万科城_中考模拟试卷

合集下载

2023年陕西省西安万科城初级中学中考五模数学试题

2023年陕西省西安万科城初级中学中考五模数学试题

2023年陕西省西安万科城初级中学中考五模数学试题学校:___________姓名:___________班级:___________考号:___________A.....共产主义远大理想始终激励青年砥砺前行、奋发向上,青年加入中国共产党、中国共产主义青年团意愿持续高涨.截止2021年底,共青团员总数达到用科学记数法表示()7⨯C.7.371510A .10cmB .12013cm 6.若直线BC 和直线3y x =+平行,其中点单位后为()A .2y x =-+B .4y x =-+7.如图,AB 为圆O 一条弦,OD AB ⊥交ABC ,连接AC 交OD 于M ,连接DC ,若ACD ∠A .13B .238.下表按照横坐标由小到大列出了任意一点纵坐标均不大于7,下列说法错误的是(x 0m2D .若直线y kx b =+,经过()4,8,若8b >,则y kx b =+和2y ax bx c =++的图像有一个交点二、填空题13.在四边形ABCD 中,对角线连接EF 交BD 于P ,交AC18.如图,AB 、EF 相交于点G 接DC ,若AD BC =,证明:CD 19.如图所示,在单位长度为1别为()2,2A 、()5,2B 、(6,6C(1)将ABC 各边扩大到原来的两倍,得到(2)在网格中画出111A B C △关于原点O 的对称图形为2A 、2B 、2C ),并直接写出22A C 的中点坐标.20.小科同学在学习了“频率与概率应用”配紫色游戏这一节后,也设计了一款配紫色游戏如图,O 为矩形的对称中心,线段AO 和对角线60AOB ∠=︒,分别用“红”、“绿”、“蓝”三种颜料将这三部分涂上颜色,后在不受干扰的情况下可在任意位置停下.设计游戏规则如下:拨动指针,待指针停下记下指针指向的颜色,若指针停在OA OB 、指向某一颜色区域,记为一次有效拨动.记录一次完整的有效拨动后,才可进行第二次拨动.(1)一次有效拨动,恰好指针停在红色区域的概率(2)利用列表或画树状图的方法求两次有效拨动恰好配成紫色的概率.紫色)21.“双减”政策实施后,某校为了解本校学生每天课后进行体育锻炼的时间情况,在月份某天随机抽取了若干名学生进行调查,表.请根据统计图表提供的信息,回答下列问题:组别锻炼时间(分钟)频数(人)(2)若制成扇形图,则C 组所对应的圆心角为(3)若该校学生有2000人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生约有多少人?22.下图中,左图是一款笔记本支撑架实物图,支撑杆、托盘三部分组成.右图是支撑杆分别调节至撑杆和托盘连接的一端恰好固定在托盘的中点,1号孔位时,支撑杆与底座夹角为66︒度OH 为9cm ,支撑杆位于6号孔位时,其与底座的夹角为考数据:sin 660.9︒≈,cos660.4︒≈tan150.27︒≈)(1)支撑杆的长度为多少,即OE 的长?(2)支撑杆位于6号孔位时,求托盘顶端距离底座的高度DG ?23.根据信息完成下列各题一套简单的密码由三部分组成:明文、密文、密钥,它们之间的关系是利用密钥可以将明文转化为密文.的切线(1)证明:EF为O的半径为4,(2)连接BD,若O25.某体验馆建造了一幢“森林”主题场馆,需要在洞穴内壁架设平行于地面的钢架方隔离出一片矩形区域ABCD,且面为x轴建立平面直角坐标系,抛物线与。

深圳万科城实验学校初中部初三化学中考复习题及答案

深圳万科城实验学校初中部初三化学中考复习题及答案

深圳万科城实验学校初中部初三化学中考复习题及答案一、选择题(培优题较难)1.下列关于物质结构和性质的说法不正确的是()A.生铁和刚性能不同主要是由于含碳量不同B.CO和CO2化学性质不同是由于构成它们的分子不同C.金刚石和石墨性质不同是由于构成它们的碳原子不同D.金属钠和铝的性质不同是由于钠和铝的原子结构不同【答案】C【解析】物质的组成和结构决定物质的性质。

A. 生铁和钢都是铁的合金,主要区别是碳的含量不同。

因此生铁和钢性能不同主要是由于含碳量不同;B. CO和CO2化学性质不同是由于构成它们的分子不同;C. 金刚石和石墨都是由碳原子直接构成的,性质不同是由于构成它们的碳原子的排列方式不同;D.金属钠和铝都是由原子直接构成的,金属的化学性质由构成金属的原子保持,而原子的化学性质由原子的最外层电子数决定,金属钠和铝的性质不同是由于钠和铝的原子结构不同。

选C2.一包不纯的氯化钾粉末,所含杂质可能是氯化钠、硝酸钾、硝酸钙、氯化铜、碳酸钠中的一种或几种。

为确定其成分,某兴趣小组的同学们进行如下实验:(1)取少量该粉末于烧杯中,加蒸馏水,充分搅拌,得无色澄清溶液。

(2)取上述无色溶液少许于试管中,滴加氯化钡溶液有白色沉淀生成。

(3)另称取 14.9 g 该粉末于烧杯中,加入蒸馏水溶解,再加入足量的硝酸银溶液和稀硝酸,充分反应后生成 28.7 g 白色沉淀。

根据上述实验判断,下列说法正确的是A.杂质中可能含有硝酸钾、氯化钠B.杂质中肯定不含硝酸钙、氯化铜、碳酸钠C.杂质中肯定含有碳酸钠,可能含有氯化钠D.杂质中肯定含有氯化钠、碳酸钠,可能含有硝酸钾【答案】D【解析】A、氯化钾、氯化钠和硝酸银反应的化学方程式及其质量关系为:KCl+AgNO3═AgCl↓+KNO3,74.5 143.514.9g 28.7gNaCl+AgNO3═AgCl↓+NaNO3,58.5 143.511.7g 28.7g取上述无色溶液少许于试管中,滴加氯化钡溶液有白色沉淀生成,是因为碳酸钠和氯化钡反应生成白色沉淀碳酸钡和氯化钠,因此杂质中含有碳酸钠,由计算可知,14.9g氯化钾和硝酸银反应生成28.7g氯化银,11.7g氯化钠和硝酸银反应生成28.7g氯化银,杂质中含有碳酸钠,氯化钾质量小于14.9g,和硝酸银反应生成氯化银质量小于28.7g,因此杂质中一定含有氯化钠,错误;B、取上述无色溶液少许于试管中,滴加氯化钡溶液有白色沉淀生成,是因为碳酸钠和氯化钡反应生成白色沉淀碳酸钡和氯化钠,因此杂质中含有碳酸钠,则杂质中不含有硝酸钙,加蒸馏水,充分搅拌,得无色澄清溶液,说明杂质中不含有氯化铜,错误;C、由A知,杂质中肯定含有碳酸钠、氯化钠,错误;D、杂质中肯定含有氯化钠、碳酸钠,由于硝酸钾是否存在不影响实验结果,因此可能含有硝酸钾,也可能不含有硝酸钾,正确。

