87-最值定理
求函数值域(最值)的方法大全
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,ac b ⎡⎫-+∞⎢,当0a <时的值1. 例1、 例2、 故函数的值域是:[ -∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 例 A 例解:21x x ++222x x x x -=++当2y -=当20y -≠时,x R ∈时,方程根.()()221420y y ∴=+-⨯-≥15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1)x ∈R ,∴△=4(y+1)2-8y≥0解得:1-2≤y≤1+2但此时的函数的定义域由x (2-x )≥0,得:0≤x≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[1,3]。
可以采取如下方法进一步确定原函数的值域。
4例y 5 、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
罗尔定理的几种类型及其应用
罗尔定理的几种类型及其应用1 引言最原始的罗尔定理是由法国数学家罗尔于 1691 年在题为 《任意次方程的一个解法的证明》 的论 文中给出的 (罗尔 1652 年 4 月 21 日生于昂贝尔特, 1719 年 11月 8 日卒于巴黎 ) ,主要内容是 : 在多项式方程 f x =0 的两个相邻的实根之间,方程 f x 0 至少有一个根.在一百多年后, 1846 年尤斯托( Giusto Bellavitis )将这一定理推广到可微函数,尤斯托还 把此定理命名为罗尔定理,这就是现在我们常用的罗尔定理 .2 微分中值定理2.1 罗尔定理1 (P若函数 f x 满足以下条件:( 1)在闭区间 a,b 上连续;( 2)在开区间 a,b 上可导;( 3) fa fb . 则至少存在一个数 a,b ,使得 f 0.罗尔定理的几何意义是:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相同,那 么曲线至少存在一条水平切线 . 罗尔定理是大学微分学中很重要的中值定理, 它演绎了拉格朗日中值 定理与柯西中值定理,这三个定理构成了微分学中值基本理论,在高等数学中占有十分重要的地 位.下面给出拉格朗日中值定理和柯西中值定理的内容和几何意义 .2.2 拉格朗日中值定理x 满足:( 1) 在闭区间 a,b 连续;( 2) 在开区间 a,b 上可导;则至少存在拉格朗日中值定理的几何意义是:在每一点都可导的的连续曲线上,如果两端点也连续,那么 至少存在一个点,该点的切线平行于两端点的连线 .2.3 柯西中值定理 1若函数 f x 和 g x 满足:( 1)在闭区间 a,b 连续;( 2)在开区间 a,b 上可导;( 3) f x 和 g x 不同时为 0;( 4) g a g b 则存在 a,b ;使得fa。
若函数个数 a,b ,使得 ff a f b ab柯西中值定理的几何意义与前两个定理的几何意义类似,只是要把f x 和g x 这两个函数写成以x 为参量的参量方程u g xv f x于是两函数联系在平面uOv 上一段连续曲线上了,若曲线的两端点也连续,则在曲线上至少存在一点,该点的切线与两端点的连线平行。
届数学一轮复习第四章三角函数解三角形创新引领微课把握三角函数与解三角形中的最值问题教学案含解析
把握三角函数与解三角形中的最值问题微点聚焦突破类型一三角函数的最值角度1可化为“y=A sin(ωx+φ)+B”型的最值问题【例1-1】如图所示,在平面直角坐标系xOy中,扇形AOB的半径为2,圆心角为错误!,点M是弧AB上异于A,B的点。
(1)若点C(1,0),且CM=2,求点M的横坐标;(2)求△MAB面积的最大值.解(1)连接OM,依题意可得,在△OCM中,OC=1,CM=2,OM=2,所以cos ∠COM=错误!=错误!,所以点M的横坐标为2×错误!=错误!。
(2)设∠AOM=θ,θ∈错误!,则∠BOM=错误!-θ,S△MAB=S△OAM+S△OBM-S△OAB=错误!×2×2错误!-错误!×2×2×错误!=2错误!sin错误!-错误!,因为θ∈错误!,所以θ+错误!∈错误!,所以当θ=错误!时,△MAB的面积取得最大值,最大值为错误!。
思维升华化为y=A sin(ωx+φ)+B的形式求最值时,特别注意自变量的取值范围对最大值、最小值的影响,可通过比较区间端点的取值与最高点、最低点的取值来确定函数的最值.角度2可化为y=f(sin x)(或y=f(cos x))型的最值问题【例1-2】函数y=cos 2x+2sin x的最大值为________.解析y=cos 2x+2sin x=-2sin2x+2sin x+1。
设t=sin x,则-1≤t≤1,所以原函数可以化为y=-2t2+2t+1=-2错误!错误!+错误!,所以当t=错误!时,函数y取得最大值为错误!。
答案错误!思维升华可化为y=f(sin x)(或y=f(cos x))型三角函数的最值或值域可通过换元法转化为其他函数的最值或值域。
【训练1】(1)(角度1)函数f(x)=3sin x+4cos x,x∈[0,π]的值域为________.(2)(角度2)若函数f(x)=cos 2x+a sin x在区间错误!上的最小值大于零,则a的取值范围是________.解析(1)f(x)=3sin x+4cos x=5错误!=5sin(x+φ),其中cos φ=错误!,sin φ=错误!,错误!〈φ<错误!。
微积分定理和公式
一、函数【定义 1.1】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作.),(D x x f y ∈=x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义1.2】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义1.3】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义 1.4】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义 1.5】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律:设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数;)()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义 1.6】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα xy ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义1.7】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作 .),(1R y y f x ∈=-并称其为)(x f y =反函数. 习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x fy ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义 1.8】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数{}f D x x x x f y ∈∈=)(|)],([ϕϕ为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:f D x x f x F ∈=,0))(,(其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数. 