最新(人教版)七年级数学上册培优辅导讲义

合集下载

七年级数学培优辅导讲义(共十讲80页)

七年级数学培优辅导讲义(共十讲80页)

第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。

七年级上册数学培优讲义(有理数的概念)第一讲

七年级上册数学培优讲义(有理数的概念)第一讲

模块一 正负数的概念正数:像3.1.0.33+等的数.叫做正数.在小学学过的数.除0外都是正数.正数都大于0.负数:像1-. 3.12-.175-.2008-等在正数前加上“-”(读作负)号的数.叫做负数..负数都小于0. 0既不是正数.也不是负数.一个数字前面的“+”.“-”号叫做它的符号.正数前面的“+”可以省略.注意3与3+表示是同一个正数.用正.负数表示相反意义的量:如果正数表示某种意义.那么负数表示它的相反的意义.反之亦然. 譬如:用正数表示向南.那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.【经典例题1】杭州北高峰高于海平面536米记作+536米.那么吐鲁番艾丁湖湖底低于海平面150米记作( )A .150B .-150C .150米D .-150米 【题目难度】★【解题思路】解题关键是理解“正”和“负”的相对性.明确什么是一对具有相反意义的量.在一对具有相反意义的量中.先规定其中一个为正.则另一个就用负表示.【解题过程】“正”和“负”相对.所以高于海平面536米记作+536米.那么吐鲁番艾丁湖湖底低于海平面150米记作-150米.故选D.【重点考点】解题关键是理解“正”和“负”的相对性.确定一对具有相反意义的量.【经典例题2】飞机上升了-80米.实际上是()A.上升80米B.下降-80米C.先上升80米.再下降80米D.下降80米【题目难度】★【解题思路】解题的关键是理解“正”和“负”的相对性.确定一对具有相反意义的量.负号表示与上升意义相反.即下降.【解题过程】负号表示与上升意义相反.即下降.则飞机上升了-80米.实际上是下降80米.故选D.【重点考点】解题关键是理解“正”和“负”的相对性.明确什么是一对具有相反意义的量.在一对具有相反意义的量中.先规定其中一个为正.则另一个就用负表示.【经典例题3】下列语句:①不带“-”号的数都是正数;②带“-”号的数一定是负数;③不存在既不是正数也不是负数的数;④0℃表示没有温度.其中正确的有()A.0个B.1个C.2个D.3个【题目难度】★【解题思路】首先审清题意.明确“正”和“负”所表示的意义;再根据题意作答.【解题过程】①0不带“-”号.但是它不是正数.②-0带负号.但是它不是负数.③0既不是正数也不是负数.④0℃表示有温度.温度为0度.温度可以为负数(零下)也可以为正数(零上).【重点考点】解题关键是理解“正”和“负”的相对性.明确正数和负数的定义.并且注意0这个特殊的数字.既不是正数也不是负数.【经典例题4】生活中常有用正负数表示范围的情形.例如某种药品的说明书上标明保存温度是(20±2)℃.由此可知在___18℃~22℃范围内保存该药品才合适.【题目难度】★【解题思路】这是一道给出中心值根据误差判断药品的保存温度范围的问题.【解题过程】根据题意某种药品的说明书上标明保存温度是(20±2)℃表示20℃以上记作“正”.低于20℃记作负.由此可知在18℃~22℃范围内保存该药品才合适.故答案为18℃~22℃范围内保存该药品才合适.【重点考点】解题关键是理解“正”和“负”的相对性.确定一对具有相反意义的量.【经典例题5】台风“桑美”给我县的电力造成严重的影响.一突击队乘汽车抢修供电线路.南记为正.则北记为负.某天自A地出发.所走路程(单位:千米)为:+8.-6.-2.+4.-5.+2问:①最后他们是否回到出发点?若没有.则在A地的什么位置?答:他们____(填:有或没有)回到出发点.在A地的正______南方向.距A地____千米.②若每千米耗油1.5升.则今天共耗油_______40.5升.【题目难度】★★【解题思路】首先审清题意.明确“正”和“负”所表示的意义;再根据题意作答.【解题过程】①根据题意可得:南记为正.北记为负.则距A的距离为(+8)+(-6)+(-2)+(+4)+(-5)+(+2)=+1.最后他们没有回到出发点.在A地的正南方向.距A地1千米.②从A地出发.汽车共走了|+8|+|-6|+|-2|+|+4|+|-5|+|+2|=27km;故从A地出发到收工时耗油量为27×1.5=40.5(升).【重点考点】解题关键是理解“正”和“负”的相对性.明确什么是一对具有相反意义的量.在一对具有相反意义的量中.先规定其中一个为正.则另一个就用负表示.模块二有理数的分类有理数:整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.【经典例题6】下列各数中:+3.-2.1..9..-(-8).0.-|+3|.负有理数有()A.2个B.3个C.4个D.5个【题目难度】★【解题思路】把各式化简得:3.-2.1.- .9.1.4.8.0.-3.【解题过程】-2.1为负数有限小数.- 为负数无限循环小数.- 是负整数.所以是负有理数.共3个.【重点考点】判断一个数是有理数还是无理数.要把它化简成最后形式再判断.概念:无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数【经典例题7】下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个【题目难度】★【解题思路】根据0的特殊规定和性质对各选项作出判断后选取答案.注意:2002年国际数学协会规定.零为偶数;我国2004年也规定零为偶数.【解题过程】①0是整数.故本选项正确;②0是自然数.故本选项正确;③能被2整除的数是偶数.0可以.故本选项正确;④非负数包括正数和0.故本选项正确.所以①②③④都正确.共4个.故选A.【重点考点】本题主要对0的特殊性的考查.熟练掌握是解题的关键.【经典例题8】下列说法正确的是()A.非负有理数就是正有理数B.零表示没有.是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数【题目难度】★【解题思路】根据有理数的分类.采用排除法判断. 【解题过程】0是非负有理数.但不是正有理数.A 错误;零不是没有.它是整数.也是有理数.B 错误; 0也是整数.C 错误;整数和分数统称为有理数.这是定义.D 正确. 故选D .【重点考点】本题主要考查有理数学习中概念的理解.必须熟练掌握.【经典例题9】既是正数.又是分数的数是( )A .+2B .0C .3.5D .312- 【题目难度】★【解题思路】按照有理数的分类进行选择即可.【解题过程】A .+2虽然是正数.但不是分数.不合题意.故A 错误;B .0既不是正数.也不是分数.故B 错误;C .符合题意.故C 正确;D .312-虽然是分数.但不是正数.故D 错误. 故选C .【重点考点】认真掌握正数.负数.整数.分数的定义与特点.注意整数和正数的区别.注意0是整数.但不是正数.【经典例题10】最小的正整数是 _____1.最大的负整数是 _______. 【题目难度】★【解题思路】根据有理数的相关知识进行解答. 【解题过程】最小的正整数是1.最大的负整数是-1.【重点考点】认真掌握正数.负数.整数的定义与特点.需注意的是:0是整数.但0既不是正数也不是负数.【巩固练习】请写出三个既是负数.又是分数的有理数:__________【题目难度】★【解题思路】:按照有理数的分类填写【解题过程】- .-0.5..-0.25.等都符合题意.【重点考点】本题主要考查了有理数的分类.在解答时.认真掌握正数.负数.整数.分数.正有理数.负有理数.非负数的定义与特点.【巩固练习】有理数中.是整数而不是正数的数是_______0和负整数.是负数而不是分数的是________. 【题目难度】★【解题思路】①按照有理数的分类填写②有理数分成正数.0.负数.正数又分成正整数和正分数.负数分成负整数和负分数.【解题过程】零既不是正数也不是负数.故在有理数中.是整数而不是正数的数是0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数.【重点考点】本题主要考查的是有理数的定义.本题容易在0的分类上出错.注意:零既不是正数也不是负数.模块三数轴数轴:规定了原点.正方向和单位长度的直线.注意:⑴原点.正方向.单位长度称为数轴的三要素.三者缺一不可.⑵单位长度和长度单位是两个不同的概念.前者指所取度量单位的长度.后者指所取度量单位的名称.即单位长度是一条人为规定的代表“1’的线段.这条线段可长可短.按实际情况来规定.同一数轴上的单位长度一旦确定.则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向.用箭头表示;④选取适当的长度作单位长度.用细短线画出.并对应标注各数.同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上.右边的点所对应的数总比左边的点所对应的数大.正数都大于0.负数都小于0.正数大于一切负数.注意:数轴上的点不都代表有理数.如 .利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此.正数总大于零.负数总小于零.正数大于负数.【经典例题11】数轴上有一个点从原点开始向左移动3个长度单位.再向右移动5个长度单位后.它所表示的有理数是()A.3 B.5 C.-3 D.2【题目难度】★【解题思路】根据数轴上的点表示的数从原点开始左减右加的原则进行计算.【解题过程】数轴上的点表示的数从原点开始左减右加的原则可知.此点所表示的数为:0-3+5=2.故选D.【重点考点】本题考查的是数轴上点的坐标特点.解答此题的关键是熟知数轴上的点表示的数从原点开始左减右加的原则.【经典例题12】与在数轴上表示数2的点距离等于3个单位的点所表示的数是()A.-1 B.5 C.3或-3 D.-1或5【经典例题13】有理数a.b在数轴上的位置如图所示.则下列各式正确的是()aA.a>b B.a>-b C.a<b D.-a<b【题目难度】★★【解题思路】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数.原点右边的数为正数.从图中可以看出0<b<1.a<-1.|b|<|a|.【解题过程】根据数轴上a.b两点的位置可知.a<-1<0<b<1.|a|>|b|.∴a<b.-a>b.-b>a;故选C.【重点考点】本题主要考查了利用数轴来比较有理数大小的题目.此类题目比较简单.可根据数轴上各点的坐标特点利用取特殊值的方法进行比较.以简化计算.【经典例题14】在数轴上.-2与-5之间的有理数有()个.A.无数个B.4个C.3个D.2个【题目难度】★★【解题思路】数轴上的点和实数是一一对应的.两个数之间有无数个点.则对应的有理数或无理数有无数个.【解题过程】在数轴上任意两个有理数之间都有无数个的有理数.故选A.【重点考点】本题主要考查了数轴与实数之间的关系:数轴上任意两个有理数之间都有无数个的有理数.【经典例题15】老师在黑板上画数轴.取了原点O后.用一个铁丝做的圆环作为工具.以圆环的直径在数轴上画出单位长1.再将圆环拉直成一线段.在数轴的正方向上以此线段长自原点O起截得A点.则A点表示的数是__________.【重点考点】考查了数轴的几何意义.【经典例题16】已知在纸面上有一数轴(如图).折叠纸面.(1)若折叠后.数1表示的点与数-1表示的点重合.则此时数-2表示的点与数_____表示的点重合;(2)若折叠后.数3表示的点与数-1表示的点重合.则此时数5表示的点与数_____表示的点重合;若这样折叠后.数轴上有A.B两点也重合.且A.B两点之间的距离为9(A在B的左侧).则A点表示的数为______.B点表示的数为______【题目难度】★★★【解题思路】(1)数1表示的点与数-1表示的点重合.则这两点关于原点对称.求出-2关于原点的对称点即可;(2)若折叠后.数3表示的点与数-1表示的点重合.则这两点一定关于1对称.即两个数的平均数是1.若这样折叠后.数轴上有A.B两点也重合.且A.B两点之间的距离为9(A在B的左侧).则这两点到1的距离是4.5.即可求解.【解题过程】(1)2.(2)-3;A表示-3.5.B表示5.5.【重点考点】本题借助数轴理解比较直观.形象.由于引进了数轴.我们把数和点对应起来.也就是把“数”和“形”结合起来.二者互相补充.相辅相成.把很多复杂的问题转化为简单的问题.在学习中要注意培养数形结合的数学思想.模块四 相反数相反数:只有符号不同的两个数互称为相反数.特别地.0的相反数是0. 相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数.特别地.0的相反数是0. 相反数必须成对出现.不能单独存在.例如5+和5-互为相反数.或者说5+是5-的相反数.5-是5+ 的相反数. 而单独的一个数不能说是相反数.另外.定义中的“只有”指除符号以外.两个数完全相同.注意应与“只要符号不同”区分开. 例如3+与3-互为相反数.而3+与2-虽然符号不同.但它们不是相反数.⑵几何意义:一对相反数在数轴上应分别位于原点两侧.并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数.只要在这个数的前面添上“—”号即可. 一般地.数a 的相反数是a -;这里以a 表示任意一个数.可以为正数.0.负数.也可以是任意一个代数式.注意a -不一定是负数.当0a >时.0a -<;当0a =时.0a -=;当0a <时.0a ->. ⑷互为相反数的两个数的和为零.即若a 与b 互为相反数.则0a b +=.反之.若0a b +=.则a 与b 互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“+”号.都可以全部去掉; 一个正数前面有偶数个“-”号.也可以把“-”号全部去掉;一个正数前面有奇数个“-”号.则化简后只保留一个“-”号.既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数.“负正”是指化简的最后结果的符号).【经典例题17】12-的相反数是( )A .2B .12 C .-2 D .12- 【题目难度】★【解题思路】根据相反数的定义.只有符号不同的两个数是互为相反数.- 的相反数为 . 【解题过程】与- 符号相反的数是 .所以- 的相反数是 ; 故选B .【重点考点】本题主要相反数的意义.只有符号不同的两个数互为相反数.a 的相反数是-a .【经典例题18】如果a表示有理数.那么下列说法中正确的是()A.+a和-(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【题目难度】★★【解题思路】根据相反数的定义去判断各选项.【解题过程】A.+a和-(-a)互为相反数;错误.二者相等;B.+a和-a一定不相等;错误.当a=0时二者相等;C.-a一定是负数;错误.当a=0时不符合;D.-(+a)和+(-a)一定相等;正确.故选D.【重点考点】本题考查了相反数的定义及性质.在判定时需注意0的界限.【经典例题19】若a.b互为相反数.则下列各对数中不是互为相反数的是()A.-2a和-2b B.a+1和b+1 C.a+1和b-1 D.2a和2b【题目难度】★★★【解题思路】若a.b互为相反数.则a+b=0.根据这个性质.四个选项中.两个数的和只要不是0的.一定不是互为相反数.【解题过程】∵a.b互为相反数.∴a+b=0.A中.-2a+(-2b)=-2(a+b)=0.它们互为相反数;B中.a+1+b+1=2≠0.即a+1和b+1不是互为相反数;C中.a+1+b-1=a+b=0.它们互为相反数;D中.2a+2b=2(a+b)=0.它们互为相反数.故选B.【重点考点】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数.0的相反数是0;一对相反数的和是0.【经典例题20】相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数【题目难度】★★【解题思路】设这数是a.得到a的不等式.求解即可;也可采用特殊值法进行筛选.【解题过程】设这个数为a.根据题意.有-a≤a.所以a≥0.故选D.【重点考点】理解相反数的定义.实数a的相反数为-a;同时要理解不大于.不小于.非负数.非正数的含义.【巩固练习】的相反数是它本身.【题目难度】1星【解题思路】只有符号不同的两个数.绝对值相等叫做互为相反数.【解题过程】∵在数轴上.绝对值相等的两个互为相反数的实数是0.故答案是:0.【重点考点】本题主要考查了相反数的定义.①在数轴上.互为相反数(0除外)的两个点位于原点的两旁.并且关于原点对称;②正数的相反数是负数.负数的相反数是正数;③0的相反数是0.【经典例题21】已知代数式3x+1与代数式5-2x的值互为相反数.则x=_________【题目难度】★★★【解题思路】根据相数的定义列出关于x的方程.3x+1+5-2x=0.解方程即可.【解题过程】根据题意.有3x+1+5-2x=0.解之得x=-6.故答案为-6.【重点考点】熟练掌握相反数的概念和一元一次方程的解法.若两个数互为相反数.则它们的和为零.反之也成立.模块五 绝对值绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算.运算符号是“”.求一个数的绝对值.就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性.取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值.如:5-符号是负号.绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩A .1个B .2个C .3个D .4个【重点考点】本题主要考查的是正数和负数.及绝对值.去括号的法则是:①括号前面有“+“号.把括号和它前面的“+”号去掉.括号里各项的符号不改变;③括号前面是“-“号.把括号和它前面的“-”号去掉.括号里各项的符号都要改变为相反的符号.【经典例题23】下列说法.不正确的是()A.数轴上的数.右边的数总比左边的数大B.绝对值最小的有理数是0C.在数轴上.右边的数的绝对值比左边的数的绝对值大D.离原点越远的点.表示的数的绝对值越大【题目难度】★★【解题思路】:根据实数与数轴的对应关系以及实数的意义即可判定选项A.C.D是否正确.0的上绝对值是0.【解题过程】:A:一般来说.当数轴方向朝右时.右边的数比左边的数大.故此选项正确;B:绝对值最小的有理数是0.故此选项正确;C:-3在-2的左边.-3的绝对值大于-2的绝对值.故此选项错误;D:离原点越远的点.表示的数的绝对值越大.故此窜项正确.故选C.【重点考点】本题主要考查了数轴和有理数之间的关系.0的绝对值是0.【经典例题24】如图.下列各数中.数轴上点A表示的可能是()A.2的平方B.-3.4的绝对值C.-4.2的相反数D.的倒数【题目难度】★★★【解题思路】先根据数轴上A点的位置确定A的取值范围.再根据每个选项中的数值进行判断即可.【解题过程】由数轴上A 点所表示的位置可知.3<A <4.A .22=4.故本选项错误;B .|-3.4|=3.4.3<3.4<4.故本选项正确;C .4.2的相反数是4.2>4.故本选项错误;D .的倒数是=2.4.2.4<3.故本选项错误.故选B .【重点考点】本题考查的是数轴的特点及相反数.倒数的定义.能根据数轴的特点确定出A 的取值范围是解答此题的关键.板块六.科学计数法.有效数字科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<.n 是整数).此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.有效数字: 从一个数的左边第一个非0数字起.到末位数字止.所有数字都是这个数的有效数字. 如:0.00027有两个有效数字:2.7 ;1.2027有5个有效数字:1.2.0.2.7. 注意:万410=.亿810=常考点及易错点:科学计数法中的单位转换.精确到什么位与保留有效数字的差别.记忆方法:移动几位小数点问题.比如:1800000要科学记数法.实际就是小数点向左移动到1和8之间.移动了6位.故记为61.810⨯.【经典例题25】我国第六欢人口普查的结果表明.目前肇庆市的人口约为4050000人.这个数用科学记教法表示为( )A .410405⨯ B .51005.4⨯C .61005.4⨯D .71005.4⨯【题目难度】★【解题思路】科学记数法的表示形式为a×10n 的形式.其中1≤|a|<10.n 为整数.确定n 的值时.要看把原数变成a 时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值>1时.n 是正数;当原数的绝对值<1时.n 是负数.【解题过程】61005.44050000⨯= 故选:C .【重点考点】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式.其中1≤|a|<10.n 为整数.表示时关键要正确确定a 的值以及n 的值.【经典例题26】某种鲸的体重约为1.36×105kg .关于这个近似数.下列说法正确的是( )A .精确到百分位.有3个有效数字B .精确到个位.有6个有效数字C .精确到千位.有6个有效数字D .精确到千位.有3个有效数字 【题目难度】★★【解题思路】有效数字的计算方法是:从左边第一个不是0的数字起.后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a 有关.与10的多少次方无关.【解题过程】1.36×105kg 最后一位的6表示6千.共有1.3.6三个有效数字.故选D .【重点考点】此题考查了科学记数法表示的数的有效数字的确定方法.要注意10的n 次方限定的乘号前面的最后一位数表示的数位.【经典例题27】用四舍五入法按要求对0.05049分别取近似值.其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.050(精确到0.001)【题目难度】★★【解题思路】根据近似数与有效数字的概念对四个选项进行逐一分析即可.【解题过程】A .0.05049精确到0.1应保留一个有效数字.故是0.1.故本选项正确;B .0.05049精确到百分位应保留一个有效数字.故是0.05.故本选项正确;C .0.05049精确到千分位应是0.050.故本选项错误;D .0.05049精确到0.001应是0.050.故本选项正确. 故选C .【重点考点】本题考查的是近似数与有效数字.即从一个数的左边第一个不是0的数字起到末位数字止.所有的数字都是这个数的有效数字.【经典例题28】据国家统计局2011年4月28日发布的《2011年第六次全国人口普查主要数据公报(第一号)》.总人口为1370536875人.这一数字用科学记数法表示为( )(保留四个有效数字)A .91037.1⨯ B .81037.1⨯ C .910371.1⨯ D .810371.1⨯ 【题目难度】★★【解题思路】科学记数法的表示形式为na 10⨯的形式.其中1≤|a|<10.n 为整数.确定n 的值是易错点.由于1370536875有10位.所以可以确定n=10-1=9.有效数字的计算方法是:从左边第一个不是0的数字起.后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a 有关.与10的多少次方无关.【解题过程】1370536875=9910371.110370536875.1⨯≈⨯故选:C .【重点考点】此题主要考查了科学记数法的表示方法.以及用科学记数法表示的数的有效数字的确定方法.练习1. 在下列选项中.具有相反意义的量是( )A .胜二局与负三局B .盈利3万元与支出3万元课堂检测C.气温升高3℃与气温为-3℃D.向东行20米和向南行20米【题目难度】★【解题思路】首先审清题意.明确“正”和“负”所表示的意义.再分析选项.选择正确答案.【解题过程】A.胜二局与负三局.符合相反意义的量.故选项正确;B.盈利与亏损才符合相反意义的量.而盈利与支出不是相反意义.应为盈利3万元与亏损3万元.故选项错误;C.升高与下降才符合相反意义的量.而升高3℃与气温本身为-3℃不是相反意义的量.应为气温升高3℃与气温下降-3℃.故选项错误;D.东行和西行才符合相反意义的量.而东行和南行则不是相反意义量.应为向东行20米和向西行20米.故选项错误.故选A.【重点考点】解题关键是理解“正”和“负”的相对性.明确什么是一对具有相反意义的量.在一对具有相反意义的量中.先规定其中一个为正.则另一个就用负表示.练习2. 在有理数中.不存在这样的一个数a.它()A.既是自然数又是整数B.既是分数又是负数C.既是非正的数又是非负的数D.既是正数又是负数【题目难度】★★【解题思路】本题需要根据有理数的分类.自然数.整数.分数.负数.正数的特点及定义对各个选项逐个分析.找出正确选项即可.【解题过程】因为自然数是整数.所以A错因为负分数即是分数由是负数.所以B错因为0既是非正的数又是非负的数.所以C错故选D.。

