2016聚焦中考数学(山西省)复习自我测试:第四章+统计与概率
2016年山西省中考数学试卷-答案
山西省2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为()0a a +-=,所以16-的相反数是16,故选A. 【提示】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【考点】相反数 2.【答案】C【解析】解502 6 x x +>⎧⎨<⎩①②,由①得5x >-,由②得3x <,所以不等式组的解集是53x -<<,故选C.【提示】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 【考点】解一元一次不等式组 3.【答案】C【解析】A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查; B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查; C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查; D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查.【提示】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查. 【考点】全面调查与抽样调查 4.【答案】A【解析】从左面看第一列可看到3个小正方形,第二列有1个小正方形,故选A. 【提示】根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 【考点】简单几何体的三视图 5.【答案】B【解析】将55 000 000用科学记数法表示为:75.510⨯,故选B.【提示】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【考点】科学记数法表示较大的数 6.【答案】D 【解析】A.239()24-=,故A 错误; B.236(3)27a a =,故B 错误; C.3552353111555525555--÷=÷=⨯==,故C 错误;=- D.【提示】设甲每小时搬运kg x 货物,则甲搬运5000kg 所用的时间是:5000x , 根据题意乙每小时搬运的货物为600x +,乙搬运8 000 kg 所用的时间为8000600x +;再根据甲搬运5 000 kg 所用的时间与乙搬运8 000 kg 所用的时间相等列方程. 【考点】分式方程的应用 8.【答案】D【解析】将抛物线化为顶点式为:2(2)8y x =--,左平移3个单位,再向上平移5个单位,得到抛物线的表达式为2(1)3y x =+-.故选D.【提示】先将一般式化为顶点式,根据左加右减,上加下减来平移. 【考点】抛物线的平移 9.【答案】C【解析】18023180609030EOF ∠=︒-∠-∠=︒-︒-︒=︒,1226r =÷=,∴2π30π6π180180n r F x E ===,故选C.【提示】如图连接OF ,OE ,由切线可知490∠=︒,故由平行可知390∠=︒;由OF OA =,且60C ∠=︒,所以160C ∠=∠=︒,所以OFA △为等边三角形,∴260∠=︒,从而可以得出FE 所对的圆心角然后根据弧长公式即可求出.【考点】切线的性质,求弧长 10.【答案】D【解析】1)CG CF =,2GH CF =,∴CG GH ==, ∴矩形DCGH 是黄金矩形,故选D.【提示】由作图方法可知DF ,所以1)CG CF =,且2GH CD CF ==,从而得出黄金矩形. 【考点】黄金分割的识别第Ⅱ卷二、填空题 11.【答案】(3,0)【解析】根据双塔西街点的坐标为(0,1)-和桃园路的点的坐标为(0,1)-,可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标. 【提示】确定坐标原点是解题的关键. 【考点】坐标的确定 12.【答案】>【解析】在反比函数my x=中,0m <,10m -<,30m -<,在第四象限y 随着x 的增大而增大,且13m m ->-,所以12y y >.【提示】由反比函数0m <,则图象在第二四象限分别都是y 随着x 的增大而增大,∵0m <,∴10m -<,30m -<,且13m m ->-,从而比较y 的大小.【考点】反比函数的增减性 13.【答案】(41)n +【解析】第1个图形中有5个阴影小正方形,第2个图形中有9个阴影小正方形,第3个图形中有13个阴【解析】如图(1)由勾股定理可得DA ; 由AE 是DAB ∠的平分线可知12∠=∠;由CD AB ⊥,BE AB ⊥,EH DC ⊥可知四边形GEBC 为矩形, ∴HE AB ∥,∴23∠=∠, ∴13∠=∠,故EH HA =,设EH HA x ==,则2GH x =-,DH x =,∵HE AC ∥,∴DGH DCA △∽△,∴DH HG DA AC =22x -=,【提示】由勾股定理求出DA ;由平行得出12∠=∠,由角平分得出23∠=∠,从而得出13∠=∠,所以【解析】(1)补全的扇形统计图和条形统计图如图所示:(2)180030%540⨯=(人),∴估计该校对“工业设计”最感兴趣的学生是540人.(3)140%30%8%9%13%----=,∴正好抽到对“机电维修”最感兴趣的学生的概率13%. 【提示】(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可;(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1 800乘以30%; (3)通过对扇形的观察可知.【提示】(1)已截取CG AB =,∴只需证明BD DG =;且MD BC ⊥,所以需证明MB MG =,故证明MBA MGC △≌△即可;(2)因为2AB =,故利用三角函数可得BE =;由阿基米德正弦定理可得BE DE DC =+,则BDC△周长BC CD BD BC DC DE BE =++=+++BC DC DE BE =+++()BC BE BE =++2BC BE =+,然后代=30,在Rt sin3050AC =⨯5030=-CG GD +=tan30290EH ︒=【提示】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD ,连接FD当四边形BCC D '''恰好为正方形时,分两种情况:①点C ''在边C C '上,2407113131313a C C ='-=-=; ②点C ''在边C C '的延长线上,24040913131313a C C ='+=+=. 综上所述,a 的值为7113或40913. (4)本小题答案不唯一.例:画出正确图形(如下图所示),平移及构图方法:将ACD △沿着射线CA 方向平移,平移距离为12AC 的长度,得到A C D ''△,连接A B ',C D ',如图4.结论:四边形是平行四边形.【提示】(1)利用旋转的性质和菱形的判定证明; (2)利用旋转的性质以及矩形的判定证明;(3)利用平移的性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情况当点C ''在边C C '上和点C ''在边C C '的延长线上时; (4)开放型题目,答对即可.【考点】几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定,矩形的判定【解析】(1)∵抛物线28y ax bx =+-经过点(2,0)A -,(6,8)D -,当0x =时,21388y x x =--=-,∴点C 的坐标为(0,8)-,设直线CE 交x 轴于点N ,其函数表达式为238y k x =-,∴2384k -=-,解得243k =, ∴CE 的函数表达式为483y x =-,令0y =,得4803x -=,∴6x =,∴点N 的坐标为(6,0). ∵CN PB ∥,∴OP OB =,∴8m -=,解得32m =-.解法二:当0x =时,213882y x x =--=-,∴点C 的坐标为(0,8)-,∴点E 的坐标为(3,4)-,∴5OE =,5CE =,∴OE CE =,∴12∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况:①当QO QP =时,OPQ △是等腰三角形.∴13∠=∠,∴23∠=∠,∴CE PB ∥又∵HM y ∥轴,∴四边形PMEC 是平行四边形,∴8EM CP m ==--,∴4(8)4HM HE EM m m =+=+--=--,835BH =-=,∵HM y ∥轴,∴BHM BOP ~△△,∴HM BH OP BO = ∴458m m --=-,∴323m =- ②当OP OQ =时,OPQ △是等腰三角形.∵HM y ∥轴,∴OPQ EMQ ~△△,∴EQ EM OQ OP=,∴EQ EM =, ∴5()5EM EQ OE OQ OE OP m m ==-=-=--=+,∴4(5)HM m =-+∵HM y ∥轴,∴BHM BOP ~△△,∴HM BH =,∴15m --=,∴8m =-. 33【提示】(1)将A,D的坐标代入函数解析式,解二元一次方程即可求出函数表达式;点B坐标:利用抛物线对称性,求出对称轴结合A点坐标即可求出B点坐标;x=,即可求点E坐标:E为直线l和抛物线对称轴的交点,利用D点坐标求出l表达式,令其横坐标为3出点E的坐标;=,所以点F肯定在OC的垂直平分线上,所以点F的纵坐标为(2)利用全等对应边相等,可知FO FC4-,带入抛物线表达式,即可求出横坐标;(3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解.【考点】求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成。
2016年山西省中考数学试卷和答案(详细解析)
2016年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61- 2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯ 6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( ) A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( ) A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进 行访谈,那么正好抽到对“机电维修”最 感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点, ︒∠45ABD,AE⊥BD与点E,则△BDC的长是.=20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号) 22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题; (4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使F O E ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ∆是等腰三角形.2016年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( A ) A .61 B .-6 C .6 D .61- 考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0 ∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5考点: 解一元一次不等式组 分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②① 6205x x由①得x >-5由②得x <3所以不等式组的解集是-5<x <3 3.(2016·山西)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高 考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选 择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定. 解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A . 5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:7105.5⨯. 6.(2016·山西)下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 考点:实数的运算,幂的乘方,同底数幂的除法,分析:根据实数的运算可判断A . 根据幂的乘方可判断B .根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B ) A .x x 80006005000=- B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( C )A .3π B .2πC .πD .π2考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OF A 为等 边三角形∴︒=∠602,从而可以得出FE 所对的圆心角然后根据弧长公式即可求出 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6 ∴FE =πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF 从而得出黄金矩形解答:CG =CF )15(-,GH =2CF∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标(3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m x m y 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小解答:在反比函数xm y =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为94 考点:树状图或列表求概率分析:列表如图:解答:由表可知指针指向的数都是奇数的概率为 9415.