初中数学 2023年陕西省西安市长安区初级中学中考数学五模试卷

初中数学 2023年陕西省西安市长安区初级中学中考数学五模试卷

2023年陕西省西安市长安区万科城初级中学中考数学五模试卷一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)1.(3分)一个长、宽、高都互不相等的长方体的主视图、俯视图、左视图都是.2.(3分)小明身高是1.6m,其影长是2m,同一时刻古塔的影长是18m,则古塔的高是m.3.(3分)如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m杆的影子长为2 m,则电线杆的高度约为m.(结果保留两位有效数字,2≈1.41,3≈1.73)√√4.(3分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.5.(3分)已知抛物线y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为.6.(3分)如图,有一个抛物线型拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中,则此抛物线的函数关系式为.7.(3分)如图,在△ABC中,DE∥BC,AD=2,AE=3,BD=4,则AC=.8.(3分)如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=时,△AED与以M,N,C为顶点的三角形相似.9.(3分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口DE正好对着量具上30份处(DE∥AB),那么小管口径DE的长是毫米.10.(3分)已知m2+m-3=0,n2+n-3=0,且m≠n,则1m +1n的值为.二、选择题:(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)11.(3分)已知点P1(a,1)和点P2(2,b)关于y轴对称,则(a+b)2004=.12.(3分)若某人沿坡度ⅰ=3:4的坡度前进10m,则他所在的位置比原来的位置升高m.A.中午林荫道旁树的影子B.海滩上撑起的伞的影子C.跑道上同学们的影子D.晚上亮亮的手在墙上的投影13.(3分)下列四个条件中哪个不是平行投影( )A.h A>h B B.h A<h B C.h A≥h B D.不能确定14.(3分)灯光下的两根小木棒A和B,它们竖立放置时的影子长分别为l A和l B,若l A>l B.则它们的高度为h A和h B满足( )A.B.C.D.15.(3分)下列图形中左视图的是( )A.B.C.D.16.(3分)已知h关于t的函数关系式为h=12gt2,(g为正常数,t为时间),则函数图象为( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根17.(3分)函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.都扩大为原来的5倍B.都扩大为原来的10倍18.(3分)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )三、解答题(耐心计算,仔细观察,表露你萌动的智慧!)C .都扩大为原来的25倍D .都与原来相等A .0.2172kmB .2.172kmC .21.72kmD .217.2km19.(3分)在比例尺为1:40000的工程示意图上,将于2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm ,它的实际长度约为( )A .16cmB .13cmC .12cmD .1cm20.(3分)如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( )21.(8分)已知抛物线y =12x 2+x -52.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.22.(8分)某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?23.(8分)如图,在一个长40m 、宽30m 的长方形小操场上,王刚从A 点出发,沿着A ⇒B ⇒C 的路线以3m /s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从A 地出发沿王刚走的路线追赶.当张华跑到距B 地223m 的D 处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC 上.(1)求他们的影子重叠时,两人相距多少米?(DE 的长)(2)求张华追赶王刚的速度是多少?(精确到0.1m /s )24.(8分)李华在三洲田风景区的观景台O 处,观测到北偏东50°的P 处有一艘集装箱货船,该船正向南匀速航行30分钟后再观测时,该船已航行到O 的南偏东40°、且与O 相距2千米的盐田港Q 处,如图所示,求:(1)∠P 和∠Q 的度数;(2)集装箱货船每小时航行约多少千米?(注:结果精确到0.1,参考数据:sin 40°=0.64;sin 50°=0.77)25.(8分)张华参加市义工联组织的扶贫义卖活动,在批发部购买义卖商品时,业内人士提醒:“该种商品批发价为16元,如按2 0元出售时,就能卖出100个;在此基础上,如售价每涨1元,其销售量就会减少10个”.张华要完成赚得480元利润的任务,应将售价定为高出20元多少元?因此需从批发部购进该商品的个数是多少?26.(8分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?27.(6分)已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题:(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;(3)在(2)的条件下,设BPPD =k,是否存在这样的实数k,使得S平行四边形PEAMS△ABD=49?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.28.(6分)高高地路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的,于是,他走到路灯旁的一个地方,竖起竹竿,这时,他量了一下竹竿的影长正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即2米)、此时,小明抬头瞧瞧路灯,若有所思地说:“噢,原来路灯有10米高呀!”(如图所示)同学们,你觉得小明的判断对吗?。

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部八年级数学上期中第一次模拟试卷含答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,ba+.A.2 B.3 C.4 D.53.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣344.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.146.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB.∠A=12∠B=13∠CC.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C7.一个正多边形的每个外角都等于36°,那么它是()A .正六边形B .正八边形C .正十边形D .正十二边形8.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)9.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .411.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.14.当x=_________时,分式33xx-+的值为零.15.如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有_____个16.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.17.如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为_____°.18.已知x m=6,x n=3,则x2m﹣n的值为_____.19.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.20.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B 为_____度.三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-. 22.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 2﹣4x ﹣1=0. 23.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.24.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(l )第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价325a 元进行促销,结果第二批车厘子的销售利润为1520元,求a 的值。

2019-2020西安陕西师范大学万科初级中学数学中考一模试题(含答案)

2019-2020西安陕西师范大学万科初级中学数学中考一模试题(含答案)
24.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元)
85
95
105
115
日销售量y(个)
175
125
75
m
日销售利润w(元)
875
1875
1875
875
(注:日销售利润=日销售量×(销售单价﹣成本单价))
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 表示时间, 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家
B.体育场离文具店
C.林茂从体育场出发到文具店的平均速度是
D.林茂从文具店回家的平均速度是
【详解】
∵二次函数图象开口方向向上,
∴a>0,
∵对称轴为直线
∴b<0,
二次函数图形与 轴有两个交点,则 >0,
∵当x=1时y=a+b+c<0,
∴ 的图象经过第二四象限,且与y轴的正半轴相交,
反比例函数 图象在第二、四象限,
只有D选项图象符合.
故选:D.
【点睛】
考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
∴A( ,2),B(2, ),
∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,
∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,
即此时线段AP与线段BP之差达到最大,
设直线AB的解析式是y=kx+b,

2020-2021深圳万科城实验学校初中部七年级数学下期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部七年级数学下期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部七年级数学下期中第一次模拟试卷含答案一、选择题1.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .2.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒3.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°4.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .95.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .26.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .7.若a<b<0,则在ab<1、1a>b1、ab>0、ba>1、-a>-b中正确的有()A.2个B.3个C.4个D.5个8.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列现象中是平移的是()A.将一张纸对折B.电梯的上下移动C.摩天轮的运动D.翻开书的封面10.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°11.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1212.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.14.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a∥b成立15.已知点P(x+3,x﹣4)在x轴上,则x的值为_____________.16.如果点(,2)x x到x轴的距离为4,则这点的坐标是(,_____).17.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.18.根据不等式的基本性质,可将“mx <2”化为“x >2m ”,则m 的取值范围是_____. 19.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .20.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.三、解答题21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:(1)计算:{}{}3,11,2+;(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.解:(1){}{}3,11,2+______;(2)答:______;(3)加法算式:______.22.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x ≤≤).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题:(1)统计表中c 的值为;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少?23.求不等式()()922312m m ---≥-的所有正整数解. 24.如图所示,已知AB ∥CD ,分别探索下列四个图形中∠P 与∠A ,∠C 的关系,请你从所得的四个关系中任选一个加以说明.25.如图,α∠和β∠的度数满足方程组3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)求证//AB EF ;(2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A .【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.3.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .4.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.5.C解析:C【解析】0=,∴x ﹣1=0,x +y =0,解得:x =1,y =﹣1,所以xy =﹣1.故选C .6.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a <b <0,∴ab 不一定小于1,故①错误;②∵a <b <0, ∴1a >b1,故②正确; ③∵a <b <0,ab >0,故③正确;④∵a <b <0,b a<1,故④错误; ⑤∵a <b <0,-a >-b ,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.8.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 9.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A 、将一张纸对折,不符合平移定义,故本选项错误;B 、电梯的上下移动,符合平移的定义,故本选项正确;C 、摩天轮的运动,不符合平移定义,故本选项错误;D 、翻开的封面,不符合平移的定义,故本选项错误.故选B .【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.10.C解析:C【解析】【分析】由平行线性质和角平分线定理即可求.∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.11.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键.14.70°【解析】【分析】根据平行的判定要使直线a∥b 成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b 成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a ∥b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a ∥b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.15.x=4【解析】【分析】【详解】解:∵点P(x+3x −4)在x 轴上∴x −4=0解得:x=4故答案为:x=4解析:x=4【解析】【分析】【详解】解:∵点P(x+3,x−4)在x 轴上,∴x−4=0,解得:x=4,故答案为:x=4.16.(24)或(-2-4)【解析】【分析】根据平面直角坐标系中的点到x 轴的距离等于这一点纵坐标的绝对值得出|2x|=4解方程求出x 的值进而得到这点的坐标【详解】∵点到x轴的距离为4∴解得x=±2∴这个点解析:(2,4)或(-2,-4).【解析】【分析】根据平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值得出|2x|=4,解方程求出x的值,进而得到这点的坐标.【详解】∵点(,2)x x到x轴的距离为4,∴24x ,解得x=±2.∴这个点的坐标为:(2,4)或(-2,-4).故答案为:(2,4)或(-2,-4).【点睛】本题考查了点的坐标,绝对值的定义,掌握平面直角坐标系中的点到x轴的距离等于这一点纵坐标的绝对值是解题的关键.17.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<0解析:m<0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m <0,故答案为:m <0.19.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°20.(22)或(4-4)【解析】【分析】点P 到x 轴的距离表示为点P 到y 轴的距离表示为根据题意得到=然后去绝对值求出x 的值再写出点P 的坐标【详解】解:∵点P 到两坐标轴的距离相等∴=∴3a-1=3-a 或3a解析:(2,2)或(4,-4).【解析】【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.三、解答题21.(1){4,3};(2)B,图见解析;(3){0,0}.【解析】【分析】(1)根据平移量”{a ,b}与“平移量”{c ,d}的加法运算法则为{a ,b}+{c ,d}={a+c ,b+d}计算;(2)根据题意画出图形、结合图形解答;(3)根据平移量的定义、加法法则表示即可.(1){}{}3,11,2+={3+1,1+2}={4,3},(2)如图.最后的位置仍是点B ,(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【点睛】本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.22.(1)c=0.34;(2)补图见解析;(3)180幅【解析】【分析】(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得c 的值.(2)根据频率=频数÷总数求得a ,b 的值,补全图形即可得;(3)总数乘以80分以上的频率即可.【详解】(1)本次调查的作品总数为18÷0.36=50(幅), 则c=17÷50=0.34, 故答案为:0.34(2)a=50×0.24=12,b=50×0.06=3 补全图形如下:(3)600×(0.24+0.06)=180(幅), 答:估计全校被展评作品数量是180幅.故答案为:180幅本题考查了频数频率分布表及频数分布直方图,将频数频率分布表与频数分布直方图关联起来,获取有用信息进行解题.23.72m≤,正整数解123m=、、【解析】【分析】去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+392≥-移项,得2m-3m ≥4-3- 92,合并同类项,得-m≥-72,系数化为1得72 m≤,则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.24.答案见解析【解析】【分析】本题考查的是平行线的性质以及平行线的判定定理.(1)(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3)(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.【详解】解:如图:(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.说明理由(以第三个为例):已知AB ∥CD ,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P .【点睛】本题考查平行线的性质;三角形的外角性质.25.(1)详见解析;(2)50°.【解析】【分析】(1)解方程组求出α,β即可判断.(2)证明//AB CD ,利用平行线的性质解决问题即可.【详解】(1)由3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,解得:40140αβ=︒⎧⎨=︒⎩,180αβ∴+=︒,//AB EF ∴. (2)//CD EF ,//EF AB ,//AB CD ∴,180BAC C ∴∠+∠=︒,AC AE ⊥,90EAC ∴∠=︒,40BAE ∠=︒,130BAC ∴∠=︒,50C ∴∠=︒. 【点睛】本题考查了平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.。

