2020高考数学一轮复习第6章不等式推理与证明第3节基本不等式教师用书文新人教A版
2020版高考数学一轮复习(讲义·理) 第6章 不等式 第3讲 基本不等式
第3讲 基本不等式1.基本不等式设a >0,b >0,则a 、b 的算术平均数为□05a +b 2,几何平均数为□06ab ,基本不等式可叙述为□07两个正数的算术平均数不小于它们的几何平均数. 2.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有□01最小值是2p (简记:□02积定和最小).(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有□03最大值是p 24(简记:□04和定积最大).注:应用基本不等式求最值时,必须考察“一正、二定、三相等”,忽略某个条件,就会出现错误.3.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ), 2(a 2+b 2)≥(a +b )2(a ,b ∈R ). (5)a 2+b 22≥a +b24≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b2≥ab ≥21a +1b(a >0,b >0).1.概念辨析(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为2.( )(4)x >0且y >0是x y +y x≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×2.小题热身(1)已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值0B .最小值0C .最大值-4D .最小值-4答案 C解析 因为x <0,所以-x >0, 所以-x +1-x≥2-x1-x =2,当且仅当-x =1-x即x =-1时等号成立.所以x +1x ≤-2.所以f (x )=x +1x-2≤-4.即f (x )有最大值-4.(2)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 由基本不等式18=x +y ≥2xy ⇔9≥xy ⇔xy ≤81,当且仅当x =y 时,xy 有最大值81,故选C.(3)已知lg a +lg b =2,则lg (a +b )的最小值为( ) A .1+lg 2 B .2 2 C .1-lg 2 D .2 答案 A解析 由lg a +lg b =2,可知a >0,b >0, 则lg (ab )=2,即ab =100. 所以a +b ≥2ab =2100=20, 当且仅当a =b =10时取等号, 所以lg (a +b )≥lg 20=1+lg 2. 故lg (a +b )的最小值为1+lg 2.(4)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大.答案 15152解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.题型 一 利用基本不等式求最值角度1 直接应用1.(2019·沈阳模拟)已知a >b >0,求a 2+1ba -b的最小值. 解 ∵a >b >0,∴a -b >0. ∴a 2+1ba -b ≥a 2+1⎝ ⎛⎭⎪⎫b +a -b 22=a 2+4a 2 ≥2a 2·4a 2=4,当且仅当b =a -b ,a 2=2,a >b >0,即a =2,b =22时取等号.∴a 2+1ba -b的最小值是4. 角度2 拼凑法求最值2.求f (x )=4x -2+14x -5⎝ ⎛⎭⎪⎫x <54的最大值.解 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.角度3 构造不等式求最值(多维探究)3.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为( ) A .3 B .4 C.92 D.112答案 B解析 因为x >0,y >0,且x +2y +2xy =8, 所以x +2y =8-2xy ≥8-⎝⎛⎭⎪⎫x +2y 22.整理得(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8.又x +2y >0,所以x +2y ≥4.故x +2y 的最小值为4. 条件探究 把举例说明3的条件“x +2y +2xy =8”改为“4xy -x -2y =4”,其他条件不变,求xy 的最小值.解 因为x >0,y >0且4xy -x -2y =4,所以4xy -4=x +2y ≥22xy . 整理可得2xy -2xy -2≥0.解得2xy ≥2即xy ≥2,所以xy 的最小值为2. 角度4 常数代换法求最值(多维探究)4.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5 答案 C解析 解法一:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a≥2+2a b ·ba=4,当且仅当a =b =2时取“=”,所以a +b 的最小值为4.解法二:因为直线x a +y b=1(a >0,b >0)过点(1,1), 所以1a +1b=1,所以b =aa -1>0,所以a >1,a -1>0,所以a +b =a +aa -1=a +a -1+1a -1=a -1+1a -1+2 ≥2a -1a -1+2=4. 当且仅当a -1=1a -1即a =2时等号成立,所以a +b 的最小值为4. 条件探究 将举例说明4条件变为“x >0,y >0且1x +9y=1”,求x +y 的最小值.解 ∵x >0,y >0,∴y >9且x =yy -9.∴x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. ∵y >9,∴y -9>0. ∴y -9+9y -9+10≥2y -9y -9+10=16. 当且仅当y -9=9y -9,即y =12时取等号. 又1x +9y=1,则x =4.∴当x =4,y =12时,x +y 取最小值16.1.拼凑法求解最值应注意的问题(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的条件. 2.通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.如举例说明4解法二.3.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式.如举例说明4解法一.(4)利用基本不等式求解最值.1.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 对于x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x≥229=223(当且仅当x =22时等号成立).故选B. 2.(2018·天津高考)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.答案 14解析 因为a -3b +6=0,所以a -3b =-6,2a +18b =2a +123b =2a +2-3b ≥22a ·2-3b=22a -3b=22-6=14⎝ ⎛⎭⎪⎫当且仅当2a =18b =18,即a =-3,b =1时取等号,所以2a +18b的最小值为14. 题型 二 基本不等式的综合应用角度1 基本不等式中的恒成立问题1.当x ∈⎝⎛⎭⎪⎫0,π2时,2sin 2x -a sin2x +1≥0恒成立,则实数a 的取值范围是________.答案 (-∞,3]解析 当x ∈⎝⎛⎭⎪⎫0,π2时,sin2x >0,原不等式可化为a sin2x ≤2sin 2x +1, a ≤2sin 2x +1sin2x.设f (x )=2sin 2x +1sin2x,则f (x )=2sin 2x +sin 2x +cos 2x 2sin x cos x =32tan x +12tan x.因为x ∈⎝⎛⎭⎪⎫0,π2,所以tan x >0. 所以f (x )=32tan x +12tan x≥232tan x ·12tan x=3, 当且仅当32tan x =12tan x ,即tan x =33时等号成立,所以f (x )min =3,所以a ≤ 3.角度2 基本不等式与其他知识的综合问题2.(2018·西安模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是( )A.6-24B.6+24 C.6-22D.6+22答案 A解析 由正弦定理,得a +2b =2c .所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24.当且仅当3a 2=2b 2,即3a =2b 时,等号成立. 所以cos C 的最小值为6-24.基本不等式的综合运用常见题型及求解策略(1)应用基本不等式判断不等式的成立性或比较大小,有时也与其他知识进行综合命题,结合函数的单调性进行大小的比较.(2)利用基本不等式研究恒成立问题,以求参数的取值范围为主,如举例说明1. (3)与其他知识综合考查求最值问题,此时基本不等式作为求最值时的一个工具,常出现于解三角形求最值、解析几何求最值问题等.如举例说明2.1.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1)答案 B解析 由32x -(k +1)3x +2>0恒成立,得k +1<3x+23x .∵3x+23x ≥22,∴k +1<22,即k <22-1.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12答案 A解析 a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n n +2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92.故选A. 题型 三 基本不等式在实际问题中的应用某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2017年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ,∴k =2,∴x =3-2m +1. 由题意可知每件产品的销售价格为1.5×8+16xx(元),∴2017年的利润y =1.5x ·8+16xx-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1,即m =3(万元)时,y max =21(万元). 故该厂家2017年的促销费用投入3(万元)时,厂家的利润最大为21万元.利用基本不等式求解实际问题的求解策略(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.提醒:利用基本不等式求最值时,一定要结合变量的实际意义验证等号是否成立.(2018·成都诊断)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.答案 2 20解析 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x (k 1≠0),y 2=k 2x(k 2≠0),∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为⎝ ⎛⎭⎪⎫5x +20x 万元,∵5x +20x≥25x ×20x =20,当且仅当5x =20x,即x =2时,运费与仓储费之和最小,为20万元.。
高考数学大一轮复习第六章不等式推理与证明第三节基本不等式及其应用课件理新人教A版03294185
思考2:已知x>0,y>0. ∵x+y≥2 xy,1x+2y≥2 x2y, ∴(x+y) 1x+2y ≥4 2 ,即(x+y) 1x+2y 的最小值为4 2 ,正确吗? 说明理由.
提示:不正确,取等号的条件:x=y且
1 x
=
2 y
无解,故(x+y)
1x+2y
≥4 2等号不成立,即(x+y)1x+2y的最小值不是4 2.
正确的求法:(x+y)
1x+2y
=1+
2x y
+
y x
+2≥3+2
2 .当且Leabharlann 当y=2x时取等号,故(x+y)1x+2y的最小值为3+2 2.
四基精演练
解析:选D.因为x<0,所以-x>0,-x+
1 -x
≥2
1 =2,当且仅
当x=-1时,等号成立,所以x+1x≤-2.
3.(知识点1、2)设x>0,y>0,且x+y=18,则xy的最大值为( C )
⇐ 源自必修五P99例1(2)
A.80
B.77
C.81
D.82
解析:选C.∵x>0,y>0,∴x+2 y≥ xy,
命题点2
含有等式条件的最值
[例2] [一题多解]已知正数x,y满足x+2y-xy=0,则x+2y的最
小值为( A )
A.8
B.4
C.2
D.0
解析:解法一:(构造目标不等式法)∵x>0,y>0,∴xy=
1 2
(x·2y)≤12×x+22y2,又x+2y=xy,∴x+2y≤12×x+22y2.由x>0,y> 0知x+2y>0,所以x+2y≥8,∴x+2y的最小值为8.
解析:因为ab>0,所以
高考数学一轮复习第六章不等式推理与证明第三节基本不等式及其应用课件文北师大版
)
A.最小值 1
B.最大值 1
C.最小值 2
D.最大值 2
考点一 利用基本不等式求最值
挖掘 1 直接应用基本不等式求最值/ 自主练透
[例 1] (1)当 x>0 时,函数 f(x)=x22+x 1有(
)
A.最小值 1
B.最大值 1
C.最小值 2
D.最大值 2
[解析] f(x)=x+2 1x≤2 2 x·1x=1.当且仅当 x=1x,x>0,即 x=1 时取等号.所以 f(x)有最大值 1. [答案] B
3.(基础点:构造不等式的定值)已知 x>1,则 x+x-4 1的最小值为________. 答案:5
4.(易错点:“1”的代换)若1a+1b=1(a>0,b>0),则 a+b 的最小值为__________. 答案:4
考点一 利用基本不等式求最值
挖掘 1 直接应用基本不等式求最值/ 自主练透
[例 1] (1)当 x>0 时,函数 f(x)=x22+x 1有(
(2)(2020·广东惠州三调)在△ABC 中,点 D 是 AC 上一点,且A→C=4A→D,P 为 BD
上一点,向量A→P=λA→B+μA→C(λ>0,μ>0),则4λ+μ1 的最小值为(
)
A.16
B.8
C.4
D.2
[解析] 由题意可知,A→P=λA→B+4μA→D,又 B,P,D 共线,由三点共线的充分必
3.利用基本不等式求最值问题 已知 x>0,y>0,则: (1)如果积 xy 是定值 p,那么当且仅当 x=y 时,x+y 有___最__小____值是 2 p(简记: _积__定__和__最__小__). (2)如果和 x+y 是定值 p,那么当且仅当 x=y 时,xy 有__最__大_____值是p42(简记: _和__定__积__最__大__)
高考数学总复习第六章不等式、推理与证明6.3基本不等式课件
不等式、推理与证明
第3节 基本不等式
课堂探究 考点突破
真题模拟演练
课堂探究 考点突破
考点一 利用基本不等式求最值
角度 1 利用配凑法求最值
9 (1)设 0<x<32,则函数 y=4x(3-2x)的最大值为 2 .