如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即 ]1,0[,)1()(2∈-==x x x f ye n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (二)函数的极限1.∞→x 时的极限【定义1.10】 设函数)(x f 在)0(||>≥a a x 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作.)(lim A x f n =∞→当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作.)(lim )(lim )(lim ).)(lim ()(lim A x f A x f A x f A x f A x f n n n n n ===⇔===+∞→+∞→∞→-∞→+∞→3.0x x →时的极限【定义 1.11】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作.)(lim 0A x f x x =→4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0.)(lim )(lim )(lim 000A x f A x f A x f x x x x x x ===⇔=-+→→→(三)函数极限的性质1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B .2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻 域内有)(x f >0(或)(x f <0=。
十大著名物理定理
十大著名物理定理物理学是自然科学的重要分支,研究物质、能量以及它们之间的相互作用。
在物理学的发展过程中,许多重要的定理被提出并被广泛应用。
以下是十大著名物理定理的介绍。
1. 费马原理费马原理是光学中的基本原理之一,它阐述了光线在两点之间传播时所遵循的最短时间路径。
根据费马原理,光线在两点之间的传播路径是使得光程取极值的路径,这一路径被称为光线的轨迹。
费马原理在光学设计和成像中有广泛的应用。
2. 等效原理等效原理是爱因斯坦提出的一项重要物理定理,它描述了引力和加速度之间的等效关系。
根据等效原理,质量产生的引力效应与物体的加速度效应等效,即质量决定了物体对引力的响应。
这一原理是广义相对论的基础,对解释引力以及宇宙的演化具有重要意义。
3. 热力学第一定律热力学第一定律,也称为能量守恒定律,阐述了能量在物理系统中的转化和守恒关系。
根据热力学第一定律,一个系统的内能变化等于吸收的热量与做功的和。
这一定律在能量转化和热力学循环等方面有重要应用。
4. 电磁感应定律电磁感应定律是描述磁场和电场相互作用的重要定理。
法拉第定律和楞次定律是电磁感应定律的两个主要方面。
根据法拉第定律,当一个闭合线圈中的磁通量发生变化时,将在线圈中产生感应电动势。
根据楞次定律,感应电动势的方向使得感应电流产生的磁场抵消磁通量的变化。
5. 熵增定律熵增定律是热力学中的重要定理,描述了在孤立系统中熵的增加趋势。
根据熵增定律,封闭系统的熵总是趋向于增加,而不会减少。
这一定律对解释自然界中的不可逆过程和热力学平衡有重要意义。
6. 相对论狭义和广义相对论是爱因斯坦提出的一套重要物理理论,包括狭义相对论和广义相对论。
狭义相对论描述了高速运动物体的相对性原理,推翻了牛顿力学的观念。
广义相对论则是更一般的相对论理论,描述了引力的几何性质和时空的弯曲。
7. 不确定性原理不确定性原理是量子力学中的基本原理之一,提出了测量精度的限制。
根据不确定性原理,无法同时准确测量粒子的位置和动量,以及能量和时间。
解三角形中的最值(范围)问题
解三角形中的最值(范围)问题解三角形中的最值问题1.锐角三角形ABC满足$2B=A+C$,设最大边与最小边之比为$m$,求$m$的取值范围。
分析:由题意可知$\angle B=60^\circ$,且$A\leq B\leqC<90^\circ$。
不妨令$m=\dfrac{c}{a}$,则有:m=\dfrac{c}{a}=\dfrac{\sin C}{\sin A}\leq\dfrac{\sinC}{\sin B}\leq\dfrac{\sin C}{\sin(\pi/3)}=2\sin C$$又因为$\sin A\geq\dfrac{1}{2}$,$\tanA\geq\dfrac{\sqrt{3}}{3}$,所以:dfrac{1}{2}\leq\sin A\leq 1,\quad \dfrac{\sqrt{3}}{3}\leq\tan A\leq\sqrt{3}$$从而有:1\leq m=\dfrac{c}{a}\leq 2$$2.锐角三角形ABC的面积为$S$,角C既不是最大角,也不是最小角。
若$k=\dfrac{a+b}{c}$,求$k$的取值范围。
分析:由正弦定理得:dfrac{c^2-a^2-b^2+2ab\cos C}{2ab}= \dfrac{\sin C}{\sinA\sin B}=\dfrac{2S}{ab\sin C}$$又因为$\cos C<1$,所以:dfrac{2S}{ab\sin C}<\dfrac{c^2-a^2-b^2+2ab}{2ab}=\dfrac{(c-a+b)(c+a-b)}{2ab}=\dfrac{(c-a+b)}{2}\cdot\dfrac{(c+a-b)}{2ab}\leq\dfrac{1}{4}$$又因为$\sin C\geq\dfrac{1}{2}$,所以:k=\dfrac{a+b}{c}\geq\dfrac{2\sqrt{ab}}{c}\geq 2\sqrt{\sinA\sin B}\geq\sqrt{2\sin A}\geq\sqrt{2}\sin\dfrac{A}{2}$$ 又因为$A0$,所以$k>0$。
初一数学知识点公式定理大全
初一数学知识点公式定理大全初中数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容。
小编在此整理了初一数学知识点公式定理大全,希望能帮助到您。
数学公式定理大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
最值定理概述
一点
使
证: 作辅助函数
(x) f (x) C 则(x) C[ a, b] , 且
(a) (b) (A C)(B C)
y y f (x) B C A
Oa bx
故由零点定理知, 至少有一点
使
即
推论: 在闭区间上的连续函数 必取得介于最小值与
最大值之间的任何值 .
例. 证明方程 一个根 .
定理1.在闭区间上连续的函数 在该区间上一定有最大
值和最小值.
即: 设 f (x) C[ a , b ] , 则 1 ,2 [ a , b ] , 使
f
(1)
min
a xb
f
(x)
y y f (x)
f
(2 )
max
a xb
f
(x)
(证明略)
O a 1 2 b x
注意: 若函数在开区间上连续, 或在闭区间内有间断
点 , 结论不一定成立 .
例如, 无最大值和最小值
又如,
也无最大值和最小值
y 1
Hale Waihona Puke O1xy 2
1
O 1 2x
推论 在闭区间上连续的函数在该区间上有界.
证: 设
由定理 1 可知有
M max f (x) , m min f (x) y
x[ a ,b ]
x[ a ,b ]
M
y f (x)
上有界 .