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且12 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3)CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠从而得出31∠=∠,所以HE =HA .再利用△DGH ∽△DCA 即可求出HE ,从而求出HG解答:如图(1)由勾股定理可得DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩形,∴HE ∥AB ,∴32∠=∠∴31∠=∠故EH =HA设EH =HA =x则GH =x -2,DH =x -52∵HE ∥AC ∴△DGH ∽△DCA∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分)(1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛--- 考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分)=1. ……………………………(5分)(2)先化简,在求值:112222+---x x x x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x x x x x x ……………………………(2分) =112+-+x x x x ……………………………(3分) =1+x x ……………………………(4分) 当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解方法二:将方程化为一般式,利用公式法求解解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分)0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分)∴ x -3=0或x -9=0. ……………………………(5分)∴ 31=x ,92=x . ……………………………(7分)解法二:原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整).(1)补全条形统计图和扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理 阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是ABC 的中点,∴MA =MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 考点:圆的证明分析:(1)已截取CG =AB ∴只需证明BD =DG且MD ⊥BC ,所以需证明MB =MG故证明△MBA ≌△MGC 即可(2)AB =2,利用三角函数可得BE =2由阿基米德折弦定理可得BE =DE +DC则△BDC 周长=BC +CD +BD =BC +DC +DE +BE=BC +(DC +DE )+BE=BC +BE +BE=BC +2BE然后代入计算可得答案解答:(1)证明:又∵C A ∠=∠, …………………(1分)∴ △MBA ≌△MGC . …………………(2分)∴MB =MG . …………………(3分)又∵MD ⊥BC ,∵BD =GD . …………………(4分)∴CD =CG +GD =AB +BD . …………………(5分)(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点,︒ABD,AE⊥BD与点E,则△BDC=∠4520.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点:一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A应付款y与购买量x的函数关系为x=y8.5方案B应付款y与购买量x的函数关系为2000y=x5+然后分段求出哪种方案付款少即可(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.解答:(1)方案A:函数表达式为x=.………………………(1分)y8.5方案B:函数表达式为2000y………………………(2分)=x5+(2)由题意,得20005<xx.………………………(3分)8.5+解不等式,得x<2500 ………………………(4分)∴当购买量x的取值范围为2500≤x时,选用方案A2000<比方案B付款少.………………………(5分)(3)他应选择方案B.………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为︒30,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,ABFE⊥于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)考点:三角函数的应用分析:过点A 作CD AG ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分) 由题意,得203050=-=GD .…………(3分)452025=+=+=∴GD CG CD (cm ).…(4分) 连接FD 并延长与BA 的延长线交于点H .…(5分)由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CD CH .……………………(6分) 290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分)在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心,逆时针方向旋转角α,使 BAC ∠=α,得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 菱形 ;……………(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明(2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时.(4)开放型题目,答对即可解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21. 四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '= ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE // ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分)(3)过点B 作AC BF ⊥,垂足为F ,BC BA = ,5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠ , ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '= ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409.(4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆,连接DC B A ,'.………………………(11分)结论:四边形是平行四边形……(12分)23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1) 抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分) ()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又 抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分) 设直线l 的函数表达式为kx y =. 点D (6,-8)在直线l 上,∴6k =-8,解得34-=k . ∴直线l 的函数表达式为x y 34-=………………………………………………………(5分) 点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分)。
中考第二轮复习:统计与概率测试(含答案)
第四章《统计与概率》自我测试[时间:90分钟分值:100分]一、选择题(每小题3分,满分30分)1.(2011·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生2.(2011·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌3.(2011·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹4.(2011·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时5.(2011·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)1225 1则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.56.(2011·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月7.(2011·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢8.(2011·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2 C.x -甲=x -乙, S 甲2>S 乙2 D.x -甲>x -乙, S 甲2>S 乙29.(2011·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗10.(2011·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D二、填空题(每小题3分,满分30分)11.(2011·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题)78910人数(人)41816712.(2011·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________.13.(2011·南充)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件.14.(2011·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵)456810人数(人)302225158则这100名同学平均每人植树__________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.15.(2011·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.16.(2011·绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”).17.(2011·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.18.(2011·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________.19.(2011·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.20.(2011·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如下表:分数段频数频率60≤x<70300.1570≤x<80m 0.4580≤x<9060n90≤x<100200.1根据表中提供的信息得到n=___________.三、解答题(每小题8分,满分40分)21.(2011·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(2011·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.23.(2011·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?24.(2011·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=________;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?25.(2011·黄石)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.参考答案一、选择题(每小题3分,满分30分)1.(2011·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生答案 D解析选取的样本要具有代表性.2.(2011·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌答案 D解析丁品牌的销售量43瓶是最多的.3.(2011·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹答案 A解析据物理常识,在1个标准大气压下,水加热到100℃沸腾,是必然事件.4.(2011·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时答案 A解析从条形统计图中,可获得信息:一周的体育锻炼时间为6小时的这个数据出现次数最多,为20次,所以众数是6;50个数据中,第25、26个数据都是6,所以中位数是6. 5.(2011·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm) 23.5 24 24.5 25 25.5 销售量(双)12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5 答案 A解析 25是出现次数最多的数据,所以众数是25;第6个数据是25,所以中位数是25. 