解析:y=4x(3-2x)=2[2x(3-2x)]≤22x+32-2x2=92,当 且仅当“2x=3-2x,即 x=34”时,等号成立.
(m
+p)
=165+mp +4pm
≥16
5+2
mp ·4pm=32,当且仅当 m=2,p=4 时等号成立,故选 C.
(2)若正数 x,y 满足 x2+6xy-1=0,则 x+2y 的最小值是( A )
22 A. 3
2 B. 3
3 C. 3
23 D. 3
解析:因为正数 x,y 满足 x2+6xy-1=0, 所以 y=1-6xx2.
解析:因为函数 g(x)=logax+1(a>0 且 a≠1)的定点为(1,1) 在直线 mx+ny-2=0 上,所以 m+n-2=0,即m2 +n2=1,
所以m1 +1n=m1 +1nm2 +n2=12+12+2nm+2mn≥1+2 =2,
当且仅当2nm=2mn,即 m2=n2 时取等号, 所以m1 +1n的最小值为 2.
(2)要使公园所占面积最小,则休闲区 A1B1C1D1 的长和宽该如何设 计?
解:(1)设休闲区的宽为 a 米,则长为 ax 米,
由 a2x=4 000,得 a=20
10 .
x
则 S(x)=(a+8)(ax+20)
=a2x+(8x+20)a+160
=4 000+(8x+20)·20 10+160 x
高考数学一轮总复习第六章不等式、推理与证明第35讲不等式的性质与基本不等式课件文新人教A版
【点评】本题以实际问题为背景,主要考查 函数、方程、不等式等基础知识,考查函数思想, 方程思想,化归与转化思想的应用.
第三十一页,共51页。
〔备选题〕例 5(1)设 a>b>c>0,则 2a2+a1b +a(a-1 b)-10ac+25c2 的最小值是( B )
A.2 B.4 C.2 5 D.5 (2)设 x,y 为实数,且满足 3≤xy2≤8,4≤xy2 ≤9,则xy34的最大值是_2_7__.
第五页,共51页。
【基础检测】
1.设 a<b<0,则下列不等式中不能成立的是( B )
11 A.a>b
B.a-1 b>1a
C. a > b
D.a2>b2
2.已知 0<a<b 且 a+b=1,下列不等式: ①log2a>-1;②log2a+log2b>-2;③ log2(b
-a)<0;④ log2ba+ab>1. 其中一定成立的不等式有( C ) A.0 个 B.1 个 C.2 个 D.3 个
第二十一页,共51页。
C-A=1+1 a-(1+a2)=-a(a12++aa+1)
=-aa1++12a2+34
∵1+a>0,-a>0,a+122+34>0,∴C>A. ∵A-B=(1+a2)-(1-a2)=2a2>0,
∴A>B.
B
-
D
=
1
-
a2
-
1 1-a
=
a(a2-a-1) 1-a
=
aa-1-12a2-54.
第十七页,共51页。
(2)已知下列四个条件:①b>0>a,②0>a>b, ③a>0>b,④a>b>0,能推出1a<b1成立的有( C )
(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题
解析:设旅行社租用A型客车x辆,B型客车y 辆,租金为z,则线性约束条件为
x+y≤21, y-x≤7, 36x+60y≥900, x,y∈N.
目标函数为z=1 600x
+2 400y.画出可行域如图中阴影部分所示, 可知目标函数过点N(5,12)时,有最小值zmin=36 800(元).答案:C
[演练冲关]
x-y+2≥0, 1.(2017·海口调研)已知实数x,y满足x+y-4≥0,
4x-y-4≤0.
则z=
3x-y的取值范围为
()
A.0,152 C.2,152
B.[0,2] D.2,83
解析:画出题中的不等式组表示的平面区域 (阴影部分)及直线3x-y=0,平移该直线, 平移到经过该平面区域内的点A(1,3)(该点是 直线x-y+2=0与x+y-4=0的交点)时,相 应直线在x轴上的截距达到最小,此时z=3x-y取得最小值 3×1-3=0;平移到经过该平面区域内的点B85,152(该点是直 线4x-y-4=0与x+y-4=0的交点)时,相应直线在x轴上的 截距达到最大,此时z=3x-y取得最大值3× 85 - 152 = 152 ,因此 z的取值范围是0,152,选A.答案:A
2.(易错题)若满足条件 xx+-yy-≥20≤,0, y≥a
的整点(x,y)恰有9个,其
中整点是指横、纵坐标都是整数的点,则整数a的值为 ( )
A.-3
B.-2
C.-1
解析:不等式组所表示的平面区域如图中
D.0
阴影部分,当a=0时,只有4个整点
(1,1),(0,0),(1,0),(2,0);当a=-1时,
数多个,也可能没有.
3.在通过求直线的截距
z b
的最值间接求出z的最值时,要注
2020版高考数学一轮复习第六章不等式、推理与证明6.4基本不等式课件理新人教版
考向三 基本不等式与函数的综合应用 【例 3】 (1)对函数 f(x),如果存在 x0≠0 使得 f(x0)=-f(-x0),则 称(x0,f(x0))与(-x0,f(-x0))为函数图象的一组奇对称点.若 f(x)=ex-
a(e 为自然对数的底数)存在奇对称点,则实数 a 的取值范围是( B )
某公司一年购买某种货物 600 吨,每次购买 x 吨,运费为 6 万元/ 次,一年的总存储费用为 4x 万元,要使一年的总运费与总存储费用之
和最小,则 x 的值是 30 .
解析:一年购买60x0次,则总运费与总存储费用之和为 f(x) =60x0×6+4x=490x0+x≥8 90x0·x=240,当且仅当 x=30 时取等号,故总运费与总存储费用之和最小时,x 的值是 30.
A.40
B.10
C.4
D.2
(2)(2019·南昌摸底调研)已知函数 y=x+x-m 2(x>2)的最小值为 6,
则正数 m 的值为 4 .
解析:(1)因为 x+4y=40,且 x>0,y>0, 所以 x+4y≥2 x·4y=4 xy.(当且仅当 x=4y 时取“=”)所 以 4 xy≤40.所以 xy≤100.所以 lgx+lgy=lgxy≤lg100=2.所以 lgx+lgy 的最大值为 2. (2)∵x>2,m>0,∴y=x-2+x-m 2+2≥ 2 x-2·x-m 2+2=2 m+2,当 x=2+ m时取等号,又函 数 y=x+x-m 2(x>2)的最小值为 6,∴2 m+2=6,解得 m=4.
【点评】 本题解答的关键是将变量 a 拆解为 a-b+b,以及拆项 后的恰当组合,同时在利用基本不等式解题时要注意基本不等式适用的 条件,即“一正、二定、三相等”;切记要注意等号成立的条件.
高考数学大一轮总复习 第六章 不等式、推理与证明 6.3
3.利用基本不等式求最值 (1)两个正数的和为定值时,它们的积有最大值,即若 a,b 为正实数, 且 a+b=S,S 为定值,则 ab≤14S2,当且仅当__a_=__b___时取等号。简记: 和定积最大。 (2)两个正数的积为定值时,它们的和有最小值,即若 a,b 为正实数, 且 ab=P,P 为定值,则 a+b≥_2___P____,当且仅当__a_=__b_____时取等号。 简记:积定和最小。
当且仅当ba=ab,即 a=b=21时取“=”。 ∴1+1a1+1b≥9,当且仅当 a=b=12时取等号。 证法二:1+1a1+1b=1+a1+b1+a1b=1+a+ abb+a1b=1+a2b, ∵a,b 为正数,a+b=1,∴ab≤a+2 b2=14, 当且仅当 a=b=12时取“=”。
a+b=(a+b)1a+1b=1+1+ba+ab≥2+2 答案 C
ba·ab=2+2=4,故选 C。
4.要制作一个容积为4 m3,高为1 m的无盖长方体容器。已知该容器
的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低
总造价为( )
A.80元
B.120元
C.160元
D.240元
解析 设容器的底长 x 米,宽 y 米,则 xy=4。 所以 y=4x,则总造价为: f(x)=20xy+2(x+y)×1×10=80+8x0+20x =20x+4x+80,x∈(0,+∞)。 所以 f(x)≥20×2 x·4x+80=160, 当且仅当 x=4x即 x=2 时,取等号, 所以最低总造价是 160 元。故选 C。 答案 C
第六章 不等式、推理与证明
第三节 基本不等式
基础知识 自主学习
热点命题 深度剖析
思想方法 感悟提升
高考数学一轮复习 第6章 不等式、推理与证明 第3讲 基本不等式课件 文 北师大版
本题利用不等式把条件等式转化为关于所求 式子的不等式来解决,体现了转化思想和换元方法的应用.
1.已知 x>0,y>0,x+2y+2xy=8,则 x+2y 的
最小值是( B ) A.3 C.92
B.4 D.121
解析:法一:因为 x>0,y>0,
所以 2xy=x·(2y)≤x+22y2, 所以 8=x+2y+2xy≤(x+2y)+x+22y2.
,即 1
x=3
时等号成立.
5.若把总长为 20 m 的篱笆围成一个矩形场地,则矩形场地 的最大面积是__2_5_m__2__. 解析:设矩形的长为 x m,宽为 y m,则 x+y=10,
所以 S=xy≤x+2 y2=25,当且仅当 x=y=5 时取等号.
