《2011年高考数学总复习系列》_高中数学必修一
2011届高考数学第一轮总复习知识点课件6
11. 在△ABC中,角A,B,C所对的边为a,b,c,
2 2 a b sin (A - B) 求证: c2 sin C
.
证明: 由余弦定理,得a2-b2=c2-2bccos A, 2 2 2 a b c - 2bcos A c 2bcos A 则 . 2 2 c c c 又由正弦定理,得 c 2bcos A sin C - 2sin Bcos A c sin C sin C -[sin(B A) sin(B - A)] sin C sin C -[sin C sin(B - A)] sin (A - B) , sin C sin C
个是正确的,不可能有第三种情况出现.
举一反三
3. 已知a,b,c是一组勾股数,且 a 2 b2 c2 . 求证:a,b,c不可能都是奇数.
2 2 2 证明: 假设a,b,c都是奇数,且a,b,c是一组勾股数,∴ a b c
又∵a,b,c都是奇数,∴a 2 , b2 , 2 也都是奇数, c ∴ a 2 b 2 是偶数, a 2 b2 c 2 ,
考点演练
10. 完成反证法证题的全过程. 已知:a1,a2,…,a7是1,2,…,7的一个排列. 求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数. 证明:假设p为奇数,则均为奇数.① 因奇数个奇数之和为奇数,故有 奇数= = =0. 但奇数≠0,这一矛盾说明p为偶数. 答案: ① a1 1, a2 1,...a7 7 ② a1 1 a2 1 ... a7 7 ③ a1 a2 ... a7 1 2 ... 7 ② ③
b d b
a,b,c,d∈R+且bc>ad, ∴
bc ad 0 b d b
高考数学(2011)复习一本全
高考数学复习一本全目录前言 (2)第一章高中数学解题基本方法 (3)一、配方法 (3)二、换元法 (7)三、待定系数法 (14)四、定义法 (19)五、数学归纳法 (23)六、参数法 (28)七、反证法 (32)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想 (35)二、分类讨论思想 (41)三、函数与方程思想 (47)四、转化(化归)思想 (54)第三章高考热点问题和解题策略 (59)一、应用问题 (59)二、探索性问题 (65)三、选择题解答策略 (71)四、填空题解答策略 (77)附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。
而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。
2011高考数学必看之-必修1-5知识点
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
2011届高考数学第一轮复习精品课件12.ppt
│要点探究
【解答】算法设计如下: 第一步,r1=1,r2=4,h=4; 第二步,l= (r2-r1)2+h2; 第三步,S1=πr21,S2=πr22,S3=π(r1+r2)l; 第四步,S=S1+S2+S3,V=13(S1+ S1S2+S2)h; 第五步,输出 S 和 V. 程序框图如下:
│要点探究
│要点探究
变式题 有 9 个外形完全相同的小球,其中 8 个的 质量一样,有一个质量稍微轻一些,给你一个天平,你能 把那个质量稍轻的小球找出来吗?写出寻找较轻小球的 算法.
【思路】利用天平平衡原理,较高的托盘里面的小 球就是要找的,通过适当的方法,尽快找出较轻的小 球.
│要点探究
【解答】算法1: 第一步:任取两个小球分别放到天平的两个托盘 中,如果天平不平衡,则较高的托盘中的小球就是要 找的小球;如果天平是平衡的,则执行下一步; 第二步:取出左边托盘的一个球,然后把剩下的7 个小球依次放到左边托盘中,直到天平不平衡,找出 较轻的小球; 第三步:结束. 算法2: 第一步:把9个小球平均分成三组,每组3个; 第二步:把其中的两组放到天平的两个托盘中,
│知识梳理
明,也可以用框图直观地显示算法的全貌. 3.算法的要求 (1)写出的算法,必须能解决一类问题,并且能够重复使
用. (2)算法过程要能一步一步执行,每一步执行的操作,必
须确切,不能含混不清,而且经过有限步后能得出结果. 4.程序框图又称流程图,是一种用规定的图形、指向线
及文字说明来准确、直观地表示算法的图形. 通常,程序框图由 程序框 和 流程线 组成,一个或
理科
│知识框架 知识框架
│知识框架
│考试说明
考试说明
1.算法初步 (1)了解算法的含义,了解算法的思想. (2)理解程序框图的三种基本逻辑结构:顺序结构、条 件结构和循环结构. 2.复数 (1)理解复数的基本概念. (2)理解复数相等的充要条件. (3)了解复数的代数表示法及其几何意义.