6.(2011·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月答案 C解析 将所得到的数据按从小到大的顺序排列28、36、42、58、58、70、75、83,可知第4、第5个数据都是58,所以中位数是(58+58)÷2=58.7.(2011·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢 答案 C解析 李东夺冠的可能性是80%,指李东夺冠的概率是80%,夺冠的可能性较大. 8.(2011·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2C.x -甲=x -乙, S 甲2>S 乙2D.x -甲>x -乙, S 甲2>S 乙2 答案 C解析 计算得x -甲=5,x -乙=5,S 甲2=0.00108,S 乙2=0.00028, 所以x -甲=x -乙,S 甲2>S 乙2.9.(2011·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗 答案 C解析 据题意,得⎩⎨⎧x x +y =25,x x +y +6=14,解之,得⎩⎪⎨⎪⎧x =4y =6.,经检验符合所列方程组的条件.10.(2011·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D解析 线段AB 的长=|-3-2|=5,到点-1的距离等于2的两点之间的线段长是4, 所以概率是45.二、填空题(每小题3分,满分30分)11.(2011·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题) 7 8 9 10 人数(人)418167答案 9解析 从小到大排列45个数据,第23个数据是9,所以中位数是9.12.(2011·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________. 答案 8.375解析 平均数x -=18×(7×2+10+9×3+8×2)=8.375.13.(2011·南充)某灯具厂从1万件同批次产品中随机抽取 了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件. 答案 500解析 估计不合格品有5100×10000=500(件).14.(2011·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵) 4 5 6 8 10 人数(人)302225158则这100名同学平均每人植树 __________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.答案 5.8;5800解析 平均数x -=1100×(4×30+5×22+6×25+8×15+10×8)=5.8(棵);总数是1000×5.8=5800(棵).15.(2011·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.答案 16解析 捐5元,10元,20元,50元的学生数分别是40×60%=24(人),40×10%=4(人),40×10%=4(人),40×20%=8(人),所以平均数x -=140×(5×24+10×4+20×4+50×8)=16(元).16.(2011·绍兴)为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”). 答案 乙解析 因为S 甲2=0.23>S 乙2=0.20,所以乙的成绩较为稳定.17.(2011·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.答案 35解析 袋子中共有2+3=5个球,摸出一个球是白球的概率是35.18.(2011·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________. 答案 12解析 树状图如下:总共有12种情况,第二次取出的数字能够整除第一次取出的数字的概率是816=12.19.(2011·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.答案 14解析 根据矩形是中心对称图形,可知阴影部分面积之和是整个矩形面积的14,所以概率是14.20.(2011·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x 满足:60≤x <100,赛后整理所有参赛选手的成绩如下表:分数段 频数 频率 60≤x <70 30 0.15 70≤x <80 m 0.45 80≤x <90 60 n 90≤x <100200.1根据表中提供的信息得到n =___________. 答案 0.3解析 各分数段的频率之和为1,所以n =1-0.15-0.45-0.1=0.3.三、解答题(每小题8分,满分40分)21.(2011·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?解 (1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:x -甲=50+36+40+344=40(千克);乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为:x -乙=36+40+48+364=40(千克);甲、乙两山杨梅的产量总和为:2×100×98%×40=7840(千克). (2)S 甲2=14[ ()50-402+()36-402+()40-402+ ]()34-402=38(千克2 ),S 乙2=14[ ()36-402+()40-402+()48-402+ ]()36-402=24(千克2),∴S 甲2>S 乙2.∴乙山上的杨梅产量较稳定.22.(2011·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.解(1)a=50-6-25-3-2=14.(2)设上网时间为6~8小时的三个学生为A1、A2、A3,上网时间为8~10小时的2名学生为B1、B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2共10种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=710.23.(2011·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?解 (1)60,0.15. (补图略) (2)C(3)(0.2+0.25+0.35)×10440=8352(名).答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.24.(2011·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =________; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?解 (1)C 选项的频数为90,正确补全条形统计图略;20. (2)支持选项B 的人数大约为:5000×23%=1150. (3)小李被选中的概率P =1001150=223.25.(2011·黄石)2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座. (1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.解(1)∵红球有2x个,白球有3x个,∴P(红球)=2x2x+3x=25,P(白球)=3x2x+3x=35,∴P(红球)< P(白球),∴这个办法不公平.(2)取出3个白球后,红球有2x个,白球有(3x-3)个,∴P(红球)=2x5x-3,P(白球)=3x-35x-3,x为正整数,∴P(红球)-P(白球) =3-x5x-3.①当x<3时,则P(红球)> P(白球),∴对妹妹有利;②当x=3时,则P(红球)=P(白球),∴对妹妹、小明是公平的;③当x>3时,则P(红球)< P(白球),∴对小明有利.。
2016中考数学二模备考知识考点:概率与统计_考点解析
2016中考数学二模备考知识考点:概率与统计_考点解析
2016中考是九年义务教育的终端显示与成果展示,2016中考是一次选拔性考试,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2016中考中取得理想的成绩,下文为大家准备了2016中考数学二模备考知识考点。
概率初步的有关概念
(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;
(2)不可能事件是指一定不能发生的事件;
(3)随机事件是指在一定条件下,可能发生也可能不发生的事件;
(4)随机事件的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.
(5)概率
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
(6)可能性与概率的关系
事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.
统计初步的有关概念
总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象.
样本:从总体中所抽取的一部分个体叫总体的一个样本.
样本容量:样本中个体的数目.
样本平均数:样本中所有个体的平均数叫样本平均数.
总体平均数:总体中所有个体的平均数叫做总体平均数.
统计学中的基本思想就是用样本对总体进行估计、推断,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律.
希望为大家提供的2016中考数学二模备考知识考点的内容,能够对大家有用,更多相关内容,请及时关注!。
统计与概率(原卷版)--备战中考数学抢分秘籍(全国通用)
统计与概率--备战中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①数据的整理、描述和分析。
②概率问题。
统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!中考数学关于统计与概率的知识点考察分析考点知识点分析考察频率数据的整理和描述 1.极差:一组数据中最大数据和最小数据的差.2.频数、频率:数据分组后落在各小组内的数据叫做频数;每一个小组的频数与样本容量的比值叫做这个小组的频率.3.统计表:利用表格处理数据,可以帮助我们找到数据分布的规律.4.统计图:条形图、扇形图、折线图、直方图.★★★★★数据的分析 1.平均数2.中位数:几个数据按从小到大的顺序排列时,处于最中间的一个数据(或是中间两个数据的平均数)是这组数据的中位数.3.众数:一组数据中出现次数最多的那个数据.4.方差★★★★☆典例1.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:①m =,n =;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.典例2.某中学为了解学生每学期诵读经典的情况,在全校范围内随机抽查了部分学生上一学期阅读量,学校将阅读量分成优秀、良好、较好、一般四个等级,绘制如下统计表:等级一般较好良好优秀阅读量/本3456频数12a144频率0.240.40b c请根据统计表中提供的信息,解答下列问题:(1)本次调查一共随机抽取了__________名学生;表中=a_________,b=_________,c=_________.(2)求所抽查学生阅读量的众数和平均数.(3)样本数据中优秀等级学生有4人,其中仅有1名男生.现从中任选派2名学生去参加读书分享会,请用树状图法或列表法求所选2名同学中有男生的概率典例3.为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080参加四个社团活动人数扇形统计图请根据以上信息,回答下列问题:(1)抽取的学生共有人,其中参加围棋社的有人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.中考统计与概率是基础题。
2016聚焦中考数学(山西省)习题课件+考点跟踪训练+自我检测-1.ppt
需要更完整的资源请到 新世纪教育网
解:(1)甲行走的速度:150÷5=30(米/分) (2)当t=35时,甲行走的路 程为:30×35=1050(米),乙行走的路程为:(35-5)×50=1500(米), ∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(1500-1050) =450米,∴甲到达图书馆还需时间;450÷30=15(分),∴35+15=50( 分),∴当s=0时,横轴上对应的时间为50.补画的图象如图①所示(横轴 上对应的时间为50)
<x≤450时,选择甲种收费方式较为合算
需要更完整的资源请到 新世纪教育网
一次函数相关应用题 【例1】 (2015·丽水)甲、乙两人匀速从同一地点到1500米处的图书 馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲 、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部 分如图所示.(1)求甲行走的速度; (2)在坐标系中,补画s关于t的函数图象的其余部分; (3)问甲、乙两人何时相距360米?
需要更完整的资源请到 新世纪教育网
解:由0.1x+6>0.12x,得x<300;由0.1x+6=0.12x,得x=300;由
0.1x+6<0.12x,得x>300,由此可知:当100≤x<300时,选择乙种收 费方式较合算;当x=300时,选择甲、乙两种收费方式都可以;当300
命题点1:二次函数的实际应用
(2013· 山西)如图是我省某地一座抛物线形拱桥,桥拱在垂直平面内,与 水平桥面相交于A,B两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m ,则DE的长为__________ 48m .