考点一 利用基本不等式求最值(高频考点) 利用基本不等式求最值是高考的常考内容,题型主要为选择 题、填空题. 高考对利用基本不等式求最值的考查常有以下三个命题角 度:
第六章 不等式、推理与证明
第3讲 基本不等式
1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件:__a_≥_0_,__b_≥_0___. (2)等号成立的条件:当且仅当__a_=__b___时取等号.
2.算术平均数与几何平均数
a+ b
设 a>0,b>0,则 a,b 的算术平均数为___2_____,几何平均
[解] (1)因为每件商品售价为 5 元,则 x 万件商品销售收入为 5x 万元,依题意得,当 0<x<8 时,
L(x)=5x-13x2+x-3=-13x2+4x-3; 当 x≥8 时,L(x)=5x-6x+1x00-38-3=35-x+10x0.
-13x2+4x-3,0<x<8, 所以 L(x)=
2020高考数学总复习第六章不等式、推理与证明6.3基本不等式课件理新人教A版
对称轴为 x=60,
即当 x=60 时,L(x)max=950 万元;
当
x≥80
时,L(x)=1
200-x+10
x000≤1
200-2
10 000=1
000(万元),
当且仅当 x=100 时,L(x)max=1 000 万元,
综上所述,当年产量为 100 千件时,年获利润最大.
当 x≥80 时,
L(x) = 1
000x×0.05-51x+10
x000-1
450
-
250=
1
200-
x+10
000
x
.
-13x2+40x-250,0<x<80,
∴L(x)= 1
200-x+10
x000,x≥80.
(2)当 0<x<80 时,L(x)=-13(x-60)2+950.
(1)写出年利润 L(x)(万元)关于年产量 x(千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利 润最大?
解:(1)因为每件商品售价为 0.05 万元,则 x 千件商品销售额
为 0.05×1 000x 万元,
依题意得当 0<x<80 时,L(x)=1 000x×0.05-13x2+10x- 250=-13x2+40x-250;
∵34∈0,32, ∴函数 y=4x(3-2x)0<x<32的最大值为92.
(2)函数 y=xx2-+12(x>1)的最小值为 2 3+2 .
解析:y=xx2-+12=x2-2x+1x-+12x-2+3 =x-12+x-21x-1+3 =(x-1)+x-3 1+2≥2 3+2. 当且仅当 x-1=x-3 1,即 x= 3+1 时,等号成立.
高考数学一轮复习第6章不等式推理与证明第3节基本不等式教师用书文新人教A版
【2019最新】精选高考数学一轮复习第6章不等式推理与证明第3节基本不等式教师用书文新人教A版————————————————————————————————[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式≤a+b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同号且不为零);(3)ab≤2(a,b∈R);(4)2≤(a,b∈R).3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).(2)如果x+y是定值q,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=x+的最小值是2.( )(2)函数f(x)=cos x+,x∈的最小值等于4.( )(3)x>0,y>0是+≥2的充要条件.( )(4)若a>0,则a3+的最小值为2.( )[答案] (1)×(2)×(3)×(4)×2.若a,b∈R,且ab>0,则下列不等式中,恒成立的是( ) A.a2+b2>2abB.a+b≥2abC.+>2abD.+≥2D [∵a2+b2-2ab=(a-b)2≥0,∴A错误;对于B,C,当a<0,b<0时,明显错误.对于D,∵ab>0,∴+≥2=2.]3.(2016·安徽合肥二模)若a,b都是正数,则的最小值为( ) A.7 B.8C.9 D.10C [∵a,b都是正数,∴=5++≥5+2=9,当且仅当b=2a>0时取等号,故选C.]4.若函数f(x)=x+(x>2)在x=a处取最小值,则a等于( )【导学号:31222209】A.1+B.1+ 3C.3 D.4C [当x>2时,x-2>0,f(x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号,即当f(x)取得最小值时,x=3,即a=3,选C.]5.(教材改编)若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m2.25 [设矩形的一边为x m,矩形场地的面积为y,则另一边为×(20-2x)=(10-x)m,则y=x(10-x)≤2=25,当且仅当x=10-x,即x=5时,ymax=25.]值为( )A. B.2C.2 D.4(2)(2017·郑州二次质量预测)已知正数x,y满足x2+2xy-3=0,则2x+y的最小值是__________.(1)C (2)3 [(1)由+=知a>0,b>0,所以=+≥2,即ab≥2,当且仅当即a=,b=2时取“=”,所以ab的最小值为2.(2)由x2+2xy-3=0得y==-x,则2x+y=2x+-x=+≥2=3,当且仅当x=1时,等号成立,所以2x+y的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a>0,b>0,且2a+b=1,若不等式+≥m恒成立,则m的最大值等于( )A .10B .9C .8D .7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m·n>0,m +n =-1,则+的最大值为__________.(1)B (2)-4 [(1)∵+=+=4+++1=5+2≥5+2×2=9,当且仅当a =b =时取等号.又+≥m,∴m≤9,即m 的最大值等于9,故选B.(2)∵m·n>0,m +n =-1,∴m<0,n<0,∴+=-(m +n)⎝ ⎛⎭⎪⎫1m +1n =-≤-2-2=-4,当且仅当m =n =-时,+取得最大值-4.](1)++≥8;(2)≥9.[证明] (1)++=2,∵a +b =1,a>0,b>0,∴+=+=2++≥2+2=4,3分∴++≥8(当且仅当a =b =时等号成立).5分(2)法一:∵a>0,b>0,a +b =1,∴1+=1+=2+,同理1+=2+,∴=⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+ab =5+2≥5+4=9,10分∴≥9(当且仅当a =b =时等号成立).12分法二:=1+++,由(1)知,++≥8,10分故=1+++≥9.12分[规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a,b均为正实数,求证:++ab≥2.【导学号:31222210】[证明] 由于a,b均为正实数,所以+≥2=,3分当且仅当=,即a=b时等号成立,又因为+ab≥2=2,当且仅当=ab时等号成立,所以++ab≥+ab≥2,8分当且仅当即a=b=时取等号.12分通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.[解] (1)设所用时间为t=(h),y=×2×+14×,x∈[50,100].2分所以这次行车总费用y关于x的表达式是y=+x,x∈.(或y=+x,x∈).5分(2)y=+x≥26 ,当且仅当=x,即x=18,等号成立.8分故当x=18千米/时,这次行车的总费用最低,最低费用的值为26元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3] 某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解] (1)由题意得,y=,即y=x++1.5(x∈N*).5分(2)由基本不等式得:y=x++1.5≥2+1.5=21.5,8分当且仅当x=,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)≥2≥ab(a,b∈R,当且仅当a=b时取等号).(2)≥≥≥(a>0,b>0,当且仅当a=b时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a=b时等号成立”的含义是“a=b”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(三十四) 基本不等式A组基础达标(建议用时:30分钟)一、选择题1.已知x>-1,则函数y=x+的最小值为( )【导学号:31222211】A .-1B .0C .1D .2C [由于x>-1,则x +1>0,所以y =x +=(x +1)+-1≥2-1=1,当且仅当x +1=,由于x>-1,即当x =0时,上式取等号.]2.设非零实数a ,b ,则“a2+b2≥2ab”是“+≥2”成立的( )【导学号:31222212】A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [因为a ,b∈R 时,都有a2+b2-2ab =(a -b)2≥0,即a2+b2≥2ab,而+≥2⇔ab>0,所以“a2+b2≥2ab”是“+≥2”的必要不充分条件.]3.(2016·吉林东北师大附中等校联考)函数f(x)=ax -1-2(a>0,且a≠1)的图象恒过定点A ,若点A 在直线mx -ny -1=0上,其中m>0,n>0,则+的最小值为( ) 【导学号:31222213】A .4B .5C .6D .3+2 2D [由题意知A(1,-1),因为点A 在直线mx -ny -1=0上,所以m +n =1,所以+=(m +n)=3++,因为m>0,n>0,所以+=3++≥3+2n m ·2m n=3+2.当且仅当=时,取等号,故选D.]4.(2016·安徽安庆二模)已知a>0,b>0,a +b =+,则+的最小值为( )A.4 B.2 2C.8 D.16B [由a>0,b>0,a+b=+=,得ab=1,则+≥2=2.当且仅当=,即a=,b=时等号成立.故选B.]5.(2016·郑州外国语学校月考)若a>b>1,P=,Q=(lg a+lgb),R=lg,则( )A.R<P<Q B.Q<P<RC.P<Q<R D.P<R<QC [∵a>b>1,∴lg a>lg b>0,1(lg a+lg b)>,2即Q>P.∵>,∴lg>lg=(lg a+lg b)=Q,即R>Q,∴P<Q<R.]二、填空题6.(2016·湖北华师一附中3月联考)若2x+4y=4,则x+2y的最大值是__________.2 [因为4=2x+4y=2x+22y≥2=2,所以2x+2y≤4=22,即x+2y≤2,当且仅当2x=22y=2,即x=2y=1时,x+2y取得最大值2.]7.已知函数f(x)=x+(p为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p的值为__________.9[由题意得x-1>0,f(x)=x-1++1≥2+1,当且仅当x=+41时取等号,所以2+1=4,解得p=.]8.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__________吨.20 [每次都购买x吨,则需要购买次.∵运费为4万元/次,一年的总存储费用为4x万元,∴一年的总运费与总存储费用之和为4×+4x万元.∵4×+4x≥160,当且仅当4x=时取等号,∴x=20吨时,一年的总运费与总存储费用之和最小.]三、解答题9.(1)当x<时,求函数y=x+的最大值;(2)设0<x<2,求函数y=的最大值.[解] (1)y=(2x-3)++32=-+.2分当x<时,有3-2x>0,∴+≥2=4,4分当且仅当=,即x=-时取等号.于是y≤-4+=-,故函数的最大值为-.6分(2)∵0<x<2,∴2-x>0,∴y==·≤·=,8分当且仅当x=2-x,即x=1时取等号,∴当x=1时,函数y=的最大值为.12分10.已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.[解] (1)由2x+8y-xy=0,得+=1,2分又x>0,y>0,则1=+≥2 =,得xy≥64,当且仅当x=16,y=4时,等号成立.所以xy的最小值为64.5分(2)由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++8yx≥10+2 =18.8分当且仅当x=12且y=6时等号成立,∴x+y的最小值为18.12分B组能力提升(建议用时:15分钟)1.要制作一个容积为4 m3 ,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )【导学号:31222214】A.80元B.120元C.160元D.240元C [由题意知,体积V=4 m3,高h=1 m,所以底面积S=4 m2,设底面矩形的一条边长是x m,则另一条边长是 m.又设总造价是y元,则y=20×4+10×≥80+20=160.当且仅当2x=,即x=2时取得等号.]2.(2015·山东高考)定义运算“⊗”:x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为________.2[因为=,所以=.又x>0,y>0.故+=+=≥=,当且仅当x=y时,等号成立.]3.经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(万人)近似地满足f(t)=4+,而人均消费g(t)(元)近似地满足g(t)=120-|t-20|.(1)求该城市的旅游日收益W(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;(2)求该城市旅游日收益的最小值.[解] (1)W(t)=f(t)g(t)=(120-|t-20|)=5分(2)当t∈[1,20]时,401+4t+≥401+2=441(t=5时取最小值).7分当t∈(20,30]时,因为W(t)=559+-4t递减,所以t=30时,W(t)有最小值W(30)=443,10分所以t∈[1,30]时,W(t)的最小值为441万元.12分。
高考数学大一轮复习 第六章 不等式、推理与证明教师用书 文
第六章⎪⎪⎪ 不等式、推理与证明第一节不等关系与不等式1.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b . 2.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ;(5)可乘方:a >b >0⇒a n>b n(n ∈N ,n ≥1); (6)可开方:a >b >0⇒na > nb (n ∈N ,n ≥2).[小题体验]1.(教材习题改编)用不等号“>”或“<”填空: (1)a >b ,c <d ⇒a -c ________b -d ; (2)a >b >0,c <d <0⇒ac ________bd ; (3)a >b >0⇒3a ________3b .答案:(1)> (2)< (3)>2.限速40 km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km/h ,写成不等式就是__________.答案:v ≤40 km/h3.若0<a <b ,c >0,则b +c a +c 与a +cb +c的大小关系为________. 答案:b +c a +c >a +cb +c1.在应用传递性时,注意等号是否传递下去,如a ≤b ,b <c ⇒a <c .2.在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).[小题纠偏]1.设a ,b ,c ∈R ,且a >b ,则( ) A .ac >bc B .1a <1bC .a 2>b 2D . a 3>b 3答案:D2.若ab >0,且a >b ,则1a 与1b的大小关系是________.答案:1a <1b考点一 比较两个数式的大小基础送分型考点——自主练透[题组练透]1.已知x ∈R ,m =(x +1)⎝ ⎛⎭⎪⎫x 2+x 2+1,n =⎝ ⎛⎭⎪⎫x +12(x 2+x +1),则m ,n 的大小关系为( ) A .m ≥n B .m >n C .m ≤n D .m <n答案:B2.若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).解析:易知a ,b 都是正数,b a =2ln 33ln 2=log 89>1,所以b >a .答案:<3.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.解析:当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S3a 3-S 5a 5=a 1-q 3a 1q 2-q -a 1-q 5a 1q 4-q=q 2-q3--q 5q 4-q=-q -1q4<0, 所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5. 