1﹣]×20=×20=5(天)答:甲先做了5天.一件工程,甲独做2天完成,乙独做15天完成.现在甲乙合做完成这件工程,其中乙休息了3天.从开始到完工一共用了多少天?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】首先根据工作效率=工作量÷工作时间,分别求出甲乙的工作效率各是多少;然后根据工作量=工作效率×工作时间,用乙的工作效率乘3,求出乙3天能完成这件工程的几分之几,再用1减去乙3天完成的占这件工程的分率,求出甲乙共同完成了这件工程的几分之几,再用甲乙合作完成的工作量除以甲乙的工作效率之和,求出甲乙合作了多少天;最后用甲乙合作的时间加上3,求出从开始到完工一共用了多少天即可.【解答】解:(1﹣)÷()+3=(1﹣)÷()+3=÷+3=5+3=8(天)答:从开始到完工一共用了8天.甲乙二人共同加工一批零件,二人合作3天完成了这批零件的.甲每天加工48个,乙单独完成需15天,这批零件共有多少个?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】首先根据工作效率=工作量÷工作时间,用二人合作3天完成的占这批零件的分率除以3,求出甲乙的工作效率之和是多少;然后用它减去乙的工作效率,求出甲的工作效率是多少;最后根据工作时间=工作量÷工作效率,用1除以甲的工作效率,求出甲单独完成需要多少天,再用它乘甲每天加工的零件的数量,求出这批零件共有多少个即可.【解答】解:1÷()×48=1÷×48=22.5×48=1080(个)答:这批零件共有1080个.肖老师准备用一些钱给学生买奖品,单买钢笔可买8支,单买练习本可买24本,肖老师先买了6支钢笔,剩下的钱可买多少本练习本?【考点】简单的工程问题.【专题】应用题;工程问题.【分析】首先根据题意,把肖老师准备给学生买奖品的钱看作单位“1”,分别用1除以单买钢笔、单买练习本的数量,求出每支钢笔和每本练习本各用去这些钱的几分之几;然后用每支钢笔用去的钱占这些钱的分率乘6,求出6支钢笔用去了这些钱的几分之几,再用1减去6支钢笔用去的钱占的分率,求出剩下的钱占几分之几,再用它除以每本练习本的价格占这些钱的分率,求出剩下的钱可买多少本练习本即可.【解答】解:(1﹣×6)÷=(1﹣)÷=÷=6(本)答:剩下的钱可买6本练习本.。

行程大全(题目版)

行程大全(题目版)

行程大全行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。

已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。

那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。

求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。

如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。

如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。

【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。

甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。

求山脚到山顶的距离。

【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。

我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。

它们的基本关系式是:工作总量÷工作效率=工作时间。

工程问题是小学分数应用题中的一个重点,也是一个难点。

下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。

例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?[思路说明]①把这项工程的工作总量看作“1”。

甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。

甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。

1÷(1/12+1/20)=1÷2/15=15/2(天)②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。

用工作总量除以两队合建一天的工作量,就是两队合建的天数。

60÷(60÷12+60÷20)=60÷(5+3)=60÷8=15/2(天)评点这是一道工程问题的基本题,也是工程问题中常见的题型。

上面列举的两种解题方法,前者比较简便。

这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。

甲、乙两队合做一天,完成这项工程的1/8+1/10=9/40,工作总量“1”中包含多少个甲乙效率之和,就是甲乙合做所需要的天数。

甲乙合做所需时间的3/4,就是甲乙合做完成全部工程的3/4所需的时间。

1÷(1/8+1/10)×3/4=1÷9/40×3/4=10/3(天)②把甲、乙两队合做的工作量3/4,除以甲、乙两队的效率之和1/8+1/10=9/40,就是甲乙合做完成全部工程的3/4所需要的时间。

3/4÷(1/8+1/10)=3/4÷9/40=10/3(天)评点思路①是先求出两队合做一项工程所需的时间,再用乘法求出完成全部工程的3/4所需的时间。

思路②是把“3/4”看作工作总量,工作总量除以两队效率之和,就可以求出完成全部工程的3/4所需的时间。

两种思路简捷、清晰,都是很好的解法。

练习:一项工程,单独完成,甲队需8天,乙队需12天。

两队合干了一段时间后,还剩这项工程的1/6没完成。

问甲、乙两队合干了几天?例3东西两镇,甲从东镇出发,2小时行全程的1/3,乙队从西镇出发,2小时行了全程的1/2。

两人同时出发,相向而行,几小时才能相遇?[思路说明]①由甲2小时行全程的1/3。

可知甲行完全程要2÷1/3=6(小时);由乙2小时行全程的1/2,可知乙行完全程要2÷1/2=4(小时)。

求出了甲、乙行完全程各需要的时间,时间的倒数便是各自的速度,进而可求出两人速度之和,把东西两镇的路程看作“1”,除以速度之和,就可求出两人同时出发相向而行的相遇时间。