需要更完整的资源请到 新世纪教育网
中考数学考点专题精编:统计与概率
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学考点专题精编:统计与概率(2016湖州)21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表海选成绩x组别A组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为72 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【试题答案:解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补(2)B组人数所占的百分比是 ×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360× =72°;故答案为:15,72;(3)根据题意得:2000× =700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人. 】【时间:2016-7-18 17:42:24】(2016湖州)7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.【试题答案:解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率= = .故选C.】【时间:2016-7-18 17:42:24】(2016湖州)5.数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.4【试题答案:解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D. 】【时间:2016-7-18 17:42:24】(2016湖州)4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是()A.28×105B.2.8×106C.2.8×105D.0.28×105【试题答案:B】【时间:2016-7-18 17:42:24】(2016舟山)为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.【试题答案与分析:【分析】(1)根据“总体=样本容量÷所占比例”即可得出结论;(2)根据“样本容量=总体×所占比例”可求出参加C舞蹈类的学生人数,再由总体减去其他各样本容量算出参加E棋类的学生人数,求出其所占总体的比例,再根据比例关系即可得出结论;(3)根据条形统计图的特点,找出一条建议即可.【解答】解:(1)被调查学生的总人数为:12÷30%=40(人).(2)被调查参加C舞蹈类的学生人数为:40×10%=4(人);被调查参加E棋类的学生人数为:40﹣12﹣10﹣4﹣6=8(人);200名学生中参加棋类的学生人数为:200×=40(人).(3)因为参加A球类的学生人数最多,故建议学校增加球类课时量,希望学校多开展拓展性课程等.】【时间:2016-6-29 16:25:05】(2016舟山)一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.【试题答案与分析:【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.故答案为:.】【时间:2016-6-29 16:25:05】(2016舟山)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数 B.中位数 C.众数 D.方差【试题答案:B】【时间:2016-6-29 16:25:05】(2016舟山)13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76 D.77【试题答案:C】【时间:2016-6-29 16:25:05】(2016衢州)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【试题答案与分析:【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.】【时间:2016-6-24 13:03:57】(2016衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【试题答案与分析:【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.【解答】解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(0.52+0.45)12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.】【时间:2016-6-24 13:03:57】(2016衢州)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:5 6 7 8时间(小时)人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是 6.4 小时.【试题答案与分析:【分析】根据平均数的计算方法是求出所有数据的和,然后除以数据的总个数进行计算.【解答】解: =6.4.故答案为:6.4.】【时间:2016-6-24 13:03:57】(2016衢州)在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数 D.中位数【试题答案与分析:【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生参加决赛的成绩肯定是7名学生中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.】【时间:2016-6-24 13:03:57】(2016杭州)18.(8分)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2120辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【试题答案:】【时间:2016-6-21 9:17:20】(2016杭州)12. 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【试题答案:】【时间:2016-6-21 9:17:20】(2016杭州)4. 如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A. 14℃,14℃B. 15℃,15℃C. 14℃,15℃D. 15℃,14℃【试题答案:A】【时间:2016-6-21 9:17:20】(2016绍兴)18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会 A市七年级部分学生参加社会实践活动天数的频数分布表实践活动天数的条形统计图根据以上信息,解答下列问题:(l)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20 000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【试题答案:】【时间:2016-6-20 13:47:47】(2016绍兴)10. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是A.84B.336C.510D.1326【试题答案:C】【时间:2016-6-20 13:47:47】(2016绍兴)5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6.投掷一次,朝上一面的数字是偶数的概率为【试题答案:C】【时间:2016-6-20 13:47:47】(2016丽水)20.(本题8分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如下两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍.求“跳绳”项目的女生人数.(2)若一个考试项目的男、女生中平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.【试题答案与分析:】【时间:2016-6-20 8:34:25】(2016丽水)13.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同.现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概念是.【试题答案:】【时间:2016-6-20 8:34:25】(2016丽水)5.某校全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如右表所示,这下列说法正确的是()A.七年级的各概率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【试题答案:D】【时间:2016-6-20 8:34:25】(2016宁波)24.(本题10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
2016年山西省中考数学试卷(完整解析版)讲解
2016年山西省中考数学试卷总分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(2016·山西)61-的相反数是( A )A .61 B .-6 C .6 D .61- 【考点】相反数【分析】利用相反数和为0计算【解答】因为a+(-a )=0∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( ) A .x >5 B .x <3 C .-5<x <3 D .x <5【考点】解一元一次不等式组【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解⎩⎨⎧<>+②① 6205x x 由①得x > -5由②得x <3所以不等式组的解集是-5<x <3.3.(2016•山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某校篮球队员的身高【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C .【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )【考点】三视图【分析】根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定.【解答】从左面看第一列可看到3个小正方形,第二列有1个小正方形.故选A .5.(2016•山西)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米B .5.5×107千米C .55×106千米D .0.55×108千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:5500万=5.5×107. 故选:B .【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值.6.(2016·山西)下列运算正确的是 ( )A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 【考点】实数的运算,幂的乘方,同底数幂的除法,【分析】根据实数的运算可判断A .根据幂的乘方可判断B .根据同底数幂的除法可判断C .根据实数的运算可判断D【解答】A .49232=⎪⎭⎫ ⎝⎛-,故A 错误B .632273a a =)(,故B 错误C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x xC .xx 80006005000=+ D .60080005000-=x x 【考点】由实际问题抽象出分式方程.【分析】设甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克,根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程求出其解就可以得出结论.设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x+600,乙搬运8000kg 所用的时间为6008000+x 再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程。