证: 显然
在区间
内至少有
又
故据零点定理, 至少存在一点
使
即
说明:
x
1 2
,
f
(12)
1 8
0,
二分法
则(12 ,1) 内必有方程的根 ;
微分中值定理开题报告
- 1 - 附件10:论文(设计)管理表一昌吉学院本科毕业论文(设计)开题报告论文(设计)题目微分中值定理的若干推广及其应用系(院)数学与应用数学专业班级07 级数本(2)班学科理科学生姓名李娜指导教师姓名黄永峰学号0725809061 职称助教一、选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。
2、撰写要求:宋体、小四号。
) 1.选题的来源及意义微分中值定理是数学分析课程中的重要内容,同时也是微积分学的基本定理,是研究函数性质的有力工具。
函数与其导函数是两个不同的的函数,而导数只是反映函数在一点的局部特征,如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理正好起到了这种作用。
它不仅沟通了函数与其导数的关系,而且也是微积分学理论应用的桥梁与基石。
但其理论性较强,内容抽象,在许多的教材中定理的形式单一,导致学生的兴趣不大,同时理解和应用起来比较困难,甚至容易得出错误结论。
本文针对这一情况,着重论述微分中值的内涵以及相互联系,希望能运用多种方法给出证明,同时对定理的形式和结论做一些推广,并给出一些比较好的应用. 2.国内外研究状况人们对微分中值定理的研究,从微积分建立之始就开始了。
1637 年,法国著名数学家费马(Fermat,1601—1665)在《求最大值和最小值的方法》中给出了费马定理,在许多教科书中,人们通常将它作为微分中值定理的第一个定理。
罗尔于1691 年在题为《任意次方程的一个解法的证明》的论文指出了:在多项式方程的两个相邻的实根之间,方程至少有一个根。
一百多年后,即1846 年,尤斯托.伯拉维提斯将这个定理推广到可微函数,并把此命题命名为罗尔定理。
1797 年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明。
对微分中值定理进行系统研究的是法国的数学家柯西,他是数学分析严格化运动的推动者,其三部巨著《分析教程》、《无穷小计算教程概论》及《微分计算教程》以严格化为其主要目标,对微积分理论进行了重构。
解答二元函数最值问题常用的两种方法
相比较于一元函数最值问题,二元函数最值问题较为复杂,无法直接利用简单基本函数的性质求得最值,往往需运用基本不等式法、构造法,才能顺利求得问题的答案.下面结合实例,谈一谈解答二元函数最值问题的两种常用方法.一、基本不等式法若a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式称为基本不等式.基本不等式是求解二元函数最值问题的重要工具,通常先需确保a 、b 两式都大于0;然后将代数式配凑为两式的和或积的形式,并使其中之一为定值.一般地,当ab 为定值时,a +b 有最小值;当a +b 为定值时,ab 有最大值;最后检验当a =b 时等号是否成立.例1.已知x,y ∈R ,4x 2+y 2+xy =1,则2x +y 的最大值为______.解法1.因为1=4x 2+y 2+xy =()2x +y 2-32⋅2x ⋅y≥()2x +y 2-32()2x +y 22=58()2x +y 2,当且仅当2x =y 时等号成立,所以-2105≤2x +y ≤2105,所以2x +y 的最大值为2105.我们先将已知关系式变形为()2x +y 2-32⋅2x ⋅y ,仔细观察可发现该式中含有2x 、y 的和与积,于是运用基本不等式的变形式ab ≤()a +b22,即可求得2x +y 的最大值.解法2.设y =kx ,将其代入4x 2+y 2+xy =1,得()4+k 2+k x 2=1,因为()2x +y 2=()k 2+4k +4x 2,故当k =0时,x 2=14,所以2x +y =1或-1,当k ≠0时,()2x +y 2=k 2+4k +4k 2+k +4=1+3k +4k+1,当k >0时,2x +y ⩽85,所以2x +y ≤2105;当k <0时,0≤2x +y <1;综上可知,2x +y 的最大值是2105.当k ≠0时,()2x +y 2=1+3k +4k+1,此时分母中k 、4k 的积为定值,利用基本不等式就能顺利求得最值.例2.设x ,y 满足x 24-y 2=1,则3x 2-2xy 的最小值是______.解法1.因为x 24-y 2=1,所以()x 2-y()x 2+y =1,令x 2-y =t ,则x 2+y =1t ,所以x =t +1t ,y =12()1t-t ,所以3x 2-2xy =4t 2+2t2+6≥6+42,当且仅当2t 2=1时取等号,故3x 2-2xy 的最小值为6+42.目标式中4t 2+2t 2为两式4t 2、2t 2的和,且两式4t 2、2t2的积为定值,这便为运用基本不等式创造了条件.解法2.因为x 24-y 2=1,所以()x 2-y()x 2+y =1,令x 2-y =a,x 2+y =b ,则ab =1,x =a +b,y =b -a 2,于是3x 2-2xy =6+4a 2+2b 2≥6+42ab =6+42,当且仅当2|a|=|b|时取等号.令x 2-y =a,x2+y =b 后,即可将目标式化为6+4a 2+2b 2,根据基本不等式求解,便能快速求得最值.解法3.因为1cos 2α-tan 2α=1,故可设x =2cos α,y =sin αcos α,则3x 2-2xy =12-4sinαcos 2α=12-4m1-m 2,其中m =sin α∈()-1,1,因为12-4m 1-m 2=46-éëêùûú(3-m )+83-m ≥46-42=6+42,当且仅当m =3-22时取等号,故3x 2-2xy 的最小值为6+42.我们先根据同角三角函数之间的关系设x =2cos α,y =sin αcos α,并令m =sin α∈()-1,1,即可将目标式化为46-éëêùûú(3-m )+83-m .该式中的(3-m )+83-m为两解题宝典41式(3-m )、83-m的和,其积为定值,即可运用基本不等式求得最值.解法4.设y =kx ,则x 24-k 2x 2=1,可得x 2=41-4k 2,所以3x 2-2xy =3x 2-2kx 2=4()2k -34k 2-1,设t =2k -3,因为k =y x ∈()-12,12,故-4<t <-2,所以t +8t∈(-6,-42].所以4()2k -34k 2-1=4t +8t+6≥6+42,当且仅当t =22时取等号,即3x 2-2xy 的最小值为6+42.设y =kx 、t =2k -3,将已知关系式化简,并将目标式化为关于t 的式子4t +8t+6,其中t +8t 为两式的和,且这两式的积为定值,利用基本不等式可快速求得最值.解法5.