深圳万科城实验学校初中部中考模拟化学试题

深圳万科城实验学校初中部中考模拟化学试题

深圳万科城实验学校初中部中考模拟化学试题一、选择题1.下列归类正确的是选项归类物质(或元素)A常见碱纯碱、烧碱、熟石灰B常见合金生铁、铜绿、硬铝C常见干燥剂浓硫酸、生石灰、碱石灰D人体中常见微量元素碘、锌、硒、钙等A.A B.B C.C D.D2.某固体混合物由Mg和MgO组成,取该混合物与19. 6%的稀硫酸恰好完全反应(反应后溶液中无晶体析出),所得溶液蒸发82. 2g水后得到固体的质量为24g,则原混合物中氧元素的质量分数为()A.16%B.20%C.25%D.40%3.部分变质的烧碱样品18.6g,能与7.3%的稀盐酸200g恰好完全反应,则此样品中变质的烧碱与原烧碱的质量比为( )A.3:2 B.2:3 C.1:2 D.1:14.如图所示,其中甲、乙、丙、丁、戊分别是铁、盐酸、氢氧化钙、二氧化碳、碳酸钠中的一种.图中相连的两圆表示相应物质能发生反应,已知乙是铁.下列说法错误的是A.五种物质中,只有铁是单质B.丙是盐酸C.戊是氢氧化钙D.甲与丁反应属于复分解反应5.固体X可能由氢氧化钠、碳酸钠、氯化钠、硝酸镁、硝酸钡、硫酸钠、硫酸铜中的一种或几种物质组成(提示:以上物质中,只有氢氧化钠和碳酸钠的水溶液显碱性)。

为确定其组成,进行如下实验:①将固体X加入水中充分溶解,得到无色溶液;②测X溶液的pH,pH= 13;③向X的溶液中加入足量的硝酸钡溶液,产生白色沉淀,过滤;④向步骤③所得沉淀中加入足量的稀盐酸,沉淀不溶解;⑤向步骤③所得的滤液中加入过量的稀硝酸,再加入硝酸银溶液,产生白色沉淀。

根据以上实验信息,关于固体X组成的判断有以下几种说法:①不能确定是否有硝酸镁;②硝酸钡、硫酸铜、碳酸钠一定不存在;③硫酸钠和氢氧化钠一定存在;④不能确定是否有氯化钠。

以上说法中正确的个数是A.1个B.2个C.3个D.4个6.甲、乙两种固体物质(不含结晶水)的溶解度曲线如图所示。

下列说法正确的是( )A.甲物质的溶解度大于乙物质的溶解度B.t1℃时甲、乙两物质的溶液溶质质量分数一定相等C.t1℃时,甲、乙两物质各50 g分别加入100g水中,充分溶解,得到的溶液质量都是140gD.t2℃时,等质量甲、乙两种固体配制成饱和溶液时甲比乙需要的水多7.不能正确反映对应变化关系的图像是()A.在一定量的CuSO4溶液中逐滴加入NaOH溶液B.等质量的Zn和Mg分别与足量等体积等质量分数的稀硫酸反应C.向NaOH溶液中逐滴加入稀盐酸D.等质量CaCO3分别与足量等体积等质量分数的稀盐酸反应8.有一包固体粉末X,可能含有碳酸钙、硫酸铜、硫酸亚铁、锌粉,为确定固体粉末的成分,现取X进行下列实验,实验过程及现象如下图所示(不考虑水、稀盐酸的挥发),下列说法中正确的是( )A.若气体1为纯净物,则溶液2中可能含有三种阳离子B.若气体1为混合物,则溶液2中可能含有Fe2+C.若溶液1呈无色,则固体粉末X中不可能含有硫酸铜D.若溶液2呈浅绿色,则沉淀2不可能是纯净物9.将乙酸(CH3COOH)和葡萄糖(C6H12O6)溶于水得到混合溶液,测得溶液中氢元素的质量分数为a,则溶液中碳元素的质量分数为()A.1﹣9a B.1﹣8a C.12a D.8a10.水垢主要成分是碳酸钙和氢氧化镁。

西安陕西师范大学万科初级中学中考化学最后一次模拟压题试卷解析版

西安陕西师范大学万科初级中学中考化学最后一次模拟压题试卷解析版

西安陕西师范大学万科初级中学中考化学最后一次模拟压题试卷解析版一、选择题(培优题较难)1.向质量为m的Zn和Fe的混合粉末中加入一定量的CuCl2溶液,充分反应后过滤,将滤渣洗涤、干燥后称量,质量仍为m。

下列有关说法正确的是A.滤液的颜色一定呈无色 B.滤渣中的物质一定有3种C.滤渣中加稀盐酸一定有气泡产生 D.滤液中一定有ZnCl2和FeCl2【答案】D【解析】Zn +CuCl2= ZnCl2 +Cu65 64Fe+CuCl2= FeCl2 +Cu56 64由此可知,锌的反应使固体质量减少,铁的反应使固体质量增加,质量为m的Zn和Fe的混合粉末中加入一定量的CuCl2溶液,充分反应后过滤,将滤渣洗涤、干燥后称量,质量仍为m。

说明锌、铁都参与反应,因此溶液中一定有ZnCl2和FeCl2,选D点睛:金属的位置越靠前,金属的活动性越强。

位置靠前的金属能将位于其后的金属从它的盐溶液中置换出来。

2.甲、乙、丙、丁均为初中化学常见的物质,它们之间的部分转化关系如图所示(部分反应物、生成物和反应条件已略去。

“——”表示物质之间能发生化学反应。

“―→”表示物质之间的转化关系)。

下列推论不正确...的是( )A.若甲是碳酸钙,则乙转化成丙的反应可以是放热反应B.若乙是最常用的溶剂,则丁可以是单质碳C.若甲是碳酸钠,乙是硫酸钠,则丁可以是氯化钡D.若丙是二氧化碳,丁是熟石灰,则丁可以通过复分解反应转化为乙【答案】C【解析】【分析】【详解】A.若甲是碳酸钙,则碳酸钙分解生成氧化钙,氧化钙和水反应生成氢氧化钙过程中放热,因此乙转化成丙的反应可以是放热反应,选项A正确;B.若乙是最常用的溶剂,水分解生成氧气,碳和氧气反应生成二氧化碳,且碳和水也能反应,因此丁可以是单质碳,选项B正确;C.若甲是碳酸钠,如果跟硫酸反应则乙是硫酸钠,但硫酸钠转变成的丙不能和氯化钡反应,则丁不可以是氯化钡,选项C错误;D.若丙是二氧化碳,丁是熟石灰,则丁可以通过复分解反应转化为乙,熟石灰和碳酸钠反应生成碳酸钙,碳酸钙和稀盐酸反应生成二氧化碳,而熟石灰和碳酸钠反应生成碳酸钙是复分解反应,选项D正确。

深圳万科城实验学校初中部中考模拟化学试题

深圳万科城实验学校初中部中考模拟化学试题

深圳万科城实验学校初中部中考模拟化学试题一、选择题1.A~G都是初中化学常见的物质,它们的部分反应及转化关系如图所示。

其中A为目前世界年产量最高的金属,A、B、C、D物质类别不同,其中C和D中不含相同的元素,E、F的组成元素相同。

图中“→”表示转化关系,“﹣”表示相互反应关系(部分物质和反应条件未标出)下列说法正确的是A.F→E是吸热反应B.C和E 的反应属于置换反应C.D一定是稀硫酸D.C→A 反应的现象是红色固体变成银白色2.一定质量的Mg、Al、Fe的混合物,与足量稀硫酸反应,生成0.4g的H2。