第四专题《统计与概率》(共5课时)
中考数学第一轮基础知识复习第四专题《统计与概率》、(共5课时)第一课时统计知识1.平均数的计算公式___________________________.2. 加权平均数公式_____________________________.3. 中位数是___________________________,众数是__________________________.4.极差是__________________,方差的计算公式_____________________________.标准差的计算公式:_________________________.【典例精析】例1 我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?(2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内?(4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.例2 我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下:(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只?(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?【中考演练】1.班长对全班学生爱吃哪几种水果作了民意调查.那么最终决定买什么水果,最值得关注的应该是统计调查数据的 .(中位数,平均数,众数)2.在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分. 3.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 .4.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):请填写下表:5. 衡量一组数据波动大小的统计量是( )A .平均数B .众数C .中位数D .方差 6.某人今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是( )A .66B .67C .68D .787.甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S 甲2=2.4,•S 乙2=3.2,则射击稳定性是( ) A .甲高 B .乙高 C .两人一样多 D .不能确定8. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价是每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃的总收入分别是( ) A .200kg ,3000元 B .1900kg ,28 500元C .2000kg ,30 000元D .1850kg ,27 750元9.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:⑴ 问这个班级捐款总数是多少元? ⑵ 求这30名同学捐款的平均数.10.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.第二课时【考点精析】1. 总体是指_________________________,个体是指_____________________, 样本是指________________________,样本的个数叫做___________.2. 样本方差与标准差是衡量______________的量,其值越大,______越大.3. 频数是指________________________;频率是___________________________.4. 得到频数分布直方图的步骤_________________________________________.5. 数据的统计方法有____________________________________________. 【典例精析】例1:某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A B C D ,,,四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)求出D 级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C 级所在的扇形圆心角的度数;乒乓球 足球其他兴趣爱好图1图2(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?例 2 :从某市近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解答下列问题:(1)卖出面积为110~130㎡的商品房有套,并在右图中补全统计图;(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的%;(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?【中考演练】1.小明将2008年北京奥运会中国男子篮球队队员的年龄情况绘制成了如图(1)所示的条形统计图,则中国男子篮球队共有_____队员.(第1题) (第2题) (第3题)2.光明中学对图书室的书分成三类:A表示科学类,B表示科技类,C表示艺术类.•它们所占总数的百分比如图(2),该校有8 500册图书,则艺术类的书有____册.3.菱湖是全国著名的淡水鱼产地,•某养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼______条.4. 红星村今年对农田秋季播种作如图(3)的规划,且只种植这三种农作物,•则该村种植油菜占种植所有农作物的______%.5.如图,是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7 天中,日温差最大的一天是()A.5月1日 B.5月2日C.5月3日 D.5月5日6.在一个扇形统计图中,有一扇形的圆心角为90°,则此扇形占整个圆的()A.30% B.25% C.15% D.10%7.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多 D.无法确定哪一户多8.某市教育部门对今年参加中考学生的视力进行了一次抽样调查,得到如图所示的频数分布直方图.(每组数据含最小值,不含最大值)(1)抽查的样本容量是多少?(2)若视力在4.9以上(含4.9)均属正常,求视力正常的学生占被统计人数的百分比是多少?(3)根据图中提供的信息,谈谈你的感想.第三课时概率知识【知识要点】1.__________________叫确定事件,________________叫不确定事件(或随机事件),__________________叫做必然事件,______________________叫做不可能事件. 2._________________________叫频率,_________________________叫概率.3.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和________________求概率;(3)用_________________的方法估计一些随机事件发生的概率.【典例精析】例1 小明、小华用4张扑克牌(方块2,黑桃4,黑桃5,•梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,•抽出的牌不放回.(1)若小明恰好抽到了黑桃4.①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,•则小明负,你认为这个游戏是否公平?说明你的理由.例2:张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?图(1)图(2)【中考演练】1.小明周末到外婆家,走到十字路口处(如图),•记不清前面哪条路通往外婆家,那么他能一次选对路的概率是________.2.在中考体育达标跳绳项目测试中,1min 跳160次为达标,•小敏记录了他预测时,1min 跳的次数分别为145,155,140,162,164,•则他在该次预测中达标的概率是_________.3.有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是________.4.在一所4000人的学校随机调查了100人,其中有76人上学之前吃早饭,•在这所学校里随便问一个人,上学之前吃过早餐的概率是________.5. 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是( ) A .110B .35C .310D .156.下列事件你认为是必然事件的是( )A .中秋节的晚上总能看到圆圆的月亮;B .明天是晴天C .打开电视机,正在播广告;D .太阳总是从东方升起 7.下列说法正确的是( )A .“明天的降水概率为30%”是指明天下雨的可能性是30%B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖 8.图(2)是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图(1)中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?9.某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E•两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.电脑单价A 型:6000元;A 型:6000元;B 型:4000元;C 型:2500元;D 型:4000元;E 型:2000元;(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台,•恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.