七年级上册人教版数学培优讲义(带答案平时讲课时用过的)

七年级上册人教版数学培优讲义(带答案平时讲课时用过的)

第1讲 有理数(1)1.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度.已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是( ) A .乙地比丙地高70米 B .乙地比甲地低90米 C .丙地最低 D .甲地高出海平面100米2.下列各组数中,大小关系正确的是( )A .752-<-<-B .752->->C .725-<-<-D .275->->-3.一个数在数轴上所对应的点向左移动6个单位后,得到它的相反数的点.则这个数是( ) A .3 B .-3 C .6 D .-64.在数轴上点A所表示的数是-3,点B与点A的距离是5,那么B点所表示的有理数是( ) A.5 B.-5 C.2 D.2或-8 5.一个数是7,另一个数比它的相反数大3,则这两个数的和是( ) A.-3 B.3 C.-10 D.11 6.如果2(3)x +与3(1)x -互为相反数,那么x 的值是( ) A.-8 B.8 C.-9 D.9 7.若,0a b c a b c <<++=,则a b +的范围是( )A .0a b +>B .0a b +<C .0a b +≥D .0a b +≤8.如果a 、b 均为有理数,且0b <,则有( )A .a a b a b <+<-B .a a b a b <-<+C .a b a a b +<<-D . a b a b a -<+< 9.下列各数中:-6;5;+2.5;0;-1;13-;100;10% 正数是:_________________________________; 负数是_________________________________.10.数-3;+8;12-;+0.1;0;-10;5;13中,正数有______________________个.11.将下列各数5;23-;2010;0.02-;6.5;0;2-填入相应的括号里.正数集合{} 负数集合{}12.最大的负整数是___________;小于3的非负整数是______________________.13.若12.332x -<≤,则x 的整数值有___________个.14.从数轴上表示1-的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是___________.15.如果a 、b 互为相反数,那么a b +=___________,22a b +=___________.16.如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,则a b +=___________.17.一个数的相反数大于它本身,那么这个数是___________,一个数的相反数等于它本身,这个数是___________,一个数的相反数小于它本身,这个数是___________.18.若果a 和b 是符号相反的两个数,在数轴上a 所对应的数和b 所对应的点相距6个单位长度,如果2a =-,则b 的值为___________.19.如果a 的相反数是2-,且234x a +=,求x 的值;20.数轴上A点表示的数为+4,B、C 两点表示的数互为相反数,且C 到A 的距离为2,点B 和点C 各表示什么数;21.已知A 、B 为数轴上的两点,它们到原点的距离分别为4、5,则A 、B 两点之间的距离为多少?22.已知A 为数轴上的一点,将A 先向右移动7个单位,再向左移动4个单位,得到点B,若A 、B 两点对应的数恰好互为相反数,求A点对应的数.23.小康水平的一个指标是年人均收入1000美元.2008年对某地进行随机抽样调查,得出10户年人均收入,若以人均1000美元以上为达到小康指标,超过1000美元的美元数用正数表示,不足1000美元的美元数用负数表示.此10户的年人均收入如下(单位:美元):(1) 请你计算一下这10户有百分之几达到了小康指标?(2)10户年平均收入为多少美元?24.(1)照这样计算小亮家6月用电多少度?(2)供电部门规定:每月每户用电不超过200度,每度按0.5元收费,超过200度但不超过300度的,超过的部分每度按0.55元收费,超过300度的,超过部分每度按0.8元收费,则小亮家6月应缴电费多少?(3)7月份由于天气变热,用电量增大,小亮妈缴费时发现这个月用电每度平均0.63元,求小亮家7月份用电多少度?25.(1)通过计算,说明本周内那天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库库存粮食为50吨?26.一串数:1121123211234321,,,,,,,,,,,,,,,1222333334444444------……根据以上规律:(1)请问:20132014是这一串数中的第几个数?(2)请问:这组数中的第2014个数是多少?27.考察下列一串有规律的数.(横排为行)根据上面的规律,解答下列问题: (1)第10行最后一个数是多少?(2)2015是第几行第几个数?(3)用n S 表示第n 行的所有数的和.观察1S 、2S 、3S ……,根据规律猜想n S 为多少?(用含n 的代数式表示,n 为正整数);(4)第n 行第m 个数是多少?用含m 、n 的代数式表示. (29272523211917151311)97531第2讲 有理数(2)1.有理数(2)--,(2)-+,(2)+-,2--,2+-,a -中,一定是负数的个数是( ) A .2个 B .3个 C .4个 D .5个2.有理数a 、b 、c 在数轴上的位置如图所示,则下列关系中: (1)a b c <<;(2)0c >;(3)a c =;(4)0a <正确的是( )A .(1)(2)(3)B .(2)(3)(4)C .(1)D .(1)(4)3.下列说法:①若a 、b 互为相反数,则0a b +=;②若a b =-,则a 、b 互为相反数;③若a 、b 互为相反数,则1ab=-;④若a b =,则a 、b 互为相反数.其中正确的结论是( ) A .②③④ B .①②③ C .①②④ D .①②4.给出下列结论:①一个数的3倍大于这个数.②绝对值最小的数是0. ③规定了原点、正方向和单位长度的直线叫数轴. ④如果a a =,那么0a >.其中正确的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个5.a 、b 是有理数,若3,4a b ==,则a b +=( )A . 1或7-B . 1-或7-C .1或7D . 1,7,17--或 6.若a 为有理数,则a --是( )A .正数B .负数C .非正数D .非负数 7.数轴上的点A 、B 分别表示12-和13,则线段AB 的中点所表示的数是( )A .512 B .112 C . 112- D . 16- 8.观察下面按次序排列的一组数,并按要求填空. 2,4,6,8,10,--______,_______,……,则第50个数是______________.9.若257x -=,则x 的值为____________;若4x -=-,则x =_________.10.已知A 、B 为数轴上两点,它们到原点的距离分别为4、5,则A 、B 两点之间的距离为_______. 11.已知0,0,a b a b <>>,试用""<将a a b 、b 、-、-连接起来_____________________.12.一个数在数轴上对应的点先向右移动3个单位,再向左移动7个单位后,得到它的相反数对应的点,则这个数是___________.13.已知,在数轴上,A点到原点的距离为3,P 点到A 点的距离为2,画出数轴并在数轴上直接标出P点所对应的数.14.已知,x 和212x -互为相反数.求x 的值.15.已知,x 与14互为倒数,y 的相反数是3-,50a -=,求x y a ++的值.16.若x 与2y -互为相反数,y 与z 互为倒数.m 是绝对值最小的数,求式子2243x y yz m -+-+的值.17.若a 是有理数,在a -与a 之间有2015个整数,求a 取值范围.18.若0,0,m n <>且m n >,试比较,,,m n m n n m ----的大小,并用“>”号连接.dc ba19.某洗衣厂上月生产了30000 袋洗衣粉,每袋标准重量450克,质量检测部门从中抽取了20袋进行检测,记超过或不足标准重量的部分为“+”和“”,记录如下:(2) 通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(3)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?20.出租车司机小李某天下午从客运站出发后,所有营运都是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这一天下午的行车情况如下(单位:千米)15,3,11,11,10,4,12,15,18,16+-+-++---+.根据记录,解答下列问题:(1)小李将最后一名乘客送到目的地时,他的位置在那?(2)若在出车前油箱内有10升油,汽车每千米的耗油量为0.08升,试问:小李将最后一名乘客送到目的地时,油箱内的余油量为多少?21.给出下列数阵(3) 如图,框出四个数请你用一个等式表示a 、b 、c 、d 四者的关系;(3)是否存在上述四数之和为①414;②10?若存在,请求出四个数;若不存在请说明理由.,B点对应的数为100.22.已知,如图,A、B分别为数轴上的两点,A点对应的数为30(1)请写出AB中点M对应的数;(2)现有一只电子蚂蚁P从B点出发,以5单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以3单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应点数是多少吗?请求出来.(3)若当电子蚂蚁P从B点出发时,另一只电子蚂蚁Q恰好同时从A点出发,以3单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?请求出来.23. 已知,数轴上点A在原点左边,到原点的距离为8,B在原点的右边,从A走到B,要经过32个单位长度.(1)求A、B两点所对应的数.(2)若点C也是数轴上的点,C到B的距离是C到原点的距离的3倍,求C对应的数.(3)已知,M从A向右出发,速度为每秒1个单位长度,同时N从B向右出发,速度为每秒2个单位长度,设NO的中点为P,则下列结论:①PO+AM的值不变;②PO AM的值变化,其中只有一个是正确的,请选出并求出其值或说明理由.第3讲 有理数(3)知识理解1、下列各组数中,互为相反数的一组是 ( )A 、+ (-2)和-( + 2)B 、-|-2|和-| + 2|C 、-(-2)和-|-2|D 、-( + 2)和-| + 2|2、数轴上的点A 、B 分别表示-2和3,则线段AB 的中点所表示的数是 ( ) A 、12 B 、12- C 、52- D 、523、已知a 、b 互为相反数,下列各式中成立的是 ( )A 、ab <0B 、a -|b |=0C 、|a -b |=|a | + |b |D 、a ÷b =-1 4、a , b 是有理数,若|a |=2, |b |=3,则|a + b |= ( )A 、5B 、1C 、1或5D 、1,5,-1或-5 5、若|-x |=4, |y |=2,且x >y ,则xy 的值是 ( )A 、-8B 、8C 、-8或8D 、以上答案都不对 6、若a >0, b <0 ,化简3|||2|a b a b +-+得 ( )A 、bB 、5bC 、2a + bD 、2a + 5b7、一艘潜水艇的高度为-40米,如果它再下滑30米,则它这时所在的高度为__________.8、若|-x |=2,则x =___________;若|x -3|=0,则x =__________;若|x -3|=1,则x =__________. 9、实数a , b 在数轴上位置如图所示,则|a |, |b | 的大小关系是___________.10、比较下列各组有理数的大小:(1)-0.6________-60 (2) -3.8________-3.9 (3) 0________|-2| (4)34______45-- 11、绝对值小于122的所有整数为_____________,绝对值小于3的整数是__________. 12、已知|a |=1,|b |=2,且a , b 异号,则3a + b =__________.13、若|a |=4,|b |=3,且|a |=-a ,则2a + b =____________________. 输入 (1)2345…… 输出……13 26 311 418 527……当输入的数为10时,输出的数为___________.方法运用15、已知|a |=|b |=9,|a |=2,求b 的值.16、已知a =3,|b |=2,|c |=1,且a <b <c ,求a , b , c 的值.17、已知|x |=2003,|y |=2002,且x >0 ,y <0,求x +y 的值.18、已知|x +y +3|=0,求|x +y | 的值.19、|2||3||4|0a b c -+-+-=,求a +2b +3c 的值.20、如果a , b 互为相反数,c , d 互为倒数,x 的绝对值是1,求代数式2a bx cd x+++的值.21、已知|a |=3, |b |=5, a 与b 异号,求|a -b |的值.22、已知|a +1|与|b -2|互为相反数,求式子()||a b a a ---的值.23、若2、2、5和a 的平均数是5,而3、4、5、a 和b 的平均数也是5, (1) 求a , b ;(2) 若|c |=-c , 求||||c a b c ---的值.实际应用24、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差,现抽查6瓶食请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?综合思考25、在标有6,12,18,24,30……的卡片中,小明拿了相邻的3张.(1)若相邻的3张数字之和为342,求这3张卡片上各自的数字?(2)你能拿到数码相邻的3张卡片,使其上数字之和是86吗?试说明理由?26、有理数a,b,c,d在数轴上如图所示:①在数轴上有若干个点,每相邻两个点之间的距离是1个单位长,有理数a,b,c,d所表示的点是这些点中4个,且在数轴上位置如图所示,如果3a=4b-3,求c+2d的值;②在数轴上,N点与原点的距离是N与30所对应点之间的距离的4倍,那么N点表示的数是多少?27、有若干个数,123,,,n a a a a ,若112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”(1) =1a =2a (2) 求91011a a a ⋅⋅的值;(3) 是否存在M 的值,使111()n n n M a a a a -+÷⋅⋅=?若存在,请求出M 的值.第4讲 有理数(4)知识理解1、若2-=a ,24,0b ab =>,则||a b +=( ) A 、0 B 、4 C 、-4 D 、0或4 2、若20,0a b a -><,下列各式中成立的是( )A 、2a b >0B 、0a b +>C 、20a ab +> D 、20ba > 3、若a <0,则下列各式不成立的是( )A 、22()a a =-B 、22()a a =-- C 、 22||a a =- D 、23||a a =-4、已知1234a b c d -=+=-=+,则a , b , c , d 的大小关系是 ( ) A 、d b a c >>> B 、a c b d >>> C 、c a d b >>> D 、c b a d >>>5、已知0,0a b ab +=≠,则化简(1)(1)b aa b a b+++得 ( ) A 、2a B 、 2b C 、2 D 、-2 6、若a 、b 、c 为正整数,且23108ab c =,则a + b + c 的最大值为 ( ) A 、6 B 、32 C 、40 D 、1107、有理数a 、b 在数轴上的对应位置如图所示,则 ( )A 、0a b +<B 、0a b +>C 、0a b -=D 、0a b -> 8、计算1110(2)(2)-+-的值是 ( )A 、-2B 、(-2)21C 、0D 、-210 9、下列各式中正确的是 ( )A 、22()a a =- B 、33()a a =- C 、22||a a -=- D 、33||a a = 10、若(x + 3)2与|y -5|互为相反数,则x + y 的值为__________. 11、瑞士中学教师巴尔末成功从光谱数据9162536,,,5122132中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的两个数据是___________.12、在数-5、1,-3、5、-2中任取三个数相乘,其中最大的积是__________,最小的积是__________. 13、A 、B 两点在数轴上对应的数分别是-4,2,点P 到点B 的距离是点P 到点A 距离的2倍,则P 点在数轴上表示的数是__________.14、已知数m 小于它的相反数且数轴上表示数m 的点与原点的相距3个单位的长度,将该点m 向右移动5个单位长度后,得到的数是___________. 15、观察下列数列,找出规律后,写出数列下一项:0,3,-3,9,-15,33,-63,_____________________. 16、如果x -y =5,则|2-x + y |=__________;如果4 + x + y =0,那么-x + 3-y =___________. 17、若a + b <0,则||||||a b ab a b ab++=___________. 方法运用18、如果规定符号“*”的意义是*aba b a b=+求2*(-3)*4的值.19、已知2|1|4,(2)4x y +=+=,求x + y 的值.20、若a , b , c 均为整数,且||||1a b c a -+-=,求||||||a c c b b a -+-+-的值.21、如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A 、B 是数轴上的点,完成下列各题:(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是__________,A 、B 两点间的距离是__________.(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是__________,A 、B 两点间的距离是__________.(3)一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是__________,A 、B 两点间的距离是.__________22、同学们都知道,|5-(-2)|表示5与-2的差的绝对值,实际上也可理解5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求|5-(-2)|=____________.(2)找出所有符合条件的整数x ,使得|x + 5| + |x -2|=7成立的整数是______________.(3)由以上探索猜想,对于任何有理数x ,|x -3| + |x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.实际应用23、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为 + 10,-15,0, + 20,-2,问这五位同学的实际成绩分别是多少分?24、已知水结成冰的温度是00C ,酒精冻结的温度是-1170C ,现有一杯酒精的温度为120C ,放在一个制冷装置里,每分钟温度可降低1.60C ,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)25、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为450克,则抽样检测的总质量是多少克?综合思考26、已知:a , b ,c 在数轴上的位置如图所示.0b a1(1)填空:a 、b 之间的距离为___________;b 、 c 之间的距离为___________;a 、c 之间的距离是__________.(2)化简|1||||1|a c b b +--+-(3)若0a b c ++=且b 与-1的距离和a 与-1的距离相等,求22(4)c b a c a b -+----的值.27、已知数轴上两点A、B对应的数为-1,3,点P为数轴上一动点,其对应的数为x,(1) 用x的式子表示线段P A、PB的长度;(2) 数轴上是否存在点P,使P A+PB=5?请求出x的值;若不存在,请说明理由.28、观察下面三行数:3,-9,27,-81,243,-729,…;①6,-6,30,-78,246,-726,…;②1,-3,,9,-27,81,-243,…;③(4)第①行按什么规律排列?(5)第②③行数与第①行数分别有什么关系?(6)写出每行第9个数,共计算这三个数的和.(7)第②行中是否存在连续的三个数,使得这三个数的和为-5094?若存在,求出这三个数;若不存在,说明理由;(5)是否存在一列数,使得其中的三个数的和为5106?若存在,求出这三个数;若不存在,说明理由.第5讲 整式(1)知识理解1.下列各式:-n ,a +b ,3ab ,x -1,3ab ,1x,其中单项式的个数是( ). A.2 B.3 C.4 D.52.下列各式:2+x 2、2x 、xy 2、3x 2+2x -1、abc 、1-2y 、3x y-中,其中多项式的个数是( ).A.2B.3C.4D.53. 若743x a b +与yba 24-是同类项,则y x 的值为( )A.9B.-9C.4 D -4. 4.已知-x +3y =5,则25(3)8(3)5x y x y ----的值是( ) A.160 B.80 C.-170D.-905.三个有理数a ,b ,c 两两不等,那么a b b c--,b c c a --,c aa b --中负数的个数是 ( ). A.1个 B.2个 C.3个 D.不能确定6. 已经a <-b ,且0ab>,化简|a |-|b |+|a +b |+|ab |=( ).A.2a +2b +abB.-abC.-2a -2b +abD.-2a +ab7.已知535y ax bx cx =++-,当x =-3时,y =7,那么当x =3时,y =( ). A.-17 B.-7 C.-3 D.78.减去-3x 等于 2535x x --的代数式是( ).A. 255x -B. 2565x x --C. 2565x x --+D. 255x -+9.若关于x 、y 的多项式y bxy x x xy ax +--++222不含二次项,则5a -8b 的值为( ).A.-11B.21C.-21D.11 10.若3k x y 与2x y -是同类项,那么k =___________. 11.若32x a b 与yb a 43-是同类项,那么x +y =____________.12. 当x =____________时,||23x a 和42a -是同类项.13.如果2(5)b a mn +-是关于m 、n 的一个五次单项式,那么a _______,b =_________.14.如果a 、b 互为相反数,c ,d 互为倒数,x 的绝对值为1,求代数式2a bx cd x+-+= ____________. 15. 三角形的第一边长为(a +b ),第二边比第一边长(a -5),第三边长为2b ,那么这个三角形的周长是____________.16. 已知多项式:876253a a b a b a b -+-+…,按此规律写下去,这个多项式的第八项是____________.17.有一列数,按一定规律排列成1,-3,9,-27,81,-243,其中某三个相邻数的和是-1701,那么这三个数中最小的数是 ____________.方法运用18.已知123a b x y +-与225x y 是同类项,求2221232a b a b a b +-的值19.若单项式84a b x y +与单项式239b a b x y -的和仍是一个单项式,求这两个单项式的和.20.化简求值:)]4(3[25222b a ab abc b a abc --+-其中a 是最小的正整数,b 是绝对值最小的负整数,|c |=18,且abc >0.21.已知s +t =21,3m -2n =9,求多项式(2s +9m )+[-(6n -2t )]的值.22.化简求值:22225[4(31)3]x x x x -----,其中32x =-23.已知x -y =0,求3223x x y xy y --+的值.24.已知A =2x 2-3xy +2y 2,B =2x 2+xy -3y 2,求3A -B 的值.25.a 、b 是有理数,|a |=b ,|ab |+ab =0,化简:|a |+|-2b |-|3b -2a |.26.已知A =3m 2-4m +5,B =3m -2+5m 2,且A -2B -C =0,求多项式C .实际应用分每吨收取较高的定额费用,已知今年7月张家用水量与李家用水量的比是2:3,其中张家当月水费是14.60元,李家当月水费是22.65元,那么超出5吨部分的收费标准是每吨多少元?28. 张校长暑假将带领学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内的全部按全票价的6折优惠.”若全票价为240元.设学生人数为x ,甲旅行社的收费记为y 甲,乙旅行社的收费记为y 乙. (1) 分别用含x 的代数式表示两个旅行社的收费;(2) 若学生有200人,那么买哪个旅行社的票合算,为什么?综合思考29.若x 3+x 2+x =-1,求多项式x 2012+x 2011+…+x 2+x +1的值.30.观察下列数阵:(1) 观察以上数阵的变化规律,猜想第11行第4个数是 . (2) 第n 行第m 个数是 .(3) 请猜想第2015行正中间的数是 . (4) 求第100行所有数的和.31.a 、b 为有理数,且a +b 、a -b 在数轴上如图所示: (1) 判断a 、b 的符号及a 、b 的大小关系;(2) 若x =|2a +b |-3|b |-|3-2a |+2|b -1|,求代数式x 2-6x +9的值; (3) 若c 为有理数,且345a b c==,ab +bc +ca =188,求代数式(a -b +c )2-abc 的值. a-b a+b O第6讲 整式(2)知识理解1.前年我国城镇固定资产投资为7509600元,用科学记数法表示为( ).(保留三个有效数字)A.7.51×107元B. 7.50×107元C. 7.51×106元D. 7.50×106元2.下列各式:-2;3x -;3x ;m +n ;-a 2b ;35xy-中,单项式的个数有( ). A.2个 B.3个 C.4个 D.5个3.下列式子0、2mn 、 13x +、48a 2b 、1-x 、x 2+2x +1、15xy -、3x 其中单项式共有( ).A.3个B.4个C.5个D.6个 4.下列合并同类项运算,结果正确的是 ( ).5.下列各组数是同类项的是( ).A.x 2y 和xy 2B.3ab 和-abcC.2x 和12D.0和-5 6.下列说法:①2与-2是同类项;②2ab 与-3abc 是同类项;③3x 5与5x 3是同类项;正确的个数有 ( ). A.0个 B.1个 C.2个 D.3个7.下列说法:①若1ab=-,则a ,b 互为相反数;②若a +b <0,ab >0,则|a -2b |=2b -a ;③若m >n ,则m 2>n 2;④一个数的倒数是它本身,则这个数是0和±1;⑤近似数1.80的有效数字是1、8、0;⑥-23ab 2的次数为6.其中正确说法的个数是 ( ).A.2个B.3个C.4个D.5个8.下列结论:①若,则a 、b 互为相反数;②若|a |>|b |,则a ≠b ;③多项式-22x 3y 3+3x 2y 2-2xy -x +1的次数是6次;④若|x -6|=|y -6|,且x >y ,则x +y =12;⑤1.60×106的有效数字有7个;⑥若一个数的倒数等于它的平方,则这个数为±1;其中正确的个数有 ( ) A.2个 B.3个 C.4个 D.5个9.写一个系数为负数,含三个字母的四次单项式为 .10.单项式-3x 3y 的次数是 ;单项式25ab-的系数是 . 11.单项式-6a 5b 2c 的系数是 ;它的次数是 .12.多项式-x 3y 2+3x 2y 4-2xy 2的次数是 .13.三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22150000000m 3,这个数用科学记数法可表示为 . 14.已知2a 3b 4与-3a 2m b n 是同类型,则m -n = . 15.如果16a 3m +n b n 与6378a b -是同类型,则m -n = . 16.去括号-2(3x +y -2z )= .17.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有 个正方形.方法运用18.先化简再求值:(x 2y -2y 2-xy -1)-(2xy +4x 2y -y 2)+3,其中x =-1,y =-2.19.先化简再求值:(4x -2y 2)-[5x -(x -y 2)]-x ,其中x =-2,y =31.20.(1)根据条件列式:a 的2倍与b 的和减去b 的平方与a 的 半的差; (2) 在(1)的条件下,若a =-4,b =3,求上式的值.21.已知A =x 3+2y 3-xy -3,B =-y 3+x 3+2xy +1,且2A -M =B ,求M .(8) 已知,A =2x 2-3xy ;B =2x 2+xy -5,若M +B =2A ,求M .23.已知M =x -13y 2,N =-32x +12y 2-1. (1) 化简3M -2N . (2) 若|x -2|=-(y -1)2,求-2N +3M 的值.实际应用24.某个体水果店经营某种水果,每千克进价2.80元,售价4.50元,10月1日至10月5日经营情况依次如下表:(1) 若9月30日晚库存为零,则10月1日晚库存为 kg ;(2) 就10月3日这一天的经营情况看,当天是赚了还是赔了多少钱? (3) 10月1日到10月5日该个体户共赚多少钱?25.国庆节即将来临,张华高兴地看着2014年10月的日历,发现其中有很有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a 、b 、c 、d 、k ,如图:试回答下列问题: (1) 此日历中能画出 个十字框? (2) 若a +b +c +d =76,求k 的值.(3) 是否存在k26.数轴上,A 点表示的数为10,B 点表示的数为-6,A 点运动的速度为4单位/秒,B 点运动速度为2单位/秒.(1) B 点先向右运动2秒,A 点再开始向左运动,当它们在C 点相遇时,求C 点表示的数;(2) A 、B 两点都向左运动,B 点先运动2秒时,A 点于开始运动,当A 点到原点的距离和B 点到原点的距离相等时,求A 点运动的时间; k dcba10(3) A、B两点都向左运动,B先运动2秒,A再运动t秒时,求A、B两点之间的距离.第7讲 一元一次方程知识理解1、下列由等式的性质进行的变形,错误的是( )A 、如果b a =,那么33+=+b aB 、如果b a =,那么33-=-b aC 、如果b a =,那么a a 32= D 、如果a a 32=,那么3=a2、下列方程中:①312+=-x x ;②21=-x ;③123222=+;④3-x ;⑤6=+y x .其中是一元一次方程的有( )A 、1个B 、2个C 、3个D 、4个 3、已知方程x m x 743-=+的解为1=x ,则m 的值为( ) A 、- 2 B 、- 5 C 、6 D 、- 64、若y x =,下列各式中:①33-=-y x ;②55+=+y x ;③88-=-y x ;④y x x +=2;其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个5、下列等式变形:①如果y x =,那么ay ax = B ;②如果y x =,那么a y a x =;③如果ay ax =,那么y x = ;④如果a y a x =,那么y x =.其中正确的是( )A 、③④B 、①②C 、①④D 、②③6、下列说法:①在等式42=x 两边都加上2,可得等式64=x ;②在等式42=x 两边都减去2,可得等式2=x ;③在等式42=x 两边都乘以21,等式变为2=x ;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有( )7、中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球的质量等于( )个正方体的重量.A 、2B 、3C 、4D 、58、已知a 是任意有理数,在下面各题:(1)方程0=ax 的解是1=x ;(2)方程a ax =的解是1=x ;(3)方程1=ax 的解是ax 1=;(4)方程a x a =的解是1±=x .其中结论正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个9、如果652=-x ,那么_________2=x ,其中依据是__________________________.10、若方程()0122=+++c bx x a 是关于x 的一元一次方程,则字母系数a 、b 、c 满足的条件是_____________________________.方法运用11、解方程:(1)23141x x x --=--; (2)214311--=++x x x ;(3)()x x x =-⎥⎦⎤⎢⎣⎡+-1151321 ; (4)121103121412+--=-+x x x ;12、已知1=x 是方程()x x a 2312=--的解,那么关于x 的方程()()3225-=--x a x a 的解是多少?13、某书有一道方程:x x =+*+132,*处的一个数十阿紫印刷时被墨盖住了,查后面的答案,知道方程的解为5.2-=x ,那么*处被墨盖住的数应该是多少?14、若a 、b 为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,此方程的解总是1=x ,求a 、b 的值.15、小明参加了学校组织的数学兴趣小组,在一次数学活动课上,数学老师在黑板上写了一个关于x 的一元一次方程:69312k x x a kx +--=--,方程中的常数a 老师已给出,但常数k 老师却未写出.数学老师让小组中的60名学生每人自己想好一个值()3≠k ,然后代入方程中,在解出方程.小明想了一个k 值后,很快解出了方程的解,他惊奇地发现,全班同学的答案竟然是一模一样,你能告诉小明这是什么原因吗?你知道题中老师给出的a 是多少吗?方程的解是多少吗?16、已知方程423523-=-x x (1)求方程的解;(2)若上述方程与关于x 的方程()a a x a 2383-+=+是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求()2005c b a ++17、已知2=x 是关于x 的方程c b ax =+的解.(1)求()200312--+c b a (2)求ba c 2410+的值; (3)解关于x 的方程()()0242≠++=+cb ac x b a .18、已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数位-200,B 点对应的数位为- 20 ,C 点对应的数为40.甲从C 出发,以6单位/秒的速度向左运动.(1)当甲在B 点、C 点之间运动,设运动时间为x 秒,请用x 的代数式表示;甲到A 点的距离:____________________;甲到B 点的距离:____________________;甲到C 点的距离:____________________;(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.19、数轴上A 、B (A 左B 右)所对应的数为a 、b ,()01052=-++b a ,C 为数轴上一动点且对应的数位c ,O 为原点.(1)若2=BC ,求c 的值.(2)是否存在一点C使得CB=2CA,若存在求出对应的数位c,不存在说明理由.(3)是否存在一点C使得CA+CB=21,若存在求出对应的数位c,不存在说明理由.第8讲 一元一次方程(2)一、基础知识1、若3-=x 是方程()52=+k x 的解,求k 的值.2、讨论12=x 是不是方程14732+=x x 的解.3、已知3-=x 是1312-=--m x 的解,求代数式132--m m 的值.4、已知1-=y 是关于y 的方程08432=+++-m y y 的解,求式子mm m 122+-的值.5、已知方程()0243=+--a xa 是关于x 的一元一次方程,求a 的值.6、如果关于x 的方程06365=+-k x是一元一次方程,求k 的值.7、关于x 的方程()()0241122=-+-+-a x a x a 是一元一次方程求a 的值.8、方程432-=+x m x 与方程626-=-x 的解相同,求m 的值.9、已知:关于x 的方程1232-=---x a x a x 与方程()5423-=-x x 同解,求a 的值.10、若关于x 的方程①a x =+2和②a a x 32=-,若①的解比②的解大1,求a 的值.11、设关于x 的方程55=-m x ,m x 244=-,当m 为何值时,这两个方程的解互为相反数?12、方程()0132=+-x 的解与关于x 的方程x k x k 2232=--+的解互为倒数,求k 的值.13、当4=x 时,式子a x ax A 642--=的值是- 1,那么当5-=x 时,A 的值是多少?14、小明在解关于x 的方程1123=-x a 是,误将x 2-看成了x 2+,得到的解为2-=x ,请你帮小明算一算,方程正确的解为多少?二、列方程解应用题(行程问题和工程问题)15、小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分,(1)如果两人同时同向同一地点开跑,多少分钟两人相遇?(2)如果两人同时相向开跑,多少分钟两人相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人相遇?16、甲乙骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如果走15分钟后乙出发,问甲出发后几小时与乙相遇?17、某项工程,甲单独完成要12天,乙单独完成要18天,如果甲先做了7天,乙来支援,由甲、乙合做完成余下的工程,求乙做多少天?18、整理一批或污物,由甲一人做需80小时完成,现由一部分人先做2小时后,在增加5人做8小时,恰好完成这项工作的43,怎样安排参与整理货物的具体人数?19、北京市为了能够成功举办2008年奥运会,市政府要求各项工程在确保质量的前提下完成任务,其中一项工程,请甲工程队独做要3个月完成,每月耗资12万元,若请乙工程队独做要6个月完成,每月耗资5万元,那么请甲、乙两工程队合做要几个月完成?耗资多少万元?三、方案选择20、一件工程,甲工程队独做10天完成,每天需费用160元;乙工程队独做15天完成,每天需费用100元.(1)若由甲、乙两个工程队合做3天后,剩余 工程有乙工程队独做完成,求工程所需的总费用是多少元?(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工做一部分工程再由乙工程队单独施工完成剩余工程,预计公付工程总费用1500元,你知道甲、乙两个工程队各做了工程的几分之几吗?(3)为了保证工程质量,工程指挥部决定安排一名质检员全程进行质量监督,每天需付给质检员工作、生活补助30元,请你安排甲、乙两个工程队进行施工,使工程所需的总费用最少?。