则该金属混合物的质量可能是A.2.4gB.3.6gC.4.8gD.11.2g3.向某盐酸和氯化镁的混合溶液中加入某浓度的氢氧化钠溶液,产生沉淀的质量与加入氢氧化钠溶液的质量关系如图所示。

下列说法不正确的是A.a点溶液中滴入紫色石蕊试液变红B.bc段(不含b点)反应的化学方程式为: MgCl2 +2NaOH==Mg(OH)2↓+2NaClC.整个变化过程中氯离子数目没有改变D.d点溶液中含有两种溶质4.在硝酸银、硝酸铜的混合溶液中加入一定量锌粉,反应停止后过滤,滤液仍为蓝色,有关判断正确的是()A.滤渣中一定有银、没有铜和锌B.滤渣中一定有银和锌,可能有铜C.滤液中一定有硝酸锌、硝酸铜、硝酸银D.滤液中一定有硝酸锌、硝酸铜,可能有硝酸银5.有一包白色固体混合物,其中可能含有氯化钠、碳酸钠、氯化钙、硫酸钾和硝酸钡中的一种或几种,现进行以下实验:(微溶物视作全部溶解)(1)将固体混合物放入足量的水中,得到无色透明溶液A和沉淀B,将沉淀B洗涤,烘干后称得质量为15g;(2)在溶液A中加入硝酸银溶液,有白色沉淀生成,再加入足量的稀硝酸沉淀不溶解;(3)在沉淀B中加入足量的稀盐酸,沉淀全部消失,同时产生大量气泡,把生成的气体全部通入足量的澄清石灰水中,充分反应后过滤出沉淀,经洗涤、烘干后称量得到10g固体。

根据以上实验及现象判断下列组合正确的是:()A.原固体混合物中一定没有氯化钙B.原固体混合物中碳酸钠的质量一定为5.3gC.原固体混合物中一定有碳酸钠、氯化钙和硝酸钡,一定没有硫酸钾,可能有氯化钠D.原固体混合物中一定有碳酸钠、硝酸钡和氯化钠,可能有氯化钙,没有硫酸钾6.下列4个坐标图分别表示4个实验过程中的某些变化,其中正确的是A.向含有稀硫酸的硫酸铜溶液中加氢氧化钠溶液B.向一定量的稀盐酸中加入铁粉C.稀释pH =2的稀硫酸D.氢氧化钠溶液中滴加盐酸7.已知FeCl3也可以催化H2O2的分解,现向一定量的H2O2溶液中滴入几滴一定溶质质量分数的FeCl3溶液,充分反应(忽略水的挥发).下列图象正确的是( )A.B.C.D.8.为了达到实验目的,下列方案或结论正确的是选项实验目的实验方案或结论A鉴别碳粉、铁粉和氧化铜粉末取样后,分别加入稀盐酸B除去KCl固体中的K2CO3取样、溶解、加入足量的稀硫酸,蒸发C除去CO2中混有少量HCl气体通入装有足量NaOH溶液的洗气瓶D鉴别某溶液中是否含有SO2-4取少量溶液与试管中,滴加BaCl2溶液,有白色沉淀生成,则该溶液中一定含有SO2-4A.A B.B C.C D.D9.某单质X能从某溶液中置换出单质Y,由此推断下列说法中正确的是 ( )A.X是金属时,Y一定比X活泼B.X可能是铁,Y一定是铜C.X是金属时,Y可能是金属,也可能是非金属D.X一定是排在金属活动顺序表中氢以前的金属10.学习金属单元后,我们知道Zn、Fe、Cu三种金属的活动性顺序为:Zn>Fe>Cu。

上海民办复旦万科实验学校人教版中考化学模拟试卷汇编:计算题流程题实验题试卷及答案-百度文库

上海民办复旦万科实验学校人教版中考化学模拟试卷汇编:计算题流程题实验题试卷及答案-百度文库

一、初中化学计算题1.某实验小组在一定量的石灰水中通入 CO2,产生沉淀的质量与通入 CO2质量的关系如下图所示。

已知反应:CaCO3+H2O+CO2=Ca(HCO3)2,其中 CaCO3、Ca(HCO3)2均属于盐且Ca(HCO3)2能溶于水。

(1)请描述实验过程中可观察到的现象。

(2)若向含有 Ca(OH)2 3.7g 的澄清石灰水里缓缓通入一定量的二氧化碳,反应后若生成 4g 沉淀,则通入二氧化碳的质量为 g或 g。

2.在氯化钙和氯化钠的混合物中加入一定量的水,全部溶解得到50克混合溶液,向该溶液中滴加入一定溶质量分数的碳酸钠溶液,生成沉淀。

(1)产生沉淀的质量为_____g。

(2)求所加碳酸钠溶液的溶质质量分数是多少?(写出计算过程)(3)若恰好完全反应时所得溶液的溶质质量分数为10%,求原固体混合物的质量?(写出计算过程)3.黄铜(铜锌合金)因性能优良,被广泛用于制作钱币、饰品和生产中,铜的质量分数在59%~65%之间的黄铜性能优良。

兴趣小组为了解某黄铜螺母的材料性能进行如下实验:取多个黄铜螺母放入烧杯中,另取 80g 稀硫酸,分四次等质量加入,每次均充分反应,得到实验数据如下表所示:实验次数1234稀硫酸的用量/g2*******剩余固体的质量/g20.017.4m13.5(1)m= 。

所取黄铜螺母中铜的质量为 g。

(2)请通过计算说明该黄铜螺母的材料性能是否优良?(3)计算稀硫酸中溶质的质量分数(写出计算过程)。

(4)分析实验数据,在下图坐标中画出加入 80g 稀硫酸过程中相应的曲线图(纵坐标为自行设定物质的质量;并标出曲线中必要的数据)。

4.某实验小组向12g石灰石样品中不断加入稀盐酸至不再产生气体,反应过程中产生气体与稀盐酸的质量关系如图所示。

(样品中杂质不与酸反应,也不溶于水)请回答下列问题:(1)反应产生二氧化碳气体的质量是_____g(2)计算所用稀盐酸的溶质的质量分数。

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题一、选择题1.下列四幅图片与其对应的说法,正确的是()A.甲图中通过改变尺子伸出桌面的长度,可以探究音调与频率的关系B.乙图中用示波器显示两列声波的波形图,这两列声波的音色相同C.丙图中“GPS导航”是利用超声波在卫星与汽车之间传递信息的D.丁图中用手搓杯口,通过改变杯中的水量可以探究响度与振幅的关系2.如图所示的现象中,与手影形成原因相同的是()A.水中倒影B.水中折筷C.小孔成像D.雨后彩虹3.今年抗击“肺炎”战役中,无接触式体温计被广泛使用,它是依靠感知人体发出下列哪项进行测量温度的()A.红外线B.超声波C.次声波D.紫外线4.下列关于光学现象的说法中错误的是()A.图甲,树荫下的阴影是小孔成的像B.图乙,人配戴该种透镜可以矫正远视眼C.图丙,桥在水中倒影是光的反射现象D.图丁,变方的太阳是光的折射现象5.对下列古诗文中涉及的热现象进行解释,其中正确的是()A.“青青园中葵,朝露待日晞。

”露在日出后逐渐消失是升华现象B.“雾淞沆砀,天与云与山与水,上下一白。

”雾淞的形成是凝固现象C.“腾蛇乘雾,终为土灰。

”雾的形成是汽化现象D.“月落乌啼霜满天,江枫渔火对愁眠。

”霜的形成是凝华现象6.在“探究凸透镜成像规律”的实验中,如图甲所示,一束平行光射向凸透镜,光屏上得到一个最小、最亮的光斑(未画出)。

下列说法正确的是()A.图乙中烛焰在光屏上恰好成一清晰的像(未画出),则该像是倒立、等大的实像B.若在图乙中将凸透镜移到55cm 刻度线处,则将光屏移动到85cm 刻度线处,可以再次在光屏上看到清晰的像C.若在图乙中烛焰和凸透镜之间放一近视眼镜的镜片,则将蜡烛向左移动,才能再次在光屏上看到清晰的像D.若在图乙中用塑料吸管对准A点沿垂直于纸面的方向持续用力吹气,发现光屏上“烛焰尖部”变模糊,则将光屏向右移动,“烛焰尖部”又会变清晰7.如图所示是乘客刷身份证进站的情景,将身份证靠近检验口,机器的感应电路中就会产生电流,从而识别乘客身份,下图说明该原理的是()A.B.C.D.8.下列图示实验中,能用电磁感应现象原理解释的是A.水果电池B.导线框绕底部有磁铁的电池转动C.旋转电扇叶片让二极管发光D.自制电磁铁吸起大头针9.一只手握住甲,乙两个核桃,逐渐增大握力,发现甲核桃碎裂时乙核桃完好,下列有关两个核桃相互挤压时说法正确的是()A.甲对乙的作用力小于乙对甲的作用力B.两核桃相接触部位受到的压强相等C.甲对乙的作用力与乙对甲的作用力是一对平衡力D.甲对乙的作用力没有使乙核桃发生形变10.某煤气检测电路如图甲所示,电源电压恒定,R0为定值电阻,气敏元件R的阻值随煤气浓度变化而改变。