《2011年高考数学总复习系列》模拟压轴大题总结+详细解析
2009-2010年高考数学模拟压轴大题总结+详细解析1.(重庆八中高2010级高三(上)第一次)已知在数列{}n a 中,221,t a t a ==,其中0>t ,t x =是函数)2(1])1[(3)(131≥+-+-=+-n x a a t x a x f n n n 的一个极值点. (1)求数列{}n a 的通项公式;(2)若221<<t ,)(12*2N n a a b nn n ∈+=,求证: 21211122n nn b b b -+++<- . 解答. (1) 由题意得:0)('=t f ,即1133[(1)]0n n n a t t a a -+-+-= 故)2)((11≥-=-++n a a t a a n n n n ,则当1≠t 时,数列{}n n a a -+1是以t t -2为首项,t 为公比的等比数列,所以121)(-+-=-n n n t t t a a 由nn n n n n t tt t t t t t t t t t a a a a a a a a =--∙-+=++++-+=-++-+-+=---11)(]1)[()()()(12222123121此式对1=t 也成立,所以)(*N n t a n n ∈=――――――――6分 (2))(21)1(211n n n n n t t a a b -+=+=,因为221<<t ,所以n n n t t 2,1)2(<>,则0]1)2)[(2()2(1)()22()>--=--+--n n n nn n n n t t t t t ,有)22(211nn n b -+< 故)]212()212()212[(211112221n n n b b b ++++++<+++ )211(212]211)211(212121(2[21111)21n n n n n b b b +-=--+--<+++ 22122212212111nn n n n b b b --=∙-<+++∴ ―――――――12分2.(南充高中2010届高三第二次)已知函数f (x )=021n n C x --1n C 2nx 1212131(1)n r r n r n n n n n C x C x C x +-+-+-⋅⋅⋅+-+⋅⋅⋅+,其中n ()n N +∈.(1)求函数f (x )的极大值和极小值;(2)设函数f (x )取得极大值时x =n a ,令n b =2-3n a ,n S =12231n n bb b b b b +++⋅⋅⋅+,若p ≤n S <q 对一切n ∈N +恒成立,求实数p 和q 的取值范围.解答(1)210122()[(1)]n r r r n nn n n n n f x x C C x C x C x C x -=-+-⋅⋅⋅+-+⋅⋅⋅=21(1)n n x x --,……1分2221()(21)(1)(1)n n n f x n x x x n x --'=---⋅-=221(1)[21(31)]n n x x n n x ------。
《2011年高考数学总复习系列》_高中数学必修二
《2012年高考数学总复习系列》——高中数学必修二第一章 立体几何初步一、基础知识(理解去记)(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为矩形 侧棱与底面边长相等①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222c o s c o s c o s 2αβγ++=,222sin sin sin 1αβγ++=.AB1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.5面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)注意:大多数省市在高考试卷会给出面积体积公式,因此考生可以不用刻意地去记 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4面积、体积公式: S圆柱侧=2rh π;S圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3.棱锥3.1棱锥——有一个面是多边形,其余各面是有3.3侧面展开图:正n 棱锥的侧面展开图是有n 个全等的等腰三角形组成的。
]《2011年高考数学总复习系列》 高中数学必修一
目录一、2011年高考数学全部知识点整理+经典例题详细解析高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、 高中数学必修五、高中数学选修2-1、高中数学选修2-2、高中数学选修2-3 高中数学选修4-5二、【内部资料】2009-2010年高考数学模拟压轴大题总结+详细解析《2011年高考数学总复习系列》——高中数学必修一 第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集 }.{B x A x x B A ∈∈=且 }.{B x A x x B A ∈∈=或},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,b a R x <∈记作闭区间],[b a ,R 记作).,(+∞-∞∅是任何集合的子集,是任何非空集合的真子集。
2011届高考数学第一轮总复习课件8
类比推理一般要先找出两类事 物之间的相似性或一致性 ,然后用一类事物 的性质去推测另一类事物的性质,一般地,如 果类比的相似性越多 ,相似的性质与推测的 性质之间越相关,类比得出的命题越可靠.
变式练习2 在平面几何中有:△ABC中,
若它的内切圆半径为 r,周长为 C ,则它的面 积S△ ABC 命题,并予以证明.
r C . 类比得出空间几何中类似的 2
命题 :在三棱锥 A-BCD中 ,若它的内切 圆半径为R,表面积为S,则它的体积VA-BCD= RS . 证明 : 设三棱锥 A-BCD 的内切球球心为 O, 连接OA、OB、OC、OD, 因为S△ABC+S△BCD+S△ABD+S△ACD=S, 所以VA-BCD=VO-ABC+VO-BCD+VO-ABD+VO-ACD
类比得猜想:在空间中,过直线外一点, 有且只有一个平面与已知直线垂直. 在这三个类比猜想中,正确猜想的个数 有 1 个.