(人教版)七年级数学上册培优辅导讲义

(人教版)七年级数学上册培优辅导讲义

(—|"最新人教版七年级数学上册培优辅导讲义第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.:{…2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.,经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克|])【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()&};?A.-18% B.-8% C.+2% D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A.-5吨B.+5吨C.-3吨D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___}·【【例2】在-227,π,0,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;—(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .《)"【变式题组】01.在7,0,15,-12,-301,,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,,-,123,!%【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.。

(完整)人教版七年级数学上册辅导讲义

(完整)人教版七年级数学上册辅导讲义

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

(完整word)人教版七年级数学上册培优资料(精华).doc

(完整word)人教版七年级数学上册培优资料(精华).doc

七年级数学上册培优训练第一讲有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。

2、有理数的两种分类:3、有理数的本质定义,能表成m( n 0, m, n互质)。

n4、性质:① 顺序性(可比较大小);② 四则运算的封闭性( 0 不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。

5、绝对值的意义与性质:① | a | a(a 0) ② 非负性 (| a |0, a20)a( a 0)③ 非负数的性质: i)非负数的和仍为非负数。

ii )几个非负数的和为 0,则他们都为 0。

二、【典型例题解析】:1 、若 ab f 0,则| a | |b | | ab |的值等于多少?a b ab2 . 如果 m 是大于 1 的有理数,那么 m 一定小于它的( )A. 相反数B. 倒数C. 绝对值D. 平方3 、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 ,求x 2 (a b cd ) x (ab)2006( cd ) 2007 的值。

4、如果在数轴上表示 a 、b 两上实数点的位置, 如下图所示,那么 | a b | | a b | 化简的结果等于( )A. 2aB. 2aC.0D.2b5、已知 (a 3)2 |b2 | 0 ,求 a b 的值是()A.2B.3C.9 D .66、有 3 个有理数 a,b,c ,两两不等,那么ab , bc , ca中有几个负数?b c c a a b7、三个互不相等的有理数,既可表示1,a b, a 的形式式,又可表示0,b, b 的形式,求a2006 b2007 。

a8 三个有理数a,b, c 的数,和正数,且X ab c | ab | | bc | | ac | ax3 bx2 cx 1 的是多少?| a | | b | |c | ab bc ac9、若a, b,c整数,且| a b |2007| c a |20071,求 | c a | | a b | |b c |的。

(人教版)七年级数学上册培优辅导讲义精编版

(人教版)七年级数学上册培优辅导讲义精编版

最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

七年级数学上册培优辅导讲义(人教版)

七年级数学上册培优辅导讲义(人教版)

新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

人教版七年级数学上册培优资料(精华)

人教版七年级数学上册培优资料(精华)

人教版七年级数学上册培优资料(精华)人教版七年级数学上册培优资料(精华)在七年级上学期的数学课程中,我们将学习一些基本的数学概念和技巧,以培养我们的数学思维能力。