答案:S 3a 3<S 5a 5[谨记通法]比较两实数(式)大小的2种常用方法考点二 不等式的性质重点保分型考点——师生共研[典例引领]1.设a ,b ∈R 则“(a -b )·a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A (a -b )·a 2<0,则必有a -b <0,即a <b ;而a <b 时,不能推出(a -b )·a 2<0,如a =0,b =1,所以“(a -b )·a 2<0”是“a <b ”的充分不必要条件.2.若a >b >0,c <d <0,则一定有( ) A .a d >b c B .a d <b c C .a c >b dD .a c <b d解析:选B 法一:因为c <d <0,所以-c >-d >0,所以1-d >1-c>0.又a >b >0,所以a -d >b -c ,所以a d <bc .故选B .法二:⎭⎪⎬⎪⎫c <d <0⇒cd >0c <d <0⇒c cd <dcd <0⇒1d <1c<0⇒⎭⎪⎬⎪⎫-1d >-1c >0a >b >0⇒-a d >-b c ⇒a d <b c .法三:令a =3,b =2,c =-3,d =-2, 则a c=-1,b d=-1,排除选项C 、D ; 又∵-32<-23,排除A .故选B .[由题悟法]不等式性质应用问题的3大常见类型及解题策略(1)利用不等式性质比较大小.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充要条件相结合问题.用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.[即时应用]1.(2016·河南六市第一次联考)若1a <1b<0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b<0,∴b <a <0,∴b 2>a 2,ab <b 2,a +b <0,∴选项A 、B 、C 均正确,∵b <a <0,∴|a |+|b |=|a +b |,故D 项错误,故选D .2.(2017·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B ①由ac 2>bc 2,得c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③错误,当0>c >d 时,不等式不成立.④错误,令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B .考点三 不等式性质的应用重点保分型考点——师生共研[典例引领]已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. 解:由题意知f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10. 即f (-2)的取值范围为[5,10].[类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围,解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[即时应用]1.若6<a <10,a2≤b ≤2a ,c =a +b ,则c 的取值范围是( ) A .[9,18] B .(15,30) C .[9,30]D .(9,30)解析:选D ∵a 2≤b ≤2a ,∴3a 2≤a +b ≤3a ,即3a2≤c ≤3a .∵6<a <10,∴9<c <30.故选D .2.已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 解析:∵-1<x <4,2<y <3, ∴-3<-y <-2,∴-4<x -y <2. 由-1<x <4,2<y <3, 得-3<3x <12,4<2y <6, ∴1<3x +2y <18. 答案:(-4,2) (1,18)一抓基础,多练小题做到眼疾手快1.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <BD .A >B解析:选B 由题意得,B 2-A 2=-2ab ≤0,且A ≥0,B ≥0,可得A ≥B . 2.若a <b <0,则下列不等式不能成立的是( ) A .1a -b >1aB .1a >1bC .|a |>|b |D .a 2>b 2解析:选A 取a =-2,b =-1,则1a -b >1a不成立. 3.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a -b >0得a >b ≥0, 则a 2>b 2⇒a 2-b 2>0;由a 2-b 2>0得a 2>b 2,可得a >b ≥0或a <b ≤0等,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件,故选A .4.(2017·资阳诊断)已知a ,b ∈R ,下列命题正确的是( ) A .若a >b ,则|a |>|b | B .若a >b ,则1a <1bC .若|a |>b ,则a 2>b 2D .若a >|b |,则a 2>b 2解析:选D 当a =1,b =-2时,选项A 、B 、C 均不正确;对于D 项,a >|b |≥0,则a 2>b 2. 5.若角α,β满足-π2<α<β<π,则α-β的取值范围是( )A .⎝ ⎛⎭⎪⎫-3π2,3π2B .⎝ ⎛⎭⎪⎫-3π2,0C .⎝⎛⎭⎪⎫0,3π2 D .⎝ ⎛⎭⎪⎫-π2,0解析:选B ∵-π2<α<π,-π2<β<π,∴-π<-β<π2,∴-3π2<α-β<3π2.又∵α<β,∴α-β<0,从而-3π2<α-β<0.二保高考,全练题型做到高考达标1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0. ∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m 解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.(2016·湘潭一模)设a ,b 是实数,则“a >b >1”是“a +1a >b +1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选A 因为a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab,若a >b >1,显然a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab>0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b成立,但a >b >1不成立,所以必要性不成立.4.(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0解析:选D ∵a ,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为a log a b >a 1,即b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为a log a b <a 1,即0<b <a <1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.综上可知,选D .5.设a ,b ∈R ,定义运算“⊗和“⊕”如下:a ⊗b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ⊕b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若m ⊗n ≥2,p ⊕q ≤2,则( )A .mn ≥4且p +q ≤4B .m +n ≥4且pq ≤4C .mn ≤4且p +q ≥4D .m +n ≤4且pq ≤4解析:选A 结合定义及m ⊗n ≥2可得⎩⎪⎨⎪⎧m ≥2,m ≤n 或⎩⎪⎨⎪⎧n ≥2,m >n ,即n ≥m ≥2或m >n ≥2,所以mn ≥4;结合定义及p ⊕q ≤2可得⎩⎪⎨⎪⎧p ≤2,p >q 或⎩⎪⎨⎪⎧q ≤2,p ≤q ,即q <p ≤2或p ≤q ≤2,所以p +q ≤4.6.a ,b ∈R ,a <b 和1a <1b同时成立的条件是________.解析:若ab <0,由a <b 两边同除以ab 得,1b >1a ,即1a <1b ;若ab >0,则1a >1b.∴a <b 和1a <1b同时成立的条件是a <0<b .答案:a <0<b7.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m ,其中的不等关系可用不等式(组)表示为________.解析:矩形靠墙的一边长为x m ,则另一边长为30-x2 m ,即⎝ ⎛⎭⎪⎫15-x 2m ,根据题意知⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216.答案:⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥2168.已知a +b >0,则a b2+b a2与1a +1b的大小关系是________.解析:a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a 2=(a -b )·⎝ ⎛⎭⎪⎫1b 2-1a 2=a +b a -b 2a 2b 2.∵a +b >0,(a -b )2≥0, ∴a +ba -b2a 2b 2≥0.∴a b2+b a2≥1a +1b . 答案:a b2+b a2≥1a +1b9.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是__________. 解析:∵ab 2>a >ab ,∴a ≠0, 当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1,此式无解.综上可得实数b 的取值范围为(-∞,-1). 答案:(-∞,-1)10.若a >b >0,c <d <0,e <0.求证:e a -c2>e b -d2.证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1a -c2<1b -d2.又∵e <0,∴e a -c2>e b -d2.三上台阶,自主选做志在冲刺名校1.(2017·合肥质检)已知△ABC 的三边长分别为a ,b ,c ,且满足b +c ≤3a ,则c a的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)解析:选B 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c ≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +c a≤3,1+b a >c a ,1+c a >b a ,∴⎩⎪⎨⎪⎧1<b a +ca ≤3,-1<c a -ba <1,两式相加得,0<2·c a<4, ∴c a的取值范围为(0,2). 2.设a >b >0,m ≠-a ,则b +m a +m >ba时,m 满足的条件是________. 解析:由b +m a +m >b a 得a -b m a a +m >0,因为a >b >0,所以mm +a>0. 即⎩⎪⎨⎪⎧m >0,m +a >0或⎩⎪⎨⎪⎧m <0,m +a <0.∴m >0或m <-a .即m 满足的条件是m >0或m <-a . 答案:m >0或m <-a3.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解:设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元, 则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx =14x -120nx=14x ⎝ ⎛⎭⎪⎫1-n 5. 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第二节一元二次不等式及其解法“三个二次”的关系[小题体验]1.设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C 由题意得T = {x |-4≤x ≤1}, 根据补集定义, ∁R S ={x |x ≤-2}, 所以(∁R S )∪T ={x |x ≤1}.2.(教材习题改编)不等式-x 2+2x -3>0的解集为________. 答案:∅3.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是________.解析:由题意知-12,13是ax 2+bx +2=0的两根,则a =-12,b =-2. 所以a +b =-14. 答案:-141.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别. 3.含参数的不等式要注意选好分类标准,避免盲目讨论.[小题纠偏] 1.不等式x -3x -1≤0的解集为( ) A .{x |x <1或x ≥3} B .{x |1≤x ≤3} C .{x |1<x ≤3}D .{x |1<x <3}解析:选C 由x -3x -1≤0,得⎩⎪⎨⎪⎧x -x -,x -1≠0,解得1<x ≤3.2.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立.②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0.得0<m <1.由①②知0≤m <1. 答案:[0,1)考点一 一元二次不等式的解法基础送分型考点——自主练透[题组练透]1.已知函数f (x )=⎩⎪⎨⎪⎧2x 2+1,x ≤0,-2x ,x >0,则不等式f (x )-x ≤2的解集是________.解析:当x ≤0时,原不等式等价于2x 2+1-x ≤2,∴-12≤x ≤0;当x >0时,原不等式等价于-2x -x ≤2,∴x >0.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫xx ≥-12.答案:⎩⎨⎧⎭⎬⎫xx ≥-122.不等式2x +1x -5≥-1的解集为________.解析:将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧x -x -,x -5≠0,解得x >5或x ≤43.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >5. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤43或x >53.解下列不等式:(1)(易错题)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4.解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2≤x ≤43,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧x -x +>0,x -x +⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,所以原不等式的解集为{}x |-2≤x <-1或2<x ≤3.[谨记通法]解一元二次不等式的4个步骤考点二 含参数的一元二次不等式的解法重点保分型考点——师生共研[典例引领]解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解:原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎪⎫x -1a (x -1)<0,所以当a >1时,解为1a<x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a . 当a =1时,不等式的解集为∅.当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. [由题悟法]解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[提醒] 当不等式中二次项的系数含有参数时,不要忘记讨论其等于0的情况.[即时应用]1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12 D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 解析:选A 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).2.求不等式12x 2-ax >a 2(a ∈R)的解集. 解:原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,-a 4∪⎝ ⎛⎭⎪⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,a 3∪⎝ ⎛⎭⎪⎫-a4,+∞. 