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题一、选择题1.我国空间站将于2022年前后完成建造。

关于空间站,以下说法正确的是()A.不受任何力B.与地面通讯是利用电磁波C.做匀速直线运动D.在舱内可以用弹簧测力计测重力2.如图甲所示是某校九年級的同学们在参加“青羊区中学生物理科技创新大赛”时设计的空气质量测仪的原理,电源电压恒为3V,R0为10 的定值电阻,R为可以感知空气污染指数的可变电阻,其阻值随污染指数交化的情况如图乙所示。

用电压表示数反映污染指数,污染指数在50以下为空气质量优,90-102之间为空气质量良,100~150为轻微污染,151~200为轻度污染,201~250为中度污染,251~300为轻度重污染,300以上为重度污染,下列分析正确的是()A.污染指数越小,电压表示数越大B.比赛当天电压表示数为1V时,属于轻微污染C.污染指数越大,电路中消耗的总功率越小 D.污染指数为50时,电压表的示数为2.5V 3.楼梯感应灯可由声控开关(有声响时开关闭合)和光控开关(光线较暗时开关闭合)共同控制,某同学设计并组装了一个楼梯感应灯电路,出现了以下异常情况:白天有声响时感应灯亮,无声响时感应灯不亮;晚上无论有无声响,感应灯都不亮.经检查各元件都能正常工作,则下列电路中可能出现以上异常情况的是()A. B. C.D.4.超市的服装贴有磁性标签,未消磁的标签通过超市安检门时,安检门上的线圈会产生电流,触发报警器达到防盗目的.则安检门的工作原理是A.磁极间的相互作用B.通电导体周围存在磁场C.电磁感应D.磁场对通电导体的作用5.无线电充是一种增加手机续航时间的方式,无线电充的技术原理:电流流过充电座的“送电线圈”产生磁场,当手机中的“受电线圈”靠近该磁场时就会产生感应电流,从而给手机电池充电,如图所示。

下列图中,与“受电线圈”处用到的实验原理相同的是()A.B.C.D.6.如图所示,条形磁铁置于水平面上,电磁铁水平放置且右端固定,闭合开关S,将滑片P向左移动的过程中,下列说法正确的是()A.电磁铁的磁性减弱B.电磁铁左端是S极C.条形磁铁受到的排斥力增大D.条形磁铁所受的吸引力减小7.将一根带正电的玻璃棒靠近一个用绝缘线悬挂的不带电金属小球。

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题

深圳万科城实验学校初中部中考模拟物理试题一、选择题1.如图甲所示是小灯泡L的I﹣U图象,把小灯泡接入图乙的电路中,先将滑动变阻器的滑片P移至B端,闭合开关S,电压表示数为3V;再将滑片P向左移动直到电压表示数为6V,此时小灯泡L刚好正常发光。

已知电源电压恒定,滑动变阻器的铭牌标有“20Ω2A”,则下列说法正确的是()A.电源电压为9VB.小灯泡正常发光时,滑动变阻器接入电路的电阻为9ΩC.小灯泡的额定电功率为3WD.在滑动变阻器移动的过程中,电路中消耗的总功率的最大值和最小值之比为25:6 2.某大学两位研究生从蚂蚁身上得到启示,设计出如图所示的“都市蚂蚁”概念车.这款概念车小巧实用,有利于缓解城市交通拥堵.下列关于正在城市中心马路上行驶的此车说法正确的是()A.以路面为参照物,车是静止的B.以路旁的树木为参照物,车是静止的C.以路旁的房屋为参照物,车是运动的D.以车内的驾驶员为参照物,车是运动的3.如图所示,这是合肥某天的天气预报截图,关于图中信息说法正确的是()A.-5℃读作“零下5度”B.云是由水蒸气组成的C.雪的形成是凝华现象D.雾在形成过程中吸收热量4.小明在一只空碗中放一枚硬币,后退到某处眼睛刚好看不到它.另一位同学慢慢往碗中倒水时,小明在该处又看到硬币.这种现象可以用下列哪个光路图来解释?A.B.C.D.5.如下图所示,甲、乙两个弹簧测力计在同一水平面上并相互钩在一起,用水平拉力F1和F2分别拉开,F1=F2=3N,两弹簧测力计静止时,下列分析正确的是()A.甲对乙的拉力和乙对甲的拉力是一对平衡力B.甲和乙受到的合力均为零,示数均为零C.乙受力平衡,甲对乙的拉力是3N,乙的示数是6ND.甲受力平衡,乙对甲的拉力是3N,甲的示数是3N6.如图所示,一个物体沿斜面向下做匀速直线运动,下列说法正确的是()A.物体下滑过程中,其惯性不断增大B.物体下滑过程中,物体的动能不断增大C.物体从A点运动到B点的过程中,其机械能保持不变D.物体运动到A、B两点时,其对斜面施加的力的合力大小相等7.如图所示,电源电压不变,R0为滑动变阻器,R1、R2为定值电阻。

深圳万科城实验学校初中部中考语文诗歌鉴赏专项练习含详细答案模拟试题

深圳万科城实验学校初中部中考语文诗歌鉴赏专项练习含详细答案模拟试题

深圳万科城实验学校初中部中考语文诗歌鉴赏专项练习含详细答案模拟试题一、诗歌鉴赏1.阅读下面的诗歌,完成小题。

黄鹤楼崔颢昔人已乘黄鹤去,此地空余黄鹤楼。

黄鹤一去不复返,白云千载空悠悠。

晴川历历汉阳树,芳草萋萋鹦鹉洲。

日暮乡关何处是?烟波江上使人愁。

(1)下列对本诗的鉴赏不正确的一项是()A. 首联从传说落笔,为黄鹤楼蒙上一层神奇的色彩。

B. 前两联中的两个“空”字分别从空间和时间角度来写,抒发了人去楼空、世事沧桑的感慨。

C. 颈联描写登楼所见之景,天气晴好,汉阳的树木清晰分明,鹦鹉洲上的草木荒芜衰败。

D. 全诗视野开阔,写景自然,抒情真挚,历来为人传诵。

(2)请从景与情的关系角度赏析尾联。

【答案】(1)C(2)“日暮乡关何处是?烟波江上使人愁。

”太阳落山,黑夜来临,鸟要归巢,船要归航——游子也要归乡;江上的雾蔼一片迷蒙,眼底也生出的浓浓迷雾,面对此情此景,诗人一“愁”字收篇,准确地表达了日暮时分诗人登临黄鹤楼的心情,做到了“言外传情,情内展画,画外余音”,也就是景中含情,以景衬情;又情由景生,情由心生,情景交融。

【解析】【分析】(1)ABD赏析正确。

C此题错在对“萋萋”的理解,“萋萋”,草木茂盛的样子。

因此这句话的赏析是:颈联描写登楼所见之景,天气晴好,汉阳的树木清晰分明,鹦鹉洲上的芳草长势茂盛。

(2)结合尾联内容分析:尾联所写的时间是:傍晚;地点是:江上;景物有:落日,烟波浩渺的江面。

感情有:愁,思乡的愁绪。

落日时分,乡愁更加浓烈,而烟波浩渺的江面又加深了诗人的这种愁绪。

据此理解答题,意对即可。

故答案为:⑴ C;⑵“日暮乡关何处是?烟波江上使人愁。

”太阳落山,黑夜来临,鸟要归巢,船要归航——游子也要归乡;江上的雾蔼一片迷蒙,眼底也生出的浓浓迷雾,面对此情此景,诗人一“愁”字收篇,准确地表达了日暮时分诗人登临黄鹤楼的心情,做到了“言外传情,情内展画,画外余音”,也就是景中含情,以景衬情;又情由景生,情由心生,情景交融。

西安陕西师范大学万科初级中学初三化学中考模拟试题(含答案)

西安陕西师范大学万科初级中学初三化学中考模拟试题(含答案)

西安陕西师范大学万科初级中学初三化学中考模拟试题(含答案)一、选择题(培优题较难)1.中考复习阶段,小轩同学梳理了以下知识:①利用金属的化学性质可以区别不同金属的活动性强弱;②催化剂一定能加快化学反应的速率;③具有可燃性的气体有甲烷、氢气和氧气;④燃烧需要同时满足三个条件,故破坏其中一个条件就可以灭火;⑤微量元素是人体健康必不可少的,但补充微量元素也要适可而止;⑥二氧化碳能灭火是因为不能燃烧也不能支持燃烧且密度比空气大,而用水灭火是因为可降低可燃物的着火点。