本文将为大家总结整理人教版七年级数学上册的精华内容,帮助大家更好地理解和掌握这些知识。

一、数与式在数学中,我们经常会遇到各种各样的数,如自然数、整数、有理数和实数。

熟练掌握这些数的性质和运算规律,对我们后续的学习非常重要。

此外,我们还需要学会如何利用数去解决实际问题,并将问题转化为数学语言的形式,即数学式子。

二、一元一次方程和不等式一元一次方程和不等式是我们学习的重点内容之一。

学会解一元一次方程和不等式,可以帮助我们分析和解决各种实际问题。

我们需要掌握方程和不等式的基本性质和解题方法,如加减法原则、消去法以及绝对值不等式的解法等等。

三、平面图形的认识平面图形是数学中的基础概念之一,它们在我们的日常生活中无处不在。

学会认识和描述平面图形的属性,对我们分析和解决几何问题非常重要。

我们需要学会计算各种平面图形的面积和周长,同时也需要了解三角形和四边形的性质,以及它们之间的关系。

四、倍数与约数倍数和约数是我们在整数运算中经常用到的概念。

掌握倍数和约数的性质和运算规律,可以帮助我们进行整数的计算和分析。

同时,我们还需要学会解决与倍数和约数有关的实际问题,并能够灵活运用这些知识解决生活中的各种问题。

五、有理数的加减法运算有理数是由整数和分数组成的数,包括正数、负数和零。

学会对有理数进行加减法运算,需要我们掌握有理数的性质和加减法的规则。

我们需要学会整数的加减法运算,以及分数的加减法运算,能够将有理数的加减法问题转化为整数和分数的计算问题。

六、实数的认识与计算实数是包括有理数和无理数的全体数。

学会认识和计算实数,能够帮助我们更好地理解数轴和实数集合的性质。

我们需要了解实数的分类和性质,如有理数和无理数的关系,以及实数的大小比较和计算等内容。

七、数据的收集与整理数据的收集和整理是数学中的一项重要技能。

最新(人教版)七年级数学上册培优辅导讲义.docx

最新(人教版)七年级数学上册培优辅导讲义.docx

最新 ( 人教版 ) 七年级数学上册培优辅导讲义第 1 讲 与有理数有关的概念考点·方法·破译1.了解 数的 生 程,能 用正、 数表示具有相反意 的量 .2.会 行有理的分 ,体会并运用数学中的分 思想.3.理解数 、相反数、 、倒数的意 .会用数 比 两个有理数的大小,会求一个数的相反数、 、倒数 .经典 ·考题 ·赏析【例 1】写出下列各 句的 意 ⑴向前- 7 米 ⑵收人- 50 元⑶体重增加- 3 千克【解法指 】用正、 数表示 中具有相反意 的量.而相反意 的量 包合两个要素:一是它的意 相反.二是它 具有数量.而且必 是同 两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7 米表示向后7 米⑵收入- 50 元表示支出50 元⑶体重增加-3 千克表示体重减小 3 千克 .【 式 】01.如果+ 10%表示增加 10%,那么减少8%可以 作()A . - 18% . - 8% C . +2% D. + 8%B02.(金 )如果+ 3 吨表示运入 的大米吨数,那么运出 5 吨大米表示 ( ) A . -5 吨B . +5 吨 C . - 3 吨 D . + 3 吨03.(山西)北京与 的 差-13( 号表示同一 刻 比北京晚) . 如 在是北京15: 00,是 _ ___.【例2 】在-!, π,0,0.033 3四个数中有理数的个数()A .1 个.个C .3 个D .4 个B 2正有理数正整数正分数负有理数负整数负份数【解法指 】有理数的分 :⑴按正 性分 ,有理数;正整数整数 0负整数分数正分数负分数( 2 )按整数、分数分 ,有理数;其中分数包括有限小数和无限循 小数,因π=.3.1415926⋯是无限不循 小数,它不能写成分数的形式,所以π不是有理数,-! 是分数, 0.0 33 3 是 无限循 小数可以化成分数形式, 0 是整数,所以都是有理数,故 C .【 式 】 01.在 7, 0, 15,-!,- 301, 31.25 ,-!, 100, 1,- 3 001 中, 分数 ,整数,正整数.02.(河北秦皇 ) 把下列各数填入 中适当位置15,-!,!,-!, 0.1 ,- 5.32 , 123,2.333【例3 】(宁夏)有一列数 - 1 , !,- !, ! ,- !, ! ,⋯,找 律到第 2007 个数是.【解法指 】从一系列的数中 律,首先找出不 量和 量,再依 量去 律. 去猜想,然后 行 . 解本 会有 的 律:⑴各数的分子部是1;⑵各数的分母依次 1,2, 3, 4, 5, 6,⋯⑶ 于奇数位置的数是 数, 于偶数位置的数是正数,所以第2007 个数的分子也是1.分母是2007,并且是一个数,故答案-!.【式】01(湖北宜昌)数学解密:第一个数是3= 2+ 1,第二个数是5= 3+ 2,第三个数是9= 5+ 4,第四个数是 17= 9+8⋯察并猜想第六个数是.02.()达哥拉斯学派明了一种“馨折形”填数法,如?填____.03.(茂名)有一数1, 2, 5, 10, 17, 26⋯察律,第 8 个数 __ __ .【例4】( 2008 年河北家口)若1+ !! 的相反数是-3, m 的相反数是 ____.【解法指】理解相反数的代数意和几何意,代数意只有符号不同的两个数叫互相反数. 几何意:在数上原点的两旁且离原点的距离相等的两个点所表示的数叫互相反数,本!= 2, m= 4,m 的相反数- 4.【式】01.(四川宜)- 5 的相反数是 ()A. 5B.!C.-5D.-!02.已知 a 与 b 互相反数, c 与 d 互倒数,a+ b+ cd=______03.如一个正方体盒的展开,若在其中的三个正方形A、 B、 C 内分填人适当的数,使得它折成正方体. 若相的面上的两个数互相反数,填入正方形 A 、B、C 内的三个数依次 ()A.- 1, 2,.0 ,- 2,1C.- 2, 0,1D.2 ,1,00B【例5】(湖北)a、b 有理数,且a> 0, b<0, | b| > a, a,b、- a,- b 的大小序是 ()A.b<- a< a<- b.– a< b< a<- bBC.– b< a<- a< b D .– a< a<- b< b【解法指】理解的几何意:一个数的就是数上表示 a 的点到原点的距离,即| a| ,用式a( a0)0( a0)子表示 | a| =a(a 0). 本注意数形合思想,画一条数出 a、 b,依相反数的意出- b,- a,故 A.【式】01.推理①若a=b,| a|=| b|;②若| a|=| b|,a=b;③若a≠ b,| a|≠|b|;④若| a| ≠|b| , a≠ b,其中正确的个数()A.4个.3 个C.2个D.1个B02. a 、 b 、 c 三个数在数上的位置如,!+!+!=.03. a、 b、c 不等于 O 的有理数,!+!+! 的可能是 ____.【例6】(江西改)已知| a-4| + | b- 8| = 0,!的 .【解法指】本主要考概念的运用,因任何有理数 a 的都是非数,即| a| ≥0.所以 | a -4| ≥0, | b-8| ≥0. 而两个非数之和0,两数均 0.解:因 | a-4| ≥0, | b-8| ≥0,又 | a- 4| + | b- 8| = 0,∴|a- 4| = 0, | b- 8| = 0即 a- 4= 0,b- 8=0, a= 4,b= 8. 故 !=! = !【式】01.已知 | a| = 1, | b| = 2, | c| = 3,且 a> b> c,求 a+ b+ C.02.()若 | m- 3| +| n+ 2| = 0, m+ 2n 的 ( )A.-4.- 1C.0D.4B03.已知 | a| = 8, | b|= 2,且 | a- b| = b- a,求 a 和 b 的【例7】(第 18 届迎春杯)已知( m+ n) 2+ | m| =m,且 |2 m-n- 2| =0.求 mn 的.【解法指】本例的关是通分析( m+ n) 2+ | m| 的符号,挖掘出m 的符号特征,从而把化( m+n)2= 0, |2 m- n-2| = 0,找到解途径 .解:∵(m + n) 2≥0, | m| ≥ O ∴(m + n) 2+ | m| ≥0,而 ( m + n) 2+| m| = m∴ m ≥0,∴(m + n) 2+m =m ,即 ( m + n) 2= 0∴ m +n = O ① 又∵ |2 m -n - 2| = 0 ∴2m - n -2=0 ② 由①②得 m = !, n =- !,∴ mn =- !【 式 】01.已知 ( a + b) 2+ | b +5| = b +5 且 |2 a - b – 1| = 0,求 a - b .02.(第 16 届迎春杯)已知 y = | x - a| + | x + 19| + | x - a - 96| ,如果 19< a < 96. a ≤ x ≤96,求 y 的最大 . 演练巩固 ·反馈提高01. 察下列有 律的数!,!,!, !,! , !⋯根据其 律可知第9 个数是 ()A . ! .! C.!D . !B02.( 湖)- 6 的 是 ()A . 6B .- 6C .!D .- !.03.在-!, π, 8.0.3四个数中,有理数的个数( ) A . 1 个 . 个C . 3 个D . 4 个B 204.若一个数的相反数 a + b , 个数是 ( )A . a -bB . b - aC . – a + bD . – a - b05.数 上表示互 相反数的两点之 距离是 6, 两个数是 ( )A .0和6B . 0和-6C . 3 和-3D .0 和306.若- a 不是 数, a( )A . 是正数B . 不是 数C . 是 数D . 不是正数07.下列 中,正确的是 ( ) ①若 a = b , | a| = | b| ②若 a =- b , | a| = | b| ③若 | a|= | b| , a =- b ④若 | a| = | b| , a = b A . ①② B . ③④ C . ①④ D .②③08.有理数 a 、 b 在数 上的 点的位置如 所示, a 、 b ,- a , | b| 的大小关系正确的是( )A . | b| > a >- a >bB . | b| > b > a >- aC . a > | b| >b >- aD . a > | b| >- a > b09.一个数在数 上所 的点向右移 5 个 位后,得到它的相反数的 点, 个数是 ____.10.已知 | x +2| + | y +2| = 0, xy = __ __. 11. a 、 b 、c 三个数在数 上的位置如 ,求 !+ !+ !+ != 12.若三个不相等的有理数可以表示 1、 a 、 a + b 也可以表示成 0、 b 、 !的形式, 求 a 、 b 的 .13.已知 | a| = 4, | b| = 5, | c| = 6,且 a > b > c ,求 a + b - c .14. | a| 具有非 性,也有最小 0, :当 x 有理数 , | x - 1| + | x - 3| 有没有最小 ,如果有,求出最小 ;如果没有, 明理由 .15.点 A 、B 在数 上分 表示 数 a 、 b , A 、 B 两点之 的距离表示 | AB| .当 A 、 B 两点中有一点在原点 ,不妨 点 A 在原点,如 1, | AB| = | OB| = | b| = | a - b| 当 A 、 B 两点都不在原点 有以下三种情况: ①如 2,点 A 、 B 都在原点的右 | AB| = | OB| - | OA| = | b| - | a| = b - a = | a -b| ;②如 3,点 A 、 B都在原点的左 , | AB| = | OB | - | OA| = | b| - | a| =- b - ( - a) =| a - b| ;③如 4,点 A 、B 在原点的两 , | AB| = | OB| -| OA| = | b| -| a| =- b -(- a )= | a - b| ; 上,数 上 A 、 B 两点之 的距离 | AB| = | a - b| .回答下列 :⑴数上表示 2 和 5 的两点之的距离是,数上表示- 2 和- 5 的两点之的距离是,,数上表示 1 和- 3 的两点之的距离是;⑵数上表示x 和- 1 的两点分是点 A 和 B,A、 B 之的距离是,如果| AB|=2,那么x =;⑶当代数式 | x+ 1| + | x- 2| 取最小,相的x 的取范是.培优升级·奥赛检测01.(重市)在数上任取一条度1999! 的段,此段在条数上最多能盖住的整数点的个数是 ()A. 1998B. 1999C. 2000D. 200102.(第 18 届希望杯邀)在数上和有理数 a 、 b、 c 的点的位置如所示,有下列四个:① abc< 0;② | a- b| + | b- c| = | a- c| ;③( a- b) ( b- c)( c- a) > 0;④ | a| < 1- bc.其中正确的有( ).4个. 3 个C.2个D.1个A B03.如果 a、 b、 c是非零有理数,且 a + b+ c= 0 .那么!+! +! -! 的所有可能的()A.-1B. 1 或-1C. 2或- 2D. 0 或-204.已知 | m| =- m,化 | m- 1 | - | m-2| 所得果 ( )A.-1B. 1C. 2 m - 3D. 3 - 2 m05.如果 0< p< 15,那么代数式 | x- p| +| x- 15| +| x- p- 15| 在 p≤ x≤15 的最小 ( )A. 30B. 0C. 15 D .一个与 p 有关的代数式06. | x+ 1| +| x- 2| +| x- 3| 的最小.07.若 a>0, b< 0,使 | x- a| +| x- b| =a- b 成立的 x 取范.08.(武市拔)非零整数m、 n 足 | m| + | n| -5= 0 所有的整数( m, n) 共有09.若非零有理数m、 n、p 足!+! +!= 1.!=.10.( 19 届希望杯)求| x- 1| + | x- 2| + | x- 3| +⋯+ | x- 1997| 的最小 .11.已知 (| x+ 1| + | x-2|) ( | y-2| + | y+ 1| )( | z- 3| + | z+ 1| )= 36,求 x+ 2y+ 3z 的最大和最小.12.子跳蚤落在数上的某点 k0,第一步从 k0向左跳 1 个位得 k1,第二步由 k1向右跳 2 个位到 k2,第三步由 k2向左跳 3 个位到 k3,第四步由 k3向右跳 4 个位到 k4⋯按以上律跳 100 步,子跳蚤落在数上的点k100新表示的数恰好19.94 ,求 k0所表示的数 .13.某城,沿形路上依次排列有五所小学,它次有 15 台、 7 台、 11 台、 3 台, 14 台,使各学校里数相同,允一些小学向相小学出,怎配才能使出的台数最小?并求出出的最少台数.第 02 讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义 .2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算 . 3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题 .4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1 】(河北唐山)某天股票 A 开盘价 18 元,上午 11:30 跌了 1.5 元,下午收盘时又涨了0.3 元,则股票 A 这天的收盘价为()A . 0.3 元B . 16.2 元C . 16.8 元D . 18 元【解法指导 】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为 负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值 . 解: 18+(- 1.5 )+( 0.3 )= 16.8 ,故选 C .【变式题组 】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为- 6℃,西安市最低气温 2℃,这一天延安市的最低气温比西安低( ) A . 8℃ B .- 8℃ C . 6℃ D . 2℃02.(河南)飞机的高度为 2400 米,上升 250 米,又下降了 327 米,这是飞机的高度为 __________ 03.(浙江)珠穆朗玛峰海拔 8848m ,吐鲁番海拔高度为- 155 m ,则它们的平均海拔高度为 __________ 【例2 】计算(- 83)+(+ 26)+(- 17)+(- 26)+(+ 15) 【解法指导 】应用加法运算简化运算,- 83 与- 17 相加可得整百的数,+ 26 与- 26 互为相反数,相加为 0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起 .解:(- 83)+(+ 26)+(- 17)+(- 26)+(+ 15)= [ (- 83)+(- 17) ] + [ (+ 26)+ (- 26) ] +15=(- 100)+ 15=- 85【变式题组 】1 3 101.(- 2.5 )+(- 3 2 )+(- 1 4 )+(- 1 4)02.(- 13.6 )+ 0.26 +(- 2.7 )+(- 1.06 )11 203. 0.125 +34+(- 38)+113+(- 0.25 )11 1 1【例3 】计算 1 22 33 4L2008 2009111 【解法指导 】依n(n1) nn1进行裂项,然后邻项相消进行化简求和.(1 1) (11) (11) L(11 )解:原式=2 23 34 20082009 1 11 1 1 L1 11 20081 2 3 3 412009 = 2009=22008 2009 = 1 21 18 41 132【 式 】01. 算 1+(- 2)+ 3+(- 4)+⋯ + 99+(- 100)1102 .如 ,把一个面 1 的正方形等分成两个面2 的 方形,接着把面2 的 方形等分成两个111面 4的正方形,再把面4的正方形等分成两个面8的 方形,如此 行下去, 利用 形揭11 1 11111示的 律 算 2 4 8 16 32 64 128256= __________.【例4 】如果 a < 0, b > 0, a +b < 0,那么下列关系中正确的是()A . a > b > -b > -aB . a > -a > b > -bC .b > a > -b > -aD . -a > b > -b > a 【解法指 】 扣有理数加法法 ,由两加数及其和的符号,确定两加数的 的大小,然后根据相反数 的关系将它 在同一数 上表示出来,即可得出 . 解:∵ a < 0, b > 0,∴a +b 是异号两数之和又 a +b < 0,∴ a 、 b 中 数的 大,∴ | a |> | b | 将 a 、 b 、- a 、 -b 表示在同一数 上,如 , 它 的大小关系是-a > b >-b >a【 式 】ab-b-a01.若 m > 0, n <0,且 | m |> | n |, m + n ________ 0.(填>、<号)02.若 m < 0, n >0,且 | m |> | n |, m + n ________ 0.(填>、<号)03.已知 a < 0, b >0, c < 0,且 | c |> | b |> | a |, 比a 、b 、c 、 a + +b 、ac 的大小238【例5 】 4 5 -(- 33 11 )-(- 1.6 )-(- 2111 )【解法指 】有理数减法的运算步 :⑴依有理数的减法法 ,把减号 加号,并把减数 它的相反 数;⑵利用有理数的加法法 行运算.2 38 2 3 8解: 4 5 -(- 33 11 )-(- 1.6 )-(- 21 11)= 4 5 +33 11 + 1.6 + 21 113 8= 4.4 + 1.6 +( 33 11+ 2111)= 6+ 55= 61【 式 】(2)(1)(5)(1)(11) 01.32 63 23 102. 4 4 -(+ 3.85 )-(- 3 4)+(- 3.15 )21903. 178- 87.21 -(- 4321)+ 15321- 12.79【例6 】 看下面一列数: 25、23、 21、 19⋯⑴ 察 列数,猜想第10 个数是多少?第n 个数是多少?⑵列数中有多少个数是正数?从第几个数开始是 数?⑶求 列数中所有正数的和 . 【解法指 】 找一系列数的 律, 从特殊到一般,找到前面几个数的 律,通 察推理、猜想出第 n 个数的 律,再用其它的数来 .解:⑴第 10 个数 7,第 n 个数 25- 2( n - 1)⑵∵ n = 13 , 25- 2(13 - 1) =1, n = 14 , 25- 2(14 -1) =- 1 故 列数有 13 个数 正数,从第 14 个数开始就是 数 .