【课外练习】1.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是.2.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_______.3.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是.4.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.5.甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率B. 掷一枚正六面体的骰子,出现1点的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率6.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.157.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.12B.13C.16D.18第四课时第五课时解题答题规范训练2011年中考复习统计与概率测试题一、选择题(每小题2分,共60分)1.(2010湖南郴州)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差 B.中位数C.平均数D.众数2.(2010湖南郴州)某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计, 4月份与3月份相比,节电情况如下表:则4月份这.100...户节电量....的平均数、中位数、众数分别是()A. 35、35、30B. 25、30、20C. 36、35、30D. 36、30、30 3.(2010湖南怀化)某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为()A.2、2 B.2、3 C.2、1 D.3、14.(是()A.平均数B.众数C.中位数D.方差5.(2010湖北恩施自治州)某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A. 82,76B. 76,82C. 82,79D. 82,826.(2010北京)10名同学分成甲、乙两队进行篮球比赛,他们身高(单位:cm)如下表所示:设两队队员身高的平均数依次为x甲,x乙,身高的方差依次为22,s s乙甲,则下列关系中完全正确的是()A.x甲=x乙,22s s>乙甲B.x甲=x乙,22s s<乙甲C.x甲>x乙,22s s>乙甲D.x甲<x乙,22s s<乙甲7.(2010江西省南昌)某学生某月有零花钱a元,其支出情况如图所示,那么下列说法不正确...的是()A.该学生捐赠款为a6.0元 B.捐赠款所对应的圆心角为︒240C.捐赠款是购书款的2倍D.其他支出占10%8.(2010江苏常州)某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资。
2016年山西数学中考试卷+答案
2016年⼭西数学中考试卷+答案⼭西省2016年⾼中阶段教育学校招⽣统⼀考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)⼀、选择题(本⼤题共10个⼩题,每⼩题3分,共30分.在每个⼩题给出的四个选项中,只有⼀项符合题⽬要求)1.-的相反数是( )A. B.-6 C.6 D.-2.不等式组的解集是( )A.x>-5B.x<3C.-5D.x<53.以下问题不适合全⾯调查的是( )A.调查某班学⽣每周课前预习的时间B.调查某中学在职教师的⾝体健康状况C.调查全国中⼩学⽣课外阅读情况D.调查某校篮球队员的⾝⾼4.如图是由⼏个⼤⼩相同的⼩正⽅体搭成的⼏何体的俯视图,⼩正⽅形中的数字表⽰该位置⼩正⽅体的个数,则该⼏何体的左视图是( )5.我国计划在2020年左右发射⽕星探测卫星.据科学研究,⽕星距离地球的最近距离约为5 500万千⽶,这个数据⽤科学记数法可表⽰为( )A.5.5×106千⽶B.5.5×107千⽶C.55×106千⽶D.0.55×108千⽶6.下列运算正确的是( )A.-=-B.(3a2)3=9a6C.5-3÷5-5=D.-7.甲、⼄两个搬运⼯搬运某种货物,已知⼄⽐甲每⼩时多搬运600 kg,甲搬运5 000 kg所⽤时间与⼄搬运8 000 kg所⽤时间相等,求甲、⼄两⼈每⼩时分别搬运多少kg货物.设甲每⼩时搬运x kg货物,则可列⽅程为( )= B.=A.-C.=D.=-8.将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-39.如图,在?ABCD中,AB为☉O的直径,☉O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为( )A.πB.πC.πD.2π10.宽与长的⽐是-(约0.618)的矩形叫做黄⾦矩形.黄⾦矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以⽤这样的⽅法画出黄⾦矩形:作正⽅形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆⼼,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H.则图中下列矩形是黄⾦矩形的是( )A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH第Ⅱ卷(⾮选择题,共90分)⼆、填空题(本⼤题共5个⼩题,每⼩题3分,共15分)11.如图是利⽤⽹格画出的太原市地铁1,2,3号线路部分规划⽰意图.若建⽴适当的平⾯直⾓坐标系,表⽰双塔西街的点的坐标为(0,-1),表⽰桃园路的点的坐标为(-1,0),则表⽰太原⽕车站的点(正好在⽹格点上)的坐标是.12.已知点(m-1,y1),(m-3,y2)是反⽐例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”).13.如图是⼀组有规律的图案,它们是由边长相同的⼩正⽅形组成,其中部分⼩正⽅形涂有阴影,依此规律,第n个图案中有个涂有阴影的⼩正⽅形(⽤含有n的代数式表⽰).14.如图是⼀个能⾃由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,⾯积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘⾃由转动两次,当每次转盘停⽌后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.15.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为.三、解答题(本⼤题共8个⼩题,共75分.解答应写出⽂字说明、证明过程或演算步骤)16.(本题共2个⼩题,每⼩题5分,共10分)(1)计算:(-3)2--- ×+(-2)0;(2)先化简,再求值:---,其中x=-2.17.(本题7分)解⽅程:2(x-3)2=x2-9.18.(本题8分)每年5⽉的第⼆周为“职业教育活动周”,今年我省开展了以“弘扬⼯匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师⽣并邀请学⽣家长和社区居民参加“职教体验观摩”活动,相关职业技术⼈员进⾏了现场演⽰,活动后该校教务处随机抽取了部分学⽣进⾏调查:“你最感兴趣的⼀种职业技能是什么?”并对此进⾏了统计,绘制了如图所⽰的统计图(均不完整).请解答以下问题:(1)补全条形统计图和扇形统计图;(2)若该校共有1 800名学⽣,请估计该校对“⼯业设计”最感兴趣的学⽣有多少⼈;(3)要从这些被调查的学⽣中,随机抽取⼀⼈进⾏访谈,那么正好抽到对“机电维修”最感兴趣的学⽣的概率是.19.(本题7分)阿基⽶德折弦定理图1证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.图2(2)填空:如图3,已知等边△ABC内接于☉O,AB=2,D为上⼀点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.图320.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售⽅案(客户只能选择其中⼀种⽅案):⽅案A:每千克5.8元,由基地免费送货.⽅案B:每千克5元,客户需⽀付运费2 000元.(1)请分别写出按⽅案A,⽅案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选⽤⽅案A⽐⽅案B付款少;(3)某⽔果批发商计划⽤20 000元,选⽤这两种⽅案中的⼀种,购买尽可能多的这种苹果,请直接..写出他应选择哪种⽅案.21.(本题10分)太阳能光伏发电因其清洁、安全、便利、⾼效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板⽀撑架的截⾯图,其中的粗线表⽰⽀撑⾓钢,太阳能电池板与⽀撑⾓钢AB的长度相同,均为300 cm,AB的倾斜⾓为30°,BE=CA=50 cm,⽀撑⾓钢CD,EF与底座地基台⾯接触点分别为D,F,CD垂直于地⾯,FE⊥AB于点E.两个底座地基⾼度相同(即点D,F到地⾯的垂直距离相同),均为30 cm,点A到地⾯的垂直距离为50 cm,求⽀撑⾓钢CD和EF的长度各是多少cm(结果保留根号).22.(本题12分)综合与实践问题情境在综合与实践课上,⽼师让同学们以“菱形纸⽚的剪拼”为主题开展数学活动.如图1,将⼀张菱形纸⽚ABCD(∠BAD>90°)沿对⾓线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中⼼,按逆时针⽅向旋转⾓α,使α=∠BAC,得到如图2所⽰的△AC'D,分别延长BC和DC'交于点E,则四边形ACEC'的形状是;(2)创新⼩组将图1中的△ACD以A为旋转中⼼,按逆时针⽅向旋转⾓α,使α=2∠BAC,得到如图3所⽰的△AC'D,连接DB,C'C,得到四边形BCC'D,发现它是矩形.请你证明这个结论;实践探究(3)缜密⼩组在创新⼩组发现结论的基础上,量得图3中BC=13 cm,AC=10 cm,然后提出⼀个问题:将△AC'D沿着射线DB⽅向平移a cm,得到△A'C″D',连接BD',CC″,使四边形BCC″D'恰好为正⽅形,求a的值.请你解答此问题;(4)请你参照以上操作,将图1中的△ACD在同⼀平⾯内进⾏⼀次平移,得到△A'C'D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图⽅法,写出你发现的结论,不必证明.图423.(本题14分)综合与探究如图,在平⾯直⾓坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l 经过坐标原点O,与抛物线的⼀个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8),(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE,若存在,请直接写出....点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的⼀个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m 为何值时,△OPQ是等腰三⾓形.