①由于当a⊥b时,a· b=0,所以猜想 ①不正确.又垂直于同一个平面的两个平面 可能平行也可能相交.故猜想②不正确.
5.已知凸 n边形 (n≥ 3)的对角线有 f(n)条 , 由f(3)=0,f(4)=2,f(5)=5,f(6)=9,可以猜想f(n)=
4.给出下列三个类比猜想: ①若a、b为实数,且a· b=0,则a、b至少有一 个数为0. 类比得猜想:对向量a、b,若a· b=0,则a、 b中至少有一个向量为0. ②在平面内 ,垂直于同一条直线的两直线 互相平行. 类比得猜想:在空间中 ,垂直于同一个平 面的两个平面互相平行. ③在平面内过直线外一点 ,有且只有一条 直线与已知直线垂直.
2 2 2 1
2 1
又x1<x2,则x2-x1>0.
2011届高考数学第一轮总复习知识点课件7
错解 f 2k 1 f 2k
1 1 1 错解分析 ∵ f n 1 ... 中共有n项相加, 2 3 n k k 1 ∴ f 2 中应有 2k 项相加, f 2 中应有 2 k 1项相加,
∴ f 2k 1 f 2k 中应有 2k 1 2k 项. 正解
结论也正确.
那么,命题对于从n0开始的所有正整数n都成立.
典例分析
题型一 与自然数n有关的等式的证明 【例1】用数学归纳法证明:
1 1 1 1 n ... 2 4 4 6 68 2n 2n 2 4 n 1
分析 用数学归纳法证明问题,应严格按步骤进行,并注意过 程的完整性和规范性. 证明 (1)当n=1时,左边=12×4=18,右边=18,等式成立.
由归纳假设, a4 k 是3的倍数,故可知 bk 1 是3的倍数.
∴当n=k+1时命题成立………………………………………….12′
综合(1)(2)知,对任意n∈N*,数列 bn 各项都是3的倍 数. ……………………………………………………………14′
学后反思 在证n=k+1时,对 a4 k 1 应用递推关系式裂项,裂
举一反三
2. 用数学归纳法证明:1 3 x n (n∈N*)能被x+2整除.
证明: (1)当n=1时, 1-(3+x)=-2-x=-(x+2),能被x+2整除. (2)假设当n=k时, 1 3 x 能被x+2整除,
k
则可设 1 3 x = x 23 x f x (f(x)为k-1次多项式).
综上可得,等式对于任意n∈N*都成立. 学后反思 用数学归纳法证题时两个步骤缺一不可,证当 n=k+1时命题成立,必须要用当n=k时成立的结论,否则,就 不是数学归纳法证明.
2011年高考数学总复习
2011年高考数学总复习一、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
二次函数c bx ax y ++=2的图象的对称轴方程是abx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,。
用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()((顶点式)。
2、 幂函数nmx y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。
二、 三角函数1、 以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y,ctg α=y x ,sec α=x r ,csc α=yr 。
2、同角三角函数的关系中,平方关系是:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;相除关系是:αααcos sin =tg ,αααsin cos =ctg 。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -。
4、 函数B x A y ++=)s i n (ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
2011高考数学总复习-高考生必读必会
2011高考数学总复习-高考生必读必会2011高考数学总复习(基础知识)-高考生必读必会23复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析:例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0不等式的解为 x ∈∅.45④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a aa a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(a a a a a a ----+-.⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆综上:当0≤a<1时,解集为(-∞,+∞). 当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞).当a<0时,解集为))1(1,)1(1(a a a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科)解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0.① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>12aa ,即a>0时,不等式解为),2[]1,(+∞--∞a.6当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x a x ,当⎪⎩⎪⎨⎧-<<12a a ,即-2<a<0时,不等式解为]1,2[-a 当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a .-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a -.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值.7解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x令sinx=t, t ∈[-1,1].则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a 即a>2时,t=1,2533max=++-=a a y解方程得:22132213-=+=a a 或(舍).(2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max=++-=a a y,解方程为:34-=a 或a=4(舍). (3)当12-<a 即a<-2时, t=-1时,y max=-a 2+a+5=2 即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2.例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而 0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S nn--=1)1(1, 从而8.0)1()1()1)(1(2122121221212<-=-----=-⋅++++n n n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n nS S S .∵ 函数xy 5.0log =为单调递减函数.∴ 15.025.05.0log 2log log ++>+n n n S SS . 例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---by a x ,一条渐近线的斜率为2=ab, ∴ b=2.