⑶ 列数中的正数 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1,其和=( 25+ 1)+( 23+ 3)+⋯+( 15+ 11)+ 13= 26×6+ 13= 169【 式 】1 12 83 274 6401. ( 杭州 ) 察下列等式 1- 2 = 2, 2- 5 = 5,3- 10 = 10, 4- 17 = 17⋯依你 的 律,解答下列 . ⑴写出第 5 个等式;⑵第 10 个等式右 的分数的分子与分母的和是多少?02. 察下列等式的 律 9- 1=8, 16- 4= 12, 25- 9= 16, 36- 16= 20⑴用关于 n ( n ≥ 1 的自然数)的等式表示 个 律;⑵当 个等式的右 等于2008 求 n.11 21231234【例7 】(第十届希望杯 )求2+( 3+ 3 )+( 4+ 4+4)+(5+5+5+5)+⋯+1 2 4849(50 + 50 +⋯+ 50+ 50 )【解法指 】 察式中数的特点 :若括号内在加上相同的数均可合并成 1,由此我 采取将原式倒序后与原式相加, 极大 化 算了.1 121231 248 49 解: S = 2+( 3+ 3 )+(4+4+ 4)+ ⋯ +( 50 + 50 +⋯+ 50+50 )121321494821有 S = 2+( 3+3)+( 4+ 4+ 4)+ ⋯ +( 50+ 50+⋯+ 50+ 50)将原式的和倒序再相加得1 1 12 2112 332112 482S = 2+ 2+( 3+3+ 3+3)+(4+ 4+4+ 4+4+ 4)+ ⋯ +( 50+50+⋯+ 5049 49 48 2 1+ 50 + 50 + 50+⋯+ 50+ 50 )49 (49 1)1225即 2S = 1+2+ 3+ 4+⋯+ 49=2 = 1225∴ S = 2【 式 】01. 算 2- 22- 23- 24- 25- 26- 27- 28- 29+ 210111 1111 102.(第 8 届希望杯 ) 算( 1-2-3-⋯-2003)(2+3+4+⋯+2003+2004)-( 1-11 1 1 1 1 12 -3 -⋯- 2004 )( 2 + 3 + 4 +⋯+ 2003)演练巩固·反馈提高01. m 是有理数,m + | m| ()A .可能是 数B .不可能是 数C.必是正数D.可能是正数,也可能是数02.如果 | a| = 3, | b| = 2,那么 | a+ b| ()A.5B.1C.1或 5D.±1或±5 03.在 1,- 1,- 2 三个数中,任意两数之和的最大是()A.1B.0C.- 1D.- 3 04.两个有理数的和是正数,下面法中正确的是()A.两数一定都是正数B.两数都不0C.至少有一个数D.至少有一个正数05.下列等式一定成立的是()A. | x| - x = 0 B.- x- x = 0C. | x| +| - x|=0D. | x| -| x| = 006.一天早晨的气温是-6℃,中午又上升了10℃,午又下降了8℃,午夜气温是()A.- 4℃B. 4℃C.- 3℃D.- 5℃07.若 a<0, | a-(-a)| 等于()A.- a B. 0C. 2a D.- 2a08. x 是不等于0的有理数,A.0或 1B.0或 2| x | x|| 2x()C.0 或- 1D.0 或- 209.(南) 2+ ( -2) 的 __________10.用含的式子表示下列各式:⑴若a<0,b>0,b-a=__________,a-b=__________⑵若a >b> 0, | a- b| =__________ ⑶若 a< b< 0, a- b=__________11.算下列各:⑴23+(- 27)+ 9+5⑵-5.4+0.2-0.6+0.35-0.251123⑶- 0.5 - 3 4+ 2.75 - 72⑷33.1-10.7-(-22.9)-|-10|12.算 1- 3+ 5-7+ 9- 11+⋯+ 97-9913.某修小乘汽沿公路修路,定前正,后退,某天从 A 地出到收工所走的路(位:千米):+10,- 3,+ 4,- 2,- 8,+ 13,- 7,+ 12,+ 7,+ 5⑴ 收工距离 A 地多?⑵若每千米耗油0.2 千克,从 A 地出到收工共耗油多少千克?111114.将1997 减去它的2,再减去余下的3,再减去余下的4,再减去余下的5⋯⋯以此推,直到最后减1去余下的 1997 ,最后的得数是多少?15.独特的埃及分数:埃及同中国一,也是世界著名的文明古国,古代埃及人理分数与众不同,他一11211131般只使用分子 1 的分数,例如3+ 15来表示 5,用 4+7+ 28表示 7等等 . 有 90 个埃及分数: 2 ,1 11 1 13 ,4 ,5 ,⋯ 90 , 91 ,你能从中挑出 10 个,加上正、 号,使它 的和等于-1 ?培优升级·奥赛检测1 2 3 4 L 14 1501.(第 16 届希望杯邀 )2 4 6 8 L 28 30 等于()1111A .4B .4C .2D .211111 11102.自然数 a 、 b 、 c 、d 足 a 2+ b 2 + c 2 + d 2 =1, a 3 + b 4 + c 5 + d 6等于()13715A .8B .16C .32D .6403.(第 17 届希望杯邀 )a 、b 、c 、d 是互不相等的正整数,且abcd =441, a + b + c + d 是( )A . 30B . 32C . 34D . 3619951995199619961997199704.(第 7 届希望杯 )若a = 19961996 ,b = 19971997,c = 19981998 , a 、 b 、 c 大小关系是()A . a < b < cB . b < c <aC . c < b <aD . a < c < b(11 )(1 1 )(1 1 )L (1 1998 1 )(11 )05. 1 3 2 4 3 5 20001999 2001 的 得整数部分 ()A . 1B . 2C . 3D . 406. ( - 2) 2004+ 3×( - 2) 2003 的 ()A .- 2 2003200320042004B . 2C .- 2D . 207.(希望杯邀 )若| m| =m + 1, (4 m + 1) 2004= __________11 2 1 2 3125908. 2+(3 + 3 )+(4 + 4 + 4 )+ ⋯ +(60+ 60 +⋯+ 60 )= __________191919 767609. 767676 1919 = __________10. 1+ 2-22- 23- 24- 25-26 -27- 28- 29+ 210=__________ 11.求 32001× 72002× 132003 所得数的末位数字 __________12.已知 ( a + b) 2+ | b +5| = b + 5,且 |2 a - b - 1| =0,求 ab111 1 113. 算 (1998- 1)(1997 -1) ( 1996 - 1) ⋯ (1001- 1) (1000 - 1)14. 你从下表 出 13+ 23+ 33+ 43+⋯+ n 3 的公式并 算出13+ 23+ 33+43+⋯+ 1003 的 .13 1 2 3 4 523 2 4 6 81053510152025第 03 讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算 .2.掌握倒数的概念,会运用倒数的性质简化运算 .3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算 .4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算 . 5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算 .经典·考题·赏析111 11 1 )()⑵ 2() (4【例1 】计算⑴ 24 4⑶2⑷ 2500 0(3)(7)(11)(3)⑸ 56 9 7【解法指导 】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积 .1(1) (1 1)111 (1 1)1 解:⑴ 242 48⑵24 248(1(1 1 11) )(4)⑷ 2500⑶242 8(3)(7)(11)(3) (37103)1 ⑸5 6 9 75 69 73【变式题组 】(11101.⑴(5) ( 6))4⑶ ( 8) (3.76) ( 0.125)⑵2⑷(3)(1)2(6)0(2)12 (21111 1 1 1)⑸4 2 612( 924) 50(2345)(1111)2. 253.2345( 5) 1 1 132 3(6)34.333【例2 】已知两个有理数 a 、b ,如果 ab <0,且 a +b <0,那么( )A . a > 0, b < 0B . a < 0,b > 0C . a 、b 异号D . a 、 b 异号且负数的绝对值较大【解法指导 】依有理数乘法法则,异号为负,故 a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断 .解:由 ab < 0 知 a 、b 异号,又由 a + b < 0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选 D .【变式题组 】 01.若 a +b +c =0,且 b < c <0,则下列各式中,错误的是( ) A . a + b > 0 B . b + c < 0C . ab +ac > 0D . a + bc > 0 02.已知 a + b >0,a -b <0,ab <0,则 a___________0,b___________0 ,|a|_________|b|.b03. ( 山东烟台 ) 如果 a +b <0, a,则下列结论成立的是()A . a > 0, b > 0B . a < 0, b < 0C .a > 0, b < 0D . a < 0, b > 004. ( 广州 ) 下列命题正确的是( )A .若 ab > 0,则 a > 0, b > 0B .若 ab < 0,则 a <0, b <0C .若 ab = 0,则 a = 0 或 b = 0D .若 ab = 0,则 a = 0 且 b = 0【例3 】计算11(13)⑴(72) ( 18)( 2 )) (⑷0 (7)⑵ 3 ⑶10 25 【解法指导 】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后 把绝对值相乘,要注意除法与乘法互为逆运算 . 若能整除,应用法则2,可直接确定符号,再把绝对值相除. 解:⑴(72)( 18) 72 18 41(21)1(7)1(3)3⑵3 377(1 3 1 ) 25 5) ( ) ( ( )⑷( 7) 0⑶10 25 10 3 6【变式题组 】01.⑴(32) ( 8)21( 11)0(21)(1) ( 13)⑵3 6⑶3⑷782931(3) (31) (11) 30(5)302.⑴3⑵5 2 4⑶3 51( 1)(1 0.2 3) ( 3)03. 245ababa 、b 满足 a【例4 】(茂名)若实数 b ,则ab= ___________.【解法指导 】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.a b2(a0,b 0) abab解:当 ab >0, a0) ;当 ab <0,ab2(a 0, bb,∴ ab <0,从而ab=- 1.【变式题组 】01.若 k 是有理数,则 (|k| +k)÷k 的结果是()A .正数B .0C .负数D .非负数a b ab02.若 A . b 都是非零有理数,那么abab的值是多少?xy 0x03.如果xyy与xy的大小 .,试比较【例5 】已知 x 22)2 , y31⑴求 xy 2008x 3( 的值;⑵求 y2008的值 .【解法指导 】a n表示 n 个 a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵ x 2( 2)2, y31 ⑴当x2, y1 时, xy 20082(1)20082当x2, y1时, xy 2008 ( 2) ( 1)20082x 3 23 8x 3( 2)3 8⑵当 x1 时, y20081)20081时, y 20081)20082, y (,x2, y(【变式题组 】01.(北京)若m n (m 2)2,则m n的值是 ___________.02.已知 x 、y 互为倒数,且绝对值相等,求(x)ny n的值,这里 n 是正整数 .【例6 】(安徽) 2007 年我省为 135 万名农村中小学生免费提供教科书,减轻了农民的负担, 135 万用科学记数法表示为( )6B . 6C . 0.135 77A . 0.135 × 101.35 × 10n× 10D . 1.35 × 10【解法指导 】将一个数表示为科学记数法的的形式,其中 a 的整数位数是 1 位 . 故答案选 B . a ×10【变式题组 】 01.(武汉)武汉市今年约有 103000 名学生参加中考, 103000 用科学记数法表示为( ) A . 1.03 × 10 55 C . 10.3 4 3B .0.103 × 10 × 10 D . 103× 1002.(沈阳)沈阳市计划从2008 年到 2012 年新增林地面积 253 万亩, 253 万亩用科学记数法表示正确的是( ) 5 亩B .2.53 × 106 亩×104 亩D .2.53 × 107 亩A . 25.3 × 10 C . 253 【例7 】(上海竞赛)1222k 299212 1005000 22200 5000k 2100k 5000992 99005000【解法指导 】找出 k2100k 5000的通项公式=(k50) 2 5021222k 2992原式=(150)2 502(2 50)2502(k 50) 2 50 2(99 50)2 502= [(112992502 ][(2 22982502 ]50)2502(99 50)250)2502(98 50)2[492512]502222+1222222(51 50)(50501442443(4950) 505050)=49个= 99【变式题组 】3+ 3 + 3 + 3 =( )1 2+4+6+2+4+6+ +10062+4+6++1004 2+4+6+ +1008 +20063 3 11A . 1003B . 1004C . 334D . 10001 1 1111111.210届希2 5 8 11 20 41 110 1640. (第 望 杯 试 题 ) 已 知求1 1 1 1 1 1 1 12 58 1120 41 110 1640 的值 .演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A .1 个B .2 个C .3 个D .1个或 3个02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数> , > 0 , ac <0,则下列结论正确的是()03.已知 abc0 aA . b < 0, c > 0B .b > 0, c < 0C . b < 0, c < 0D .b > 0, c >004.若 | ab| = ab ,则()A . ab > 0B .ab ≥ 0C . a < 0,b < 0D . ab < 0a bm cd05.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为2,则代数式m的值为()A .- 3B . 1C .± 3D .-3或 1 106.若 a > a,则 a 的取值范围()A . a > 1B . 0< a < 1C .a >- 1D .- 1< a < 0 或 a >1a107.已知 a 、b 为有理数,给出下列条件: ①a +b =0;② a -b =0;③ab < 0;④ ba 、b,其中能判断互为相反数的个数是( )A .1 个abB .2 个C .3 个D .4 个08.若 ab ≠0,则ab的取值不可能为()A . 0B . 1C . 2D .- 209. ( 2)11( 2)10 的值为( ) 2110A .- 2C . 0D .-B .( -2)210. ( 安徽 )2010 年一季度,全国城镇新增就业人数289 万人,用科学记数法表示 289 万正确的是()76C .2.89 × 54A . 2.89 × 10B . 2.89 × 10 10 D .2.89 × 1011.已知 4 个不相等的整数 a 、b 、c 、d ,它们的积 abcd =9,则 a +b + c +d =___________.12. ( 1)2n 1 ( 1)2n ( 1)2n 1 ( n 为自然数)= ___________.xy 2x13.如果xyy与 xy 的大小 .,试比较a b c 1abcabcabc、 、c 为有理数且,求 的值 .14.若 a b32a的值 .15.若 a 、b 、c 均为整数,且abc a 1 . 求 ac c b b培优升级·奥赛检测xy , y z , z x01.已知有理数 x 、y 、 z 两两不相等,则yz z xxy中负数的个数是()A .1 个B .2 个C .3 个D .0个或 2个02.计算211 1,221 3,23 1 7,241 15, 25131归纳各计算结果中的个位数字规律,猜测22010 1的个位数字是()A . 1B . 3C .7D . 503.已知 ab 2 c 3 d 4e 5<0,下列判断正确的是()A . abcde < 02424B . ab cd e < 0C . ab cde < 0D . abcd e < 0x y, x y, xy, x04.若有理数 x 、y 使得y四个数中的三个数相等,| y| -| x| 的 是()113A .2B . 0C .2D .205.若 A =(21)(221)(2 4 1)(281)(2161)(2321)(2 641), A - 1996 的末位数字是()A . 0B . 1C .7D . 906.如果(ab)20011,(a b)20021 , a 2003b 2003的 是()A . 2B . 1C .0D .-107.已知a2255 ,b 3344 ,c 5533 , d 6622 , a 、b 、c 、 d 大小关系是()A . a > b > c > dB .a > b > d >cC . b > a > c > dD . a > d > b > ca b c abc08.已知 a 、 b 、 c 都不等于 0 ,且 abc abc的最大 m ,最小n , (m n)2005=___________.09.(第 13 届“ 杯 ” )从下面每 数中各取一个数将它 相乘,那么所有 的乘 的 和是___________.1 ,4.25,5.75 1 1545,32 ,2.25, ,第一 : 3 第二 :3 15 第三 : 1210.一本 的 从1 到 n ,把所有 些 加起来,其中有一 被 加了两次, 果得出了不正确的和 2002, 个被加 了两次的 是多少?1 121231234111.(湖北省 ) 察下列 律排成一列数:1 ,2 ,1,3,2,1,4,3,2,1, 5,2 24 5 114 , 3 , 2 , 1 , 6,⋯ ( *) ,在 ( *) 中左起第 m 个数 F(m),当 F(m) = 2001 ,求 m 的 和m 个数的 .1 , 1,1,2, 4,8,16,32,6412. 中 示的填数“魔方”只填了一部分,将下列9个数:4 2 填入方格中,使得所有行列及 角 上各数相乘的 相等,求x 的 .32x6413. ( 第 12 届“ 杯 ”) 已知 m 、n 都是正整数,并且A (1 1)(11)(11)(1 1) (1 1 )(1 1);223 3m mB (1 1)(11)(11)(11)(11)(11).2233n nAm 1n1A B1, B;26,求 m、n 的值 .证明:⑴2m2n⑵第 04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例 1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念: 由数与字母的乘积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x 的商;3⑶是,它的系数为π,次数为2;⑷是,它的系数为2,次数为 3.【变式题组】01.判断下列代数式是否是单项式。

