初中数学三角形全等教案讲义
人教版八年级上册第3讲 全等三角形讲义
第3讲全等形和全等三角形全等三角形:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。
一个图形经过平移、翻折、旋转后位置变化了,但是形状、大小都没有改变,即平移、翻折、旋转后的图形全等。
重合的顶点叫做对应点:A→D,B→E,C→F;重合的边叫做对应边:AB→DE,AC→DF,BC→EF;重合的角叫做对应角:∠A→∠D,∠B→∠E,∠C→∠F ;记作△ABC≌DEF全等三角形的性质:全等三角形对应边相等,全等三角形对应角相等。
即AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F【例1--1】:△ABC△△DEF,△A的对应角是△D,△B的对应角△E,则△C与______ 是对应角;AB与____ 是对应边,BC与_______ 是对应边,AC与_______ 是对应边.【例1--2】如图的两个三角形全等.∠B和∠D,∠BAC与∠DCA是对应角。
(1)若按对应顶点写在对应位置上,则应写为△ABC△__________.(2)找出对应边和对应角.【例1--3】如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长。
(2)求∠DFA的度数。
【例1--4】如图,A、D.E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?A B C A’ B’ C’全等三角形的判定Ⅰ。
边边边(SSS )三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS ”)。
书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧===''''''C B BC C A AC B A AB∴△ABC ≌△A ’B ’C ’(SSS )【例2--1】:如图,已知AB=CD,BC=DA,E,F 是AC 上的两点,且AE=CF,DE=BF,那么图中全等三角形有( )A. 4对B. 3对C. 2对D. 1对练习:如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点 F. 若AC=BD,AB=ED,BC=BE,则∠ACB 等于( )A. ∠EDBC. 21∠AFB ABF【例2--2】如图,点B ,E ,C ,F 在同一条直线上,AB=DF ,AC=DE ,BE=FC.(1)证明:△ABC△△DEF.(2)若△A=65°,求△D 的度数.【例2--3】如图,△ABC 是一个钢架,AB=AC ,AD 是连接A 与BC 中点D 的支架。
初中数学全等三角形综合复习讲义-全面完整版
初中数学全等三角形综合复习讲义-全面完整版初中数学全等三角形综合复讲义——全面完整版一、基础知识1.全等图形的有关概念1)全等图形的定义:两个图形能够完全重合,就是全等图形。
例如,图13-1和图13-2就是全等图形。
2)全等多边形的定义:两个多边形是全等图形,则称为全等多边形。
例如,图13-3和图13-4中的两对多边形就是全等多边形。
3)全等多边形的对应顶点、对应角、对应边:两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
4)全等多边形的表示:例如,图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
表示图形的全等时,要把对应顶点写在对应的位置。
5)全等多边形的性质:全等多边形的对应边、对应角分别相等。
6)全等多边形的识别:对边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别1)根据定义:若两个三角形的边、角分别对应相等,则这两个三角形全等。
2)根据SSS:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
3)根据SAS:如果两个三角形有两边及夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
4)根据ASA:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
5)根据AAS:如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别1)根据HL:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
2)SSS、SAS、ASA、AAS对于直角三角形同样适用。
全等三角形的讲义整理讲义
全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
初中数学教案:三角形全等的判定教案
初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。
2. 培养学生运用全等三角形的性质解决实际问题的能力。
3. 培养学生的观察能力、动手能力和逻辑思维能力。
二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。
2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。
三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。
2. 教学难点:三角形全等判定条件的理解和运用。
四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。
2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。
3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。
五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。
2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。
3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。
4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。
5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。