因为3x 2-2xy =x ()3x -2y ,令3x -2y =t ,则1=x 24-y 2=x 24-()3x -t 22,得6xt =8x 2+t 2+4≥28x 2t 2+4=42xt +4,当且仅当8x 2=t 2时取等号,所以3x 2-2xy =xt ≥6+42,即3x 2-2xy ≥6+42.令3x -2y =t ,即可将目标式化为关于t 、x 的式子xt ,将其看作两式的积,求得其和的值,即可根据基本不等式求得目标式的最值.运用基本不等式法求解二元函数最值问题,关键在于根据代数式的结构特性,配凑出两式的和或积.二、构造法在解答二元函数最值问题受阻时,我们不妨另辟蹊径,根据代数式的结构特性展开联想,通过构造向量、几何图形、新函数模型等,将问题转化为向量问题、几何图形问题、函数问题来求解.这样不仅能转换解题的思路,还能有效地培养创新能力.以例1为例.解法1.因为4x 2+y 2+xy =()12x +y2+154x 2=1,设a=()12x +y ,x ,b =(1,由||a ⋅b ⩽||a ⋅||b ,得||2x +y2105,故2x +y 我们根据已知关系式的结构特征构造向量a 、b,即可运用向量的模的性质:||a ⋅b ≤||a ⋅||b ,求得目标式的最值.解法2.令2x =m +n ,y =m -n ,则2x +y =2m ,所以()m +n 2+()m -n 2+()m +n ()m -n 2=1,所以m 225+n 223=1,该式可视为一个椭圆的方程,由椭圆的性质可得2m ≤2105,所以2x +y 的最大值为2105.我们令2x =m +n,y =m -n ,将已知关系式变形为椭圆的方程,根据椭圆的性质和图形范围确定m 的取值范围,进而求得目标式的最值.解法3.因为4x 2+y 2+xy =()2x 2+y 2-2()2x y ()-14=1,所以设AB =2x,AC =y ,则BC =1,cos A =-14,sin A如图所示,延长BA 至D 点,使AD =AC =y ,则BD =2x +y ,sin∠CDB 故BC sin ∠CDB =2R =2105,当BD 为直径时最大,故BD =2x +y ≤2105,即2x +y 最大值是2105.我们由()2x 2+y 2-2()2x y ()-14=1联想到余弦定理,于是构造三角形ABC 和半径为y 的圆,设AB =2x ,AC =y ,并用BD 的长表示目标式,即可通过解三角形,利用正余弦定理、圆的性质求得BD 的最值.以例2为例.解法1.3x 2-2xy x 24-y 2=12x 2-8xyx 2-4y 2,设t =y x ∈()-12,12,则3x 2-2xy x 24-y 2=8t -124t 2-1,设f ()t =8t -124t 2-1,t ∈()-12,12,解题宝典42则f ′()t =-8()4t 2-12t +1()4t 2-12,当t ∈()-12,3-222时,f ′()t <0,函数单调递减;当t ∈()3-222,12时,f ′()t >0,函数单调递增,所以f ()t min =f()3-222=6+42.虽然无法直接运用简单基本函数的性质解答二元函数最值问题,但是我们可以通过换元、构造新函数模型的方式,将问题转化为单变量函数最值问题,再利用简单基本函数的性质、导数的性质解题.解法2.设t =y x ∈()-12,12,则3x 2-2xy x 24-y 2=12-8⋅yx 1-4()y x2=84t 2-1t -32,可将y x 看作双曲线x 24-y 2=1上的点()x,y 与原点()0,0连线的斜率.当直线y -1=k ()x -32与曲线相切时,斜率k 有最大值,此时k =12-82,所以3x 2-2xy 的最小值为812-82=6+42.通过换元将已知关系式变形,并把已知关系式看作双曲线,将y x 看作双曲线x24-y 2=1上的点()x ,y 与原点()0,0连线的斜率,通过讨论直线与曲线的位置关系,确定直线斜率k 的最值,从而求得问题的答案.总之,解答二元函数最值问题,需根据不等式的结构特征构造不等关系,将问题进行合理的转化,才能顺利求得最值.从上述分析可以看出,从不同的角度思考问题,可以得到不同的解法,但无论采用何种方法,都需灵活利用转化思想、方程思想、数形结合思想来辅助解题.(作者单位:江苏省蒋垛中学)解题宝典若过抛物线焦点的直线与抛物线交于两点,则以这两个点为端点的线段称为抛物线的焦点弦,如图1中的线段AB .以抛物线上的一点及抛物线的焦点为端点的线段称为抛物线的焦半径,如图1中的线段AF 、BF .求焦点弦长和焦半径问题在抛物线试题中比较常见.本文主要谈一谈有关抛物线焦半径与焦点弦公式的推导及其应用.一、抛物线的焦半径公式如图1,已知直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A ,B 两点,且点A (x 1,y 1)在x 轴的上方,点B (x 2,y 2)在x 轴的下方,直线AB 的倾斜角为α,则||AF =x 1+p 2=p 1-cos α,||BF =x 2+p 2=p1+cos α.证明:作抛物线的准线l :x =-p2,交x 轴于点P ,过点A 作l 的垂线,垂足为N .由于点A 是抛物线上的点,则||AF =||AN .而点A ,N 的横坐标分别是x 1,-p 2,所以||AN =x 1-()-p 2=x 1+p2,故||AF =x 1+p 2,同理可证||BF =x 2+p2.再证||AF =p 1-cos α,||BF =p1+cos α.过点A 作AM ⊥x 轴于M,则四边形AMPN 是矩形,可知||AF =||AN =||PF +||FM ,因为点F ()p2,0,所以||PF =p .在ΔAFM 中,||FM =||AF cos α,所以||AF =p +||AF cos α,得||AF =p1-cos α.同理可得||BF =p1+cos α.当直线AB 的倾斜角为钝(直)角时,上述结论也成立.在运用抛物线的焦半径公式解题时需注意:(1)焦点弦的端点A 、B 分别在x 轴的上方和下方,且焦半径的端点在x 轴上方和下方时所用的公式不一样;(2)当不知道直线AB 的倾斜角时,通常用点A 、B 的横坐标及p 来表示抛物线的焦半径;(3)当已知直线的倾斜角时,可通过倾斜角α和p 来求出抛物线的焦半径.例1.若点F 是抛物线y 2=4x 的焦点,直线l 过点F ,交抛物线于A ,B 两点,且 AF =3FB ,则直线l 的倾斜角图143。
九年级数学最大值、最小值问题
通过代入原题、反证法等方式 检验答案的正确性。
避免常见错误
01
02
忽视题目中的限制条件, 导致答案不符合题意。
计算错误,如加减乘除 运算错误、开方运算错 误等。
03
理解错误,如对题意理 解不准确、对概念理解 模糊等。
04
书写不规范,如步骤跳 跃、缺少必要的说明和 推导等。
05 练习题与答案解析
基础练习题
在一个给定的范围内,一个函数 所能取到的最小的值。
实际问题中求解意义
优化问题
在实际生活中,经常需要找到某个量的最大值或最小值,以达到最优化的目的。 例如,在经济学中,生产者追求成本最小化和利润最大化;在工程学中,设计 师需要确保结构的强度和稳定性等达到最优。
决策依据