∴555222==+==a a a b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=b a,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a . 解:原不等式 012)1(55<⇔+--x x a90)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--a a,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a a a a 即a<1时,解为)12,2(aa--. ②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a aaa 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121a a a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(aa --.由(3)a>1时,aa --12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a aa ⇒ a 不存在.②⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a aa a 当a>1时,原不等式的解为:),2()12,(+∞---∞ aa. 综上:10a=1时,x ∈(2,+∞).a<1时,x ∈)12,2(a a-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(aa-- a>1时,x ∈),2()12,(+∞---∞ aa . 评述:对于分类讨论的解题程序可大致分为以下几个步骤:10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[, 3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
2011年高考一轮复习数学精品课件系列《两条直线的位置关系》
课堂互动讲练
(解题示范)(本题满分14分) 已知直线l过点P(3,1)且被两 平行线l1:x+y+1=0,l2:x +y+6=0截得的线段长为5, 求直线 l的方程. 【思路点拨】 可设点斜式方程,
例3
求与两直线的交点.利用两点间距离公 式求解.
课堂互动讲练
【解】 法一:若直线l的斜率 不存在,则直线l的方程为x=3,此 时与l1,l2的交点分别是A(3,-4), B(3,-9),截得的线段长AB=|-4 +9|=5,符合题意.3分 当直线l的斜率存在时, 则设直线l的方程为y=k(x-3) +1, 分别与直线l1,l2的方程联立.
课堂互动讲练
跟踪训练
1.(2009年高考上海卷改 编)已知直线l1:(k-3)x+(4 -k)ቤተ መጻሕፍቲ ባይዱ+1=0与l2:2(k-3)x- 2y+3=0平行,则k的值是 ________.
课堂互动讲练
跟踪训练 解析:k=3时,l1:y+1=0, l2:-2y+3=0,显然平行; k=4时,l1:x+1=0,l2:2x k- 3 -2y+3=0,显然不平行; 有
课堂互动讲练
例1
已知两条直线l1:ax-by+ 4=0和l2:(a-1)x+y+b=0, 求满足下列条件的a、b的值. (1)l1⊥l2,且l1过点(-3,- 1); (2)l1∥l2,且坐标原点到这 两条直线的距离相等.
课堂互动讲练
【思路点拨】 由条件可知,直线l2的斜率 为1-a,可通过对1-a的取值情况的讨论来解决 该题.
课堂互动讲练
自我挑战
3.(本题满分14分)在直线l:3x-y -1=0上求一点P,使点P到点A(1,7)和B (0,4)的距离之和最小.
解:设点B关于直线l的对称点 B′(m,n). n-4 则kBB′· kl=-1,即m · 3=-1, ∴m+3n-12=0. m 又由于线段 BB′的中点坐标为 n+4 ( 2 , 2 ),且在直线l上,
2011高考数学知识点一本全
— 1 — 高中数学知识点精析高中数学 知识点精析2. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.注:特殊圆的方程:①与x 轴相切的圆方程222)()(b b y a x =±+-)],(),(,[b a b a b r -=或圆心②与y 轴相切的圆方程222)()(a b y a x =-+± )],(),(,[b a b a a r -=或圆心 ③与x 轴y 轴都相切的圆方程222)()(a a y a x =±+± )],(,[a a a r ±±=圆心 3. 圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D . 当0422 F E D -+时,方程无图形(称虚圆). 注:①圆的参数方程:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数).②方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.③圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A (用向量可征).4. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x -+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5. 直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-; 直线l :)0(022≠+=++B A C By Ax ;— 2 — 高中数学知识点精析圆心),(b a C 到直线l 的距离22BA C Bb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程. ②d r <时,l 与C 相交;附:公共弦方程:设 有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③d r >时,l 与C 相离.附:若两圆相离,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为圆心21O O 的连线的中与线方程.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax r b y a x 用代入法,得关于x (或y )的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.注:若两圆为同心圆则011122=++++F y E x D y x ,022222=++++F y E x D y x 相减,不表示直线.6. 圆的切线方程:圆222r y x =+的斜率为k 的切线方程是r k kx y 21+±=过圆022=++++F Ey Dx y x上一点),(00y x P 的切线方程为:0220000=++++++F y y E x x Dy y x x . ①一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2. 特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.②若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k 切线方程.7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图::0:222222111221=++++=++++F y E x D y x C F y E x D y xC— 3 — 高中数学知识点精析ABCD 四类共圆. 