7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。
8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。
六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。
2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。
全等三角形数学教案
全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
初二数学全等三角形教案(五篇)
初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
一。
挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。
3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。
添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。
2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。
三。
熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。
稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
初中数学三角形全等教案、讲义
初中数学三角形全等教案、讲义1.4全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程一、三角形全等的概念如果我们把两张纸重叠起来,同时得到两个三角形,你能发现这两个三角形有什么特征吗?我们发现:这两个三角形的形状、大小完全一样,我们把这两个图形放在一起,他们能够完全重合,像这样的图形,我们就称为是全等形.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.能够完全重合的三角形叫做全等三角形.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .C 11CABA 1甲DCABFE 乙DCAB 丙DCABE议一议:各图中的两个三角形全等吗?不难看出△ABC 和△DEF ,△ABC 和△DBC ,△ABC 和△AED 都是全等三角形.我们把两个三角形全等记作:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.二、三角形全等的性质甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?引导学生从全等三角形可以完全重合出发找等量关系)全等三角形的性质:全等三角形的对应边相等、对应角相等.例1:如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.D CABO例2:如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.ABCDE(第4题)AODBC(第1题)DCABE根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 例3:已知如图△ABC ≌△ADE ,试找出对应边、对应角.(由学生讨论完成)C ABEO1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( )A .∠AB .∠DCBC .∠ABCD .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( ) A .3 B .4 C .5D .6AB FE DCABECD3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________.5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF . 求证:AC ∥DF 。
全等三角形教案(精选3篇)
全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
全等三角形教案(5篇)
全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。
2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。
3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。
(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。
(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。
3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。
至于D,由于AD 和BC是对应边,因此AD=BC。
C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
(简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS ) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL ) 角平分线的性质:在角平分线上的点到角的两边的距离相等.∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN角平分线的判定:到角的两边距离相等的点在角的平分线上.∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BC PMNO例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例3、已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .例5、如图:∠1=∠2,∠3=∠4 求证:AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DE 的长.AGF C BDE图1AEB DCFAB CDE D C EFBA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:① △BEC ≌△DAE ;②DF⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块专题一: 全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB 、AC 为边作两个等腰三角形ABD 和ACE ,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF ∥DE,BE=CF,求证:AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