通过求解最大值、最小值问题,可以为决策者提供有力的数据支持,帮助他们 做出更加明智的决策。
利用三角形两边之和大于第三边,两 边之差小于第三边的性质求最值。
对称性质
利用对称点的性质求最值,如点到直 线的距离最短时,点关于直线对称。
不等式法
基本不等式
应用算术平均数-几何平均数不等 式(AM-GM不等式)求最值。
柯西不等式
应用柯西不等式求最值,注意等号 成立的条件。
排序不等式
对于两组数,通过排序后应用不等 式求最值。
结合函数图像,利用几何意义(如距离、面积等)来求解最值问 题。
注意定义域和值域
在求解过程中,要特别注意函数的定义域和值域,避免出现不符 合实际情况的解。
实际应用题中最值问题
理解题意并建立数学模型
认真阅读题目,理解题意,将实际问题抽象为数学模型, 明确已知条件和求解目标。
列出方程或不等式
根据已知条件和求解目标,列出相应的方程或不等式。
100个最伟大的定理
75
平均值定理
柯西(Augustine-Louis Cauchy)
1823
76
傅里叶级数
傅里叶(Joseph Fourier)
1811
77
k次方的和
伯努利(Jakob Bernouilli)
1713
78
Cauchy-Schwarz不等式
1545
47
中心极限定理
?
?
48
狄利克雷定理
狄利克雷(Peter Lejune Dirichlet)
1837
49
Cayley-Hamilton 定理
Arthur Cayley
1858
50
正多面体的数量
西厄蒂特斯( Theaetetus)
1887
31
拉姆塞定理
拉姆塞(F.P. Ramsey)
1930
32
四色问题
阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)
1976
33
费马大定理
怀尔斯(Andrew Wiles)
1993
34
调和级数的发散性
400 B.C.
51
Wilson定理
拉格朗日(Joseph-Louis Lagrange)
1773
52
集合的子集数
?
?
53
Pi是超越数
林德曼(Ferdinand Lindemann)
1882
54
哥尼斯堡七桥问题
欧拉(Leonhard Euler)
初二动点最值问题的常用解法
初二动点最值问题的常用解法
初二动点最值问题是数学中常见的一类问题,常用的解法包括
几何法、代数法和微积分法。
首先,我们来看看几何法。
对于动点最值问题,我们可以通过
几何方法来解决。
例如,如果问题涉及到平面几何中的最短路径或
最大面积等问题,我们可以通过画图、利用几何性质和相似三角形
等方法来求解动点的最值问题。
这种方法相对直观,适用于一些简
单的动点最值问题。
其次,代数法也是常用的解法之一。
对于一些动点问题,我们
可以建立坐标系,引入变量,列方程,然后通过代数运算来求解动
点的最值问题。
例如,对于直线上的动点问题,我们可以设定动点
的坐标,列出相关方程,然后通过代数运算来求解最值。
这种方法
适用于一些需要进行坐标计算的动点最值问题。
最后,微积分法也是解决动点最值问题的常用方法。
通过对动
点轨迹的函数进行微分,找到函数的极值点,可以求得动点的最值。
这种方法适用于一些需要利用导数性质和极值定理的动点最值问题。
综上所述,初二动点最值问题的常用解法包括几何法、代数法和微积分法。
针对不同的问题,我们可以灵活运用这些方法来求解动点的最值问题。
希望这些解法对你有所帮助。
初值定理和终值定理推导
初值定理和终值定理推导一、初值定理推导。
咱们来聊聊初值定理的推导呀。
想象一下,我们有一个拉普拉斯变换后的函数F(s),它是某个时域函数f(t)变换来的哦。
拉普拉斯变换的定义是F(s)=∫₀^∞ f(t)e⁻ˢᵗ dt。
那我们想知道当t趋近于0的时候f(t)的值,也就是初值。
当s趋近于无穷大的时候呢,那些含有s的高次幂的项就会变得超级小,可以忽略不计啦。
所以呢,lim(s→∞) sF(s)就会趋近于f(0⁺),这里的0⁺表示从右侧趋近于0哦。
这就是初值定理的推导啦,是不是还挺有趣的呢?就好像我们在玩一个找宝藏的游戏,通过拉普拉斯变换这个神奇的地图,我们找到了时域函数在初始时刻的宝藏,也就是初值。
二、终值定理推导。
好啦,初值定理说完了,咱们再来说说终值定理的推导。
终值定理是用来求当t 趋近于无穷大的时候f(t)的值的。
还是从拉普拉斯变换的定义F(s)=∫₀^∞ f(t)e⁻ˢᵗ dt出发。
我们对这个式子做一点手脚。
我们先对F(s)求s趋近于0的极限。
那这个时候呢,我们可以把e⁻ˢᵗ用泰勒级数展开,当s趋近于0的时候,e⁻ˢᵗ就近似等于1 - st + (st)²/2! - …不过我们只需要用到前面的1就好啦,因为后面那些项在s趋近于0的时候相对1来说就很小很小啦。
所以当我们求lim(s→0) sF(s)的时候呢,就相当于在求lim(s→0) s∫₀^∞f(t)(1 - st + …) dt。
这里面只看前面的1那一项,就变成了lim(s→0) s∫₀^∞f(t) dt,而这个积分∫₀^∞ f(t) dt其实就是当t趋近于无穷大的时候f(t)的值啦,也就是终值。
这就像是我们在时间的长河里一直漂流,最后到达了一个终点,而终值定理就是我们找到这个终点的小秘诀呢。
终值定理和初值定理就像是一对好伙伴,初值定理告诉我们旅程开始的时候是什么样的,终值定理告诉我们旅程结束的时候在哪里。
它们在分析系统的响应啊,解决一些工程问题的时候可都是超级有用的小帮手哦。
管综最值公式
管综最值公式
管综最值公式是指用于求解管理科学中最大值或最小值问题的公式。
这些公式通常涉及到优化、线性规划、动态规划等数学工具,用于解决实际生产、运输、分配等管理问题。
例如,线性规划中的基本定理可以用来求解某些管综最值问题。
这个定理指出,对于线性规划问题,最优解要么在可行域的边界上,要么在基本可行解中取得。
通过使用这个定理,我们可以确定最值所在的点,并进一步计算该点的最值。
此外,一些特定的管综最值问题可能需要使用特定的公式或算法来解决。
例如,求解运输问题的最短路径问题可以使用Dijkstra算法或Bellman-Ford 算法;求解分配问题的最小生成树问题可以使用Prim算法或Kruskal算法。
请注意,管综最值公式是管理科学领域中广泛应用的工具,但具体的公式和方法可能会因问题的具体性质和限制条件而有所不同。
在实际应用中,需要针对具体问题进行数学建模和分析,以确定适合的公式和方法来解决问题。
如何使用均值定理求函数的最值
均值定理是高中数学中重要的内容,在高考中占有很重要的地位,成为高考的高频考点,它们总能在高考的舞台上与其姊妹知识合理、巧妙、有机地结合在一起进行联合演出,成为检查学生知识掌握情况和提升学生综合应用能力的训练战场。
因此,如何合理正确地使用均值定理就显得尤为重要了。
我们知道使用均值定理时,一定要遵循“一正、二定、三相等”的原则。
下面给出使用均值定理求最值的题型及使用方法,以供参考。
1直接套用公式例1(2014年新课标全国卷Ⅰ,16)已知a,b,c分别为ΔABC的三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则ΔABC面积的最大值为______。