人教版七年级上册数学培优讲义

人教版七年级上册数学培优讲义

数轴、相反数、绝对值(讲义)一、知识点睛1.比较大小的三种方法_____________________________________________________________________ _______________________________________2.去绝对值______________________________________________________3.分类讨论______________________________________________________4.绝对值的几何意义______________________________________________________二、精讲精练【板块一】比较大小和最值1.作差法比较大小:(1)2a a(a>0)(2)a+b a-b(b>0)(3)5b-b(b<0)(4)a2a(a<0)2.如果a>0,b<0,|a|<|b|,则a,b,-a,-b这4个数从小到大的顺序是______________________________________.3.如果a<0,b>0,b>|-a|,则a,b,-a,-b这4个数从小到大的顺序是______________________________________.4.若0<a<1,则a,-a,a2,1a按照从大到小的顺序排列______________________________________.5.若-1<a<0,则a,-a,a2,1a按照从大到小的顺序排列______________________________________.6.因为|a|____0,所以|a|有最___值是___,进而|a|+2有最___值是_____;因为-|a|___0,所以-|a|有最___值是____,进而-|a|+10有最___值是____.类似的,因为a2____0,所以a2有最___值是___,a2-2有最___值是___.【板块二】去绝对值7.若|a|=a,|b|=-b,且ab≠0,则|b-a|=________.8.已知|m|=-m,化简|m-1|-|m-2|.9.已知a+b<0,化简|a+b-1|-|3-a-b|.10.设有理数a,b,c在数轴上的对应点如图所示,化简|b-a|+|c|-|a+c|-2|a|.c11.设有理数a,b在数轴上的对应点如图所示,化简|a+b|-|a|-|1-b|+|-b|.12.设有理数a,b在数轴上的对应点如图所示,化简|a|-|1-b|-|a+1|-|-b|.b13.已知a<0<c,ab>0,|b|>|c|>|a|,化简:|b|-|a+b|+|c-a|+|b+c|.14.已知a<0<c,ab<0,|a|>|c|>|b|,化简:|a|-|a+c|-|b-c|-|-b|.【板块三】分类讨论15.若|x-1|=5,|y|=1,则|x-y|的值为.16.若|x+2|=4,|y|=3,则|x+y|的值为.17.若|a|=4,|b|=2,且|a+b|=a+b,则a-b的值是多少?18.若|x |=3,|y |=2,且|x -y |=y -x ,则x +y 的值是多少?19.若ab ≠0,则a ba b+的值是多少?20.若abc ≠0,则ccb b a a ++的值是多少?【板块四】绝对值的几何意义21.x 为有理数,则|x -1|+|x -2|的最小值为______. 22.x 为有理数,则|x +1|+|x -2|的最小值为______. 23.x 为有理数,则|x -1|+|x -2|+|x -3|的最小值为______.三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.比较大小的三种方法:①作差法;②数轴法;③特殊值法.2.去绝对值:①看整体,依法则;②去符号,留括号;③化简验证.3.分类讨论:①画树状图,分类;②筛选,排除.4.绝对值的几何意义:|a-b|表示数a,b两点之间的距离二、精讲精练1.(1)>,(2)>,(3)<,(4)>;2.b<-a<a<-b;3.-b<a<-a<b;4.1a>a>a²>-a;5.-a>a²>a>1a;6.≥,小,0,小,2;≤,大,0,大,10;≥,小,0,小,-2;7.a-b;8.-1;9.-2;10.–b;11.b-1;12.-2a-2b;13.-b;14.0;15.3,5,7;16.1,3,5,9;17.6或2;18.-1或-5;19.0或2或-2;20.3或1或-1或-3;21.(1)1;(2)3;(3)2;数轴、相反数、绝对值(随堂测试)24.已知00a b <>,且a b >,借助于数轴如下图,试把a ,-a ,b ,-b 四个数用“<”连接起来.b25.已知22x x -=,化简14x x +-+的值.26.若|m |=4,|n |=5,且|m -n |=n -m ,那么m +n 的值是 .27.若ab ≠0,求a b ab abab-+的值是多少?【参考答案】1. a <-b <b <-a2. -33. 1或94. 1或-3数轴、相反数、绝对值(作业)28.比较大小:(1)-113(2)54- 87-(3)3b -2b (b <0) (4)a +3b 2a +3b (a <0) 29.若a >1,则a ,-a ,a 2,1a这4个数从大到小的顺序是 .30.如果a >0,b <0,|a |<|b |,则a ,b ,-a ,-b 这4个数从小到大的顺序是______________________________________.31.因为|m |____0,所以|m |有最_____值是___,进而|m |-1有最____值是_____;因为-|m |____0,所以-|m |有最_____值是 ,进而-|m |+5有最 值是 .32.若|a |=-a ,|-b |=b ,则|b -2a |=________. 33.若ab ab -=-,则必有( ) A .a <0,b > 0 B .a <0,b <0 C .0ab ≥D .0ab ≤34.若x 的绝对值小于1,则化简11x x -++得( ) A .0B .2C .2xD .-2x35.设有理数a ,b ,c 在数轴上的对应点如图所示,化简c a a c a b --+--.36.有理数a 、b 在数轴上的位置如图所示,化简|||1|+|2+|+||a b a b a +---ab37.若23x -=,21y =+,那么x y +的值为 . 38.若|a|=2,|b+1|=3,且|a -b|=b -a ,那么a +b 的值是 . 39.若ab <0,求b a ab+的值是多少?40.若ab ≠0,求a b ab abab++的值是多少?41.x 为有理数,则|x +3|+|x -2|的最小值为______.【参考答案】1.(1)>(2)<,(3)<,(4)>; 2. a aa a ->>>12; 3.b <-a <a <-b ;4.≥,小,0;小,-1;≤,大,0;大,5; 5.b -2a ; 6.D ; 7.B ;8.a +b ; 9.1–a ;10.2,4; 11.0,4; 12.0;13.3,-1;14.5有理数混合运算(讲义)一、知识点睛1.有理数混合运算要点:____________________________________________________________________________________________________________ 2.有理数运算技巧:______________________________________________________二、精讲精练板块一:有理数混合运算基础训练1.222118(3)(4)9(0.75)-÷-+-÷÷-2.20141416(2)8()23--÷-⨯-÷-3.()32221123340.20.5-+-------4.21111531352⎛⎫÷---- ⎪⎝⎭5.练习: (1)2221110.56330.5---÷-÷-()(2)2213(3)(6)76÷-+-⨯-+(3)33(1)6(64)23--÷-++-+(4)3323138(2)1(3)(2)0.25⎡⎤--÷--+-⨯-÷⎣⎦板块二:运用运算律解题6.1+2-3-4+5+6-7-8+…+97+98-99-1007.()()2013111124146812⎛⎫-⨯-+---- ⎪⎝⎭8.()()2113700.2524.5525%(2)42⎛⎫⎛⎫-⨯-+⨯+-⨯--- ⎪ ⎪⎝⎭⎝⎭9.()()()()()523.2289 3.772939+1+3⨯-+-⨯+-⨯--10.()()43510.7(1)(2)150.7159494⨯+⨯-+⨯+⨯-板块三:运用技巧解题 11.1111+13355720112013+++⨯⨯⨯⨯12.计算:1121231259233444606060⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13.计算:231002222S=++++三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ________________________【参考答案】一、知识点睛1.有理数混合运算要点:①看结构,划部分;②平均分配工作量;③注意检验.2.有理数运算技巧:①裂项相消;②倒序相加;③错位相减.二、精讲精练1.-1;2.132;3.27;4.109;5.(1)-3,(2)7,(3)7,(4)-43;6.-100;7.8;8.96;9.-82;10.-43.6;11.10062013;12.885;13.10122-有理数混合运算(随堂测试)1. 有理数运算:(1)()24113333----÷⨯(2)()3211328540.125⎛⎫⎛⎫-÷-÷---÷ ⎪ ⎪⎝⎭⎝⎭(3)()232127322632⎛⎫---+-⨯-÷- ⎪⎝⎭【参考答案】1.(1)53- (2)-39 (3)-52有理数混合运算(作业)14.21922.5(1)0.245⎡⎤÷--+⨯-⎢⎥⎣⎦15.4251(3)()036-----⨯-⨯16.325112911()(1)(3)()623283⎡⎤÷--+÷---⨯-⎢⎥⎣⎦17.()3116223322÷---⨯-÷⨯18.()321122+124⎛⎫⎛⎫-⨯---⨯ ⎪ ⎪⎝⎭⎝⎭19.()()20111347154++1620512⎛⎫-⨯⨯---- ⎪⎝⎭20.8÷()21075.--2303758.-+321.()()2112232+102543.⎛⎫-÷⨯--⨯- ⎪⎝⎭22.()()32013151521212÷--⨯+-23.()()22012123110.53⎡⎤⎛⎫⎡⎤--⨯---⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦24.()313310.752343⎛⎫+-÷-⨯⨯-÷- ⎪⎝⎭25.211×(-455)+365×455-211×545+545×36526.111144*********+++⨯⨯⨯【参考答案】1.252; 2.53-; 3.-9; 4.354-; 5.0; 6.5; 7.152; 8.43-; 9.-1; 10.76-; 11.4; 12.154000; 13.6712014.代数式求值(讲义)一、知识点睛1.整式加减:___________________________________________2.整体代入:___________________________________________3.数位表示: __________________________________________二、精讲精练【板块一】整式加减1. 化简:()222518464(1)24m m m m m ⎡⎤---+--⎢⎥⎣⎦.2. 化简:22225111124244228a b a b ab ab a b ab ⎡⎤⎛⎫⎛⎫--+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 3. 若关于x 、y 的多项式2mx 2-x 2+5x +8-(7x 2-3y +5x )的值与x 无关,求m 2-[2m 2-(5m -4)+m ]的值.4. 化简:3(a +b )2-2(a +b )2-(a +b )-(a +b )2+3(a +b )+1.【板块二】整体代入5. 若a 2+2a =1,则代数式2(a 2+2a )3-5(a 2+2a )-7的值是 .6. 若252m n m n -=+,则代数式3(2)2322m n m n m n m n-+-++-的值是 .7. 若代数式2a 2+3b 的值是6,则代数式4a 2+6b +8的值是_____.8. 若x 3-4x +4=0,则代数式3x 3-12x +10的值是_______.9. 当x =1时,代数式px 3+qx +1的值是2012;则当x =-1时,代数式px 3+qx +1的值是________.10. 当x =7时,代数式ax 3+bx -5的值是7;则当x =-7时,代数式ax 3+bx -5的值是_______.11.当x=2时,代数式ax3-bx+1的值是-17;则当x=-1时,代数式12ax-3bx3-5的值是_______.【板块三】数位表示12.一个三位数,中间数字为9,百位上数字为a,个位上数字是b,用代数式表示这个三位数是______________________.13.一个三位数,个位数字为a,十位数字比个位数字大b,百位数字比个位数字的平方小2,用代数式表示这个三位数是______________________.14.若a表示一个两位数,b表示一个一位数,把b放在a的左边组成一个三位数,则这个三位数用代数式可表示为______________________.15.若x表示一个两位数,y表示一个三位数,把x放在y的左边组成一个五位数,则这个五位数用代数式可表示为______________________.16.一个两位数,十位上的数字为x,个位上的数字为y,交换这个两位数十位上的数字和个位上的数字,得到一个新的两位数,这两个两位数的差能被9整除吗?说明理由.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ________________________【参考答案】一、知识点睛1.①去括号;②合并同类项.2.①做判断(无法求出单个字母值时考虑整体代入);②找整体;③巧表示(含有字母的项放到等号左边,不含字母的项放到等号右边).3.①画数位表;②找计数单位.二、精讲精练1.-9m -2;2.2ab 2; 3.-4; 4.2a +2b +1; 5.-10; 6.4175(895); 7.20; 8.-2; 9.-2010; 10.–17; 11.22;12.100a +b +90;13.100a 2+11a +10b -200; 14.100b +a ; 15.1000x +y ;16.能被9整除,因为这两个两位数的差为9(x -y )或9(y -x )代数式求值(随堂测试)1. 化简:223122(1)3(2)6()223x y x x y y y ⎡⎤-+---+⎢⎥⎣⎦.2. 当x =-2时,代数式31ax bx ++的值为6;则当x =2时,代数式31ax bx ++的值是________.3. 若代数式-2a +3b +8的值为18,则代数式9b -6a +2的值等于___.4. 若m 表示一个一位数,n 表示一个四位数,把n 放在m 的左边组成一个五位数,则这个五位数用代数式可表示为_________.【参考答案】1.-x -5; 2.-4; 3.32; 4.10n +m .代数式求值(作业)1.化简:()111211424x x x x ⎡⎤⎛⎫----- ⎪⎢⎥⎝⎭⎣⎦.2.化简:223122[(1)]3(2)6()223m n m m n n n -+---+.3.如果关于x 的多项式4(3x 2+2mx -x +1)-(2x 2-mx +5)-2(5x 2-4mx -6x )的值与x 的取值无关,试确定m 的值.4.化简:-3(m -n )2-(m -n )2-3(m -n )+4(m -n )2+2(m -n )-12012.5.若a 2+a =2,则代数式2a 2+2a +2007的值是 .6.若5a b a b-=+,则代数式2()15()a b a b a b a b -+-+-的值是 . 7.若代数式a 2+2b +1的值是5,则代数式3a 2+6b -8的值是 .8.若代数式3x 2-4x +6的值是9,则代数式x 2-463x +的值是 . 9.当x =-3时,代数式535ax bx cx ++-的值是7;则x =3时,代数式535ax bx cx ++-的值是 .10.一个三位数,十位数字为x ,个位数字比十位数字少3,百位数字是个位数字的3倍,用代数式表示这个三位数是_______.11.若x 表示一个两位数,把数字3放到x 的左边组成一个三位数,则这个三位数用代数式可表示为__________________.12.若a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数用代数式可表示为_________.13.若x 表示一个一位数,y 表示一个三位数,把y 放到x 的左边组成一个四位数,则这个四位数用代数式可表示为_________.【参考答案】1.3144x -; 2.-m -5; 3.m=-817; 4.-m +n -1; 5.2011; 6.7; 7.4; 8.7;9.-17; 10.311x -903;11.x +300; 12.100a +b ; 13.10y +x ;规律探索专练(讲义)一、知识点睛1.数与式的规律:_________________________________________________________________ _____________________________________2.图形规律:_________________________________________________________________ _____________________________________3.循环规律:_________________________________________________________________ _____________________________________二、精讲精练【板块一】数与式的规律1.直接写出下列数的第n项:(1)4,6,8,10,12,…,则它的第n个数是________;(2)6,18,54,162,…,则它的第n个数是_________;(3)9,27,81,243,…,则它的第n个数是_________;(4)2,6,12,20,30,…,则它的第n个数是________;(5)0,3,8,15,24,…,则它的第n个数是________;(6)-2,3,-4,5,-6,…,则它的第n个数是_________;(7)13,25-,37,49-,…,则它的第n个数是_______.2.直接写出下列数的第n项:(1)5,8,11,14,17,…,则它的第n个数是________;(2)4,8,16,32,64,…,则它的第n个数是_________;(3)32,34,38,316,…,则它的第n个数是_________;(4)2,5,10,17,26,…,则它的第n个数是________;(5)32,54-,78,916-,…,则它的第n个数是______.3. 观察表1,寻找规律.(1)表2、表3分别是从表1中选取的一部分,则a +b 的值为________; (2)表4、表5分别是从表1中选取的一部分,则c +d 的值为________.711317112………………………12358155304954a475553b31c3941d4847表1 表2 表3 表4 表54. 如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.……………936353433323130292827262524232221201918171615141312111087654321(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数. 5. 观察下列等式:①1=12;②2+3+4=32;③3+4+5+6+7=52;④4+5+6+7+8+9+10=72;…; 请你根据观察得到的规律判断下列各式正确的是( ) A .1005+1006+1007+…+3016=20112 B .1005+1006+1007+…+3017=20112 C .1006+1007+1008+…+3016=20112 D .1007+1008+1009+…+3017=20112【板块二】图形规律n 个图案中白色正方形个数为 .8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,…,则第6个图形中五角星的个数为____,第n 个图形中五角星的个数为______.③图②图①★★ ★★★★★★★★★★ ★★★★ ★★★★★★★★ ★★★★图1 图2 图3 9. 如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .图1 图2 图3 图410. 如图,下面是按照一定规律画出的一行“树形图”,经观察可以发现:图A2比图A 1多出了2个“树枝”,图A 3比图A 2多出了4个“树枝”,图A 4比图A 3多出了8个“树枝”,…,照此规律,则图A 6比图A 2多出_______个“树枝”.A 43A 2A 1111098765432111. 图1是一瓷砖的图案,用这种瓷砖铺设地面,图2铺成了一个2×2的近似正方形,其中完整的菱形共有5个;若铺成3×3的近似正方形图3,其中完整的菱形有13个;铺成4×4的近似正方形图4,其中完整的菱形有25个;如此下去,可铺成一个n ×n 的近似正方形图案.当得到完整的菱形共181个时,n 的值为( )A .7B .8C .9D .10图1 图2 图3 图412. 如图,广场地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第13个正方形组成,第27个正方形组成,…,那么组成第6个黑色 )A .22B .23C .24D .25 【板块三】循环规律13. 如图,圆圈内分别标有0,1,2,3,4,…,11这12个数字.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“2”的圆圈开始,按逆时针方向跳了2012次后,落在一个圆圈中,该圆圈所标的数字是 .14. 如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是_____.????兔兔猴猴鼠鼠猫猫猫兔猴鼠4321…15. 右图为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方式(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到14时,对应的字母是 ;当字母C 第2012次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是_________(用含n 的代数式表示).16. 如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,… (1)“17”在射线 上;(2)请任意写出三条射线上数字的排列规律; (3)“2012”在哪条射线上?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________AC DB【参考答案】一、知识点睛1.数与式的规律:①标序号;②找结构;③处理符号。