全等三角形讲义整理讲义
全等三角形讲义整理讲义一、全等三角形的定义与判定条件1.1 定义全等三角形是指两个三角形的三边分别相等,三个角度也是完全相等的三角形。
1.2 判定条件两个三角形全等的条件有以下几点: - SSS(边边边):若两个三角形各边分别相等,则两个三角形全等。
- SAS(边角边):若两个三角形两边和夹角都相等,则两个三角形全等。
- ASA(角边角):若两个三角形的两角和一边相等,则两个三角形全等。
- RHS(直角斜边边):若两个直角三角形的斜边和一条直角边相等,则两个三角形全等。
二、全等三角形的性质2.1 全等三角形的对应角度和对应边长相等对于全等三角形,它的三个角度分别对应,三个边长也对应,也就是说:在全等三角形中,任意两个角度应相等,边长也是相等的。
2.2 全等三角形的任意一对对应边和对应角都相等对于全等三角形,若两个三角形是全等的,那么它们对应的任意一个角度和边长都是相等的。
2.3 全等三角形的对边平行对于全等三角形来说,如果我们将两个全等三角形重合,那么对应边就会重合,此时,它们的对边将会互相平行。
三、全等三角形的应用3.1 计算两个全等三角形之间的比例关系通过全等三角形的性质,我们可以计算出两个全等三角形之间的比例关系,这在解决一些类似于“影子问题”等数学题目时非常实用。
3.2 解决几何题目在解决几何题目时,有些问题常常需要使用到全等三角形的性质,例如,通过证明两个三角形全等,来计算出未知的边长或角度等。
四、常见误区4.1 认为两个形状相同的图形就是全等三角形形状相同的图形不一定是全等三角形,两个三角形只有在三边或者两边一角相等的情况下才能被认定为全等的。
4.2 认为两个三角形的相似一定就是全等的两个相似的三角形不一定是全等的三角形,相似三角形只是其中的边长成比例。
五、全等三角形是一种非常重要的基础概念,它的应用十分广泛,对于许多与求解边长、角度有关的几何题目都有很大的帮助,也对于对称性的研究、空间几何、画图以及设计等领域有着重要的意义。
《全等三角形》 讲义
《全等三角形》讲义一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
例如,在三角形 ABC 和三角形 A'B'C'中,如果将三角形 ABC 平移、旋转或翻转后,能够与三角形 A'B'C'完全重合,那么我们就说三角形ABC ≌三角形 A'B'C'。
二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果三角形 ABC ≌三角形 A'B'C',那么 AB = A'B',BC = B'C',AC = A'C'。
2、全等三角形的对应角相等比如,在上述全等的两个三角形中,∠A =∠A',∠B =∠B',∠C =∠C'。
3、全等三角形的周长相等因为对应边相等,所以三角形的三条边相加的和也相等,即周长相等。
4、全等三角形的面积相等由于两个三角形能够完全重合,所以它们所覆盖的面积是一样的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,三角形 ABC 和三角形 A'B'C'中,AB = A'B',AC = A'C',∠A =∠A',则三角形 ABC ≌三角形 A'B'C'。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
举例来说,在三角形 MNP 和三角形 QRS 中,∠M =∠Q,∠N =∠R,MN = QR,那么三角形 MNP ≌三角形 QRS。
八年级数学全等三角形新课讲义完整版(全8讲)
八年级数学全等三角形新课讲义全面完整版(全八讲)A B C 1 E DA B C D O 1 2(1) (2) A B D C (1) (2) AB C E D第一讲 全等三角形概念及其性质(一) 知识要点1、 全等三角形的有关概念1)能够完全重合的两个图形叫做 形。
2)能够完全重合的两个三角形叫做全等 形。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
3)全等三角形表示方法:“全等”用“≌”表示,读作“全等于”,如△ABC ≌△DEF 。
4)对应元素:①对应顶点:点A 与点D ,点B 与点E ,点C 与点F 是对应顶点 ②对应边:AB 与DE ,AC 与DF ,BC 与EF 是对应边 ③对应角:∠A 与∠D ,∠B 与∠E ,∠C 与∠F 是对应角当两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如右图所示,△ABC 和△DEF 全等,是,记作△ABC ≌△DEF 。
其中,。
2、常见的全等三角形的基本图形有平移型、旋转型和翻折型。
(1)平移型:如下左图,若△ABC ≌△DEF ,则BC=EF 。
将△DEF 向左平移得到下右图,则仍有BC=EF ,在右图中,若知BC=EF ,则可推出BE=CF 。
(2)旋转型:如下左图,两对三角形的全等属于旋转型,图形的特点是:图1的旋转中心为点A ,有公共部分∠1;图2的旋转中心为点O ,有一对对顶角∠1=∠2。
(3)翻折型:如右图,两个三角形的全等属于翻折型,其中图中有公共边AB 3、 全等三角形的性质1) 全等三角形的对应边相等; 2) 全等三角形的对应角相等。
3) 知识延伸:如果两个三角形全等,则三角形的对应边上的中线、高线及对应角的角平分线也相等。
AB C DE F AB C DE FA B C D E FB AC D EEAB C D OA B C DFE 4、规律方法小结:在寻找全等三角形的对应边和对应角时,常用的方法有:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角; (4)全等三角形中一对最短的边(或最小的角)是对应边(或对应角)。
全等三角形教案【优秀7篇】
全等三角形教案【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!全等三角形教案【优秀7篇】在教学工作者开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