考点三 一元二次不等式恒成立问题题点多变型考点——多角探明 [锁定考向]一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图象与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.常见的命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围;(3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.[题点全练]角度一:形如f (x )≥0(f (x )≤0)(x ∈R)确定参数的范围1.已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解:要使不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m-m <0,不等式组的解集为空集,即m 无解.综上可知不存在这样的实数m 使不等式恒成立.角度二:形如f (x )≥0(x ∈[a ,b ])确定参数范围2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,求b 的取值范围.解:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数, 所以f (x )min =f (-1)=-1-2+b 2-b +1 =b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.∴b 的取值范围为(-∞,-1)∪(2,+∞)角度三:形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.解:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g -=x --+x 2-4x +4>0,g=x -+x 2-4x +4>0,解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.[通法在握]一元二次型不等式恒成立问题的3大破解方法恒成立的条件是{ a >0,Δ≤0;(2)ax 2+bx +c ≤0对任意实数x 恒成立的条件是{ a <0,Δ≤0把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.常见的是转化为一次函数f (x )=ax +b (a ≠0)在[m ,n ]恒成立问题,若f (x )>0恒成立⇔⎩⎪⎨⎪⎧ f m f n,若f (x )<0恒成立⇔⎩⎪⎨⎪⎧f m ,f n[演练冲关]1.(2017·济宁模拟)不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________.解:因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立,由二次不等式的性质可得,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0, 所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]2.设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.解:要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫0,67.一抓基础,多练小题做到眼疾手快1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2}, 由x -1>0得x >1,即B ={x |x >1}, 所以A ∩B ={x |1<x ≤2}.2.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:选B 由根与系数的关系得1a =-2+1,-ca=-2,得a =-1,c =-2,∴f (x )=-x 2-x +2(经检验知满足题意),∴f (-x )=-x 2+x +2,其图象开口向下,顶点为⎝ ⎛⎭⎪⎫12,94.3.(2017·昆明模拟)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.4.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}5.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式为(x -a )⎝⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a <x <1a 二保高考,全练题型做到高考达标1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3.2.不等式2x +1<1的解集是( ) A .(-∞,-1)∪(1,+∞) B .(1,+∞) C .(-∞,-1) D .(-1,1)解析:选A ∵2x +1<1,∴2x +1-1<0,即1-x x +1<0,该不等式可化为(x +1)(x -1)>0,∴x <-1或x >1.3.(2017·郑州调研)规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)D .(0,2)解析:选A 因为定义a ⊙b =ab +a +b (a ,b 为正实数), 1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1.4.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件.那么要保证每天所赚的利润在320元以上,销售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间解析:选C 设销售价定为每件x 元,利润为y , 则y =(x -8)[100-10(x -10)],依题意有,(x -8)[100-10(x -10)]>320, 即x 2-28x +192<0, 解得12<x <16,所以每件销售价应为12元到16元之间.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.6.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集, ∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)7.若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.解析:由已知ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故所求解集为⎝⎛⎭⎪⎫-1,45. 答案:⎝⎛⎭⎪⎫-1,45 8.(2017·石家庄质检)在R 上定义运算:⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析:原不等式等价于x (x -1)-(a -2)(a +1)≥1, 即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32.答案:329.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3, ∴原不等式可化为a 2-6a -3<0, 解得3-23<a <3+23.∴原不等式的解集为{a |3-23<a <3+23}.(2)f (x )>b 的解集为(-1,3)等价于方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, 等价于⎩⎪⎨⎪⎧-1+3=a-a3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.10.(2017·北京朝阳统一考试)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f xx(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f x x =x 2-4x +1x =x +1x-4.因为x >0,所以x +1x≥2.当且仅当x =1x时,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f xx的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 成立”, 只要“x 2-2ax -1≤0在[0,2]恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g ,g,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞. 三上台阶,自主选做志在冲刺名校1.(2016·太原模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-2)B .(-2,+∞)C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.2.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R , ∴ ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立. 当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=a2-4a ≤0,解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)f (x )=ax 2+2ax +1=a x +2+1-a ,由题意及(1)可知0<a ≤1,∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22, ∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝ ⎛⎭⎪⎫-12,32. 第三节二元一次不等式(组)及简单的线性规划问题1.一元二次不等式(组)表示的平面区域2.线性规划中的基本概念[小题体验]1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案:C2.(教材习题改编)不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案:B3.(2016·北京高考)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为________.解析:根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到过点A 时,目标函数取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x +y =3,可得A (1,2),此时2x +y 取最大值为2×1+2=4.答案:41.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.3.在通过求直线的截距zb 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b取最大值时,z 取最小值;截距z b取最小值时,z 取最大值.[小题纠偏]1.若用阴影表示不等示组⎩⎨⎧-x +y ≤0,3x -y ≤0所形成的平面区域,则该平面区域中的夹角的大小为________.答案:15°2.(2017·兰州诊断)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则目标函数z =2x -y 的最大值为________.解析:画出平面区域如图所示,目标函数可变为y =2x -z ,将直线y =2x 进行平移可得在点(2,-1)处截距最小,所以此时z 最大,最大值为5.答案:5考点一 二元一次不等式组表示平面区域基础送分型考点——自主练透[题组练透]1.已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2解析:选A 先作出不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤4,对应的平面区域,如图. 要使阴影部分为直角三角形,当k =0时,此时三角形的面积为12×3×3=92≠1,所以不成立.当k =-1或-2时,不能构成直角三角形区域.当k =1时,由图可知,可构成直角三角区域且面积为1,故选A .2.(易错题)若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点.3.(2017·广州五校联考)设不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥4,2x +y ≤4所表示的平面区域为D ,则区域D 的面积为________.解析:如图,画出可行域.易得A ⎝ ⎛⎭⎪⎫43,43,B (0,2),C (0,4),∴可行域D 的面积为12×2×43=43.答案:43[谨记通法]确定二元一次不等式(组)表示的平面区域的方法(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式组.若满足不等式组,则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.如“题组练透”第2题易忽视边界.(2)当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点. 考点二 求目标函数的最值题点多变型考点——多角探明 [锁定考向]线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透.常见的命题角度有: (1)求线性目标函数的最值; (2)求非线性目标函数的最值; (3)线性规划中的参数问题.[题点全练]角度一:求线性目标函数的最值1.(2016·全国丙卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.解析:画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A 时,z 取得最小值,联立⎩⎪⎨⎪⎧2x -y +1=0,x -2y -1=0,解得A (-1,-1),即z min =2×(-1)+3×(-1)-5=-10.答案:-10角度二:求非线性目标函数的最值2.(2016·江苏高考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解析:根据已知的不等式组画出可行域,如图阴影部分所示,则(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d的最小值是点O 到直线2x +y -2=0的距离.由⎩⎪⎨⎪⎧x -2y +4=0,3x -y -3=0可得A (2,3),所以d max =22+32=13,d min =|-2|22+12=25. 所以d 2的最小值为45,最大值为13.所以x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.答案:⎣⎢⎡⎦⎥⎤45,13角度三:线性规划中的参数问题3.(2017·郑州质检)已知x ,y 满足⎩⎪⎨⎪⎧x ≥2,x +y ≤4,2x -y -m ≤0.若目标函数z =3x +y 的最大值为10,则z 的最小值为________.解析:画出不等式组表示的区域,如图中阴影部分所示,作直线l :3x +y =0,平移l ,从而可知经过C 点时z 取到最大值,由⎩⎪⎨⎪⎧3x +y =10,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1,∴2×3-1-m =0,m =5.由图知,平移l 经过B 点时,z 最小,∴当x =2,y =2×2-5=-1时,z 最小,z min =3×2-1=5. 答案:5[通法在握]1.求目标函数的最值3步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线;(2)平移——将l 平行移动,以确定最优解的对应点的位置;(3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 2.常见的3类目标函数 (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2.(3)斜率型:形如z =y -bx -a. [提醒] 注意转化的等价性及几何意义.[演练冲关]1.(2017·海口调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,4x -y -4≤0.则z =3x -y 的取值范围为( )A .⎣⎢⎡⎦⎥⎤0,125B .[0,2]C .⎣⎢⎡⎦⎥⎤2,125 D .