已知O Θ的方程022=++++F Ey Dx y x …① 又以ABCD 为圆为方程为2))(())((k b x y y a x x x A A =--+--…②4)()(222b y a x R A A -+-=…③,所以BC 的方程即③代②,①②相切即为所求.第四部分 三角函数1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{Z k k ∈+⨯=,45180|ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域— 4 — 高中数学知识点精析(一)基本关系公式组二 公式组三x x k x x k x x k x x k c o t)2c o t (t a n )2t a n (c o s)2c o s (sin )2sin(=+=+=+=+ππππxx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x c o t)2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (-=--=-=--=-ππππ x x x x x x x x c o t)c o t (t a n )t a n(c o s )c o s (s i n )s i n (-=--=--=-=-ππππ (二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n 22s i n= βαβαβαsin sin cos cos )cos(+=-ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=公式组一sin x ·csc x =1tan x =xxcos sin sin 2x +cos 2x =1cos x ·sec x x =x x sin cos 1+tan 2x =sec 2xtan x ·cot x =1 1+cot 2x =csc 2x =1— 5 — 高中数学知识点精析βαβαβαsin cos cos sin )sin(-=- 2c o s12s i n αα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2c o s12c o s αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五 2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22αα+-= 2tan 12tan 2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-— 6 — 高中数学知识点精析注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则(f y -=. ②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanxy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)c o s(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)ta n (ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα. ⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].— 7 — 高中数学知识点精析⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=Tx y cos =是周期函数(如图);x y cos =为周期函数(212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩ab b a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.第五部分 向量与解三角形1. 长度相等且方向相同的两个向量是相等的量.注意:①若b a,为单位向量,则b a=. (⨯) 单位向量只表示向量的模为1,并未指明向量的方向.②若b a=,则a ∥b . (√)2. ①()aμλ=()aλμ ②()a a aμλμλ+=+ ③()b a b aλλλ+=+④设()()R y x b y x a ∈==λ,,,,2211 ()2121,y y x x b a ++=+()2121,y y x x b a --=-()21,y x a λλλ= 2121y y x x b a +=⋅ 2121y x a += (向量的模,针对向量坐标求模)⑤平面向量的数量积:θcos b a b a ⋅=⋅ ⑥a b b a⋅=⋅ ⑦()()()b a b a b aλλλ⋅=⋅=⋅ ⑧()c b c a c b a ⋅+⋅=⋅+注意:①()()c b a c b a⋅⋅=⋅⋅不一定成立;cb b a ⋅=⋅c a=.y=|cos2x +1/2|图象— 8 —②向量无大小(“大于”、“小于”对向量无意义),向量的模有大小.③长度为0的向量叫零向量,记0 ,0 与任意向量平行,0的方向是任意的,零向量与零向量相等,且00=-. ④若有一个三角形ABC ,则0;此结论可推广到n 边形.⑤若a n a m=(R n m ∈,),则有n m =. (⨯) 当a等于0时,0==a n a m ,而n m ,不一定相等.⑥a ·a=2||a ,||a =2a(针对向量非坐标求模),||b a⋅≤||||b a⋅. ⑦当0 ≠a 时,由0=⋅b a不能推出0 ≠b ,这是因为任一与a 垂直的非零向量b ,都有a ·b=0. ⑧若∥,∥,则∥(×)当等于时,不成立.3. ①向量b与非零向量....a共线的充要条件是有且只有一个实数λ,使得a bλ=(平行向量或共线向量).当,0 λ与共线同向:当,0 λ与共线反向;当则为,与任何向量共线.注意:若b a ,= (×)若是的投影,夹角为θ,则=⋅θcos ,=θcos (√)②设a=()11,y x ,()22,y x b =a∥b⇔=-⇔01221y x y x b a b a =⋅⇔=λa⊥b 001221=+⇔=⋅⇔y y x x b a③设()()()332211,,,,,y x C y x B y x A ,则A 、B 、C 三点共线⇔∥⇔=λ(0≠λ)⇔(1212,y y x x --)=λ(1313,y y x x --)(0≠λ) ⇔(12x x -)·(13y y -)=(13x x -)·(12y y -) ④两个向量a、b 的夹角公式:222221212121cos y x y x y y x x +⋅++=θ⑤线段的定比分点公式:(0≠λ和1-) 设 P 1P =λPP 2 (或P 2P λ1P P ),且21,,P P P 的坐标分别是),(),,(,,2211y x y x y x )(,则推广1:当1=λ时,得线段21P P 的中点公式: ⎪⎪⎩⎪⎪⎨⎧+=+=222121x x x y y y ⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121x x x y y y B— 9 — 高中数学知识点精析推广2λMB则λλ++=1PB PA (λ对应终点向量).