解析由正弦定理得(a+b)(a-b)=(c-b)c,也即a2=b2+c2-bc。
由余弦定理得cosA=b2+c2-a22bc=bc2bc=12,所以A=60°。
又因为a=2,所以4=b2+c2-bc,又因为4=b2+c2-bc≥2bc-bc=bc,所以bc≤4,所以SΔABC= 12bcsinA≤12·4·3√2=3√,也即面积ΔABC的最大值为3√。
点评在解题中通过配凑,直接使用了均值不等式a2+b2≥2ab (a,b∈R)达到了求最值的目的。
例2若函数f(x)=-1b e ax(a>0,b>0)的图像在x=0处的切线与圆x2+y2=1相切,则a+b的最大值是()A.4B.22√C.2D.2√解析因为f′(x)=-a b e ax,所以所求切线的斜率为k=f′(x)|x=0= -a b。
因为f(0)=-1b,所以切点为(0,-1b),则切线方程为l:y-(-1b)=-a b(x-0),也即ax+by+1=0。
因为直线l与圆相切,所以1a2+b2√=1,则a2+b2=1。
因为a2+b2≥12(a+b)2,所以(a+b)2≤2(a2+b2)=2,所以0≤a+b≤2√,也即(a+b)max=2√,故选D。
谈谈拉格朗日中值定理的证明(考研中的证明题)
谈谈拉格朗日中值定理的证明引言众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述.1罗尔()Rolle 中值定理如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ⋂AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1,注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的.2拉格朗日()lagrange 中值定理若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()ab a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ⋂AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2,从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理.3 证明拉格朗日中值定理3.1 教材证法证明 作辅助函数 ()()()()f b f a F x f x x b a-=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0''=---=a b a f b f f F ζζ.即()()()ab a f b f f --=ζ'. 3.2 用作差法引入辅助函数法证明 作辅助函数 ()()()()()()⎥⎦⎤⎢⎣⎡---+-=a x a b a f b f a f x f x ϕ 显然,函数()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ϕϕ,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得()()()()0''=---=a b a f b f f ζζϕ,即 ()()()ab a f b f f --=ζ'推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ϕ,因为直线OT 的斜率与直线AB 的斜率相同,即有:()()a b a f b f K K AB OT --==,OT 的直线方程为:()()x ab a f b f y --=,于是引入的辅助函数为:()()()()x a b a f b f x f x ---=ϕ. (证明略) 推广2 如图4过点()O a ,作直线''B A ∥AB ,直线''B A 的方程为:()()()a x ab a f b f y ---=,由()x f 与直线函''B A 数之差构成辅助函数()x ϕ,于是有:()()()()()a x a b a f b f x f x ----=ϕ. (证明略) 推广3 如图5过点作()O b ,直线''B A ∥AB ,直''B A 线的方程为()()()b x ab a f b f y ---=,由()x f 与直线A B ''函数之差构成辅助函数()x ϕ,于是有:()()()()()b x ab a f b f x f x ----=ϕ. 事实上,可过y 轴上任已知点()m O ,作//B A ∥AB 得直线为()()m x ab a f b f y +--=,从而利用()x f 与直线的''B A 函数之差构成满足罗尔中值定理的辅助函数()x ϕ都可以用来证明拉格朗日中值定理. 因m 是任意实数,显然,这样的辅助函数有无多个.3.3 用对称法引入辅助函数法在第二种方法中引入的无数个辅助函数中关于x 轴的对称函数也有无数个,显然这些函数也都可以用来证明拉格朗日中值定理.从几何意义上看,上面的辅助函数是用曲线函数()x f 减去直线函数,反过来,用直线函数减曲线函数()x f ,即可得与之对称的辅助函数如下:⑴ ()()()()()()x f a x a b a f b f a f x -⎥⎦⎤⎢⎣⎡---+=ϕ ⑵ ()()()()x f x a b a f b f x ---=ϕ⑶ ()()()()()x f a x a b a f b f x ----=ϕ ⑷ ()()()()()x f b x ab a f b f x ----=ϕ 等等.这类能用来证明拉格朗日中值定理的辅助函数显然也有无数个. 这里仅以⑵为例给出拉格朗日中值定理的证明.证明 显然,函数()x ϕ满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;()3()()()()ab a bf b af b a --==ϕϕ.由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ζζϕf a b a f b f ,从而有()()()ab a f b f f --=ζ',显然可用其它辅助函数作类似的证明.3.4 转轴法由拉格朗日中值定理的几何图形可以看出,若把坐标系xoy 逆时针旋转适当的角度α,得新直角坐标系XOY ,若OX 平行于弦AB ,则在新的坐标系下()x f 满足罗尔中值定理,由此得拉格朗日中值定理的证明.证明 作转轴变换ααsin cos Y X x -=,ααcos sin Y X y +=,为求出α,解出Y X ,得()()x X x f x y x X =+=+=ααααsin cos sin cos ① ()()x Y x f x y x Y =+-=+-=ααααcos sin cos sin ② 由()()b Y a Y =得()()ααααcos sin cos sin b f b a f a +-=+-,从而()()ab a f b f --=αt a n,取α满足上式即可.