最新七年级数学上册辅导讲义

最新七年级数学上册辅导讲义

最新七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。

七年级上册人教版数学培优讲义(带答案-平时讲课时用过的)

七年级上册人教版数学培优讲义(带答案-平时讲课时用过的)

第1讲 有理数(1)1.通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度.已知甲、乙、丙三地的海拔高度分别为+100米、-10米和-80米,下列说法中不正确的是( ) A .乙地比丙地高70米 B .乙地比甲地低90米 C .丙地最低 D .甲地高出海平面100米2.下列各组数中,大小关系正确的是( )A .752-<-<-B .752->->C .725-<-<-D .275->->-3.一个数在数轴上所对应的点向左移动6个单位后,得到它的相反数的点.则这个数是( ) A .3 B .-3 C .6 D .-64.在数轴上点A所表示的数是-3,点B与点A的距离是5,那么B点所表示的有理数是( ) A.5 B.-5 C.2 D.2或-8 5.一个数是7,另一个数比它的相反数大3,则这两个数的和是( ) A.-3 B.3 C.-10 D.11 6.如果2(3)x +与3(1)x -互为相反数,那么x 的值是( ) A.-8 B.8 C.-9 D.9 7.若,0a b c a b c <<++=,则a b +的范围是( )A .0a b +>B .0a b +<C .0a b +≥D .0a b +≤8.如果a 、b 均为有理数,且0b <,则有( )A .a a b a b <+<-B .a a b a b <-<+C .a b a a b +<<-D . a b a b a -<+< 9.下列各数中:-6;5;+2.5;0;-1;13-;100;10% 正数是:_________________________________; 负数是_________________________________.10.数-3;+8;12-;+0.1;0;-10;5;13中,正数有______________________个.11.将下列各数5;23-;2010;0.02-;6.5;0;2-填入相应的括号里.正数集合{} 负数集合{}12.最大的负整数是___________;小于3的非负整数是______________________.13.若12.332x -<≤,则x 的整数值有___________个. 14.从数轴上表示1-的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是___________.15.如果a 、b 互为相反数,那么a b +=___________,22a b +=___________.16.如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,则a b +=___________.17.一个数的相反数大于它本身,那么这个数是___________,一个数的相反数等于它本身,这个数是___________,一个数的相反数小于它本身,这个数是___________.18.若果a 和b 是符号相反的两个数,在数轴上a 所对应的数和b 所对应的点相距6个单位长度,如果2a =-,则b 的值为___________.19.如果a 的相反数是2-,且234x a +=,求x 的值;20.数轴上A点表示的数为+4,B、C 两点表示的数互为相反数,且C 到A 的距离为2,点B 和点C 各表示什么数;21.已知A 、B 为数轴上的两点,它们到原点的距离分别为4、5,则A 、B 两点之间的距离为多少?22.已知A 为数轴上的一点,将A 先向右移动7个单位,再向左移动4个单位,得到点B,若A 、B 两点对应的数恰好互为相反数,求A点对应的数.23.小康水平的一个指标是年人均收入1000美元.2008年对某地进行随机抽样调查,得出10户年人均收入,若以人均1000美元以上为达到小康指标,超过1000美元的美元数用正数表示,不足1000美元的美元数用负数表示.此10户的年人均收入如下(单位:美元): +500-300+200+1000 -100+400-200+100+100(1) 请你计算一下这10户有百分之几达到了小康指标?(2)10户年平均收入为多少美元?日电表上显示的读数(度)24.小亮家6月17时间1234567读数1120112711361146115311611168(1)照这样计算小亮家6月用电多少度?(2)供电部门规定:每月每户用电不超过200度,每度按0.5元收费,超过200度但不超过300度的,超过的部分每度按0.55元收费,超过300度的,超过部分每度按0.8元收费,则小亮家6月应缴电费多少?(3)7月份由于天气变热,用电量增大,小亮妈缴费时发现这个月用电每度平均0.63元,求小亮家7月份用电多少度?25.已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正)时间星期一星期二星期三星期四星期五星期六星期日进、出记录+35-30-40+25-24+50-26(1)通过计算,说明本周内那天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库库存粮食为50吨?26.一串数:1121123211234321,,,,,,,,,,,,,,,1222333334444444------……根据以上规律:(1)请问:20132014是这一串数中的第几个数?(2)请问:这组数中的第2014个数是多少?27.考察下列一串有规律的数.(横排为行)根据上面的规律,解答下列问题: (1)第10行最后一个数是多少?(2)2015是第几行第几个数?(3)用n S 表示第n 行的所有数的和.观察1S 、2S 、3S ……,根据规律猜想n S 为多少?(用含n 的代数式表示,n 为正整数);(4)第n 行第m 个数是多少?用含m 、n 的代数式表示. (29272523211917151311)97531第2讲 有理数(2)1.有理数(2)--,(2)-+,(2)+-,2--,2+-,a -中,一定是负数的个数是( ) A .2个 B .3个 C .4个 D .5个2.有理数a 、b 、c 在数轴上的位置如图所示,则下列关系中:(1)a b c <<;(2)0c >;(3)a c =;(4)0a <正确的是( )A .(1)(2)(3)B .(2)(3)(4)C .(1)D .(1)(4)3.下列说法:①若a 、b 互为相反数,则0a b +=;②若a b =-,则a 、b 互为相反数;③若a 、b 互为相反数,则1ab=-;④若a b =,则a 、b 互为相反数.其中正确的结论是( ) A .②③④ B .①②③ C .①②④ D .①② 4.给出下列结论:①一个数的3倍大于这个数.②绝对值最小的数是0. ③规定了原点、正方向和单位长度的直线叫数轴. ④如果a a =,那么0a >.其中正确的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个 5.a 、b 是有理数,若3,4a b ==,则a b +=( )A . 1或7-B . 1-或7-C .1或7D . 1,7,17--或 6.若a 为有理数,则a --是( )A .正数B .负数C .非正数D .非负数 7.数轴上的点A 、B 分别表示12-和13,则线段AB 的中点所表示的数是( )A .512 B .112 C . 112- D . 16- 8.观察下面按次序排列的一组数,并按要求填空. 2,4,6,8,10,--______,_______,……,则第50个数是______________.9.若257x -=,则x 的值为____________;若4x -=-,则x =_________.10.已知A 、B 为数轴上两点,它们到原点的距离分别为4、5,则A 、B 两点之间的距离为_______. 11.已知0,0,a b a b <>>,试用""<将a a b 、b 、-、-连接起来_____________________.12.一个数在数轴上对应的点先向右移动3个单位,再向左移动7个单位后,得到它的相反数对应的点,则这个数是___________.13.已知,在数轴上,A点到原点的距离为3,P 点到A 点的距离为2,画出数轴并在数轴上直接标出P点所对应的数.14.已知,x 和212x -互为相反数.求x 的值.15.已知,x 与14互为倒数,y 的相反数是3-,50a -=,求x y a ++的值.16.若x 与2y -互为相反数,y 与z 互为倒数.m 是绝对值最小的数,求式子2243x y yz m -+-+的值.17.若a 是有理数,在a -与a 之间有2015个整数,求a 取值范围.18.若0,0,m n <>且m n >,试比较,,,m n m n n m ----的大小,并用“>”号连接.dc ba19.某洗衣厂上月生产了30000 袋洗衣粉,每袋标准重量450克,质量检测部门从中抽取了20袋进行检测,记超过或不足标准重量的部分为“+”和“-”,记录如下:超过或不足(克)6-3-2-0 +1 +4 +5 袋数1116524(2) 通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(3)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?20.出租车司机小李某天下午从客运站出发后,所有营运都是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这一天下午的行车情况如下(单位:千米)15,3,11,11,10,4,12,15,18,16+-+-++---+.根据记录,解答下列问题:(1)小李将最后一名乘客送到目的地时,他的位置在那?(2)若在出车前油箱内有10升油,汽车每千米的耗油量为0.08升,试问:小李将最后一名乘客送到目的地时,油箱内的余油量为多少?21.给出下列数阵(3) 如图,框出四个数请你用一个等式表示a 、b 、c 、d 四者的关系;(3) 是否存在上述四数之和为①414 ; ②10 ?若存在,请求出四个数;若不存在请说明理由.22.已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为30 ,B 点对应的数为100. (1)请写出AB 中点M 对应的数;100-30B A(2)现有一只电子蚂蚁P从B 点出发,以5单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以3单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应点数是多少吗?请求出来.(3)若当电子蚂蚁P 从B 点出发时,另一只电子蚂蚁Q恰好同时从A 点出发,以3单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗?请求出来.23. 已知,数轴上点A在原点左边,到原点的距离为8,B在原点的右边,从A走到B,要经过32个单位长度.(1)求A、B两点所对应的数.(2)若点C也是数轴上的点,C到B的距离是C到原点的距离的3倍,求C对应的数.1 3 5 7 9 112 4 6 8 10 123 5 7 9 11 13 468101214(3)已知,M从A向右出发,速度为每秒1个单位长度,同时N从B向右出发,速度为每秒2个单位长度,设NO的中点为P,则下列结论:①PO+AM的值不变;②PO AM的值变化,其中只有一个是正确的,请选出并求出其值或说明理由.第3讲 有理数(3)知识理解1、下列各组数中,互为相反数的一组是 ( )A 、+ (-2)和-( + 2)B 、-|-2|和-| + 2|C 、-(-2)和-|-2|D 、-( + 2)和-| + 2|2、数轴上的点A 、B 分别表示-2和3,则线段AB 的中点所表示的数是 ( ) A 、12 B 、12- C 、52- D 、523、已知a 、b 互为相反数,下列各式中成立的是 ( )A 、ab <0B 、a -|b |=0C 、|a -b |=|a | + |b |D 、a ÷b =-1 4、a , b 是有理数,若|a |=2, |b |=3,则|a + b |= ( )A 、5B 、1C 、1或5D 、1,5,-1或-5 5、若|-x |=4, |y |=2,且x >y ,则xy 的值是 ( )A 、-8B 、8C 、-8或8D 、以上答案都不对 6、若a >0, b <0 ,化简3|||2|a b a b +-+得 ( )A 、bB 、5bC 、2a + bD 、2a + 5b7、一艘潜水艇的高度为-40米,如果它再下滑30米,则它这时所在的高度为__________.8、若|-x |=2,则x =___________;若|x -3|=0,则x =__________;若|x -3|=1,则x =__________. 9、实数a , b 在数轴上位置如图所示,则|a |, |b | 的大小关系是___________.10、比较下列各组有理数的大小:(1)-0.6________-60 (2) -3.8________-3.9 (3) 0________|-2| (4)34______45-- 11、绝对值小于122的所有整数为_____________,绝对值小于3的整数是__________. 12、已知|a |=1,|b |=2,且a , b 异号,则3a + b =__________.13、若|a |=4,|b |=3,且|a |=-a ,则2a + b =____________________. 14、表格第一栏是输入的数,第二档是经过某种程序运算之后输出的数: 输入 (1)2345…… 输出……13 26 311 418 527……当输入的数为10时,输出的数为___________.方法运用15、已知|a |=|b |=9,|a |=2,求b 的值.16、已知a =3,|b |=2,|c |=1,且a <b <c ,求a , b , c 的值.17、已知|x |=2003,|y |=2002,且x >0 ,y <0,求x +y 的值.18、已知|x +y +3|=0,求|x +y | 的值.19、|2||3||4|0a b c -+-+-=,求a +2b +3c 的值.20、如果a , b 互为相反数,c , d 互为倒数,x 的绝对值是1,求代数式2a bx cd x+++的值.21、已知|a |=3, |b |=5, a 与b 异号,求|a -b |的值.22、已知|a +1|与|b -2|互为相反数,求式子()||a b a a ---的值.23、若2、2、5和a 的平均数是5,而3、4、5、a 和b 的平均数也是5, (1) 求a , b ;(2) 若|c |=-c , 求||||c a b c ---的值.实际应用24、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差,现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数,检查结果如下表: 序号 ① ② ③ ④ ⑤ ⑥ 误差+0.0018-0.0023+0.0025-0.0015+0.0012+0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?综合思考25、在标有6,12,18,24,30……的卡片中,小明拿了相邻的3张.(1)若相邻的3张数字之和为342,求这3张卡片上各自的数字?(2)你能拿到数码相邻的3张卡片,使其上数字之和是86吗?试说明理由?26、有理数a,b,c,d在数轴上如图所示:①在数轴上有若干个点,每相邻两个点之间的距离是1个单位长,有理数a,b,c,d所表示的点是这些点中4个,且在数轴上位置如图所示,如果3a=4b-3,求c+2d的值;②在数轴上,N点与原点的距离是N与30所对应点之间的距离的4倍,那么N点表示的数是多少?27、有若干个数,123,,,n a a a a ,若112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”(1) =1a =2a (2) 求91011a a a ⋅⋅的值;(3) 是否存在M 的值,使111()n n n M a a a a -+÷⋅⋅=?若存在,请求出M 的值.第4讲 有理数(4)知识理解1、若2-=a ,24,0b ab =>,则||a b +=( ) A 、0 B 、4 C 、-4 D 、0或4 2、若20,0a b a -><,下列各式中成立的是( )A 、2a b >0 B 、0a b +> C 、20a ab +> D 、20ba> 3、若a <0,则下列各式不成立的是( )A 、22()a a =- B 、22()a a =-- C 、 22||a a =- D 、23||a a =- 4、已知1234a b c d -=+=-=+,则a , b , c , d 的大小关系是 ( ) A 、d b a c >>> B 、a c b d >>> C 、c a d b >>> D 、c b a d >>>5、已知0,0a b ab +=≠,则化简(1)(1)b aa b a b+++得 ( ) A 、2a B 、 2b C 、2 D 、-2 6、若a 、b 、c 为正整数,且23108ab c =,则a + b + c 的最大值为 ( ) A 、6 B 、32 C 、40 D 、1107、有理数a 、b 在数轴上的对应位置如图所示,则 ( )A 、0a b +<B 、0a b +>C 、0a b -=D 、0a b -> 8、计算1110(2)(2)-+-的值是 ( )A 、-2B 、(-2)21C 、0D 、-210 9、下列各式中正确的是 ( )A 、22()a a =- B 、33()a a =- C 、22||a a -=- D 、33||a a = 10、若(x + 3)2与|y -5|互为相反数,则x + y 的值为__________. 11、瑞士中学教师巴尔末成功从光谱数据9162536,,,5122132中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出接下来的两个数据是___________.12、在数-5、1,-3、5、-2中任取三个数相乘,其中最大的积是__________,最小的积是__________. 13、A 、B 两点在数轴上对应的数分别是-4,2,点P 到点B 的距离是点P 到点A 距离的2倍,则P 点在数轴上表示的数是__________.14、已知数m 小于它的相反数且数轴上表示数m 的点与原点的相距3个单位的长度,将该点m 向右移动5个单位长度后,得到的数是___________. 15、观察下列数列,找出规律后,写出数列下一项:0,3,-3,9,-15,33,-63,_____________________. 16、如果x -y =5,则|2-x + y |=__________;如果4 + x + y =0,那么-x + 3-y =___________. 17、若a + b <0,则||||||a b ab a b ab++=___________. 方法运用18、如果规定符号“*”的意义是*aba b a b=+求2*(-3)*4的值.19、已知2|1|4,(2)4x y +=+=,求x + y 的值.20、若a , b , c 均为整数,且||||1a b c a -+-=,求||||||a c c b b a -+-+-的值.21、如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A 、B 是数轴上的点,完成下列各题:B A2-2-11-3-4345(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是__________,A 、B 两点间的距离是__________.(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是__________,A 、B 两点间的距离是__________.(3)一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是__________,A 、B 两点间的距离是.__________22、同学们都知道,|5-(-2)|表示5与-2的差的绝对值,实际上也可理解5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求|5-(-2)|=____________.(2)找出所有符合条件的整数x ,使得|x + 5| + |x -2|=7成立的整数是______________.(3)由以上探索猜想,对于任何有理数x ,|x -3| + |x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.实际应用23、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为 + 10,-15,0, + 20,-2,问这五位同学的实际成绩分别是多少分?24、已知水结成冰的温度是00C ,酒精冻结的温度是-1170C ,现有一杯酒精的温度为120C ,放在一个制冷装置里,每分钟温度可降低1.60C ,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)25、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表: 与标准质量的差值与标准质量的差值(单位:g )-5 -2 0 1 3 6 袋 数143453(1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为450克,则抽样检测的总质量是多少克?综合思考26、已知:a , b ,c 在数轴上的位置如图所示.c 0b a-11(1)填空:a 、b 之间的距离为___________;b 、 c 之间的距离为___________;a 、c 之间的距离是__________.(2)化简|1||||1|a c b b +--+-(3)若0a b c ++=且b 与-1的距离和a 与-1的距离相等,求22(4)c b a c a b -+----的值.27、已知数轴上两点A 、B 对应的数为-1,3,点P 为数轴上一动点,其对应的数为x ,B A2-2-11-3-4345(1) 用x 的式子表示线段P A 、PB 的长度;(2) 数轴上是否存在点P ,使P A + PB =5?请求出x 的值;若不存在,请说明理由.28、观察下面三行数:3, -9, 27, -81, 243, -729, …; ① 6, -6, 30, -78, 246, -726, …; ② 1,-3,,9,-27,81,-243,…;③(4) 第①行按什么规律排列?(5) 第②③行数与第①行数分别有什么关系?(6) 写出每行第9个数,共计算这三个数的和.(7) 第②行中是否存在连续的三个数,使得这三个数的和为-5094?若存在,求出这三个数;若不存在,说明理由;(5)是否存在一列数,使得其中的三个数的和为5106?若存在,求出这三个数;若不存在,说明理由.第5讲 整式(1)知识理解1.下列各式:-n ,a +b ,3ab ,x -1,3ab ,1x,其中单项式的个数是( ). A.2 B.3 C.4 D.52.下列各式:2+x 2、2x 、xy 2、3x 2+2x -1、abc 、1-2y 、3x y-中,其中多项式的个数是( ).A.2B.3C.4D.53. 若743x a b +与yba 24-是同类项,则y x 的值为( )A.9B.-9C.4 D -4. 4.已知-x +3y =5,则25(3)8(3)5x y x y ----的值是( ) A.160 B.80 C.-170D.-905.三个有理数a ,b ,c 两两不等,那么a b b c --,b c c a --,c aa b--中负数的个数是 ( ). A.1个 B.2个 C.3个 D.不能确定 6. 已经a <-b ,且0ab>,化简|a |-|b |+|a +b |+|ab |=( ). A.2a +2b +ab B.-ab C.-2a -2b +ab D.-2a +ab7.已知535y ax bx cx =++-,当x =-3时,y =7,那么当x =3时,y =( ). A.-17 B.-7 C.-3 D.78.减去-3x 等于 2535x x --的代数式是( ).A. 255x -B. 2565x x --C. 2565x x --+D. 255x -+ 9.若关于x 、y 的多项式y bxy x x xy ax +--++222不含二次项,则5a -8b 的值为( ). A.-11 B.21 C.-21 D.11 10.若3k x y 与2x y -是同类项,那么k =___________. 11.若32x a b 与yb a 43-是同类项,那么x +y =____________. 12. 当x =____________时,||23x a 和42a -是同类项.13.如果2(5)b a mn +-是关于m 、n 的一个五次单项式,那么a _______,b =_________. 14.如果a 、b 互为相反数,c ,d 互为倒数,x 的绝对值为1,求代数式2a b x cd x+-+= ____________. 15. 三角形的第一边长为(a +b ),第二边比第一边长(a -5),第三边长为2b ,那么这个三角形的周长是____________.16. 已知多项式:876253a a b a b a b -+-+…,按此规律写下去,这个多项式的第八项是____________.17.有一列数,按一定规律排列成1,-3,9,-27,81,-243,其中某三个相邻数的和是-1701,那么这三个数中最小的数是 ____________.方法运用 18.已知123a b x y +-与225x y 是同类项,求2221232a b a b a b +-的值19.若单项式84a b x y +与单项式239b a b x y -的和仍是一个单项式,求这两个单项式的和.20.化简求值:)]4(3[25222b a ab abc b a abc --+-其中a 是最小的正整数,b 是绝对值最小的负整数,|c |=18,且abc >0.21.已知s +t =21,3m -2n =9,求多项式(2s +9m )+[-(6n -2t )]的值.22.化简求值:22225[4(31)3]x x x x -----,其中32x =-23.已知x -y =0,求3223x x y xy y --+的值.24.已知A =2x 2-3xy +2y 2,B =2x 2+xy -3y 2,求3A -B 的值.25.a 、b 是有理数,|a |=b ,|ab |+ab =0,化简:|a |+|-2b |-|3b -2a |.26.已知A =3m 2-4m +5,B =3m -2+5m 2,且A -2B -C =0,求多项式C .实际应用分每吨收取较高的定额费用,已知今年7月张家用水量与李家用水量的比是2:3,其中张家当月水费是14.60元,李家当月水费是22.65元,那么超出5吨部分的收费标准是每吨多少元?28. 张校长暑假将带领学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内的全部按全票价的6折优惠.”若全票价为240元.设学生人数为x ,甲旅行社的收费记为y 甲,乙旅行社的收费记为y 乙. (1) 分别用含x 的代数式表示两个旅行社的收费;(2) 若学生有200人,那么买哪个旅行社的票合算,为什么?综合思考29.若x 3+x 2+x =-1,求多项式x 2012+x 2011+…+x 2+x +1的值.30.观察下列数阵:(1) 观察以上数阵的变化规律,猜想第11行第4个数是 . (2) 第n 行第m 个数是 .(3) 请猜想第2015行正中间的数是 . (4) 求第100行所有数的和.31.a 、b 为有理数,且a +b 、a -b 在数轴上如图所示: (1) 判断a 、b 的符号及a 、b 的大小关系;(2) 若x =|2a +b |-3|b |-|3-2a |+2|b -1|,求代数式x 2-6x +9的值; (3) 若c 为有理数,且345a b c==,ab +bc +ca =188,求代数式(a -b +c )2-abc 的值. 3-3a-b a+b O第6讲 整式(2)知识理解1.前年我国城镇固定资产投资为7509600元,用科学记数法表示为( ).(保留三个有效数字)A.7.51×107元B. 7.50×107元C. 7.51×106元D. 7.50×106元 2.下列各式:-2;3x -;3x ;m +n ;-a 2b ;35xy-中,单项式的个数有( ). A.2个 B.3个 C.4个 D.5个 3.下列式子0、2mn 、13x +、48a 2b 、1-x 、x 2+2x +1、15xy -、3x 其中单项式共有( ).A.3个B.4个C.5个D.6个4.下列合并同类项运算,结果正确的是 ( ).5.下列各组数是同类项的是( ).A.x 2y 和xy 2B.3ab 和-abcC.2x 和12D.0和-5 6.下列说法:①2与-2是同类项;②2ab 与-3abc 是同类项;③3x 5与5x 3是同类项;正确的个数有 ( ). A.0个 B.1个 C.2个 D.3个 7.下列说法:①若1ab=-,则a ,b 互为相反数;②若a +b <0,ab >0,则|a -2b |=2b -a ;③若m >n ,则m 2>n 2;④一个数的倒数是它本身,则这个数是0和±1;⑤近似数1.80的有效数字是1、8、0;⑥-23ab 2的次数为6.其中正确说法的个数是 ( ).A.2个B.3个C.4个D.5个8.下列结论:①若,则a 、b 互为相反数;②若|a |>|b |,则a ≠b ;③多项式-22x 3y 3+3x 2y 2-2xy -x +1的次数是6次;④若|x -6|=|y -6|,且x >y ,则x +y =12;⑤1.60×106的有效数字有7个;⑥若一个数的倒数等于它的平方,则这个数为±1;其中正确的个数有 ( ) A.2个 B.3个 C.4个 D.5个9.写一个系数为负数,含三个字母的四次单项式为 . 10.单项式-3x 3y 的次数是 ;单项式25ab-的系数是 . 11.单项式-6a 5b 2c 的系数是 ;它的次数是 .12.多项式-x 3y 2+3x 2y 4-2xy 2的次数是 .13.三峡工程是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22150000000m 3,这个数用科学记数法可表示为 . 14.已知2a 3b 4与-3a 2m b n 是同类型,则m -n = . 15.如果16a 3m +n b n 与6378a b -是同类型,则m -n = . 16.去括号-2(3x +y -2z )= .17.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有 个正方形.方法运用18.先化简再求值:(x 2y -2y 2-xy -1)-(2xy +4x 2y -y 2)+3,其中x =-1,y =-2.19.先化简再求值:(4x -2y 2)-[5x -(x -y 2)]-x ,其中x =-2,y =31.20.(1)根据条件列式:a 的2倍与b 的和减去b 的平方与a 的 半的差; (2) 在(1)的条件下,若a =-4,b =3,求上式的值.21.已知A =x 3+2y 3-xy -3,B =-y 3+x 3+2xy +1,且2A -M =B ,求M .(8) 已知,A =2x 2-3xy ;B =2x 2+xy -5,若M +B =2A ,求M .23.已知M =x -13y 2,N =-32x +12y 2-1. (1) 化简3M -2N . (2) 若|x -2|=-(y -1)2,求-2N +3M 的值.实际应用24.某个体水果店经营某种水果,每千克进价2.80元,售价4.50元,10月1日至10月5日经营情况依次如下表:1日2日3日4日5日购进(kg ) 55 50 55 50 40 售出(kg ) 46 49 51 48 41 损耗(kg )43422(1) 若9月30日晚库存为零,则10月1日晚库存为 kg ;(2) 就10月3日这一天的经营情况看,当天是赚了还是赔了多少钱? (3) 10月1日到10月5日该个体户共赚多少钱?25.国庆节即将来临,张华高兴地看着2014年10月的日历,发现其中有很有趣的问题,他用笔在上面画如图所示的十字框,若设任意一个十字框里的五个数为a 、b 、c 、d 、k ,如图:试回答下列问题: (1) 此日历中能画出 个十字框? (2) 若a +b +c +d =76,求k 的值.(3) 是否存在k 的值,使得a +b +c +d =84,请说明理由.日一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303126.数轴上,A 点表示的数为10,B 点表示的数为-6,A 点运动的速度为4单位/秒,B 点运动速度为2单位/秒.(1) B 点先向右运动2秒,A 点再开始向左运动,当它们在C 点相遇时,求C 点表示的数;10-6O(2) A 、B 两点都向左运动,B 点先运动2秒时,A 点于开始运动,当A 点到原点的距离和B 点到原点的距离相等时,求A 点运动的时间;k dcba-6O10(3) A、B两点都向左运动,B先运动2秒,A再运动t秒时,求A、B两点之间的距离.-6O10第7讲 一元一次方程知识理解1、下列由等式的性质进行的变形,错误的是( )A 、如果b a =,那么33+=+b aB 、如果b a =,那么33-=-b aC 、如果b a =,那么a a 32=D 、如果a a 32=,那么3=a2、下列方程中:①312+=-x x ;②21=-x ;③123222=+;④3-x ;⑤6=+y x .其中是一元一次方程的有( )A 、1个B 、2个C 、3个D 、4个 3、已知方程x m x 743-=+的解为1=x ,则m 的值为( ) A 、- 2 B 、- 5 C 、6 D 、- 64、若y x =,下列各式中:①33-=-y x ;②55+=+y x ;③88-=-y x ;④y x x +=2;其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个5、下列等式变形:①如果y x =,那么ay ax = B ;②如果y x =,那么a y a x =;③如果ay ax =,那么y x = ;④如果a y a x =,那么y x =.其中正确的是( )A 、③④B 、①②C 、①④D 、②③6、下列说法:①在等式42=x 两边都加上2,可得等式64=x ;②在等式42=x 两边都减去2,可得等式2=x ;③在等式42=x 两边都乘以21,等式变为2=x ;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有( )7、中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球的质量等于( )个正方体的重量.A 、2B 、3C 、4D 、58、已知a 是任意有理数,在下面各题:(1)方程0=ax 的解是1=x ;(2)方程a ax =的解是1=x ;(3)方程1=ax 的解是ax 1=;(4)方程a x a =的解是1±=x .其中结论正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个9、如果652=-x ,那么_________2=x ,其中依据是__________________________.10、若方程()0122=+++c bx x a 是关于x 的一元一次方程,则字母系数a 、b 、c 满足的条件是_____________________________.方法运用11、解方程:(1)23141x x x --=--; (2)214311--=++x x x ;(3)()x x x =-⎥⎦⎤⎢⎣⎡+-1151321 ; (4)121103121412+--=-+x x x ;12、已知1=x 是方程()x x a 2312=--的解,那么关于x 的方程()()3225-=--x a x a 的解是多少?13、某书有一道方程:x x =+*+132,*处的一个数十阿紫印刷时被墨盖住了,查后面的答案,知道方程的解为5.2-=x ,那么*处被墨盖住的数应该是多少?14、若a 、b 为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,此方程的解总是1=x ,求a 、b 的值.15、小明参加了学校组织的数学兴趣小组,在一次数学活动课上,数学老师在黑板上写了一个关于x 的一元一次方程:69312k x x a kx +--=--,方程中的常数a 老师已给出,但常数k 老师却未写出.数学老师让小组中的60名学生每人自己想好一个值()3≠k ,然后代入方程中,在解出方程.小明想了一个k 值后,很快解出了方程的解,他惊奇地发现,全班同学的答案竟然是一模一样,你能告诉小明这是什么原因吗?你知道题中老师给出的a 是多少吗?方程的解是多少吗?16、已知方程423523-=-x x (1)求方程的解;(2)若上述方程与关于x 的方程()a a x a 2383-+=+是同解方程,求a 的值;(3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求()2005c b a ++17、已知2=x 是关于x 的方程c b ax =+的解.(1)求()200312--+c b a (2)求ba c 2410+的值; (3)解关于x 的方程()()0242≠++=+cb ac x b a .18、已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数位-200,B 点对应的数位为- 20 ,C 点对应的数为40.甲从C 出发,以6单位/秒的速度向左运动.(1)当甲在B 点、C 点之间运动,设运动时间为x 秒,请用x 的代数式表示;甲到A 点的距离:____________________;甲到B 点的距离:____________________;甲到C 点的距离:____________________;(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.19、数轴上A 、B (A 左B 右)所对应的数为a 、b ,()01052=-++b a ,C 为数轴上一动点且对应的数位c ,O 为原点.(1)若2=BC ,求c 的值.(2)是否存在一点C使得CB=2CA,若存在求出对应的数位c,不存在说明理由.(3)是否存在一点C使得CA+CB=21,若存在求出对应的数位c,不存在说明理由.第8讲 一元一次方程(2)一、基础知识1、若3-=x 是方程()52=+k x 的解,求k 的值.2、讨论12=x 是不是方程14732+=x x 的解.3、已知3-=x 是1312-=--m x 的解,求代数式132--m m 的值.4、已知1-=y 是关于y 的方程08432=+++-m y y 的解,求式子mm m 122+-的值.5、已知方程()0243=+--a xa 是关于x 的一元一次方程,求a 的值.6、如果关于x 的方程06365=+-k x是一元一次方程,求k 的值.7、关于x 的方程()()0241122=-+-+-a x a x a 是一元一次方程求a 的值.8、方程432-=+x m x 与方程626-=-x 的解相同,求m 的值.9、已知:关于x 的方程1232-=---x a x a x 与方程()5423-=-x x 同解,求a 的值.10、若关于x 的方程①a x =+2和②a a x 32=-,若①的解比②的解大1,求a 的值.11、设关于x 的方程55=-m x ,m x 244=-,当m 为何值时,这两个方程的解互为相反数?12、方程()0132=+-x 的解与关于x 的方程x k x k 2232=--+的解互为倒数,求k 的值.13、当4=x 时,式子a x ax A 642--=的值是- 1,那么当5-=x 时,A 的值是多少?14、小明在解关于x 的方程1123=-x a 是,误将x 2-看成了x 2+,得到的解为2-=x ,请你帮小明算一算,方程正确的解为多少?二、列方程解应用题(行程问题和工程问题)15、小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分,(1)如果两人同时同向同一地点开跑,多少分钟两人相遇?(2)如果两人同时相向开跑,多少分钟两人相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人相遇?16、甲乙骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如果走15分钟后乙出发,问甲出发后几小时与乙相遇?17、某项工程,甲单独完成要12天,乙单独完成要18天,如果甲先做了7天,乙来支援,由甲、乙合做完成余下的工程,求乙做多少天?18、整理一批或污物,由甲一人做需80小时完成,现由一部分人先做2小时后,在增加5人做8小时,恰好完成这项工作的43,怎样安排参与整理货物的具体人数?19、北京市为了能够成功举办2008年奥运会,市政府要求各项工程在确保质量的前提下完成任务,其中一项工程,请甲工程队独做要3个月完成,每月耗资12万元,若请乙工程队独做要6个月完成,每月耗资5万元,那么请甲、乙两工程队合做要几个月完成?耗资多少万元?三、方案选择20、一件工程,甲工程队独做10天完成,每天需费用160元;乙工程队独做15天完成,每天需费用100元.(1)若由甲、乙两个工程队合做3天后,剩余 工程有乙工程队独做完成,求工程所需的总费用是多少元?(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工做一部分工程再由乙工程队单独施工完成剩余工程,预计公付工程总费用1500元,你知道甲、乙两个工程队各做了工程的几分之几吗?(3)为了保证工程质量,工程指挥部决定安排一名质检员全程进行质量监督,每天需付给质检员工作、生活补助30元,请你安排甲、乙两个工程队进行施工,使工程所需的总费用最少?。