三角形重心坐标公式:△ABC的顶点()()()332211,,,,,y x C y x B y x A ,重心坐标()y x G,: 注意:在△ABC 中,若0为重心,则=++,这是充要条件. ⑥平移公式:若点P ()y x ,按向量a=()k h ,平移到P‘()'',y x ,则⎪⎩⎪⎨⎧+=+=k y y hx x '' 4. ⑪正弦定理:设△ABC 的三边为a 、b 、c ,所对的角为A 、B 、C ,则R CcB b A a 2s i n s i n s i n ===. ⑫余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+=-+=C ab a b c B ac c a b A bc c b a cos 2cos 2cos 2222222222⑬正切定理:2tan2tanB A BA ba b a -+=-+⑭三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R ④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式]⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图:图1中的I 为S △ABC 的内心, S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a图1 图2 图3图4 附:三角形的五个“心”;B I A BCDEF IAB C DE F r ar ar abc aa b c C ⎪⎪⎩⎪⎪⎨⎧++=++=33321321y y y y x x x x— 10 — 高中数学知识点精析重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑮已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =c b a abc b a ++=-+2(如图3). ⑯在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑰在△ABC 中,D 是BC上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222. 证明:在△ABCD 中,由余弦定理,有B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC中,由余弦定理有 BCAB AC BC AB B ⋅-+=2cos 222②,②代入①,化简 可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理) ①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p 为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑱△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑲平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=DACB图5— 11 — 高中数学知识点精析第六部分 数列①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑬看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )① 注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要.— 12 — 高中数学知识点精析注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个.③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列. ⑭数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件. ③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;②若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇得到所求项数到代入12-⇒n n .3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n [注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒n n a .4. 等比数列的前n 项和公式的常见应用题:⑪生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-— 13 — 高中数学知识点精析⑫银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+. ⑬分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m mm mm m mr r ar x r r x r a x r x r x r x r a 5. 数列常见的几种形式:⑪n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设nn x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑫r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1( r r P a P n n +++⋅+=--Pr 211 .③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:PrP P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑪等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:— 14 — 高中数学知识点精析一是求使0,01 +≥n n a a ,成立的n 值;二是由n d a n dS n )2(212-+=利用二次函数的性质求n 的值.⑫如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅ ⑬两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.第七部分 不等式1. ⑪平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数):2112a b a b+≥+(当a =b 时取等)特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫ ⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ ⑫含立方的几个重要不等式(a 、b 、c 为正数): ①3322a b a b ab +≥+②3332223()()a b c abc a b c a b c ab ac bc ++-=++++---⇒3333a b c abc ++≥(等式即可成立0 c b a ++,时取等或0=++==c b a c b a );3a b c ++≤⇒33a b c abc ++⎛⎫≤ ⎪⎝⎭3333a b c ++≤ 2)(31c b a ac ba ab +++≤++(时取等c b a ==)⑬绝对值不等式:123123(0)a a a a a a ab a b a b ab ++≤++-≤-≤+≥时,取等⑭算术平均≥几何平均(a 1、a 2…a n 为正数):12n a a a n+++≥ (a 1=a 2…=a n 时取等)⑮柯西不等式:设),,,2,1(,n i R b a i i =∈则))(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++— 15 — 高中数学知识点精析等号成立当且仅当nn b a b a b a === 2211时成立.