答案全解全析:⼀、选择题1.A 只有符号不同的两个数互为相反数,所以-的相反数是--=.评析相反数、倒数、绝对值等是⼭西中考数学第1题通常考查的内容,所以这些知识简单却很重要.2.C 解不等式x+5>0得x>-5,解不等式2x<6得x<3,所以不等式组的解集为-53.故选C.评析解不等式(组)是中考必考内容之⼀,解这类题的关键是正确运⽤不等式的性质准确求出不等式(组)的解集.3.C A.班级学⽣⼈数较少,适合全⾯调查;B.某中学在职教师⾝体健康状况适合全⾯调查;C.全国中⼩学⽣课外阅读情况不适合全⾯调查;D.某校篮球队员的⾝⾼适合全⾯调查.故选C.4.A 由左视图的定义知选A.5.B 5 500万千⽶=55 000 000千⽶=5.5×107千⽶,故选B.6.D -=,故A选项不正确;(3a2)3=27a6,故B选项不正确;5-3÷5-5=25,故C选项不正确;=2-5=-3,故D选项正确.故选D.评析本题考查了实数的运算,掌握幂的乘⽅、同底数幂的运算法则,⼆次根式的运算是解题的关键.7.B 甲每⼩时搬运x kg货物,则⼄每⼩时搬运(x+600)kg货物,根据时间相等可列⽅程为=,故选B.评析本题的关键是找出等量关系,并把其中的量⽤含有未知数的代数式表⽰出来.8.D y=x2-4x-4=(x-2)2-8,抛物线的顶点坐标为(2,-8),平移后的顶点坐标为(-1,-3),根据顶点式得平移后抛物线的表达式是y=(x+1)2-3,故选D.评析先求顶点坐标,再根据平移确定新顶点坐标,最后由顶点式求出函数关系式,这是解决此类题的⽅法.9.C 连接EO,FO,∵CD与☉O相切于点E,∴EO⊥CD,∵CD∥AB,∴∠AOE=90°,∵∠A=∠C=60°,AO=OF,∴∠AOF=60°,∴∠EOF=90°-60°=30°,∵AB为☉O的直径,AB=12,∴OE=6.∴的长为π=π,故选C.评析本题考查了平⾏四边形、切线和圆的有关知识,求弧长的关键是求出圆⼼⾓和半径.10.D A.=,不符合.B.=,不符合.C.设正⽅形ABCD的边长为a,则EF=a,FG==,∴==,不符合.D.由C可得GC=a-,则=-=-,符合,故选D.⼆、填空题11.答案(3,0)解析先通过双塔西街对应的点的坐标(0,-1)和桃园路对应的点的坐标(-1,0)确定坐标轴,再根据⽹格中表⽰太原⽕车站的点的位置确定出其坐标是(3,0).评析⽤⽹格图确定坐标的关键是要正确理解坐标系和点的坐标的意义.12.答案>解析反⽐例函数y=中m<0,所以在每⼀个象限内,y随x的增⼤⽽增⼤,∵m-1<0,m-3<0,m-1>m-3,∴y1>y2.评析本题考查反⽐例函数的性质,属容易题.13.答案(4n+1)解析第1个图案,阴影正⽅形有5=(4×1+1)个,第2个图案,阴影正⽅形有9=(4×2+1)个,第3个图案,阴影正⽅形有13=(4×3+1)个,……故第n个图案,阴影正⽅形有(4n+1)个.评析本题考查学⽣探索规律的能⼒.14.答案解析画树状图如图:∴共有9种等可能的结果,都是奇数有4种结果,∴P(都是奇数)=.评析本题考查概率问题,正确地画出树状图或列出表格是解题的关键.15.答案3-解析∵CD⊥AB,CD=AB=4,C为AB的中点,∴AC=AB=2,在Rt△DAC中,AD2=AC2+CD2,可得AD=2.∵AE平分∠DAB,∴∠EAB=∠DAE.∵EH⊥CD,∴EH∥AB,∴∠EAB=∠AEH=∠EAH,∴AH=EH,易证四边形BCGE是矩形,∴CB=GE=2,设HG=x,则HE=HA=x+2,∵HG∥AC,∴△DHG∽△DAC,∴=,即-=,解得x==3-.评析本题是⼀道⼏何综合题,考查学⽣综合应⽤知识的能⼒,解题的关键是把⽐较复杂的图形分成等腰三⾓形,矩形和直⾓三⾓形,运⽤其性质找出未知量与已知量的关系,⽤⽅程的思想解决问题.三、解答题16.解析(1)原式=9-5-4+1=1.(2)原式=---=-=.当x=-2时,原式==--=2.17.解析解法⼀:原⽅程可化为2(x-3)2=(x+3)(x-3), 2(x-3)2-(x+3)(x-3)=0,(x-3)[2(x-3)-(x+3)]=0,(x-3)(x-9)=0,解得x1=3,x2=9.解法⼆:原⽅程可化为x2-12x+27=0.a=1,b=-12,c=27.∵b2-4ac=(-12)2-4×1×27=36>0,∴x===6±3.因此,原⽅程的根为x1=3,x2=9.18.解析(1)如图:(2)1 800×30%=540(⼈).∴估计该校对“⼯业设计”最感兴趣的学⽣⼈数是540⼈.(3)0.13或或.19.解析(1)证明:⼜∵∠A=∠C,∴△MBA≌△MGC.∴MB=MG.⼜∵MD⊥BC,∴BD=GD.∴CD=CG+GD=AB+BD.(2)2+2.评析本题把圆的知识放到数学⽂化背景上考查,既普及了数学⽂化⼜考查了圆的知识,还有助于提⾼学⽣的阅读能⼒.20.解析(1)⽅案A:函数表达式为y=5.8x.⽅案B:函数表达式为y=5x+2 000.(2)由题意,得5.8x<5x+2 000.解不等式,得x<2 500.∴当购买量x的取值范围为2 000≤x<2 500时,选⽤⽅案A⽐⽅案B付款少.(3)他应选择⽅案B.评析本题考查了⼀次函数的应⽤,根据题意准确地建⽴数学模型是解决问题的关键.21.解析如图,设G为射线AG与线段CD的交点.则∠CAG=30°.在Rt△ACG中,CG=AC·sin 30°=50×=25(cm).由题意,得GD=50-30=20(cm),∴CD=CG+GD=25+20=45(cm).连接FD并延长与BA的延长线交于点H.由题意,得∠H=30°.在Rt△CDH中,=2CD=90(cm),CH=°∴EH=EC+CH=AB-BE-AC+CH=300-50-50+90=290(cm).在Rt△EFH中,EF=EH·tan 30°=290×=(cm).答:⽀撑⾓钢CD的长为45 cm,EF的长为 cm.评析把解直⾓三⾓形问题与现代绿⾊能源的建设结合在⼀起,是数学应⽤的⼀个⽅向,引导了学⽣在学习中要多关注现实⽣活.22.解析(1)菱形.(2)证明:如图,作AE⊥CC'于点E.由旋转得AC'=AC,∴∠CAE=∠C'AE=α=∠BAC.由题意知BA=BC,∴∠BCA=∠BAC.∴∠CAE=∠BCA,∴AE∥BC.同理,AE∥DC',∴BC∥DC'.⼜∵BC=DC',∴四边形BCC'D是平⾏四边形.⼜∵AE∥BC,∠CEA=90°,∴∠BCC'=180°-∠CEA=90°,∴四边形BCC'D是矩形.(3)过点B作BF⊥AC,垂⾜为F.∵BA=BC,∴CF=AF=AC=×10=5(cm).在Rt△BCF中,BF=-=-=12(cm).在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF.∴=,即=,解得CE=.当四边形BCC″D'恰好为正⽅形时,分两种情况:①点C″在边C'C上,a=C'C-13=-13=.②点C″在C'C的延长线上,a=C'C+13=+13=.综上所述,a的值为或.(4)答案不唯⼀.例:如图.平移及构图⽅法:将△ACD沿着射线CA⽅向平移,平移距离为AC的长度,得到△A'C'D,连接A'B,DC.结论:四边形A'BCD是平⾏四边形.23.解析(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴----解得-∴抛物线的函数表达式为y=x2-3x-8.∵y=x2-3x-8=(x-3)2-,∴抛物线的对称轴为直线x=3.⼜∵抛物线与x轴交于A,B两点,点A的坐标为(-2,0),∴点B的坐标为(8,0).设直线l的函数表达式为y=kx(k≠0).∵点D(6,-8)在直线l上,∴6k=-8,解得k=-.∴直线l的函数表达式为y=-x.∵点E为直线l和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-×3=-4,即点E的坐标为(3,-4).(2)抛物线上存在点F,使△FOE≌△FCE.点F的坐标为(3-,-4)或(3+,-4).(3)解法⼀:分两种情况:①当OP=OQ时,△OPQ是等腰三⾓形.∵点E的坐标为(3,-4),∴OE==5.过点E作直线ME∥PB,交y轴于点M,交x轴于点H,则=.∴OM=OE=5.∴点M的坐标为(0,-5). 设直线ME的函数表达式为y=k1x-5(k1≠0).∴3k1-5=-4,解得k1=.∴ME的函数表达式为y=x-5.令y=0,得x-5=0,解得x=15.∴点H的坐标为(15,0).⼜∵MH∥PB,∴=,即-=,∴m=-.②当QO=QP时,△OPQ是等腰三⾓形.∵当x=0时,y=x2-3x-8=-8,∴点C的坐标为(0,-8).∴CE=-=5.∴OE=CE.∴∠1=∠2.⼜∵QO=QP,∴∠1=∠3.∴∠2=∠3,∴CE∥PB.设直线CE交x轴于点N,其函数表达式为y=k2x-8(k2≠0),∴3k2-8=-4,解得k2=.∴CE的函数表达式为y=x-8.令y=0,得x-8=0.∴x=6.∴点N的坐标为(6,0).∵CN∥PB,∴=,∴-=,解得m=-.综上所述,当m的值为-或-时,△OPQ是等腰三⾓形.解法⼆:设抛物线的对称轴交直线PB于点M,与x轴交于点H.分两种情况: ①当QO=QP时,△OPQ为等腰三⾓形.当x=0时,y=x2-3x-8=-8,∴点C的坐标为(0,-8).∵点E的坐标为(3,-4),∴OE==5,CE=-=5,∴OE=CE,∴∠1=∠2.∴∠1=∠3,∴∠2=∠3,∴PB∥CE.⼜∵HM∥y轴,∴四边形PMEC是平⾏四边形.∴EM=CP=-8-m.∴HM=HE+EM=4+(-8-m)=-4-m,BH=8-3=5.∵HM∥y轴,∴△BHM∽△BOP,∴=,=,∴---∴m=-.②当OP=OQ时,△OPQ为等腰三⾓形.∵EH∥y轴,∴△OPQ∽△EMQ,∴=,∴EQ=EM.∴EM=EQ=OE-OQ=OE-OP=5-(-m)=5+m.∴HM=4-(5+m)=-1-m.∵EH∥y轴,∴△BHM∽△BOP.=,∴=.∴---∴m=-.∴当m的值为-或-时,△OPQ为等腰三⾓形.评析本题考查学⽣的综合探究能⼒,通过对存在性和结论开放性问题的探究,考查学⽣综合运⽤所学知识的能⼒.第(3)问考查学⽣运⽤分类讨论的思想⽅法解决问题的能⼒.。
中考数学复习讲义课件 专题4 统计与概率
男 3,男 2 女,男 2
男 3 男 1,男 3 男 2,男 3
女3,女
由表可知,共有 12 种等可能的结果,其中恰好是一男一女的结果有 6 种,
∴抽取的两位学生恰好是一男一女的概率为162=12.
5.(2021·宁夏)2021 年,“碳中和、碳达峰”成为高频热词.为了解学生对“碳 中和、碳达峰”知识的知晓情况,某校团委随机对该校九年级部分学生进行了 问卷调查,调查结果共分成四个类别:A 表示“从未听说过”,B 表示“不太 了解”,C 表示“比较了解”,D 表示“非常了解”.根据调查统计结果,绘 制成如下两种不完整的统计图.请结合统计图,回答下列问题.
4.(2021·张家界)为了积极响应中共中央文明办关于“文明用餐”的倡议, 某校开展了“你的家庭使用公筷了吗?”的调查活动,并随机抽取了部分 学生,对他们家庭用餐使用公筷情况进行统计,统计分类为以下四种:A(完 全使用)、B(多数时间使用)、C(偶尔使用)、D(完全不使用),将数据进行整 理后,绘制了两幅不完整的统计图.
(2)请将频数分布直方图补充完整; 解:补全频数分布直方图如图所示.
(3)抽取的 200 名学生中竞赛成绩的中位数落在的组别是 C 组;
(4)若该校共有 1000 名学生,请估计本次党史知识竞赛成绩为“优秀”的学 生人数.
解:1000×(0.25+0.3)=1000×0.55=550(人). 答:本次党史知识竞赛成绩为“优秀”的学生约有 550 人.
