套管式换热器波纹管的数值模拟及结构参数优化(正交试验)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 40 卷
第1 期
化
工
机
械
79
试验中各组别要求的调整结构参数得到相应的几 何模型, 随后采用相同的方法进行网格划分和数 节省计算周期。 值计算。这样可避免重复性工作, 4。 正交试验设计及试验结果分别见表 3 、 表3
试验号 1 2 3 4 5 6 7 8 9 A 1 1 1 2 2 2 3 3 3 B 1 2 3 1 2 3 1 2 3
边界条件设置
将外管和波纹管设定为固体域, 管内和环隙 空间的流体流动区域设定为流体域 。管内和环隙 空间均为高压水, 逆流运行, 热流体走管内, 冷流 体走环隙。 出入口条件: 内管和外管流体入口采用质量 入口边界, 内管和外管流体出口采用压力出口边 界, 四分之一圆周的两个平面采用对称边界条件 。 20mm。 出 湍流强度为 5% , 水力直径分别为 51 、 入口边界条件设定见表 1 。
[6 ]
。
。 图1 2 2. 1 波纹管结构示意图
如何根据换热器的实际结构合理选择波纹管的结 构参数, 以达到传热和阻力损失之间的平衡 , 是波 纹管设计中的难点问题。 笔者以油田注汽锅炉套管换热器的优化设计 为例, 建立波纹管套管换热器传热的数值模型 , 并 根据正交试验设计的原理研究了波纹管结构参数 对其换热和阻力的影响规律, 根据对评价指标的 综合评定, 得到了最优的波纹管结构参数。 为验 证最终优选的波纹管性能的优劣, 对其进行了数 值模拟。 1 波纹管基本的结构参数 波纹管管壁上依次交替出现的波峰和波谷, 导致流道中流体的速度和压力周期性变化 , 变化
动量方程:
1973 年 9 月生, 163318 。 谭秀娟, 女, 硕士研究生。黑龙江省大庆市,
78
p τ ij ( ρu i u j ) = - + x x i x j j
化
工
( 2)
机
械 表1
边界条件 入口温度 / K
2013 年 出、 入口边界条件
内管 515. 046 511. 061
试验因素
表4
换热量
波纹管试验结果分析计算
因素 A K1 K2 K3 k1 k2 k3 407. 947 557. 045 376. 519 135. 982 185. 682 125. 506 60. 175 362. 032 110. 454 27. 094 120. 677 36. 818 9. 031 111. 646 39. 365 32. 787 20. 933 13. 122 10. 929 6. 978 6. 144 因素 B 354. 119 390. 090 597. 302 118. 040 130. 030 199. 101 81. 061 117. 301 178. 266 204. 013 39. 100 59. 422 68. 004 28. 904 11. 877 27. 309 53. 899 3. 959 9. 103 17. 966 14. 007 因素 C 558. 740 390. 816 391. 955 186. 247 130. 272 130. 652 55. 975 161. 873 165. 217 172. 490 53. 958 55. 072 57. 497 3. 539 30. 822 30. 828 31. 435 10. 274 10. 276 10. 478 0. 204 因素 D 391. 711 566. 896 382. 904 130. 570 188. 965 127. 635 61. 331 158. 063 192. 138 149. 379 52. 688 64. 046 49. 793 14. 253 32. 174 35. 255 25. 657 10. 725 11. 752 8. 552 3. 199
本试验是 4 因素 3 水平试验, 不考虑各因素 4 之间的交互作用, 选用 L9 ( 3 ) 正交表安排 9 组试 验。在本次正交试验中有 3 个指标, 分别是换热 、 。 量 内管压差和环隙压差 换热量越大越好, 压差 越小越好。 3. 2 正交试验结果的分析 在 CFD 建模过程采用参数化建模, 根据正交
第 40 卷
第1 期
化
工
机
械
77
套管式换热器波纹管的数值模拟及结构参数优化