(约定0=i a 时,0=i b ) 例如:22222()()()ac bd a b c d +≤++. ⑯常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n n n n n n-==-≥++--1)n ==≥2. 常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()22327x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==- ③111||||||()2x x x xxx+=+≥与同号,故取等第八部分 导数1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 注:①x ∆是增量,我们也称为―改变量‖,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑪函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续.— 16 — 高中数学知识点精析事实上,令x x x ∆+=0,则0x x →相当于0→∆x . 于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑫如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒ ''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫ ⎝⎛v v uv vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑪函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则— 17 — 高中数学知识点精析)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑫常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x c o s )(s i n'= 1')(-=n n nx x (R n ∈) x x s i n )(c o s '-=— 18 — 高中数学知识点精析II. x x 1)(ln '= e xx a a l o g 1)(l o g '=x x e e =')( a a a x x ln )('=III. 求导的常见方法: ①常用结论:xx 1|)|(ln '=.②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''第九部分 立体几何 一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.— 19 — 高中数学知识点精析4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[)180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) 3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)12方向相同12方向不相同— 20 — 高中数学知识点精析4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ●若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√) 5. ⑪垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] ⑫射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”) 推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系. 5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. 证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OBPM OA PM⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,POAaP αβθM AB O— 21 — 高中数学知识点精析θ为钝取减,综上,都取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑪最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑫最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑪①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑫{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑬棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是......矩形..;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直. ⑭平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. 推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1co s co s co s 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面图1θθ1θ2图2— 22 — 高中数学知识点精析可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行)③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件) 2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑪①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法). ⑫棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. ⑬特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面l ab c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011高考数学复习必修1第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集 }.{B x A x x B A ∈∈=且 }.{B x A x x B A ∈∈=或},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,b a R x <∈记作闭区间],[b a ,R 记作).,(+∞-∞∅是任何集合的子集,是任何非空集合的真子集。