⎣⎢⎡⎦⎥⎤2,83解析:选A 画出题中的不等式组表示的平面区域(阴影部分)及直线3x -y =0,平移该直线,平移到经过该平面区域内的点A (1,3)(该点是直线x -y +2=0与x +y -4=0的交点)时,相应直线在x 轴上的截距达到最小,此时z =3x -y 取得最小值3×1-3=0;平移到经过该平面区域内的点B ⎝ ⎛⎭⎪⎫85,125(该点是直线4x -y -4=0与x +y -4=0的交点)时,相应直线在x 轴上的截距达到最大,此时z =3x -y 取得最大值3×85-125=125,因此z 的取值范围是⎣⎢⎡⎦⎥⎤0,125,选A .2.(2017·合肥质检)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x -3y -1≤0,x ≤1.若z =kx -y 的最小值为-5,则实数k 的值为( )A .-3B .3或-5C .-3或-5D .±3解析:选D 不等式组对应的平面区域是以点(1,2),(1,0)和(-2,-1)为顶点的三角形及其内部,当z 取得最小值时,直线y =kx -z 在y 轴上的截距最大,当k ≤1时,目标函数直线经过点(1,2)时,z min =k -2=-5,k =-3适合;当k >1时,目标函数直线经过点(-2,-1)时,z min =-2k +1=-5,k =3适合,故k =±3,选项D 正确.3.(2016·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0.则y -1x -1的最小值是________. 解析:如图所示,画出不等式组所表示的可行域,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率, ∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-12考点三 线性规划的实际应用重点保分型考点——师生共研[典例引领](2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为 ⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N.目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线 2 100x +900y =0,即7x +3y =0,当直线经过点M 时,z 取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得M (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 000[由题悟法]1.解线性规划应用题3步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案. 2.求解线性规划应用题的3个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、是否是非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式.[即时应用]某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:选C 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z ,则线性约束条件为⎩⎪⎨⎪⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y .画出可行域如图中阴影部分所示,可知目标函数过点N (5,12)时,有最小值z min =36 800(元).一抓基础,多练小题做到眼疾手快1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43D .34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4.得A (1,1),易得B (0,4),C ⎝ ⎛⎭⎪⎫0,43, |BC |=4-43=83.所以S △ABC =12×83×1=43.2.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出图形可知选C .3.(2016·四川德阳月考)设变量x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0,则目标函数z =2x +3y的最大值为( )A .7B .8C .22D .23解析:选 D 由约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,2x -y -3≤0作出可行域如图中阴影部分,由⎩⎪⎨⎪⎧x -y +1=0,2x -y -3=0解得⎩⎪⎨⎪⎧x =4,y =5,则B (4,5),将目标函数z=2x +3y 变形为y =-23x +z3.由图可知,当直线y =-23x +z3过B 时,直线在y 轴上的截距最大,此时z 取最大值,为2×4+3×5=23.4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________.解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞ 5.(2017·昆明七校调研)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤4,x +y ≥0.则z =x +3y 的最小值为________.解析:依题意,在坐标平面内画出不等式组表示的平面区域及直线x +3y =0,如图,平移直线y =-x3,当直线经过点(4,-4)时,在y 轴上的截距达到最小,此时z =x +3y 取得最小值4+3×(-4)=-8.答案:-8二保高考,全练题型做到高考达标1.(2015·福建高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A .-52B .-2。
高考数学一轮复习 第六章 不等式、推理与证明 第3讲 基本不等式课件 文
12/8/2021
第八页,共四十二页。
2.常用的 4 个结论 几个重要的不等式 a2+b2≥2ab(a,b∈R); ba+ab≥2(a,b 同号);
ab≤a+2 b2(a,b∈R); a+2 b2≤a2+2 b2(a,b∈R).
3.必会的 1 种方法 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技 巧,使其满足基本不等式中“正”“定”“等”的条件.
12/8/2021
第二十一页,共四十二页。
(2)设正项等比数列{an}的公比为 q,由 a7=a6+2a5,得 q2-q -2=0,解得 q=2.
m+n-2
由 aman=4a1,即 2 2 =4,得 2m+n-2=24, 即 m+n=6.
故m1 +n4=16(m+n)m1 +n4=56+164nm+mn ≥56+46=32,当且仅
2x,0≤x≤4, 化的函数关系式近似为 y=a·f(x),其中 f(x)=x-6 3+2,x>4,
且当水中洗衣液的浓度不低于 16 克/升时,才能够起到有效去 污的作用.若多次投放,则某一时刻水中的洗衣液浓度为每次 投放的洗衣液在相应时刻所释放的浓度之和.
12/8/2021
第二十五页,共四十二页。
sin x=-1,故②错;取 x=0,则x2+1 1=1,故④错.
12/8/2021
第十页,共四十二页。
2.若 a>0,b>0,且 ln(a+b)=0,则1a+1b的最小值是____4____.
[解析] 由 a>0,b>0,ln(a+b)=0 得aab+>>00b,,=1,故1a+1b=aa+bb
=a1b≥a+1 b2=112=4.当且仅当 a=b=12时上式取“=”. 2 2
高考数学一轮复习 第6章 不等式、推理与证明 重点强化课3 不等式及其应用教师用书 文 新人教A版
重点强化课(三) 不等式及其应用[复习导读] 本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2016·山东青岛一模)函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是__________.(1)D (2)(-1,2-1)[(1)由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为-1,-12∪-12,1,故选D.(2)由题意得⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1. 所以x 的取值范围为(-1,2-1).] [规律方法]一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集. (2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.[对点训练1] 已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________. 【导学号:31222215】(-5,0)∪(5,+∞) [由于f (x )为R 上的奇函数, 所以当x =0时,f (0)=0;当x <0时,-x >0, 所以f (-x )=x 2+4x =-f (x ), 即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞).]重点2 线性规划问题(1)(2017·深圳二次调研)在平面直角坐标系xOy 中,若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -4≤0,x -y -1≥0,y ≥0,则z =x +y 的最大值为( )A.73 B .1 C .2D .4(2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是__________.【导学号:31222216】(1)A (2)⎣⎢⎡⎦⎥⎤1,32 [(1)作出不等式组表示的平面区域为以A ⎝ ⎛⎭⎪⎫53,23,B (1,0),C (2,0)组成的三角形区域(包含边界),由图知当目标函数z =x +y 经过点A ⎝ ⎛⎭⎪⎫53,23时取得最大值,所以z max =53+23=73,故选A.(2)作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝ ⎛⎭⎪⎫1,32处取得. 故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.][规律方法] 本题(2)是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在约束条件中含有参数时,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.[对点训练2] 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -3.若z =2x +y 的最小值为1,则a =( )A.14 B.12 C .1D .2B [作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值, 由⎩⎪⎨⎪⎧x =1,y =ax -3,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.]重点3 基本不等式的综合应用(2016·江苏高考节选)已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1).设a=2,b =12.(1)求方程f (x )=2的根;(2)若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值. [解] 因为a =2,b =12,所以f (x )=2x +2-x.2分(1)方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0,所以(2x -1)2=0,即2x=1,解得x =0.5分(2)由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x 2+4f x 对于x ∈R 恒成立.8分而f x 2+4f x=f (x )+4f x≥2f x ·4f x =4,且f 02+4f 0=4,所以m ≤4,故实数m 的最大值为4.12分 [规律方法]基本不等式综合应用中的常见类型及求解方法(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.[对点训练3] (1)设a ,b ,c ∈(0,+∞),则“abc =1”是“1a+1b+1c≤a +b +c ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为__________. (1)A (2)9 [(1)当a =b =c =2时,有1a+1b+1c≤a +b +c ,但abc ≠1,所以必要性不成立. 当abc =1时,1a +1b +1c=bc +ac +ababc=bc +ac +ab ,a +b +c =a +b +b +c +a +c2≥ab +bc +ac ,所以充分性成立.故“abc =1”是“1a+1b+1c≤a +b +c ”的充分不必要条件.(2)由已知得x +2y2=1.则x +8y xy =1y +8x =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x +2y 2 =12⎝⎛⎭⎪⎫10+x y +16y x ≥12(10+2 16)=9,当且仅当x =43,y =13时取等号.]重点强化训练(三) 不等式及其应用A 组 基础达标 (建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0) B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R )D.1x 2+1>1(x ∈R ) C [取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,排除D.] 2.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17B [由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B.]3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6C [由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=2+12+-2-12=3 2.故选C.]4.不等式4x -2≤x -2的解集是( ) A .[-∞,0)∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)B [①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,解得x ≥4; ②当x -2<0,即x <2时,不等式可化为(x -2)2≤4, 解得0≤x <2.综上,解集为[0,2)∪[4,+∞).]5.(2015·山东高考)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x+12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-32x-12x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C.]二、填空题6.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.]7.设a ,b >0,a +b =5,则a +1+b +3的最大值为__________.【导学号:31222217】32 [令t =a +1+b +3,则t 2=a +1+b +3+2a +1b +3=9+2a +1b +3≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2.]8.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为__________.【导学号:31222218】⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π [由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π, 解得0≤α≤π6或5π6≤α≤π.]三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围. [解] (1)原不等式等价于(ax -1)(x +1)>0.1分 ①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a=-1,即a =-1,则不等式解集为空集;若1a >-1,即a <-1,则 -1<x <1a.5分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ; 当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a .6分 (2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0,10分 ∴a >1,即a 的取值范围为(1,+∞).12分10.