初中数学《全等三角形》教案
初中数学《全等三角形》教案初中数学《全等三角形》教案(精选11篇)作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
我们该怎么去写教案呢?以下是小编整理的初中数学《全等三角形》教案,仅供参考,大家一起来看看吧。
初中数学《全等三角形》教案1一、教学目标1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、2、使学生掌握化简一个二次根式成最简二次根式的方法、3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、二、教学重点和难点1、重点:能够把所给的二次根式,化成最简二次根式、2、难点:正确运用化一个二次根式成为最简二次根式的方法、三、教学方法通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的`方法、四、教学手段利用投影仪、五、教学过程(一)引入新课提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?了、这样会给解决实际问题带来方便、(二)新课由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:1、被开方数的因数是整数,因式是整式、2、被开方数中不含能开得尽方的因数或因式、例1?指出下列根式中的最简二次根式,并说明为什么、分析:说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、例2?把下列各式化成最简二次根式:说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、例3?把下列各式化简成最简二次根式:说明:1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简、2.要提问学生问题,通过这个小题使学生明确如何使用化简中的条件、通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、注意:①化简时,一般需要把被开方数分解因数或分解因式、②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、(三)小结1、满足什么条件的根式是最简二次根式、2、把一个二次根式化成最简二次根式的主要方法、(四)练习1、指出下列各式中的最简二次根式:2、把下列各式化成最简二次根式:六、作业教材P、187习题11、4;A组1;B组1、七、板书设计初中数学《全等三角形》教案2一、教学目标知识与技能理解并掌握全等三角形的概念及性质。
初中数学三角形全等教案讲义
初中数学三角形全等教案讲义教案:数学三角形全等一、教学目标:1.理解三角形全等的定义和判定条件。
2.了解三角形全等的性质及应用。
3.能够通过已知条件判定三角形全等。
二、教学重难点:1.教学重点:三角形全等的判定条件。
2.教学难点:三角形全等的应用。
三、教学过程:导入(5分钟)通过举例引入三角形全等的概念,引起学生的兴趣。
学习(25分钟)1.笔直的射线展示告诉学生,向右作直线和向左作直线被认为是等於的。
相同地,三角形也有被视为等於的明确的判定条件。
2.三角形全等的定义引导学生讨论三角形全等的含义,提出三角形ABC≌三角形DEF的定义。
3.三角形全等的判定条件通过板书和实例演示,讲解以下判定条件:(1)两边对应相等,且夹角相等。
(2)两角对应相等,且边长相等。
(3)两边角对应相等。
4.三角形全等定理介绍三角形全等的定理和性质,例如:如果两个三角形的两边和一夹角互相对应相等,则这两个三角形全等。
5.三角形全等的证明通过实例演示,教授如何利用判定条件进行三角形全等的证明。
练习(25分钟)1.完成课本上的练习题,练习运用判定条件判断三角形是否全等。
2.探究型任务给出一些实际问题,要求学生根据已知条件判断哪些三角形全等,从而解决问题。
拓展(15分钟)1.数学应用介绍三角形全等在日常生活和工程上的应用,如架设桥梁、建造房屋等。
2.三角形全等的补充知识介绍其他与三角形全等相关的知识,如正弦定理、余弦定理等。
总结(5分钟)通过回顾本节课的内容,总结三角形全等的定义和判定条件。
四、板书设计:三角形全等定义:三角形ABC≌三角形DEF判定条件:1.两边对应相等,且夹角相等。
2.两角对应相等,且边长相等。
3.两边角对应相等。
定理:如果两个三角形的两边和一夹角互相对应相等,则这两个三角形全等。
应用:架设桥梁、建造房屋等。
五、教学反思:通过引入概念、讲解判定条件、演示证明和独立练习等环节,学生对三角形全等的理解更加深入和全面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4全等三角形教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程一、三角形全等的概念如果我们把两张纸重叠起来,同时得到两个三角形,你能发现这两个三角形有什么特征吗?我们发现:这两个三角形的形状、大小完全一样,我们把这两个图形放在一起,他们能够完全重合,像这样的图形,我们就称为是全等形.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.能够完全重合的三角形叫做全等三角形.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB 丙DCABEC 1B 1CABA 1议一议:各图中的两个三角形全等吗?不难看出△ABC 和△DEF ,△ABC 和△DBC ,△ABC 和△AED 都是全等三角形.我们把两个三角形全等记作:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.二、三角形全等的性质甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?引导学生从全等三角形可以完全重合出发找等量关系)全等三角形的性质:全等三角形的对应边相等、对应角相等.例1:如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.D CABO例2:如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.DCABE根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.AB C D E (第4题) ACFEDA O DBC (第1题)A B F ED C ABECD例3:已知如图△ABC ≌△ADE ,试找出对应边、对应角.