其中你认为合理的是:A.①④⑤ B.①③⑥ C.②⑤⑥ D.②④⑤【答案】A【解析】①利用金属的化学性质可以区别不同金属的活动性强弱;合理;②催化剂一定能改变化学反应速率,有的反应中加快反应速度,有的反应中减慢反应速度,不合理;③氧气能支持燃烧,不具有可燃性,不合理;④燃烧需要同时满足三个条件,故破坏其中一个条件就可以灭火;合理;⑤微量元素是人体健康必不可少的,但补充微量元素也要适可而止;合理;⑥二氧化碳能灭火是因为不能燃烧也不能支持燃烧且密度比空气大,而用水灭火是因为降低温度到可燃物的着火点以下,不合理。

故选A。

点睛:排在金属活动性顺序前面的金属,能够把排在后面的金属从它的盐溶液中置换出来。

2.如图是物质的分类及部分转化关系图,有关说法不正确的是A.转化a一定是化学变化B.转化b一定是化学变化C.转化b中一定有元素的存在形态发生改变D.分离液态空气制取氧气属于转化c【答案】A【解析】【分析】【详解】转化a不一定是化学变化,可能是物理变化,比如过滤可以将固体物质和溶于水中的物质分开。

故选A.3.现有一包由5.6g铁、7.2g镁、1.0g碳混合而成的粉末,把它加入一定量的CuCl2溶液中。

实验结束后,测得剩余固体中含有三种物质。

则剩余固体的质量不可能是A.26. 2gB.26.6gC.26. 0gD.25. 8g【答案】B【解析】【分析】镁的金属活动性强于铁,铁强于铜,镁先和氯化铜反应生成氯化镁和铜,镁完全反应后,铁和氯化铜反应生成氯化亚铁和铜,碳和氯化铜不反应。

西安陕西师范大学万科初级中学中考适应性(模拟)考试物理试题

西安陕西师范大学万科初级中学中考适应性(模拟)考试物理试题

西安陕西师范大学万科初级中学中考适应性(模拟)考试物理试题一、选择题1.如图所示,分别用甲、乙两个滑轮组,在5 s内将重为100 N的物体G匀速提升2 m,每个滑轮的重均为10 N。

不计绳重及摩擦,此过程中A.F甲小于F乙B.甲的机械效率小于乙的机械效率C.F甲做的功小于F乙做的功D.F甲做功的总功率等于F乙做功的总功率2.无线电充是一种增加手机续航时间的方式,无线电充的技术原理:电流流过充电座的“送电线圈”产生磁场,当手机中的“受电线圈”靠近该磁场时就会产生感应电流,从而给手机电池充电,如图所示。

下列图中,与“受电线圈”处用到的实验原理相同的是()A.B.C.D.3.如图,将甲,乙两灯电联在电路中闭合开关,发现甲灯发光,乙灯不发光。

则乙灯不发光的原因可能是A.乙灯灯丝断了B.乙灯的实际功率太小C.乙灯的额定电压太低D.通过乙灯的电流小于甲灯的电流4.地磁场被称为地球生命的“保护伞”。

如图从太阳向其他星体发射出来的高速带电粒子流,在接近地球时,地磁场会改变其运动方向,使其偏离地球,对地球起到了保护作用,以下各图与其原理相同的是()A.B.C.D.5.如图所示,电源电压不变,R0为滑动变阻器,R1、R2为定值电阻。

下列说法中正确的是()A.闭合开关,当滑动变阻器的滑片移到最左端时,电路中的总功率最大B.闭合开关,当滑动变阻器的滑片向右移动时,电路中的总电阻变小C.闭合开关,当滑动变阻器的滑片向右移动时,定值电阻R2的实际功率变大D.闭合开关,当定值电阻R1出现开路故障时,流过电源的电流变大6.共享单车是绿色环保的交通工具。

用车前需手机扫码解锁,如强行开锁则会报警。

下列电路中干电池的电压不变,1R是一个压敏电阻(阻值随所受压力增大而减小的变阻器)。

R是定值电阻,电路中还有一个带报警功能的电压表,当示数超过一定的值时自动报警。

2符合上述要求的电路是()A.B.C.D.7.以下描述中与光的折射现象有关的是()A.形影相随,亲密无间B.海市蜃楼,虚无缥缈C.镜中生花,脱离实际D.水中捞月,一无所得8.如图所示的电路,当开关S闭合时,L1、L2都能发光,一会儿后,L1亮、L2熄灭,电流表示数变大,则电路故障原因可能是A.L1短路B.L2短路C.L1断路D.L2断路9.听音能辨认,主要是依据不同人的讲话声具有不同的( )A.音色B.音调C.响度D.振幅10.下列实例中,能增大摩擦的是()A.行李箱下安装轮子B.自行车的车轴处加润滑油C.轮胎表面凹凸不平的花纹D.气垫船行驶时船体与水面脱离11.水银温度计中封闭着一定量的水银,在用这种温度计测量温度的过程中水银发生热胀冷缩。

【精选试卷】深圳万科城实验学校部中考数学专项练习经典练习卷(培优提高)

【精选试卷】深圳万科城实验学校部中考数学专项练习经典练习卷(培优提高)

一、选择题1.如图,下列关于物体的主视图画法正确的是( )A .B .C .D . 2.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 3.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a4.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C .24 D .0.35.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .6.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( ) A .96096054848x -=+ B .96096054848x +=+ C .960960548x -= D .96096054848x-=+ 7.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)8.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .59.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样10.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)11.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .54 12.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .13.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -=D .()136x x += 14.an30°的值为( )A .12B .√32 C .√3 D .√3315.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体 16.已知反比例函数 y =abx 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .17.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形18.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°19.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90° C .72° D .60°20.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A .众数B .方差C .平均数D .中位数21.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .22.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .423.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .24.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③25.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 26.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9 B .8 C .7 D .627.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .28.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --29.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A.24B.18C.12D.930.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.B3.C4.B5.D6.D7.D8.C9.C10.D11.B12.C13.A14.D15.A16.C17.B18.A19.C20.D21.D22.B23.C24.C25.A26.A27.B28.A29.A30.B2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.2.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.3.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.4.B解析:B【解析】【分析】【详解】AB 3C=D 故选B . 5.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.D解析:D【解析】 解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D .点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.7.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【详解】解:由已知中序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,A 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故A 不满足条件;B 、2有三个,即序列S 0:该位置的三个数相等,按照变换规则,应为三个3,故B 不满足条件;C 、3有一个,即序列S 0:该位置的数出现了三次,按照变换规则,应为三个3,故C 不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.8.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x -+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a -,∵关于x的分式方程11222axx x-+=--有整数解,且a为整数∴a=0、3、4关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩整理得4x ax>⎧⎨>⎩∵不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选C.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.10.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a =,当a<0a =-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 11.B解析:B【解析】【分析】由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.【详解】∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,AFE CFDE DAE CD∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=133,则FD=6-x=53.故选B.【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.解析:C【解析】从上面看,看到两个圆形,故选C.13.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 14.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=√3,故选:D.3【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.15.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.16.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=ab的图象在第一、三象限,x∴ab>0,即a、b同号,<0,对称轴在y轴左边,故D错误;当a<0时,抛物线y=ax2-2x的对称轴x=1a当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.17.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.18.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.19.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.20.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 21.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P 在边BC 上时,s 随t 的增大而增大;③当点P 在线段BD 上时,s 随t 的增大而减小,点P 与点D 重合时,s 最小,但是不等于零.故C 错误;④当点P 在线段AD 上时,s 随t 的增大而增大.故D 正确.故答案选D .考点:等腰三角形的性质,函数的图象;分段函数.22.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 23.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.24.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.25.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.27.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.28.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】2x y y>0,∵xy<0,∴x<0,∴原式=x y-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义29.A解析:A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.30.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.。

【精选试卷】深圳万科城实验学校部中考数学解答题专项练习经典练习卷(培优提高)

【精选试卷】深圳万科城实验学校部中考数学解答题专项练习经典练习卷(培优提高)