(2016·全国卷Ⅰ改编)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,试求在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为多少元.[解] 设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.5分目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).12分B 组 能力提升 (建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝⎛⎭⎪⎫a x +by>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( ) 【导学号:31222219】A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)D [因为a ,b ,x ,y 为正实数,所以(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy,即a =b ,x =y 时等号成立,故只要m <4即可.]2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是__________. 【导学号:31222220】-52[法一:由于x >0, 则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.法二:设f (x )=x 2+ax +1,则其对称轴为x =-a2.①若-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,此时应有f ⎝ ⎛⎭⎪⎫12≥0,从而-52≤a ≤-1.②若-a 2<0,即a >0时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0. ③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a ≤0.综上可知a ≥-52,故a 的最小值为-52.]3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,f m +f nm +n>0.(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. [解] (1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则11 f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f x 1+f -x 2x 1-x 2·(x 1-x 2).2分 ∵-1≤x 1<x 2≤1,∴x 1-x 2<0.又已知f x 1+f -x 2x 1-x 2>0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数,4分(2)∵f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ -1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1.8分 (3)由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1, ∴要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=-2ta +t 2.10分对a ∈[-1,1],g (a )≥0恒成立,只需g (a )在[-1,1]上的最小值大于等于0, ∴g (-1)≥0,g (1)≥0,解得t ≤-2或t =0或t ≥2.∴t 的取值范围是{t |t ≤-2或t =0或t ≥2}.12分。
高考数学(文)(新课标)一轮复习配套课件:第六章不等式、推理与证明第3讲基本不等式
第六章不等式、推理与证明序■.第3讲基本不等式3.利用基本不等式求最值问题已知兀>0, j>0,则⑴如果积与是定值P,那么当且仅当兀=丿时,x+y有最小值是$壬.(简记:积定和最小)⑵如果和兀+y是定值p,那么当且仅当兀=丿时,xy 有最大值是4•(简记:和定积最大)[做一做]1.已知a, bU(O, +°°),若ab = l f贝!| a+b的最小值为12;若a+b = l,则ab的最大值为二•解析:由基本不等式得a^b^2y[ab=29当且仅当"=方=1时取到等号=£当且仅当a=b=l时取到等号.要点整合1.辨明两个易误点⑴使用基本不等式求最值,“一正,二定、三相等”三个条件缺一不可;(2)连续使用基本不等式求最值要求每次等号成立的条件一致.2.活用几个重要的不等式a2^rb2^2ab(a9 DGR);:+亍$2(°, b同号)•一/ + 沪_W—牙—(a9方WR).3.巧用“拆” “拼” “凑”在运用基本不等式时,要特别注意“拆” “拼” “凑”等技巧,使其满足基本不等式中“正” “定” “等”的条件•[做一做]2. "a>0且〃>0”是“与色M 颗”成立的(A )A. 充分不必要条件B. 必要不充分条件C. 充要条件4 4解析:兀+戸=兀—1+尸+&4+1=5・D. 3.若兀>1,贝||兀+既不充分也不必要条件 占的最小值为—空当日何当,即x=3时等号成立.f典例剖析・考点突破名师导悟以例说法考点一利用基本不等式证明不等式利用基本不等式求最值(高频考点)二利用基本不等式解决实际问题考点一利用基本不等式证明不等式求证:(1++)(1+詐9・[证明]法一:V«>0, b>0, a+b = l t/.1+-=1+—=2+-.同理,l+£=2+% a a a b b=5 + 2亡+彳)$5 + 4 = 9,当且仅当号=彳,即a=b 时取 .•.(1+£)(1+詐9,当且仅当“=»=£时等号成立. 法二:(1+典例1 己知。
高考数学一轮复习第6章不等式及其证明重点强化课3不等式及其应用教师用书
重点强化课(三) 不等式及其应用[复习导读] 本章的主要内容是不等式的性质,一元二次不等式及其解法,简单的线性规划问题,基本不等式绝对值不等式及其应用,针对不等式具有很强的工具性,应用广泛,解法灵活的特点,应加强不等式基础知识的复习,要弄清不等式性质的条件与结论;一元二次不等式是解决问题的重要工具,如利用导数研究函数的单调性,往往归结为解一元二次不等式问题;函数、方程、不等式三者密不可分,相互转化,因此应加强函数与方程思想在不等式中应用的训练.重点1 一元二次不等式的综合应用(1)(2017·舟山市一模)函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是__________. 【导学号:51062198】(1)D (2)(-1,2-1)[(1)由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为-1,-12∪-12,1,故选D.(2)由题意得⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1. 所以x 的取值范围为(-1,2-1).] [规律方法]一元二次不等式综合应用问题的常见类型及求解方法(1)与函数的定义域、集合的综合,此类问题的本质就是求一元二次不等式的解集. (2)与分段函数问题的综合.解决此类问题的关键是根据分段函数解析式,将问题转化为不同区间上的不等式,然后根据一元二次不等式或其他不等式的解法求解.(3)与函数的奇偶性等的综合.解决此类问题可先根据函数的奇偶性确定函数的解析式,然后求解,也可直接根据函数的性质求解.[对点训练1] 已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________.(-5,0)∪(5,+∞) [由于f (x )为R 上的奇函数, 所以当x =0时,f (0)=0;当x <0时,-x >0, 所以f (-x )=x 2+4x =-f (x ), 即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞).]重点2 线性规划问题(1)(2017·杭州市二次调研)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,4x -y +1≥0,则目标函数z =y +1x +3的最大值为( ) A.14 B.23 C.32D .2(2)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是__________. 【导学号:51062199】(1)C (2)⎣⎢⎡⎦⎥⎤1,32 [(1)画出不等式组满足的平面区域为以点A (1,5),B (1,0),C (0,1)为顶点的三角形区域(包含边界),目标函数z =y +1x +3表示为可行域内的点(x ,y )和点(-3,-1)连线的斜率,由图可知点A (1,5)与点(-3,-1)的连线的斜率最大,即z max =y +1x +3=5+11+3=32,故选C.](2)作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝ ⎛⎭⎪⎫1,32处取得. 故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.][规律方法] 本题(2)是线性规划的逆问题,这类问题的特点是在目标函数或约束条件中含有参数,当在约束条件中含有参数时,那么随着参数的变化,可行域的形状可能就要发生变化,因此在求解时也要根据参数的取值对可行域的各种情况进行分类讨论,以免出现漏解.[对点训练2] 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -若z =2x +y 的最小值为1,则a =( )A.14 B.12 C .1D .2B [作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值, 由⎩⎪⎨⎪⎧x =1,y =ax -,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.]重点3 基本不等式的综合应用已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1).设a =2,b =12.(1)求方程f (x )=2的根;(2)若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值. [解] 因为a =2,b =12,所以f (x )=2x +2-x.2分(1)方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0,所以(2x -1)2=0,即2x=1,解得x =0.6分(2)由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=(f (x ))2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤f x 2+4f x 对于x ∈R 恒成立.10分而f x 2+4f x=f (x )+4f x≥2f x4f x=4,且f 2+4f=4,所以m ≤4,故实数m 的最大值为4.14分 [规律方法]基本不等式综合应用中的常见类型及求解方法(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.[对点训练3] (1)设a ,b ,c ∈(0,+∞),则“abc =1”是“1a+1b+1c≤a +b +c ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为__________. 【导学号:51062200】(1)A (2)9 [(1)当a =b =c =2时,有1a+1b+1c≤a +b +c ,但abc ≠1,所以必要性不成立. 当abc =1时,1a +1b +1c=bc +ac +ababc=bc +ac +ab ,a +b +c =a +b +b +c +a +c2≥ab +bc +ac ,所以充分性成立.故“abc =1”是“1a+1b+1c≤a +b +c ”的充分不必要条件.(2)由已知得x +2y2=1.则x +8y xy =1y +8x =⎝ ⎛⎭⎪⎫1y +8x ⎝ ⎛⎭⎪⎫x +2y 2 =12⎝⎛⎭⎪⎫10+x y +16y x ≥12(10+2 16)=9,当且仅当x =43,y =13时取等号.]重点4 绝对值不等式(2017·浙江高考冲刺卷)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.[解] (1)当a =-2时,不等式f (x )<g (x )可化为|2x -1|+|2x -2|-x -3<0.2分 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.4分其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.6分(2)当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )=1+a , 不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈⎣⎢⎡⎭⎪⎫-a 2,12都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎥⎤-1,43.14分 [规律方法] 利用数形结合法解形如|f (x ,a )|+|g (x ,a )|≤h (x )的不等式(其中x 是主变元,a 是参数)的具体思路如下:(1)设F (x )=|f (x ,a )|+|g (x ,a )|-h (x ).(2)确定关于x 的函数f (x ,a ),g (x ,a )的零点是否存在.(3)若不存在,根据函数值的符号去掉绝对值;若存在,用参数a 表示出来. [变式训练4] 设函数f (x )=x 2-2x -|x -1-a |-|x -2|+4. (1)当a =1时,求f (x )的最小值;(2)对∀x ∈R ,若f (x )≥0恒成立,求a 的取值范围.[解] (1)当a =1时,f (x )=x 2-2x -2|x -2|+4=⎩⎪⎨⎪⎧x 2-4x +8,x ≥2,x 2,x <2.4分当x ≥2时,f (x )=x 2-4x +8=(x -2)2+4≥4; 当x <2时,f (x )=x 2≥0.故当x =0时f (x )取得最小值,最小值为0.6分 (2)由f (0)≥0,f (1)≥0,即|1+a |≤2, |a |≤2,得-2≤a ≤1. 当-2≤a ≤1时,8分①若x ≥2,则f (x )=x 2-4x +a +7=(x -2)2+3+a ≥3+a >0; ②若1+a ≤x <2,则f (x )=x 2-2x +a +3=(x -1)2+2+a ≥2+a ≥0; ③若x <1+a ,则f (x )=x 2-a +1≥1-a ≥0.13分综上可知,当-2≤a ≤1时,对∀x ∈R ,f (x )≥0恒成立,故a ∈[-2,1].14分重点强化训练(三) 不等式及其应用A 组 基础达标(建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) C [取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,排除D.] 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17B [由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B.]3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) 【导学号:51062201】A .2 2B .4C .3 2D .6C [由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=+2+-2-2=3 2.故选C.]4.不等式4x -2≤x -2的解集是( ) A .[-∞,0)∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)B [①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,解得x ≥4; ②当x -2<0,即x <2时,不等式可化为(x -2)2≤4, 解得0≤x <2.综上,解集为[0,2)∪[4,+∞).]5.若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x+12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C.]二、填空题6.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.] 7.