由()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,知()x Y 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()b Y a Y =,因此,由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()0cos sin '=+-=αζαζf Y ,即()()()ab a f b f f --==αζtan ' 3.5 用迭加法引入辅助函数法让()x f 迭加一个含待顶系数的一次函数m kx y +=,例如令()()()m kx x f x +-=ϕ或()()m kx x f x ++-=ϕ,通过使()()b a ϕϕ=,确定出m k ,,即可得到所需的辅助函数.例如由 ()()()m kx x f x +-=ϕ,令()()b a ϕϕ= 得()()()()m kb b f m ka a f +-=+-,从而()()ab a f b f k --=,而m 可取任意实数,这样我们就得到了辅助函数()()()m x ab a f b f x ---=ϕ,由m 的任意性易知迭加法可构造出无数个辅助函数,这些函数都可用于证明拉格朗日中值定理.3.6 用行列式引入辅助函数法证明 构造一个含()x f 且满足罗尔中值定理的函数()x ϕ,关键是满足()()b a ϕϕ=.我们从行列式的性质想到行列式()()()111xf x af a bf b 的值在,x a x b ==时恰恰均为0,因此可设易证()()()()111xf x x af a bf b ϕ=,展开得 ()()()()()()()x f b x bf a af x af b f a x bf x ϕ=++---.因为()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,所以()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0a b ϕϕ==,所以由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()0'=ζϕ. 因为()()()()()0''=---=ζζϕf b a b f a f 即: ()()()ab a f b f f --=ζ' 3.7 数形相结合法引理 在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为()(),A a f a ,()(),B b f b ,()(),C c f c ,则ABC ∆面积为()()()1112ABCa f a Sb f b a cf c ∆=,这一引理的证明在这里我们不做介绍,下面我们利用这一引理对拉格朗日中值定理作出一种新的证明. 这种方法是将数形相结合,考虑实际背景刻意构造函数使之满足罗尔中值定理的条件.如图, 设()(),c f c 是直线AB 与()y f x =从A 点开始的第一个交点,则构造()()()()211141af a x cf c xf x ϕ=, 易验证()x ϕ满足罗尔中值定理的条件:在闭区间[],a c 上连续,在开区间(),a c 内可导,而且()()b a ϕϕ=,则至少存在一点()b a ,∈ζ,使()/0ϕζ=,即:()()()()()()01111111'=ζζζf c f c a f a f c f c a f a 但是()()()1101af a cf c f ζζ≠,这是因为,如果 ()()()1101a f a c f c f ζζ=, 则()()()()f f c f c f a c c aζζ--=--,这样使得()(),f ζζ成为直线AB 与()y f x =从A点的第一个交点,与已知矛盾).故()()()0111=ζζf c f c a f a,即()()()()()ac a f c f a b a f b f f --=--=ζ'. 若只从满足罗尔中值定理的要求出发,我们可以摈弃许多限制条件,完全可以构造()()()()111af a x bf b xf x ϕ=来解决问题,从而使形式更简洁,而且启发我们做进一步的推广:可构造()()()()()()()111g a fa x gb f b g x f x ϕ=来证明柯西中值定理.3.8 区间套定理证法证明 将区间[],I a b =二等分,设分点为1ζ,作直线1x ζ=,它与曲线()y f x = 相交于1M ,过1M 作直线11L M ∥弦b a M M . 此时,有如下两种可能:⑴ 若直线11M L 与曲线()y f x =仅有一个交点1M ,则曲线必在直线11M L 的一侧.否则,直线11M L 不平行于直线a b M M . 由于曲线()y f x =在点1M 处有切线,根据曲线上一点切线的定义,直线11M L 就是曲线()y f x =在点1M 处的切线,从而()()()ab a f b f f --=1ζ.由作法知,1ζ在区间(),a b 内部,取ζζ=1于是有 ()()()ab a f b f f --=ζ ⑵ 若直线11M L 与曲线()y f x =还有除1M 外的其他交点,设()111,N x y 为另外一个交点,这时选取以11,x ξ为端点的区间,记作[]111,I a b =,有1,112b al I b a -⊇-<,()()()()1111f b f a f b f a b a b a --=--,把1I 作为新的“选用区间”,将1I 二等分,并进行与上面同样的讨论,则要么得到所要求的点ζ,要么又得到一个新“选用区间”2I .如此下去,有且只有如下两种情形中的一种发生:(a) 在逐次等分“选用区间”的过程中,遇到某一个分点k ζ,作直线kx ζ=它与曲线()y f x =交于k M ,过点k M 作直线k k L M ∥弦b MM , 它与曲线()y f x =只有一个交点k M ,此时取ζζ=k 即为所求.(b) 在逐次等分“选用区间”的过程中,遇不到上述那种点,则得一闭区间序列{n I },满足:① 12I I I ⊇⊇⊇[]n n n b a I ,=② ()02n n nb ab a n --<→→∞ ③()()()()n n n n f b f a f b f a b a b a--=-- 由①②知,{n I }构成区间套,根据区间套定理,存在唯一的一点() 3,2,1=∈n I n ζ,此点ζ即为所求. 