一、解答题1.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++2.如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)3.已知:如图,△ABC 为等腰直角三角形∠ACB =90°,过点C 作直线CM ,D 为直线CM 上一点,如果CE =CD 且EC ⊥CD . (1)求证:△ADC ≌△BEC ; (2)如果EC ⊥BE ,证明:AD ∥EC .4.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 5.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .≌;(1)求证:ABE AD F(2)连结CF,判断四边形AECF是什么特殊四边形?证明你的结论.6.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?7.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.8.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.9.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩10.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).11.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.12.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索:设(2a m +=+(其中ab m n 、、、均为整数),则有22a m 2n +=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a +法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +)2;(3)若(2a m +=+,且ab m n 、、、均为正整数,求a 的值.14.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件? 15.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.16.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)按如下分数段整理、描述这两组样本数据在表中,a = ,b = . (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.17.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.18.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)19.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.20.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 21.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.22.如图,某地修建高速公路,要从A 地向B 地修一座隧道(A 、B 在同一水平面上),为了测量A 、B 两地之间的距离,某工程师乘坐热气球从B 地出发,垂直上升100米到达C 处,在C 处观察A 地的俯角为39°,求A 、B 两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)23.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.24.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?26.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.27.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.28.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 29.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣1x+2)÷x 2−1x+230.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.无16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、解答题1. 11;12x -- 【解析】 【分析】 根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.2.(1)BC 与⊙O 相切,理由见解析;(2)①⊙O 的半径为2.②S 阴影=2233π-. 【解析】【分析】(1)根据题意得:连接OD ,先根据角平分线的性质,求得∠BAD =∠CAD ,进而证得OD ∥AC ,然后证明OD ⊥BC 即可;(2)设⊙O 的半径为r .则在Rt △OBD 中,利用勾股定理列出关于r 的方程,通过解方程即可求得r 的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD 平分∠BAC ,∴∠BAD =∠CAD.∵OA =OD ,∴∠ODA =∠BAD ,∴∠ODA =∠CAD ,∴OD ∥AC.又∠C =90°,∴OD ⊥BC ,∴BC 与⊙O 相切(2)①在Rt △ACB 和Rt △ODB 中,∵AC =3,∠B =30°,∴AB =6,OB =2OD.又OA =OD =r ,∴OB =2r ,∴2r +r =6,解得r =2,即⊙O 的半径是2②由①得OD =2,则OB =4,BD =S 阴影=S △BDO -S 扇形ODE =12××2-2602360π⨯=-23π 3.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;(2)由△ADC ≌△BEC 可得∠ADC =∠E =90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC ⊥DM ,∴∠ECD =90°,∴∠ACB =∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD =∠BCE ,∵CD =CE ,CA =CB ,∴△ADC ≌△BEC (SAS ).(2)由(1)得△ADC ≌△BEC ,∵EC ⊥BE ,∴∠ADC =∠E =90°,∴AD ⊥DM ,∵EC ⊥DM ,∴AD ∥EC .【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.4.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键. 5.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.6.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85-a),得a=80,w=(-5x+600)(x-80)=-5x2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w取得最大值,此时w=2000,(3)设科技创新后成本为b元,当x=90时,(-5×90+600)(90-b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.7.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.8.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.9.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.10.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.11.(1)见解析3.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键. 12.(1)12,32-;(2)证明见解析. 【解析】 试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>, ∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 13.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 14.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x 个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件, 根据题意得:1201004x x =-, 解得:x=24, 经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 15.16.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×1015=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.【点睛】本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.17.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.18.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=123. 在Rt △OBM 中, ∠COB=60°,OB=33cos303MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.19.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析. 【解析】【分析】 (1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A ,∠ADC=∠ACB ,∴Rt △ADC ∽Rt △ACB ;∴,∴;(2)当点E 是AC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △ADC 的中线;∴ED=EC ,∴∠EDC=∠ECD ;∵OC=OD ,∴∠ODC=∠OCD ;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.20.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】 本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.22.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD ∥AB ,∴∠CAB=∠DCA=39°. 在Rt △ABC 中,∠ABC=90°, tan BC CAB AB ∠=. ∴100123tan 0.81BC AB CAB ==≈∠. 答:A 、B 两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.23.(1)过点C 作CG ⊥AB 于G在Rt △ACG 中 ∵∠A =60°∴sin60°=CG AC ∴CG =√32……………1分在Rt △ABC 中 ∠ACB =90°∠ABC =30° ∴AB=2 …………………………………………2分 ∴S 梯形DBFC =S △ABC =12×2×√32=√32………3分(2)菱形………………………………………4分∵D 是AB 的中点 ∴AD=DB=CF=1在Rt △ABC 中,CD 是斜边中线 ∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF 是菱形…………………………6分(3)在Rt △ABE 中AE 2=AB 2+BE 2=4+3=7∴AE =√7……………………………7分过点D 作DH ⊥AE 垂足为H则△ADH ∽△AEB ∴AD AE =DH BE即√7√3∴ DH=√3√7……8分 在Rt △DHE 中sinα=DHDE =…=√2114…………………9分【解析】(1)根据平移的性质得到AD=BE ,再结合两条平行线间的距离相等,则三角形ACD 的面积等于三角形BEF 的面积,所以要求的梯形的面积等于三角形ABC 的面积.根据60度的直角三角形ABC 中AC=1,即可求得BC 的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D 点作DH ⊥AE 于H ,可以把要求的角构造到直角三角形中,根据三角形ADE 的面积的不同计算方法,可以求得DH 的长,进而求解.24.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.25.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)-台,根据每小时加工零件的总量8A=⨯型机器的数量6B+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩,解得:6m8,m为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

2020-2021深圳万科城实验学校初中部九年级数学下期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部九年级数学下期中第一次模拟试卷含答案

2020-2021深圳万科城实验学校初中部九年级数学下期中第一次模拟试卷含答案一、选择题1.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;2.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x3.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小4.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A .43B .42C .6D .46.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A .8米B .9米C .10米D .11米7.如图,ABC △与ADE V 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE AD BE DC =B .AE AB AB AC = C .AD AB AC AE = D .AE DE AC BC= 8.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-9.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16510.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .911.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m12.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <2二、填空题13.如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.14.如图,在直角坐标系中,点(2,0)A ,点(0,1)B ,过点A 的直线l 垂直于线段AB ,点P 是直线l 上在第一象限内的一动点,过点P 作PC x ⊥轴,垂足为C ,把ACP △沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则满足此条件的点P 的坐标为__________.15.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.16.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P 点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.17.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则点C 的坐标为________.18.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).19.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.20.若函数y =(k -2)2k 5x -是反比例函数,则k =______.三、解答题21.如图,在ABC V 中,AB AC =,点E 在边BC 上移动(点E 不与点B ,C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF △∽△.(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.22.如图,AB与CD相交于点O,△OBD∽△OAC,ODOC=35,OB=6,S△AOC=50,求:(1)AO的长;(2)求S△BOD23.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)24.如图,已知点D是的边AC上的一点,连接,,.求证:∽;求线段CD的长.25.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.2.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.3.D解析:D【解析】A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B 选项:反比例函数的图象关于原点中心对称,故本选项错误;C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D 选项:∵k=1>0,∴当x <0时,y 随x 的增大而减小,故是正确的.4.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,故选C .【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.5.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 6.C解析:C【解析】如图所示,AB ,CD 为树,且AB=13,CD=8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC 中,AC=10米,答:小鸟至少要飞10米.故选C .7.D解析:D【解析】【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,A ABC DE ∽△△,所以AE DE AC BC=, 故选D .【点睛】在书写两个三角形相似时,注意顶点的位置要对应,即若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C '. 8.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 9.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE11.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 12.C解析:C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y 1>y 2的解集是﹣3<x <0或x >2,故选C . 【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题13.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为解析:【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.【详解】解:∵坡度为1:2=6米,∴株距:坡面距离=2∴坡面距离=株距= 【点睛】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数. 14.或【解析】【分析】求出直线l 的解析式证出△AOB∽△PCA 得出设AC=m (m >0)则PC=2m 根据△PCA≌△PDA 得出当△PAD∽△PBA 时根据得出m=2从而求出P 点的坐标为(44)(0-4)若△ 解析:5,12⎛⎫ ⎪⎝⎭或(4,4) 【解析】【分析】求出直线l 的解析式,证出△AOB ∽△PCA ,得出12BO AC AO PC ==,设AC=m (m >0),则PC=2m ,根据△PCA ≌△PDA ,得出 12AD AC PD PC ==,当△PAD ∽△PBA 时,根据12AD BA PD PA ==,222(2)AP m m =+=,得出m=2,从而求出P 点的坐标为(4,4)、(0,-4),若△PAD ∽△BPA ,得出12PA AD BA PD ==,求出52PA =,从而得出2225(2)m m ⎛⎫+= ⎪ ⎪⎝⎭,求出12m =,即可得出P 点的坐标为5,12⎛⎫ ⎪⎝⎭. 【详解】∵点A (2,0),点B (0,1),∴直线AB 的解析式为y=-12x+1 ∵直线l 过点A (4,0),且l ⊥AB ,∴直线l 的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC ⊥x 轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC ,∵∠AOB=∠ACP ,∴△AOB ∽△PCA ,∴BO AO CA PC =, ∴12BO AC AO PC ==, 设AC=m (m >0),则PC=2m ,∵△PCA ≌△PDA ,∴AC=AD ,PC=PD ,∴12AD AC PD PC ==, 如图1:当△PAD ∽△PBA 时,则AD PD BA PA =, 则12AD BA PD PA ==, ∵22152=+∴AP=25, ∴222(2)(25)m m +=,∴m=±2,(负失去) ∴m=2,当m=2时,PC=4,OC=4,P 点的坐标为(4,4),如图2,若△PAD ∽△BPA ,则12PA AD BA PD ==, ∴152PA AB ==, 则2225(2)m m +=⎝⎭,∴m=±12,(负舍去)∴m=12, 当m=12时,PC=1,OC=52, ∴P 点的坐标为(52,1), 故答案为:P (4,4),P (52,1). 【点睛】 此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P 在第一象限有两个点.15.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯 解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.16.5【解析】根据题意画出图形构造出△PCD∽△PAB利用相似三角形的性质解题解:过P作PF⊥AB交CD于E交AB于F如图所示设河宽为x米∵AB∥CD∴∠PDC =∠PBF∠PCD=∠PAB∴△PDC∽△解析:5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴AB PF CD PE=,∴AB15x CD15+=,依题意CD=20米,AB=50米,∴15205015x=+,解得:x=22.5(米).答:河的宽度为22.5米.17.【解析】【分析】直接利用位似图形的性质结合相似比得出AB的长进而得出△OAD∽△OBG进而得出AO的长即可得出答案【详解】∵正方形BEFG的边长是6∴∵两个正方形的相似比为∴∴∵AD∥BG∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键.18.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC 中用正切和正弦分别求出BC 和AC (即梯子的长度)然后再在直角三角形DCE 中用∠DCE 的余弦求出DC 然后把BC 和DC 加解析:2+【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC 中,用正切和正弦,分别求出BC 和AC (即梯子的长度),然后再在直角三角形DCE 中,用∠DCE 的余弦求出DC ,然后把BC 和DC 加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC 中, AB BC=tan ∠ACB =tan60°3 AB AC =sin ∠ACB =sin60°=32, ∴BC 3233=2,AC 32332=4, ∴直角三角形DCE 中,CE=AC=4, ∴CD CE =cos45°=22, ∴CD =CE×22=4×22=2, ∴BD =2,故答案为:2【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题. 19.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD∥BC 判定△ADF∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC,∴△ADF∽△EBF,∴AD=3BE,∴AFD∆的面积=9S△EBF=18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD得到AD∥BC,判定△ADF∽△EBF是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD∆的面积. 20.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题21.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB,∠CEF=180°-∠DEF-∠DEB,结合∠B=∠DEF,可得∠BDE=∠CEF;由AB=AC可得∠B=∠C,由此即可证得:△BDE ∽△CEF;(2)由(1)中结论:△BDE∽△CEF可得:BE DECF EF=,结合BE=EC可得:CE DECF EF=,再结合∠C=∠B=∠DEF,证得:△DEF∽△ECF,由此可得∠DFE=∠EFC,从而得到结论EF平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠,BDE CEF V V ∽.(2)∵BDE CEF V V ∽, ∴BE DE CF EF=, ∵E 是BC 中点,BE CE =, ∴CE DE CF EF=, ∵DEF B C ∠=∠=∠,∴DEF ECF V V ∽,∴DFE CFE ∠=∠,∴EF 平分DFC ∠.22.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S V V =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10;(2)∵△OBD∽△OAC,DOCO=35∴BODAOCS S VV =925∵S△AOC=50,∴S△BOD=18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.23.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.24.(1)参见解析;(2)5.【解析】【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD长.【详解】(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∵相似三角形的对应线段成比例,∴=,即=,解得:CD=5.25.(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万科城实验学校2007—2008学年九年级第三次模拟
数 学 试 卷
2008. 5
说明:
1.全卷共22小题,共4页,考试时间90分钟,满分100分。