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. (-∞,8] [法一:令f (x )=|x -5|+|x +3|,则去掉绝对值符号后可得f (x )=|x -5|+|x +3|=⎩⎪⎨⎪⎧2x -2,x ≥5,8,-3<x <5,2-2x ,x ≤-3.当x ≥5时,可得f (x )≥8; 当-3<x <5时,可得f (x )=8; 当x ≤-3时,可得f (x )≥8. 综上可知f (x )min =8.欲使|x -5|+|x +3|<a 无解,只需使(|x -5|+|x +3|)min ≥a 即可,由此可得a ≤8. 法二:∵|x -5|+|x +3|=|5-x |+|x +3|≥|5-x +x +3|=8, ∴(|x -5|+|x +3|)min =8.要使|x -5|+|x +3|<a 无解,只需a ≤8.]8.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为__________.⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π [由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π, 解得0≤α≤π6或5π6≤α≤π.]三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围. [解] (1)原不等式等价于(ax -1)(x +1)>0.1分 ①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a =-1,即a =-1,则不等式解集为空集; 若1a>-1,即a <-1,则 -1<x <1a.6分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ;当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a .9分 (2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0,12分 ∴a >1,即a 的取值范围为(1,+∞).15分 10.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.【导学号:51062202】[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2.7分 (2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1).因此△ABC 的面积S =12|AB |·(a +1)=23(a +1)2.12分由23(a +1)2>6,故a >2. 故a 的取值范围为(2,+∞).15分B 组 能力提升(建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)D [因为a ,b ,x ,y 为正实数,所以(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y,即a =b ,x =y 时等号成立,故只要m <4即可.]2.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________. ⎣⎢⎡⎦⎥⎤-1,12 [设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧ -3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y=-3x -1>5;当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52.故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12.] 3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,f m +f n m +n>0. (1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.【导学号:51062203】[解] (1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则 f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1-x 2·(x 1-x 2).2分 ∵-1≤x 1<x 2≤1,∴x 1-x 2<0.又已知f x 1+f -x 2x 1-x 2>0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数,7分(2)∵f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ -1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1.10分 (3)由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1, ∴要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=-2ta +t 2.13分对a ∈[-1,1],g (a )≥0恒成立,只需g (a )在[-1,1]上的最小值大于等于0, ∴g (-1)≥0,g (1)≥0,解得t ≤-2或t =0或t ≥2.∴t 的取值范围是{t |t ≤-2或t =0或t ≥2}.15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考数学一轮复习第6章不等式推理与证明第3节基本不等式教师用书文新人教A版————————————————————————————————[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式≤a+b2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同号且不为零);(3)ab≤2(a,b∈R);(4)2≤(a,b∈R).3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).(2)如果x+y是定值q,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=x+的最小值是2.( )(2)函数f(x)=cos x+,x∈的最小值等于4.( )(3)x>0,y>0是+≥2的充要条件.( )(4)若a>0,则a3+的最小值为2.( )[答案] (1)×(2)×(3)×(4)×2.若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )A.a2+b2>2abB.a+b≥2abC.+>2abD.+≥2D [∵a2+b2-2ab=(a-b)2≥0,∴A错误;对于B,C,当a<0,b<0时,明显错误.对于D,∵ab>0,∴+≥2=2.]3.(2016·安徽合肥二模)若a,b都是正数,则的最小值为( )A.7 B.8C.9 D.10C [∵a,b都是正数,∴=5++≥5+2=9,当且仅当b=2a>0时取等号,故选C.]4.若函数f(x)=x+(x>2)在x=a处取最小值,则a等于( )【导学号:31222209】A.1+B.1+ 3C.3 D.4C [当x>2时,x-2>0,f(x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号,即当f(x)取得最小值时,x=3,即a=3,选C.]5.(教材改编)若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m2.25 [设矩形的一边为x m,矩形场地的面积为y,则另一边为×(20-2x)=(10-x)m,则y =x(10-x)≤2=25,当且仅当x =10-x ,即x =5时,ymax =25.]( )A. B .2 C .2D .4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由+=知a>0,b>0,所以=+≥2,即ab≥2, 当且仅当即a =,b =2时取“=”,所以ab 的最小值为2.(2)由x2+2xy -3=0得y ==-x ,则2x +y =2x +-x =+≥2=3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.][规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a>0,b>0,且2a +b =1,若不等式+≥m 恒成立,则m 的最大值等于( )A .10B .9C .8D .7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m·n>0,m +n =-1,则+的最大值为__________.(1)B (2)-4 [(1)∵+=+=4+++1=5+2≥5+2×2=9,当且仅当a =b =时取等号.又+≥m,∴m≤9,即m 的最大值等于9,故选B.(2)∵m·n>0,m +n =-1,∴m<0,n<0,∴+=-(m +n)⎝ ⎛⎭⎪⎫1m +1n=-≤-2-2=-4,当且仅当m =n =-时,+取得最大值-4.](1)++≥8; (2)≥9.[证明] (1)++=2, ∵a +b =1,a>0,b>0,∴+=+=2++≥2+2=4,3分∴++≥8(当且仅当a =b =时等号成立).5分 (2)法一:∵a>0,b>0,a +b =1, ∴1+=1+=2+,同理1+=2+,∴=⎝ ⎛⎭⎪⎫2+ba ⎝ ⎛⎭⎪⎫2+ab =5+2≥5+4=9,10分∴≥9(当且仅当a =b =时等号成立).12分 法二:=1+++, 由(1)知,++≥8,10分 故=1+++≥9.12分[规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:++ab≥2.【导学号:31222210】[证明] 由于a,b均为正实数,所以+≥2=,3分当且仅当=,即a=b时等号成立,又因为+ab≥2=2,当且仅当=ab时等号成立,所以++ab≥+ab≥2,8分当且仅当即a=b=时取等号.12分50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.[解] (1)设所用时间为t=(h),y=×2×+14×,x∈[50,100].2分所以这次行车总费用y关于x的表达式是y=+x,x∈.(或y=+x,x∈).5分(2)y=+x≥26 ,当且仅当=x,即x=18,等号成立.8分故当x=18千米/时,这次行车的总费用最低,最低费用的值为26元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3] 某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解] (1)由题意得,y=,即y=x++1.5(x∈N*).5分(2)由基本不等式得:y=x++1.5≥2+1.5=21.5,8分当且仅当x=,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)≥2≥ab(a,b∈R,当且仅当a=b时取等号).(2)≥≥≥(a>0,b>0,当且仅当a=b时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a=b时等号成立”的含义是“a=b”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(三十四) 基本不等式A 组 基础达标 (建议用时:30分钟)一、选择题1.已知x>-1,则函数y =x +的最小值为( )【导学号:31222211】A .-1B .0C .1D .2C [由于x>-1,则x +1>0,所以y =x +=(x +1)+-1≥2-1=1,当且仅当x +1=,由于x>-1,即当x =0时,上式取等号.]2.设非零实数a ,b ,则“a2+b2≥2ab”是“+≥2”成立的( )【导学号:31222212】A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [因为a ,b∈R 时,都有a2+b2-2ab =(a -b)2≥0,即a2+b2≥2ab,而+≥2⇔ab>0,所以“a2+b2≥2ab”是“+≥2”的必要不充分条件.]3.(2016·吉林东北师大附中等校联考)函数f(x)=ax -1-2(a>0,且a≠1)的图象恒过定点A ,若点A 在直线mx -ny -1=0上,其中m>0,n>0,则+的最小值为( ) 【导学号:31222213】A .4B .5C .6D .3+22D [由题意知A(1,-1),因为点A 在直线mx -ny -1=0上,所以m +n =1,所以+=(m +n)=3++,因为m>0,n>0, 所以+=3++≥3+2n m ·2mn=3+2.当且仅当=时,取等号,故选D.]4.(2016·安徽安庆二模)已知a>0,b>0,a+b=+,则+的最小值为( )A.4 B.2 2C.8 D.16B [由a>0,b>0,a+b=+=,得ab=1,则+≥2=2.当且仅当=,即a=,b=时等号成立.故选B.]5.(2016·郑州外国语学校月考)若a>b>1,P=,Q=(lg a+lg b),R=lg,则( )A.R<P<Q B.Q<P<RC.P<Q<R D.P<R<QC [∵a>b>1,∴lg a>lg b>0,1(lg a+lg b)>,2即Q>P.∵>,∴lg>lg=(lg a+lg b)=Q,即R>Q,∴P<Q<R.]二、填空题6.(2016·湖北华师一附中3月联考)若2x+4y=4,则x+2y的最大值是__________.2 [因为4=2x+4y=2x+22y≥2=2,所以2x+2y≤4=22,即x+2y≤2,当且仅当2x=22y=2,即x=2y=1时,x+2y取得最大值2.]7.已知函数f(x)=x+(p为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p的值为__________.9[由题意得x-1>0,f(x)=x-1++1≥2+1,当且仅当x=+1时取等号,所以42+1=4,解得p=.]8.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__________吨.20 [每次都购买x吨,则需要购买次.∵运费为4万元/次,一年的总存储费用为4x万元,∴一年的总运费与总存储费用之和为4×+4x万元.∵4×+4x≥160,当且仅当4x=时取等号,∴x=20吨时,一年的总运费与总存储费用之和最小.]三、解答题9.(1)当x<时,求函数y=x+的最大值;(2)设0<x<2,求函数y=的最大值.[解] (1)y=(2x-3)++32=-+.2分当x<时,有3-2x>0,∴+≥2=4,4分当且仅当=,即x=-时取等号.于是y≤-4+=-,故函数的最大值为-.6分(2)∵0<x<2,∴2-x>0,∴y==·≤·=,8分当且仅当x=2-x,即x=1时取等号,∴当x=1时,函数y=的最大值为.12分10.已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.[解] (1)由2x+8y-xy=0,得+=1,2分又x>0,y>0,则1=+≥2 =,得xy≥64,当且仅当x=16,y=4时,等号成立.所以xy的最小值为64.5分(2)由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++8yx≥10+2 =18.8分当且仅当x=12且y=6时等号成立,∴x+y的最小值为18.12分B组能力提升(建议用时:15分钟)1.要制作一个容积为4 m3 ,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )【导学号:31222214】A.80元B.120元C.160元D.240元C [由题意知,体积V=4 m3,高h=1 m,所以底面积S=4 m2,设底面矩形的一条边长是x m,则另一条边长是 m.又设总造价是y元,则y=20×4+10×≥80+20=160.当且仅当2x=,即x=2时取得等号.]2.(2015·山东高考)定义运算“⊗”:x⊗y=(x,y∈R,xy≠0).当x>0,y>0时,x⊗y+(2y)⊗x的最小值为________.2[因为=,所以=.又x>0,y>0.故+=+=≥=,当且仅当x=y时,等号成立.]3.经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(万人)近似地满足f(t)=4+,而人均消费g(t)(元)近似地满足g(t)2019年=120-|t-20|.(1)求该城市的旅游日收益W(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;(2)求该城市旅游日收益的最小值.[解] (1)W(t)=f(t)g(t)=(120-|t-20|)=5分(2)当t∈[1,20]时,401+4t+≥401+2=441(t=5时取最小值).7分当t∈(20,30]时,因为W(t)=559+-4t递减,所以t=30时,W(t)有最小值W(30)=443,10分所以t∈[1,30]时,W(t)的最小值为441万元.12分。