(由学生讨论完成)DC ABEO1.如图,已知△ABC≌△DCB,且AB=DC ,则∠DBC 等于( ) A .∠A B.∠DCB C.∠ABC D .∠ACB2.已知△ABC≌△DEF,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .63.已知△ABC≌△DEF,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED,则DE 与BC 的位置关系是___________,数量关系是___________. 5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF .求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.1.5 全等三角形的判定(SSS)1、只给一个条件(一组对应边相等或一组对应角相等),•你可以画出多少三角形呢?画出的三角形一定都全等吗?2、给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm可以看出来当只给出一个条件或两个条件时,我们不能保证画出来的三角形都是全等三角形,那么如果给出来三个条件时,又会有怎样的结果呢?给出三个条件时有下面四种情况:三条边、三内角、两边一内角、两内角一边,我们先来探索第一种情况.请按照下面的方法,用刻度尺和圆规画ΔDEF ,使其三条边分别为 1.3cm ,1.9cm ,2.5cm.画法:1、画线段EF=1.3cm ;2、分别以E 、F 为圆心,1.9cm ,2.5cm 长为半径画两条弧,交于点D ;3、连结DE ,DF ;ΔDEF 就是所求的三角形.按照上述方法你画出了几个三角形,它们有什么关系呢?通过上面的讨论我们有如下判定三角形全等的边边边定理:三边对应相等的两个三角形全等(简写为“边边边”或“SSS ”)用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.例1:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .例2:如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?如何利用直尺和圆规作一个已知角的角平分线呢?D CB AFDCBEA按照下面的步骤,我们可以作出来一条直线,求证这条直线即是角平分线.1、以点A 为圆心,适当长为半径作圆弧,与角的两边分别交于E 、F 两点;2、分别以E 、F 为圆心,大于21EF 长的半径; 作圆弧,两条圆弧交于BAC ∠内一点D ; 3、过点A 、D 作射线AD.射线AD 就是所求作的BAC ∠的平分线.根据我们作出的图形,找到已知条件,并证明AD 是BAC ∠的平分线.把两根木条的一端固定在一起,木条会自由转动。
在转动过程中,连结另两个端点所组成的三角形的形状、大小会随之改变.如果把另外两个端点用一根木条固定住,那么构成的三角形的形状,大小就完全确定.这就告诉我们一个生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.ABC1.5 全等三角形的判定(SAS)1、怎样的两个三角形是全等三角形?2.全等三角形的性质?3、上一节我们学习了什么方法来判定三角形全等?除了这个方法,还有没有其它的方法呢?如右图2,AC 、BD 相交于O ,AO 、BO 、CO 、DO 的长度如图所标,那么△ABO 和△CDO 是否能完全重合呢?如果把△OAB 绕着O 点顺时针方向旋转,因为OA =OC ,所以可以使OA 与OC 重合;又因为∠AOB =∠COD , OB =OD ,所以点B 与点D 重合.这样△ABO 与△CDO 就完全重合.根据这个图形我们来探讨一下判定三角形全等的另一个方法.不难看出,这ΔAOB 和ΔCOD 有三对元素是相等的,从而我们得到:ΔAOB ≌ΔCOD由此,我们得到启发:判定两个三角形全等,只需要这两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.这就是边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS ”)按下面的步骤画图:①画∠DAE =45°,②在AD 、AE 上分别取 B 、C ,使 AB =3.1cm ,AC =2.8cm .③连结BC ,得△ABC . ④按上述画法再画一个△A 'B 'C '. 观察△A 'B 'C '与△ABC 是否能够完全重合?任意给出三角形的两条边和一个角,我们画出的三角形是否都全等呢?已知△ABC 中A ∠=︒45,AC=3cm ,BC=2cm ,那么你可以画出怎样的三角形呢?试着画一画.利用边角边定理判定三角形全等时,对应角一定要是对应边的夹角.AO=CO AOB=COD BO=DO ⎧⎪∠∠⎨⎪⎩DBACl例1:已知:如图,AB =AC ,F 、E 分别是AB 、AC 的中点.求证:△ABE ≌△ACF .例2:已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .例3:直线l ⊥线段AB 于点D ,且AD=BD ,点C 是直线l 上任意一点,证明AC=BC像直线l 这样,垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。
线段垂直平分线上的点到线段两端的距离相等.(1)如图3,已知AD ∥BC ,AD =CB ,要用边角边公理证明△ABC ≌△CDA ,需要三个条件,这三个条件中,已具有两个条件,一是AD =CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).1.5 全等三角形的判定(ASA 或AAS)有两个角和它们的夹边对应相等的两个三角形一定全等吗?请用量角器和刻度尺画ΔABC ,使BC=3cm ,∠B=︒40,∠C=︒60.根据要求我们只能画出一个三角形,由此我们得到角边角定理:有两个角和这两个角的夹边对应相等的两个三角形全等(简写为“角边角”或“ASA ”)在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢?例1:如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?DCABFE由此我们得到角角边定理:两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).例2:如图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .D CABE。