2.全部答案必须写在答题卡...指定的位置,写在本卷或其他地方无效..。

3.请认真审题,按题目的要求答题。

一、选择题:(共30分)每小题有四个选项,其中只有一个是正确的。

1.7的相反数是( )。

A .-7 B.7 C.7± D.
7
1
2.我区九年级在校学生大约125000人,这个数字用科学记数法表示为( )。

A .3105.12⨯
B .51025.1⨯
C .41025.1-⨯
D .41025.1⨯ 3.下列运算错误的是( )。

A 、a a a 523=+ B. 523a a a =∙ C. ()222
2b ab a b a +-=- D. ()
62
3
a a -=-
4.右图是下列哪个几何体的表面展开图( )。

A. 五棱柱
B. 六棱柱
C. 八棱锥
D. 圆柱
5.下列图形,属于轴对称图形的有( )个。

A.1
B.2
C.3
D.4
6.不等式组⎩
⎨⎧≤-->0242x x 的解集是( )。

A. 22≤<-x
B. 2≤x
C. 2->x
D. 21<≤-x
7.在一组数据3,4,4,6,8, 5中,下列说法正确的是( ) A .平均数小于中位数 B .平均数等于中位数 C .平均数大于中位数 D .平均数等于众数
8.下列命题中正确的有( )个
①对角线相等的四边形是矩形 ②相邻的两个角都互补的四边形是平行四边形 ③平分弦的直径垂于弦,并且平分弦所对的两条弧 ④三点确定一个圆 ⑤相等的圆心角所对的弦相等,所对的弧也相等
A 、0
B 、1
C 、2
D 、3 9.⊙O 的半径为9cm ,弧AB 的长是10πcm ,则扇形OAB 的面积是( )cm 2。

A .22.5π B. 25π C.45π D.100π
10.已知一次函数1-=kx y 的图象不经过第一象限,则反比例函数y=k
x
-的
图象可能是( )。

二、填空题(每小题3分,共15分) 11.因式分解:=-2
24b a ___。

12.平面直角坐标系中,点P (4,-2)关于y 轴对称的点P ′的坐标是___。

13.如图是一个均匀转盘,任意拨动它,当它停下来后指针指向一个数字(指在
分隔线上重转),则指针指向3的概率是___。

14.上图表示甲骑自行车和乙驾驶汽车沿相同的路线行驶45千米,由A 地到B
地的过程中,行驶的路程y (千米)与经过的时间x (小时)之间的函数关系。

汽车出发___千米赶上自行车。

15.循环小数∙

7564123.0中,小数点后的第2020位数字应该是___。


第13
)
45
(14题)
科学
40%
史社
14%
英语 20%
数学 24人
语文10%
三、解答题(55分)
16.(6分)计算:2cos30。

+22--02007+|1–3|
17.(6分)解分式方程:
4
1
243-=---x x x
18.(本题满分7分)已知:如图,四边形ABCD 是等腰梯形,AB =DC ,AD ∥BC ,点E 在
AD 上,且EB =EC ,试问点E 是AD 的中点吗?若是,请给出证明,若不是,请说明理由.
19.(8分)某学校对初三全体学生进行一次学情调查,其中有一项是要求每个学生在“语文、数学、英语、科学和历社”五科中填报一项自己学习感到最
吃力的科目。

如图是这个项目的资料统计图。

请认真分析后完成下列各题。

(1)该校初三学生有_____人。

(3分)
(2)你认为,语文和英语学科感到最吃力人数分别是:___人和___人。

(2分) (3)有两名调查人员在不相互影响的情况下,先后询问
一名学生(允许同一名学生),两次询问到的都是 “感到英语最吃力”的可能性是多少?_____。

(3分)
20.(本小题10分)2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张? (2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的不超过男篮门票的费用,求他能预订三种球类门票各多少张?
22.(10分)如图,AB 是⊙O 的直径,C 是圆上一点,∠CAD=∠CAB ,CD ⊥AD 于D 。

(1)求证:CD 是⊙O 的切线;(5分)
(2)如果AB=5,cos ∠CAB=54
,求AD 的长。

(5分)
23.(10分) 如图,已知直线y =
2
7
21 x 与x 轴、y 轴分别相交于B 、A 两点,抛物线y = ax 2 + bx + c 经过A 、B 两点,且对称轴为直线x =–3。

(1)求A 、B 两点的坐标,并求抛物线的解析式;(4分)
(2)若点P 以1个单位/秒的速度从点B 沿x 轴向点O 运动。

过点P 作y 轴
的平行线交直线AB 于点M ,交抛物线于点N 。

设点P 运动的时间为t ,MN 的长度为s ,求s 与t 之间的函数关系式,并求出当t 为何值时,s 取得最大值?(3分)
(3)设抛物线的对称轴CD 与直线AB 相交于点D ,顶点为C 。

问:在(2)
条件不变情况下,是否存在一个t 值,使四边形CDMN 是平行四边形?若存在,求出t 的值;若不存在,请说明理由。

(3分)
A
B
C .O
D
17. 解分式方程: 4
1
143-=---x x x
科学
40%
史社
14%
英语 20%
数学 80人
语文10% 18.
19.(1)————.
(2)——--、--------.
(3)__________.
21.解:(1)
(2)A B
C
.O
D。

相关文档
最新文档