七年级上册数学培优讲义(整式加减与找规律)第五讲

七年级上册数学培优讲义(整式加减与找规律)第五讲

内容基本要求略高要求较高要求代数式了解代数式的值概念会求代数式的值.能根据代数式的值或特征.推断这些代数式反映的规律能根据特定的问题所提供的资料.合理选用知识和方法.通过代数式的适当变形求代数式的值.整式有关概念了解整式及其有关概念整式的加减运算理解整式加减运算法则会进行简单的整式加减运算能用整式的加减运算对多项式进行变型.进一步解决有关问题.模块一规律探索在解数学题时.往往从特殊的.简单的.局部的事例出发.探求一般的规律;或者从现有的结论.信息.通过观察.类比.联想.进而猜想未知领域的奥秘.这种思想方法叫归纳猜想.归纳猜想是学习和研究数学的最基本而又十分重要的方法它能使复杂问题简单化.抽象问题具体化.是探索解题思路的有效方法.也是科学发展史上的一种重要的方法.注释:归纳猜想是建立在细致而深刻的观察基础上.解题中观察活动主要有三条途径;1.从数与式的特征观察;2.从几何图形的结构观察;3.通过对简单.特殊情况的观察.再推广到一般情况.规律类的中考试题.无论在素材的选取、文字的表述、题型的设计等方面都别具一格.令人耳目一新.其目的是继续考察学生的创新意识与实践能力.在往年“数字类”、“计算类”、“图形类”的基础上.今年又推陈出新.增加了“设计类”与“动态类”两种新题型.现将今年中考规律类中考试题分析如下:设计类【例1】将连续的自然数1至36按如图的方式排成一个长方形阵列.用一个长方形任意圈出其中的9个数.设圈出的9个数的中心的数为a.用含有a的代数式表示这9个数的和为 .【题目难度】★整式加减与规律探索【解题思路】解决本题的关键是认真审题.仔细观察图形.找数字之间的关系.发现规律.利用代数式的规律命题是近年来代数式命题的热点.本题主要考察列代数式.寻找长方形中9个数之间的大小关系.若中心数为a .则a 上方的数可记为6a -.下方的数记为6a +.左边的数记为1a -.右边的数记为1a +.左上方的数记为7a -.右上方的数记为5a -.左下方的数记为5a +.右下方的数记为7a +.所以这九个数相加的和为9a .【题目答案】9a【例2】 观察算式:2222211;132;1353;1357164;13579255=+=++=+++==++++==用代数式表示这个规律(n 为正整数)()1357921n ++++++-=____________【题目难度】★【解题思路】用代数式表示数的规律.要认真观察特例.然后有特殊得到一般规律.特别注意n 的表示意义.认真观察已知等式的数字变化规律.左边为从1开始的连续奇数的和.右边为数字个数的平方.【题目答案】2n【例3】 某体育馆用大小相同的长方形木块镶嵌地面.第1次铺2块.如图(1);第2次把第1次铺的完全围起来.如图(2)所示;第3次把第2次铺的完全围起来.如图(3)……依此方法.第n 次铺完后.用字母n 表示第n 次镶嵌所使用的木块数为______________【题目难度】★【解题思路】由图可知.可列表次数 1 2 3 …… 木块数2 10 18 ……由上表发现.后面每次镶嵌的木块都比前一次增加8块.即第n次镶嵌木块数为()+-=+28186n n (块)观察图形变化可找规律.从表格中数量变化也可寻找规律.因此可以从“数”“形”两方面解决此类问题.【题目答案】86n+【例4】如图所示.下列每个图形都是由若干枚棋子围成的正方形图案.图案的每条边(包括两个顶点)上都有n()2n≥枚棋子.每个图案中棋子总数为s.则s与n之间的关系可以表示为 .【题目难度】★【解题思路】由图(1)可知.2,4n s==+=⨯;由图(3)可==;由图(2)可知.3,4442n s知.4,44443==+++=⨯.…∴s与n之间的关系可用式n s==++=⨯;由图可知.5,444444n s子()=-表示..s n41【题目答案】()=-41s n☞巩固练习1.如图(1)所示的是一个三角形.分别连接这个三角形三边的中点得到图(2).再分别连接图(2)中间的小三角形三边的中点.得到图(3).按此方法继续连接.请你根据每个图中三角形的个数的规律完成下列问题.(1)将下表填写完整;图形编号(1)(2)(3)(4)(5)三角形个数 1 5 9(2)在第n个图形中有个三角形【题目难度】★【解题思路】略.【题目答案】(1)13.17(2)43n-2. 如图.每一幅图中有若干个大小不同的菱形.第1幅图中有1个.第2幅图中有3个.第3幅图中有5个.则第4幅图中有 个.第n 幅图中共有 个.【题目难度】★★ 【解题思路】略 【题目答案】7.21n -3. 为庆祝“六一”儿童节.某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律.摆n 个“金鱼”需用火柴棒的根数为( ) A .26n + B .86n +C .44n +D .8n【题目难度】★【解题思路】由图知.一个金鱼要8根火柴.两个金鱼要14根火柴.三条金鱼要20根火柴.以此类推彼此差6.所以n 个金鱼要26n +根火柴【题目答案】A4. 填在下面三个田字格内的数有相同的规律.根据此规律.C = .CBA 55675320531【题目难度】★★【解题思路】观察法知.四方框左上角的数成1,3,5,721n -排列.右上角的数成3,5,7,921n +排列.左下角的数成5,7,922n +排列.那么右下角的数是四方框第一行两个数的和与左下角数的乘积.所以()7,9,579108A B C ===+⨯=【题目答案】1085. 图(3)是用火柴棍摆成的边长分别是1.2.3 根火柴棍时的正方形… (1)第2幅第3幅 第n 幅.当边长为n 根火柴棍时.设摆出的正方形所用的火柴棍的根数为s .则s = . (用n 的代数式表示s ) 【题目难度】★★【解题思路】观察法.由图知边长为1的正方形要火柴4根.边长为2的正方形要火柴12根.边长为3的正方形要火柴24根.以此类推答案是2(1)n n +【题目答案】2(1)n n +数字类【例5】 按照规律填上所缺的单项式并回答问题:(1)a 、22a -、33a 、44a -.________.__________;(2)试写出第2007个和第2008个单项式 (3) 试写出第n 个单项式【题目难度】★ 【解题思路】略【题目答案】(1)565,6a a -(2)200720082007,2008a a - (3)()11n n na --【例6】 观察下列顺次排列的等式:222213321,351541,573561,796381⨯==-⨯==-⨯==-⨯==-.猜想:第n 个等式(n 为正整数)应为【题目难度】★【解题思路】观察法解此题.根据前面的式子知第一项与第二项的乘积等于他们中间项的平方减1所以答案是()()()2212121n n n -⨯+=-【题目答案】()()()2212121n n n -⨯+=-【例7】 第3页写3、4、5.….依此规则.即第n 页从n 开始.写n 个连续正整数.求他第一次写出数字1000是在第几页?( )图(3)……n =1 n =2n =3A.500B. 501C.999D.1000【题目难度】★★ 【解题思路】第1页 1第2页 2、3 第3页 3、4、5 第4页 4、5、6、7 第n 页则第500页开始.从500写到500+(500-1)=999 ∴第501页开始.从501写到501+(501-1)=1001 ∴数字1000在第501页第一次出现. 故选择B .【题目答案】B总结: 本题主要考查通过分析各页写的数的变化归纳总结规律.解题的关键在于找到每一页上所写的数是从几到几变化的☞巩固练习 6. 已知212212+=⨯434434323323+=⨯+=⨯,……若1010+=⨯bab a (a .b 都是正整数).则a +b 的最小值是____________ 【题目难度】★【解题思路】通过观察已有的三个等式.其左边的一个因式的分母比分子小1.另一个因式就是第一个因式的分子;而右边的两个加数又分别为左边的两个因数.通过观察知满足条件的109a b ==,.所以应填19【题目答案】19【变形】已知:2222233+=⨯.2333388+=⨯.244441515+=⨯.255552424+=⨯.….若 21010b ba a+=⨯符合前面式子的规律.则a b +的值为A .179B .140C .109D .210【题目难度】★★ 【解题思路】略 【题目答案】C7. 一个叫巴尔末的中学教师成功地从光谱数据59.1216.2125.3236.…中得到巴尔末公 式.从而打开了光谱奥秘的大门.请你按照这种规律.写出第n (n ≥1)个数据是___________ 【题目难度】★★【解题思路】每个分数的分子之间都是成()23n n ≥且n 为正整数排列.且每个分数的分子与分母差4.所以答案是)4()2(2++n n n 或4)2()2(22-++n n【题目答案】)4()2(2++n n n 或4)2()2(22-++n n8. 一组按规律排列的数:2.0.4.0.6.0.….其中第7个数是 .第n 个数是 (n 为正整数). 【题目难度】★★【解题思路】观察法.数字规律按奇偶分开.偶数位的都是0.奇数位成偶数排列.所以答案是8.20n n n ⎧⎨⎩是奇数是偶数【题目答案】8.20nn n ⎧⎨⎩是奇数是偶数9. 观察下列等式:第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 第五行 11=36-25 … …按照上述规律.第n 行的等式为 .【题目难度】★【解题思路】等式左边是成奇数排列.右边是比这个奇数小两位的那两数的平方差.所以答案是()22211n n n +=+-【题目答案】()22211n n n +=+-10. 下面是一个三角形数阵:1------------------------第1行2 3 ------------------第2行 4 5 6------------------第3行 7 8 9 10------------第4行……根据该数阵的规律.第8行第2个数是【题目难度】★★【解题思路】由图知每行的数的个数与行数是相同的.所以每行最后一个数是前面行数数的和.到第7行的最后一个数应该是28.故答案是30.【题目答案】3011.观察下列等式:223941401⨯=-.224852502⨯=-.225664604⨯=-.226575705⨯=-.228397907⨯=-…请你把发现的规律用字母表示出来:m n=【题目难度】★★【解题思路】观察法知.前面两个数的乘积等于他两数的和的平均的平方减去这两个数差得平均的平方.所以答案是22 22m n m n+-⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭【题目答案】2222m n m n+-⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭模块二新型题【例8】根据下列图形的排列规律.第2008个图形是 (填序号即可). (① ;② ;③ ;④ .) ……;【题目难度】★【解题思路】观察法看图知选③【题目答案】③【例9】定义一种新运算:12a b a b*=-.那么4*(-1)=【题目难度】★【解题思路】根据题意可知.该运算是a的一半与b的差【题目答案】3☞巩固练习12.现定义一种新运算:★.对于任意整数a、b.有a★b=a+b-1.求4★[(6★8)★(3★5)]的值【题目难度】★【解题思路】∵a★b=a+b-1∴4★[(6★8)★(3★5)]=4★[(6+8-1)★(3+5-1)]=4★(13★7)=4★(13+7-1)=4★19=4+19-1=22【题目答案】2213.用“”、“”定义新运算:对于任意实数a.b.都有a b=a和a b=b.例如32=3.32=2.则(20102009)(20072008)的值是 .【题目难度】★【解题思路】:(20102009)(20072008).=20102008.=2010.故答案为2010【题目答案】2010课堂检测【练习1】(2011•重庆)下列图形都是由同样大小的平行四边形按一定的规律组成.其中.第①个图形中一共有1个平行四边形.第②个图形中一共有5个平行四边形.第③个图形中一共有11个平行四边形.…则第⑥个图形中平行四边形的个数为()A.55B.42C.41D.49【题目难度】★【解题思路】:∵图②平行四边形有5个=122++.图③平行四边形有11个=12323++++. 图④平行四边形有19个=1234234++++++.∴图⑥的平行四边形的个数为1234562345641++++++++++=. 故选C . 【题目答案】C【练习2】观察图中正方形四个顶点所标的数字规律.可知数2011应标在( )A 、 第502个正方形的左下角B 、 第502个正方形的右下角C 、 第503个正方形的左上角D 、 第503个正方形的右下角【题目难度】★★【解题思路】通过观察发现:正方形的左下角是4的倍数.左上角是4的倍数余3.右下角是4的倍数余1.右上角是4的倍数余2 ∵20114502÷=余3.∴数2011应标在第503个正方形的左上角. 故选C .【题目答案】C【练习3】观察下列各式:(1)211=;(2)22343++=;(3)2345675++++=;(4)2456789107++++++=请你根据观察得到的规律判断下列各式正确的是( ) A 、210051006100730162011+++= B 、210051006100730172011+++= C 、210061007100830162011+++= D 、210071008100930172011+++=【题目难度】★★【解题思路】根据(1)211=;(2)22343++=;(3)2345675++++=;(4)2456789107++++++=可得出:()()()()2121a a a a n a n a ++++++=+-+ .依次判断各选项.只有C 符合要求.故选C .【题目答案】C1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② .③ .1. 四个电子宠物排座位.一开始.小鼠、小猴、小兔、小猫分别坐在1.2.3.4号座位上(如图所示).以后它们不停地变换位置.第一次上下两排交换.第二次是在第一次换位后.再左右两列交换位置.第三次再上下两排交换.第四次再左右两列交换…这样一直下去.则第2005次交换位置后.小兔所在的号位是( )A.1B.2C.3D.4总结复习课后作业【题目难度】★【解题思路】小兔所在的号位的规律是4个一循环.因为20053501÷=余1.即第2005次交换位置后.小兔所在的号位应和第一次交换后的位置相同.即图2.故选A【题目答案】A2. 柜台上放着一堆罐头.它们摆放的形状见右图:第一层有23⨯听罐头.第二层有34⨯听罐头.第三层有45⨯听罐头.……根据这堆罐头排列的规律.第n (n 为正整数)层有 听罐头(用含n 的式子表示)【题目难度】★【解题思路】略【题目答案】2(32)n n ++3. 观察下面几组数:1.3.5.7.9.11.13.15.…2.5.8.11.14.17.20.23.…7.13.19.25.31.37.43.49.…这三组数具有共同的特点.现在有上述特点的一组数.并知道第一个数是3.第三个数是11.则其第n 个数为( )A.85n -B.22n +C. 41n -D.225n +【题目难度】★★【解题思路】第一个数是3.第三个数是11.则第二个数为7;即每个数比前一个大4.故其第n 个数为41n -. 【题目答案】C4. 给定一列按规律排列的数:11111,,,,3579它的第10个数是( )A.115B.117C.119D.121【题目难度】★★【解题思路】分子都为1.分母分别为1.2213⨯-=⨯-=…都是奇数.第10个数的分母是210119⨯-=.2315【题目答案】:19.5.观察表一.寻找规律.表二、表三、表四分别是从表一中截取的一部分.其中a.b.c的值分别为()A、20.29.30B、18.30.26C、18.20.26D、18.30.28【题目难度】★★★【解题思路】表二截取的是其中的一列:上下两个数字的差相等.所以a=15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1.所b=24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍.则c应是4的7倍.即28.故选D.【题目答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新(人教版)七年级数学上册培优辅导讲义第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()A.-18% B.-8% C.+2% D.+8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A.-5吨B.+5吨C.-3吨D.+3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-错误!,π,0,0.033.3这四个数中有理数的个数( )A. 1个B. 2个C. 3个D. 4个【解法指导】有理数的分类:⑴按正负性分类,有理数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-错误!是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C.【变式题组】01.在7,0,15,-错误!,-301,31.25,-错误!,100,1,-3 001中,负分数为,整数为,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-错误!,错误!,-错误!,0.1,-5.32,123,2.333【例3】(宁夏)有一列数为-1,错误!,-错误!,错误!,-错误!,错误!,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-错误!.【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+错误!错误!的相反数是-3,则m的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题错误!=2,m=4,则m的相反数-4.【变式题组】01.(四川宜宾)-5的相反数是( )A.5 B.错误!C.-5 D.-错误!02.已知a与b互为相反数,c与d互为倒数,则a+b+cd=______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为( )A.- 1 ,2,0 B. 0,-2,1 C.-2,0,1 D. 2,1,0【例5】(湖北)a、b为有理数,且a>0,b<0,|b|>a,则a,b、-a,-b的大小顺序是( )A.b<-a<a<-b B.–a<b<a<-bC.–b<a<-a<b D.–a<a<-b<b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a、b,依相反数的意义标出-b,-a,故选A.【变式题组】01.推理①若a=b,则|a|=|b|;②若|a|=|b|,则a=b;③若a≠b,则|a|≠|b|;④若|a|≠|b|,则a≠b,其中正确的个数为()A. 4个B. 3个C. 2个D. 1个02.a、b、c三个数在数轴上的位置如图,则错误!+错误!+错误!= .03.a、b、c为不等于O的有理数,则错误!+错误!+错误!的值可能是____.【例6】(江西课改)已知|a-4|+|b-8|=0,则错误!的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b-8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a-4|≥0,|b-8|≥0,又|a-4|+|b-8|=0,∴|a-4|=0,|b-8|=0即a-4=0,b-8=0,a=4,b=8.故错误!=错误!=错误!【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a>b>c,求a+b+C.02.(毕节)若|m-3|+|n+2|=0,则m+2n的值为( )A.-4 B.-1 C. 0 D. 403.已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值【例7】(第18届迎春杯)已知(m+n)2+|m|=m,且|2m-n-2|=0.求mn的值.【解法指导】本例的关键是通过分析(m+n)2+|m|的符号,挖掘出m的符号特征,从而把问题转化为(m+n)2=0,|2m-n-2|=0,找到解题途径.解:∵(m+n)2≥0,|m|≥O∴(m+n)2+|m|≥0,而(m+n)2+|m|=m∴ m≥0,∴(m+n)2+m=m,即(m+n)2=0∴m+n=O①又∵|2m-n-2|=0 ∴2m-n-2=0 ②由①②得m=错误!,n=-错误!,∴ mn=-错误!【变式题组】01.已知(a+b)2+|b+5|=b+5且|2a-b–1|=0,求a-b.02.(第16届迎春杯)已知y=|x-a|+|x+19|+|x-a-96|,如果19<a<96.a≤x≤96,求y的最大值.演练巩固·反馈提高01.观察下列有规律的数错误!,错误!,错误!,错误!,错误!,错误!…根据其规律可知第9个数是( ) A.错误!B.错误!C.错误!D.错误!02.(芜湖)-6的绝对值是( )A. 6 B.-6 C.错误!D.-错误!03.在-错误!,π,8..0.3四个数中,有理数的个数为( )A. 1个B. 2个C. 3个D. 4个04.若一个数的相反数为a+b,则这个数是( )A.a-b B.b-a C.–a+b D.–a-b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A. 0和6 B.0和-6 C. 3和-3 D. 0和306.若-a不是负数,则a( )A.是正数B.不是负数C.是负数D.不是正数07.下列结论中,正确的是( )①若a=b,则|a|=|b| ②若a=-b,则|a|=|b|③若|a|=|b|,则a=-b④若|a|=|b|,则a=bA.①② B.③④ C.①④ D.②③08.有理数a、b在数轴上的对应点的位置如图所示,则a、b,-a,|b|的大小关系正确的是( )A. |b|>a>-a>b B. |b| >b>a>-aC.a>|b|>b>-a D.a>|b|>-a>b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____. 10.已知|x+2|+|y+2|=0,则xy=__ __.11.a、b、c三个数在数轴上的位置如图,求错误!+错误!+错误!+错误!=12.若三个不相等的有理数可以表示为1、a、a+b也可以表示成0、b、错误!的形式,试求a、b的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-c.14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-1|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x =;的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为1999错误!的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A. 1998 B. 1999 C. 2000 D. 200102.(第18届希望杯邀请赛试题)在数轴上和有理数a、b、c对应的点的位置如图所示,有下列四个结论:①abc<0;②|a-b|+|b-c|=|a-c|;③(a-b)(b-c)(c-a)>0;④|a|<1-bc.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个03.如果a、b、c是非零有理数,且a+b+c=0.那么错误!+错误!+错误! - 错误!的所有可能的值为()A.-1 B. 1或-1 C. 2或-2 D. 0或-204.已知|m|=-m,化简|m-1 |-|m-2|所得结果( )A.-1 B. 1 C. 2m-3 D. 3- 2m05.如果0<p<15,那么代数式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值( ) A. 30 B. 0 C. 15 D.一个与p有关的代数式06.|x+1|+|x-2|+|x-3|的最小值为 .07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范围 .08.(武汉市选拔赛试题)非零整数m、n满足|m|+|n|-5=0所有这样的整数组(m,n)共有组09.若非零有理数m、n、p满足错误!+错误!+错误!=1.则错误!= .10.(19届希望杯试题)试求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值.11.已知(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,求x+2y+3z的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺次有电脑15台、7台、11台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯L【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-L=111111112233420082009-+-+-++-L=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________.【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b | 将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号) 02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n 个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n 个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n 个数为25-2(n -1)⑵∵n =13时,25-2(13-1)=1,n =14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.-a -b0b a⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式的和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.必是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=006.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-209.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a >b>0,则|a-b|=__________ ⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于( )A .14B .14-C .12D .12-02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d 等于( )A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( ) A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( ) A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求ab13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n 3的公式并计算出13+23+33+43+…+1003的值.313第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=-⑵11111()24248⨯=⨯=⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-2.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---4.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|_________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0 C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1x y =-=-⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==-,2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+=222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+1442443个=99【变式题组】13333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .110002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++=求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为()A.1个B.2个C.3个D.1个或3个02.两个有理数的和是负数,积也是负数,那么这两个数()A.互为相反数B.其中绝对值大的数是正数,另一个是负数C.都是负数D.其中绝对值大的数是负数,另一个是正数03.已知abc>0,a>0,ac<0,则下列结论正确的是()A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A.-2 B.(-2)21C.0 D.-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×10411.已知4个不相等的整数a、b、c、d,它们的积abcd=9,则a+b+c+d=___________.12.21221(1)(1)(1)n n n+--+-+-(n为自然数)=___________.13.如果2x yx y+=,试比较xy-与xy的大小.14.若a、b、c为有理数且1a b ca b c++=-,求abcabc的值.15.若a、b、c均为整数,且321a b c a-+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x、y、z两两不相等,则,,x y y z z xy z z x x y------中负数的个数是()A.1个B.2个C.3个D.0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是()A.1 B.3 C.7 D.503.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0C .ab 2cde <0D .abcd 4e <004.若有理数x 、y 使得,,,xx y x y xy y +-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( ) A .0 B .1 C .7 D .906.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( ) A .2 B .1 C .0 D .-107.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:112,315- 第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲 整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数. 【解法指导】 理解单项式的概念:由数与字母的乘积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算; ⑵不是,因为代数式是与x 的商;⑶是,它的系数为π,次数为2; ⑷是,它的系数为32-,次数为3.【变式题组】01.判断下列代数式是否是单项式。

相关文档
最新文档