对集合中元素三大性质的理解 (1)确定性集合中的元素,必须是确定的.对于集合A 和元素a ,要么a A ∈,要么a A ∉,二者必居其一.比如:“所有大于100的数”组成一个集合,集合中的元素是确定的.而“较大的整数”就不能构成一个集合,因为它的对象是不确定的.再如,“较大的树”、“较高的人”等都不能构成集合. (2)互异性对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素.如:由a ,2a 组成一个集合,则a 的取值不能是0或1.(3)无序性集合中的元素的次序无先后之分.如:由123,,组成一个集合,也可以写成132,,组成一个集合,它们都表示同一个集合.帮你总结:学习集合表示方法时应注意的问题(1)注意a 与{}a 的区别.a 是集合{}a 的一个元素,而{}a 是含有一个元素a 的集合,二者的关系是{}a a ∈.(2)注意∅与{}0的区别.∅是不含任何元素的集合,而{}0是含有元素0的集合.(3)在用列举法表示集合时,一定不能犯用{实数集}或{}R 来表示实数集R 这一类错误,因为这里“大括号”已包含了“所有”的意思.用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义.例如:集合{()x y y =,中的元素是()x y ,,这个集合表示二元方程y 的解集,或者理解为曲线y =上的点组成的点集;集合{x y =中的元素是x ,这个集合表示函数y =中自变量x 的取值范围;集合{y y =中的元素是y ,这个集合表示函数y =中函数值y 的取值范围;集合{y =中的元素只有一个(方程y ),它是用列举法表示的单元素集合.(4)常见题型方法:当集合中有n 个元素时,有2n 个子集,有2n -1个真子集,有2n -2个非空真子集。
二、基础例题(必会)例1 已知{}243A y y x x x ==-+∈R ,,{}222B y y x x x ==--+∈R ,,求A B . 正解:2243(2)11y x x x =-+=---∵≥, 2222(1)33y x x x =--+=-++≤, {}1A y y =-∴≥,{}3B y y =≤,{}13A B y y =- ∴≤≤.解析:这道题要注意研究的元素(看竖线前的元素),均是y ,所以要求出两个集合中y 的范围再求交集,A 中的y 范围是求表达式的值域、因此此题是表示两个函数值域的集合.例2 若{}322427A a a a =--+,,, 223211122(38)372B a a a a a a a a ⎧⎫=+-+---+++⎨⎬⎩⎭,,,,,且{}25A B = ,,试求实数a .正解:∵A ∩B={2,5},∴由32275a a a --+=, 解得 2a =或1a =±.当a=1时,2221a a -+=与元素的互异性矛盾,故舍去1a =;当1a =-时,{}10524B =,,,,,此时{}245A B = ,,,这与{}25A B = ,矛盾,故又舍去1a =-;当2a =时,{}245A =,,,{}132525B =,,,,,此时{}25A B = ,满足题意,故2a =为所求. 解析:此题紧紧抓住集合的三大性质:①确定性 ②互异性 ③无序性三、趋近高考(必懂)1.(2010年江苏高考1)设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a =______________ 方法:将集合B 两个表达式都等于3,且抓住集合三大性质。
【答案】1.2.(2010.湖北卷2.)设集合A=22{(,)|1}416x y x y +=,B={(,)|3}x x y y =,则A ∩B 的子集的个数是( ) A. 4 B.3 C.2 D.1方法:注意研究元素,是点的形式存在,A 是椭圆,B 是指数函数,有数形结合方法,交于两个点,说明集合中有两个元素,还要注意,题目求子集个数,所以是22=4【答案】A集合穿针 转化引线(最新)一、集合与常用逻辑用语3.若2:3840:(1)(2)0p x x q x x -+>+->,,则p ⌝是q ⌝的( ). (A )充分条件 (B )必要条件(C )充要条件(D )既不充分又不必要条件解析:∵2:3840p x x -+>,即23x <或2x >, ∴2:23p x ⌝≤≤. ∵:(1)(2)0q x x +->,即1x <-或2x >, ∴:12q x ⌝-≤≤.由集合关系知:p q ⌝⌝⇒,而q p ⌝⌝¿.∴p ⌝是q ⌝的充分条件,但不是必要条件.故选(A).4. 若k ∈R ,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( ). (A )充分条件 (B )必要条件(C )充要条件(D )既不充分又不必要条件解析:方程22133x y k k -=-+表示双曲线 (3)(3)0k k k ⇔-+>⇔>或3k <-.故选(A ). 二、集合与函数5.已知集合2{2}{2}P y y x x Q x y x x ==-+∈==-+∈R R ,,,,那么P Q 等于( ). (A )(0,2),(1,1) (B ){(0,2),(1,1)} (C ){1,2} (D ){2}y y ≤解析:由代表元素可知两集合均为数集,又P 集合是函数22y x =-+中的y 的取值范围,故P 集合的实质是函数22y x =-+的值域.而Q 集合则为函数2y x =-+的定义域,从而易知{2}P Q y y = ≤,选(D ).评注:认识一个集合,首先要看其代表元素,再看该元素的属性,本题易因误看代表元素而错选(B)或(C).三、集合与方程6.已知2{(2)10}{0}A x x p x x B x x =+++=∈=>R ,,,且A B =∅ ,求实数p 的取值范围. 解析:集合A 是方程2(2)10x p x +++=的解集, 则由A B =∅ ,可得两种情况:①A =∅,则由2(2)40p ∆=+-<,得 40p -<<; ②方程2(2)10x p x +++=无正实根,因为1210x x =>, 则有0(2)0p ∆⎧⎨-+<⎩,,≥于是0p ≥.综上,实数p 的取值范围为{4}p p >-. 四、集合与不等式7. 已知集合222{412}{(21)(1)0}A a ax x x a B x x m x m m =+---=-+++<恒成立,≥, 若A B ≠∅ ,求实数m 的取值范围.解析:由不等式22412ax x x a +---≥恒成立,可得 2(2)4(1)0a x x a +++-≥,(※)(1)当20a +=,即2a =-时,(※)式可化为34x ≥,显然不符合题意. (2)当20a +≠时,欲使(※)式对任意x 均成立,必需满足200a +>⎧⎨∆⎩,,≤即2244(2)(1)0a a a >-⎧⎨-+-⎩,,≤解得 {2}A a a =≥.集合B 是不等式2(21)(1)0x m x m m -+++<的解集, 可求得{1}B x m x m =<<+,结合数轴,只要12m +>即可,解得 1m >.五、集合与解析几何例6 已知集合2{()20}A x y x mx y =+-+=,和{()1002}B x y x y x =-+=,,≤≤,如果A B ≠∅ ,求实数m 的取值范围.解析:从代表元素()x y ,看,这两个集合均为点集,又220x mx y +-+=及10x y -+=是两个曲线方程,故A B ≠∅ 的实质为两个曲线有交点的问题,我们将其译成数学语言即为:“抛物线220x mx y +-+=与线段10(02)x y x -+=≤≤有公共点,求实数m 的取值范围.”由22010(02)x mx y x y x ⎧+-+=⎨-+=⎩,,≤≤,得2(1)10(02)x m x x +-+=≤≤,①∵A B ≠∅ ,∴方程①在区间[0,2]上至少有一个实数解. 首先,由2(1)40m ∆=--≥,得3m ≥或1m -≤.当m ≥3时,由12(1)0x x m +=--<及121x x =知,方程①只有负根,不符合要求;当1m -≤时,由12(1)0x x m +=-->及1210x x =>知,方程①有两个互为倒数的正根,故必有一根在区间(01],内,从而方程①至少有一个根在区间[0,2]内.综上,所求m 的取值范围是(1]-∞-,. 第二章、函数一、基础知识(理解去记)定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。