谭秀娟* 王尊策 孔令真 李 森
( 东北石油大学)
摘
要
建立了波纹管流动和传热的数值模型, 实现了 换热 器 波 纹 管 结 构 的 参数 化 建模; 以 换热 量、 内
管阻力和环隙阻力为评价指标, 制定了波纹管 4 因素 3 水平正交试验, 对 9 种结 构 的波 纹 管 分 别 进行了 数值模拟; 对正交试验的结果进行了极差和方差分析, 得到了各结构参数对波纹管的换热 和 阻 力 性 能 的 影响规律, 并用综合平衡的方法确定最优的波纹管结构参数组合, 可为套管式换热器波 纹 管 的 设计 和 改 进提供有价值的参考。 关键词 套管式换热器 TQ051. 5 波纹管 正交试验 A 方差分析 优化 中图分类号 文献标识码 6094 ( 2013 ) 01007705 文章编号 0254-
极差 R 内管压差 K1 K2 K3 k1 k2 k3 极差 R 环隙压差 K1 K2 K3 k1 k2 k3 极差 R
波纹管换热量的方差分析结果见表 5 , 直线 段内径、 弧形段外径、 直线段长度和弧线段长度对 换 热 量 的 影 响 贡 献 率 分 别 为 19. 945% 、 36. 942% 、 20. 019% 、 23. 094% 。各个因素均对换 热量有明显的影响, 其中弧形段外径对换热量的
固体域的能量方程:
k T ( u ρE) = + Sh x i x i i x i
(
)
( 4)
壁面条件: 在壁面处采用标准函数, 壁面速度 ( u = v = 0 ) 采用无滑移边界条件 即 套管壁面绝 热, 波纹管壁面设为耦合条件。 2. 4 数值模拟过程 采用稳态数值计算。计算区域的离散采用有 限体积法, 方程对流项的离散应用二阶迎风格式 , 同时求解流动方程和湍流方程, 压力和速度的求 解采用压力 - 速度耦合的 SIMPLE 方法, 代数方 程采用超松弛法进行迭代求解。能量方程残差收 -6 敛标准设定为 10 , 其他变量残差值的收敛标准 -5 均设为 10 。 3 3. 1 正交试验结果分析 波纹管正交试验设定
-1
外管 379. 662 385. 849 1. 182
流体域的能量方程:
k T - h J + u ( ) [ u ( ρE + p) ]= ∑ j τ ij x i i x i eff x i j' j' j'
[
eff
] +S
h
出口温度 / K 入口流量 / kg·s
( 3)
1. 597
试验因素 水平 直线段内径 d1 / mm A 弧形段外径 d2 / mm B 73. 0 76. 5 80. 0 直线段长度 l1 / mm C 20. 4 24. 0 28. 5 弧形段长度 l2 / mm D 18.格划分
1 2 3
40. 0 45. 0 50. 0
越小越好。由表 4 可知, 对于换热量, 因素的主次 顺序为 BDAC , 优选方案为 B3 D2 A2 C1 。 当指标为 因素的主次顺序为 ABDC , 最优方案 内管压差时, 为 A3 B1 D3 C1 。当指标为环隙压差时, 因素的主次 顺序为 BADC , 最优方案为 B1 A3 D3 C1 。 为了使每 一个指标达到最优所需要的因素水平都是不一样 的, 本试验中存在 3 个评价指标, 最终的优化方案 需要兼顾各个指标, 寻找使得每一个指标都尽可 能好的方案, 最终采用综合平衡法分析得出。 3. 3 各因素的显著性分析 K2 , 以每个因素水平数为横坐标, 相应的 K1 , K3 为纵坐标, 得到因素水平变化时各指标的变化 ( 3 ~ 5 )。 趋势 图
[2 ~ 5 ]
过程产生的强烈扰动, 破坏流体的边界层, 使边界 层减薄, 使其传热系数明显高于直管, 但这种周期 性变化和扰动也会使流动阻力明显增大 。波纹管 主要有 5 个结构参数( 图 1 ) : 直线段外径 d1 、 弧形 段外径 d2 、 直线段长度 l1 、 弧形段长度 l2 和壁厚 δ
换热量和阻力损失是衡量波纹管换热管性能 的重要参数, 影响这些参数的因素很多: 直线段内 径、 弧形段外径、 直线段长度、 弧线段长度等。 暂 不考 虑 壁 厚 的 影 响, 各条件下波纹管壁厚均为 11mm。采用直线段内径、 弧形段外径、 直线段长 度、 弧线段长度 4 因素 3 水平的正交试验设计来 分析这 4 个因素对套管式换热器换热性能的影响 情况, 因素水平具体值列于表 2 。 表 2 波纹管试验因素水平