综合算式:1÷(1/(2÷1/3)+1/(2÷1/2))=1÷(1/6+1/4)=1÷5/12=12/5(小时)②由甲2小时行了全程的1/3,可知甲每小时行全程的1/3÷2=1/6;由乙2小时行全程的1/2,可知乙每小时行全程的1/2÷2=1/4。

把东西两镇的路程“1”,除以甲、乙的速度之和,就可得到两人同时出发相向而行的相遇时间。

综合算式:1÷(1/3÷2+1/2÷2)=1÷(1/6+1/4)=1÷5/12=12/5(小时)评点本题没有直接告诉甲、乙行完全程各需的时间,所以求出甲、乙行完全程各需的时间或各自的速度,是解题的关键所在。

练习:打印一份稿件,小张5小时可以打完份稿件的1/3,小李3小时可以打完这份稿件的1/4,如果两人合打多少小时完成?例4一项工程,甲、乙合做6天可以完成。

甲独做18天可以完成,乙独做多少天可以完成?[思路说明]把一项工程的工作总量看作“1”,甲、乙合做6天可以完成,甲、乙合做一天,完成这项工程的1/6,甲独做18天可以完成,甲做一天完成这项工程的1/18。

把甲、乙工作效率之和,减去甲的工作效率1/18,就可得到乙的工作效率:1/6-1/18=1/9。

工作总量“1”中包含了多少个乙的工作效率,就是乙独做这项工程的需要的时间。

1÷(1/6-1/18)=1÷1/9=9(天)评点这是一道较复杂的工程问题,是工程问题的主要题型之一。

主要考查同学们运用分数的基本知识及工程问题的数量关系,解决实际问题的能力。

解答这类工程问题的关键是:先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

有的同学在解这道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。

如果用小卡车单独运,15小时可以运完。

问大卡车单独运几小时可以运完?例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。

如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。

甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。

把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

综合算式:[1-(1/10+1/15)×5]÷1/12=[1-1/6×5]÷1/12=1/6÷1/12=2(天)评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。

它的特点是求剩余部分的工作量完成的时间。

关键是正确求出剩余部分的工作量。

从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。

有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?例6一件工程,甲、乙合作6天可以完成。

现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。

这件工程如果由甲单独做,需要几天完成?[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。

用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。

又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。

把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。

求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

综合算式:1÷[1/6-(1-1/6×2)÷8]=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]=1÷[1/6-1/12]=1÷1/12=12(天)评点这也是一道复杂的工程问题。

解题的关键是正确求出甲的工作效率。

要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。

如果整个工程由甲、丙两队合做需要几天完成?妙解工程问题应用题工程问题应用题,我们通常是把工作总量看作是整体“1”,利用“工作效率×工作时间=工作总量”这个公式来计算。

但在平时的计算中,我觉得这样比较麻烦。

便尝试着用更简便的方法来解答,终于,我找到了一种新的解法——“份数法”。

例如,一项工程,由甲队独做要10天完成,由乙队独做8天完成。

两队合作多少天完成?思考把这项工程的工作量看作是( 10 ×8)份,则甲队的工作效率为10份,乙队的工作效率为8份,两队的工作效率就是( 10+ 8)份。

由此可见,又例如,一项工程,甲队单独做要15天完成,乙队单独作要20天完成。

乙队先独作3天,然后由甲、乙两队合作完,甲、乙两队合作还要多少天?分析把这项工程的工作量看作(15×20)份,则甲队的工作效率为15份,乙队的工作效率为20份。

乙队先独做3天,共完成工作量的(20×3)份,剩下的工作量就是(15×20-20×3)份。

因此,甲、乙两队合作完成的工作量所从上面两道例子,我们可以看出应用“份数法”解工程问题,不仅计算简便,而且同学们容易理解。

小学数学竞赛中工程问题应用题的解答方法. 1.工程问题的基本数量关系是:工作总量=工作效率×工作时间。

解题时,要抓住这一关系,灵活地运用这一数量关系提高解题能力。

2.以工作效率为突破,工作效率是解答工程问题的要点。

如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。

相关文档
最新文档