事实上ζ==∞→∞→n n n n b a lim lim ,()f ξ存在()()()ζf a b a f b f n n n n n =--∞→lim,由③limn →∞()()()()n n n n f b f a f b f a b a b a--=--,所以()()()ab a f b f f --=ζ,从“选用区间”的取法可知,ζ确在(),a b 的内部.3.9 旋转变换法 证明 引入坐标旋转变换A : cos sin x X Y αα=- ⑴ ααcos sin Y X y += ⑵ 因为 22cos sin cos sin 10sin cos αααααα-∆==+=≠所以A 有逆变换/A :()()cos sin cos sin X x y x f x X x αααα=+=+= ⑶()()sin cos sin cos Y x y x f x Y x αααα=-+=-+= ⑷ 由于()x f 满足条件: ()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导,因此⑷式中函数()Y x 在闭区间[]b a ,上连续,在开区间()b a ,内可导.为使()Y x 满足罗尔中值定理的第三个条件,只要适当选取旋转角α,使()()Y a Y b =, 即()()sin cos sin cos a f a b f b αααα-+=-+,也即()()tan f b f a b aα-=-.这样,函数()Y x 就满足了罗尔中值定理的全部条件,从而至少存在一点()b a <<ζζ,使()()0cos si n =+=αζαζf Y 即()αζtan =f . 由于所选取旋转角α满足()()a b a f b f --=αtan ,所以()()()ab a f b f f --=ζ. 结论本论文仅是对拉格朗日中值定理的证明方法进行了一些归纳总结其中还有很多方法是我没有想到的,而且里面还有很多不足之处需要进一步的修改与补充. 通过这篇论文我只是想让人们明白数学并不是纯粹的数字游戏,里面包含了很多深奥的内容. 而且更重要的是我们应该学会去思考,学会凡是多问几个为什么,不要让自己仅仅局限于课本上的内容,要开动脑筋学会举一反三,不要单纯为了学习而学习,让自己做知识的主人!总之,数学的发展并非是无可置疑的,也并非是反驳的复杂过程,全面的思考问题有助于我们思维能力的提高,也有助于创新意识的培养.参考文献[1] 华东师范大学数学系. 数学分析(上册)(第二版)[M].北京:高等教育出版社.1991:153-161[2] 吉林大学数学系. 数学分析(上册)[M].北京:人民教育出版社.1979:194-196[3] 同济大学应用数学系. 高等数学(第一册)[M].北京:高等教育出版社(第五版).2004:143-153[4] 周性伟,刘立民. 数学分析[M].天津:南开大学出版社.1986:113-124[5] 林源渠,方企勤. 数学分析解题指南[M].北京:北京大学出版社.2003:58-67[6] 孙清华等. 数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社.2003:98-106[7] 洪毅. 数学分析(上册)[M].广州:华南理工大学出版社.2001:111-113[8] 党宇飞. 促使思维教学进入数学课堂的几点作法[J].上海:数学通报.2001,1:15-18[9] 王爱云. 高等数学课程建设和教学改革研究与实践[J].西安:数学通报.2002,2:84-88[10] 谢惠民等. 数学分析习题课讲义[M].北京:高等教育出版社.2003:126-135[11] 刘玉莲,杨奎元等. 数学分析讲义学习指导书(上册)[M].北京:高等教出版社.1994:98-112[12] 北京大学数学力学系. 高等代数. 北京:人民教育出版社. 1978:124-135[13] 裴礼文. 数学分析中的典型问题与方法[M].北京:高等教育出版社.1993:102-110[14] 郑琉信.数学方法论[M].南京:广西教育出版社.1996:112-123 [15] 陈传璋等. 数学分析(上册)[M].北京:人民教育出版社.1983:87-92 [16] 李成章,黄玉民. 数学分析(上)[M].北京:科学出版社.1995:77-86附 录柯西中值定理若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续; ⑵ ()x f '与()x g '在开区间()b a ,内可导; ⑶ ()x f ' 与()x g '在()b a ,内不同时为零; ⑷ ()()g a g b ≠,则在()b a ,内至少存在一点ζ,使得()()()()a b a f b f g f --=ζζ''. 区间套定理若[]{},n n a b 是一个区间套,则存在唯一一点ζ,使得 [],n n a b ζ∈,1,2,n = 或n n a b ζ≤≤,1,2,n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y
O
x0
x
O
x0ቤተ መጻሕፍቲ ባይዱ
x
(3)
(4)
一般地,函数f(x)在x=x0处连续必须满足下列
三个条件:
(1)函数f(x)在点x=x0处有定义;
( 2 ) lim f(x)存在. x x0
( 3 ) lim xx0
f(x)
f ( x0
).
2020年4月24日星期五
2.5函数的连续性
3、广义定义:
如果函数y=f(x)在点x=x0处及其附近有定义,而
(2)、如果f(x)在闭区间(a,b)内连续,又满足:
lim f (x) = f (a), lim f (x) = f (b)
x →a +
x→b
就说函数f(x)在闭区间[a,b]上连续。
2020年4月24日星期五
2.5函数的连续性 (3)、最值定理
如果函数f(x)是闭区间[a,b]上的连续函数, 那么f(X)在闭区间[a,b]上有最大值和最小值。 思考:若函数f(x)是开区间(a,b)上的连续函数,那 么f(x)在开区间(a,b)上有最大值和最小值吗?
3.已知函数f ( x ) x2 4 , x2
(1)求f ( x )的定义域,并作出函数图象.
( 2 )求f ( x )的不连续点x0 ; ( 3 )对f ( x )补充定义,使其是R上的连续函数.2020年4月24日星期五
f ( x ) tan( x ),x ( , ). 22
2020年4月24日星期五
2.5函数的连续性 1、课本第95~96页
二、练习巩固
练习与习题2.5
2x( 0 x 1)
2.设函数f ( x ) a( x 1)
在闭区间
4 2x(1 x 2 )
[ 0,2 ]上连续,则常数a ______________ .
且
lim
x→x0
f(x)=
f ( x0
).
就说函数f(x)在点x0处连续。
例1 讨论下列函数在给定点处的连续性:
1 (1) f ( x ) = x , x0 = 0;
( 2 )g( x ) = sin x,x0 = 0.
2020年4月24日星期五
2.5函数的连续性 4、相关概念与性质:
(1)、如果函数f(x)在某一开区间(a,b)内每一点 处都连续,就称函数f(x)在开区间(a,b)内连续,或 说f(x)是开区间(a,b)内的连续函数。
2.5函数的连续性
一、新课讲解
1、狭隘定义:
一个函数f(x)在一点x=x0处连续是指函数f(x) 的图象在x=x0处没有中断. 2、根据定义,指出下列哪些函数在x=x0处连续? 并指出y 函数在x=x0处连续应满足的y 条件是什么?
O (1)
x0 x
O (2)
x0 x
2020年4月24日星期五
2.5函数的连续性