对于波纹管来说, 换热量越大越好, 阻力损失
80
化
工
机
械
2013 年
影响最显著, 贡献率达到 36. 942% , 其他 3 个因 素的贡献率相差不大均在 20% 左右。 表5
方差来源 因素 A 因素 B 因素 C 因素 D
随着水平值的增大, 换热量和阻力损失均增 出, 大, 由于在本次试验中换热量是主要指标, 由表 5 知因素 B 对换热量的影响最显著因此根据主要 指标选择 B3 。由图 4 和图 5 可知, 随着因素 A 水 平值的增大内管和环隙压差均增大, 方差分析结 果表明因素 A 对内管压差影响显著, 对环隙压差 对换热量的贡献最小, 所以应该 也有明显的影响, 主要考虑有压力损失的指标, 故选择则 A3 。 根据 多数的倾向选取 D3 。 通过以上综合平衡, 最后优化出一种方案, 波 纹管 的 最 优 结 构 参 数 应 是 A3 B3 C1 D3 , 即: d1 = 50. 0mm, d2 = 80. 0mm, l1 = 20. 4mm, l2 = 28. 0mm。 4 波纹管优化结构的验证分析 为验证最终优选的波纹管结构的优劣, 采用 , 上述相同的方法对其进行数值模拟 得到换热量 和阻力损失的数据与相同条件的光管数据进行比 而优选 较( 表 8 ) : 同样长为 1 500mm 的管段建模, 出的波纹管的热通量、 内管阻力和环隙阻力分别 4. 239 倍和 4. 163 倍; 可以达到光管的 2. 769 倍、 相同换热能力的情况下, 采用波纹管套管式换热 器的 换 热 管 长 度 可 比 普 通 光 管 的 长 度 减 少 63. 88% , 而阻力损失增大 50% 左右。 采用这种 波纹管做为内管的套管式换热器体积缩小后极大 的减少了占地面积, 结构更为紧凑, 节省了工程投 资。 表8
*
波纹管的数学模型和数值模拟过程 波纹管的数学模型
对波纹管计算模型进行假设: 水的密度和粘 度随温度变化; 水为不可压缩牛顿流体; 忽略重 力、 浮升力的影响; 忽略流体流动时粘性耗散作用 产生的热效应。即可得到以下波纹管计算模型的 基本控制方程。 连续性方程:
( ρu i ) = 0 x i ( 1)
p 是静压, E 为内能, k eff 其中, τ ij 是应力张量, J j' 为组分扩散通量, S h 为热源项。 为有效热导率, 由于 RNG kε 模型模型对波纹管内的流动 涡流和二次流动具有较高的计算精度 , 因此 分离、 采用 RNG kε 湍 流 模 型, 此模型是个半经验公 主要是基于湍流动能和扩散率建立的 。 式, 2. 2 几何模型和网格划分 取长度为 1 500mm 的波纹管管段, 由于流体 在其中的流动及传热具有对称性, 故根据选取的 波纹管的结构参数只取四分之一圆周的波纹管进 行三维建模。 考虑到进出口段对换热的影响, 在 管段的两端各留长约 100mm 的直管段。 通过对 波纹管进行拓扑分析, 将其分割为若干可划分六 面体网格单元的块。整体均采用六面体单元进行 划分, 整体网格单元数为 1 329 045 , 划分的网格 如图 2 所示。
波纹管正交试验结果
换热量 D 1 2 3 3 1 2 2 3 1 kW 123. 668 138. 079 146. 198 114. 457 129. 763 312. 824 115. 993 122. 247 138. 279 内管压差 kPa 99. 897 132. 691 129. 445 14. 257 39. 898 56. 299 3. 147 5. 678 18. 269 环隙压差 kPa 7. 051 13. 224 19. 090 2. 688 10. 206 19. 893 2. 138 3. 878 14. 916 C 1 2 3 2 3 1 3 1 2
传统的套管式换热器通常由标准构件组合而 成, 设计安装时不需要专门加工, 通过增减直管的 适用于高温高压流 长度可方便的调整传热面积, 体, 特别是小流量流体的传热。因此, 套管式换热 器在动力、 石油、 化工及制冷等工业的生产过程中 广泛应用。 但由于同心套管结构的传热系数较 单位传热面积金属耗量多, 造成套管式换热器 小, 换热效率不够高, 占地面积庞大。 欲显著提高其 波纹管是一种较为理想的双面 总体的传热系数, [1 ] 强化管 。波纹管换热管的设计和实际应用中 发现, 传热强化和阻力损失之 间 存 在 矛 盾