[分析] (1)由频率之和等于 1 可得 b 的值,再由第一组频数及频率求出被调 查的总人数,根据频数=频率×总人数求解可得 a 的值; (2)根据以上所求数据即可将统计图补充完整; (3)利用样本估计总体的知识求解即可求得答案; (4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选 两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
2016年山西省中考数学试题及答案
2016年山西省中考数学试题2016.1.28 一.选择题(每小题3分,共30分)1.Cos30°的倒数是( ) A .23B .21C .2D 2.在⊙O 中,半径为6,圆心O 在坐标原点上,点P 的坐标为(4,5),则点P 与⊙O 的位置关系是( ).A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定3.下列各组中的四条线段是成比例线段 ( ) A .4cm 、1cm 、2cm 、1cm B .1cm 、2cm 、3cm 、4cm C .25cm 、35cm 、45cm 、55cm D .1cm 、2cm 、20cm 、40cm4.盒子里放有三张分别写有整式x+y,x-y ,2的卡片,从中随机抽取两张,把两张卡片上的整式分别做为分子和分母 ,组成的代数式是分式的概率是 ( ) A .13B .23C . 29D .565. 一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( )A .38cm B .316cm C .3cm D .34cm6.若α=400,则α的正切值h 的范围是( )A.21<h <22 B.33<h <23C.1<h <3D.33<h <732.13= 7.抛物线222y x x =-+-经过平移得到2y x =-,平移方法是 ( )A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位8.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A 、B 的距离,他们设计了如图所示的测量方案:从树A 沿着垂直于AB 的方向走到E,再从E 沿着垂直于AE 的方向走到F,C 为AE 上一点,其中3位同学分别测得三组数据:(1) AC,∠ACB (2) AD, ∠F (3) CD,∠ACB,∠ADB 其中能根据所测数据求得A 、B 两树距离的有 ( )A .0组B .一组C .二组D .三组9.如图延长Rt △ABC 斜边AB 到D 点,使BD =AB ,连结CD ,若tan ∠BCD =31,则tanA =( )第8题图 第4题图CDBA第9题图第10题图A.23B.1C.31D.32 10. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二. 填空题(每小题4分,共24分)11.函数y =x 的取值范围是 . 12.⊙O 的直径为10 cm,弦AB 的弦心距为3cm,则以弦AB 为一边的⊙O 内接矩形的周长为 cm.13.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sin θ的值 .(第13题图) (第14题图) (第15题图) 14.如图,在矩形ABCD 中,65=BC AB ,点E 在BC 上,点F 在CD 上,且EC =61BC ,FC =53CD ,FG ⊥AE 于G ,则AG :GE= 。
山西中考2007到2016年数学十年试题汇编之统计与概率
2、 (2009 年)6.李师傅随机抽查了本单位今年四月份里 6 天的日用水量(单 位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用 水总量为 吨. 3、 (2010 年)13. 随意地抛一粒豆子,恰好落在图中的方格 中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方 格中的概率是 。 4、 (2010 年)16. 哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上 分别标有数字 1、2、3。将标有数字的一面朝下,哥哥从中任意抽取一张,记 下数字后放回洗匀, 然后弟弟从中任意抽取一张, 计算抽得的两个数字 之和, 如果和为奇数, 则弟弟胜; 和为偶数, 则哥哥胜。 该游戏对双方 (填“公 平”或“不公平”)。 5、 (2012 年)15.某市民政 部门举行“即开式福利彩票”销售活动,发行彩票 10 万张(每张彩票 2 元) ,在这些彩票中,设置如下奖项: 奖金(元) 10000 5000 1000 500 100 50 . 4 20 40 100 200 数量(个) 1 如果花 2 元购买 1 张彩票,那么所得奖金不少于 1000 元的概率是 6、 (2013 年)14.四川雅安发生地震后,某校九(1)
组数据比甲组数据稳定 2、 (2010 年)7. 在一个不透明的袋中,装有若干个除颜色不同外其余都相同 的球, 如果袋中有 3 个红球且摸到红球的概率为 A、15 个 B、12 个 C、9 个
C、3 个 。
1 , 那么袋中球的总个数为 ( ) 4 7、 (2014 年)7.在大量ቤተ መጻሕፍቲ ባይዱ复试验中,关于随机事件发生的频率与概率,下列
1
B. 3
1
C. 2
1
D. 3 )
2
5、 (2013 年)4.某班实行每周量化考核制学期末对考核成绩进行统计,结果
【中考-章节复习二十七】 第四章 北师大九年级数学下册统计与概率测试题
第四章《统计与概率》测试题一、精心选一选,相信自己的判断!(每小题3分,共30分)A .12B .13C .14D .152、10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是( ) A .9.79 B .9.78 C .9.77 D .9.763、某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图1所示,其中数据不在分点上,对图中提供的信息作出 如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~ 100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%; (3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中 位数落在69.5~79.5分段内,其中正确的判断有( ) A .4个 B .3个 C .2个 D .1个4、如图2是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是( A .数据75落在第2小组 B .第4小组的频率为0.1 C .心跳为每分钟75次的人数占该班体检人数的112D .数据75一定是中位数5、在转盘游戏的活动中,小颖根据试验数据绘制出如图3所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是( ) A .22.5元B .42.5元C .2563元 D .以上都不对6、某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相 同,从中任选一盒,不含辣椒的概率是( ) A .78B .67C .17D .187、要了解全市中学生身高在某一范围内学生所占的比例,需知道相应的( ) A.平均数 B.方差 C.众数 D.频率分布 8、某班在一次物理测试中的成绩为:100分7人,90分14人,80分17人,70分8人, 60分2人,50分2人.则该班此次测试的平均成绩为( ) A.82分 B.62分 C.64分 D.75分 9、小明在初三第一学期的数学成绩分别为:测验一得89分,测验二得92分,测验三得85分,期中考试得90分,期末考试得87分.如果按照平时期中期末的权重分别为10%,30%与60%,那么小明该学期的总评成绩为 ( ) (A)86 (B)87 (C)88 (D)8910、 从写有编号1~100的卡片中,抽出一张卡片,卡片上的数字既是3的倍数又是4的倍数的概率是( )。
2016河南省聚焦中考数学复习课件:第四章 统计与概率自我测试
1 解:(1)∵4 件同型号的产品中,有 1 件不合格品,∴P(不合格品)= 4
(2)
共有 12 种情况,抽到的都是合格品的情况有 6 种,
6 1 P(抽到的都是合格品)= = 12 2 (3)∵大量重复试验后发现 ,抽到合格品的频率稳定在 0.95,∴抽到合格品的概率等于 x+3 0.95,∴ =0.95,解得:x=16,经检验,x=16 是原方程的解且符合题意 x+4
二、填空题(每小题 5 分,共 25 分) 6.(2015·武汉)一组数据 2,3,6,8,11 的平均数是__6__. 7.(2015·广西)小明同学参加“献爱心”活动, 买了 2 元一注的爱心福利彩票 5 注,则 “小明中奖”的事件为__随机__事件(填“必然”或“不可能”或“随机”). 8.(2015·株洲)某大学自主招生考试只考数学和物理. 计算综合得分时,按数学占 60%, 物理占 40%计算. 已知孔明数学得分为 95 分, 综合得分为 93 分, 那么孔明物理得分是__90__ 分. 9.(2015·南通)甲乙两人 8 次射击的成绩如图所示 (单位:环)根据图中的信息判断,这 8 次射击中成绩比较稳定的是__甲__.(填“甲”或“乙”)
12.(12 分)(2015·茂名)在一个不透明的袋中装有 2 个黄球,3 个黑球和 5 个红球,它们 除颜色外其他都相同. (1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率; (2)现在再将若干个红球放入袋中,与原来的 10 个球均匀混合在一起,使从袋中随机摸 2 出一个球是红球的概率是 ,请求出后来放入袋中的红球的个数. 3 2 1 解:(1)∵共 10 个球,有 2 个黄球,∴P(黄球)= = (2)设有 x 个红球,根据题意得: 10 5 5+x 2 = ,解得:x=5.故后来放入袋中的红球有 5 个 10+x 3
中考数学总复习 阶段测评(八)统计与概率试题
阶段测评(八) 统计与概率(时间:120分钟 总分:120分)一、选择题(每题4分,共40分)1.(2016山西中考)以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高2.(2016广东中考)某公司的拓展部有五个员工,他们每月的工资分别是3 000元,4 000元,5 000元,7 000元和10 000元,那么他们工资的中位数为( B )A .4 000元B .5 000元C .7 000元D .10 000元3.(2015北京中考)某市6月份日平均气温统计图如图所示,则在日平均气温这组数据中,众数和中位数分别是( C )A .21,21B .21,21.5C .21,22D .22,224.(2015武汉中考)下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( D )A .4时气温最低B .6时气温为24℃C .14时气温最高D .气温是30℃的为16时5.(2016乐山中考)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6,同时投掷这两枚骰子,则朝上一面所标的数字结果之和为9的概率是( C )A .13B .16C .19D .1126.(2016茂名中考)下列事件中,是必然事件的是( B )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片7.(2016岳阳中考)某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是( B )A .11,10B .11,11C .10,9D .10,118.(2016梅州中考)若一组数据3,x ,4,5,6的众数是3,则这组数据的中位数为( B )A .3B .4C .5D .69.(2016随州中考)为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( D )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.(2016随州中考)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是( D )A .七年级的合格率最高B .八年级的学生人数为262名C .八年级的合格率高于全校的合格率D .九年级的合格人数最少二、填空题(每题4分,共16分)11.(2016福州中考)已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是__12__.12.(2016成都中考)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x(单位:分)及方差s 2如下表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是__丙__组.13.(2016潍坊中考)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如下表:将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是__77.4__分.14.(2016聊城中考)如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是__15__.三、解答题(每题8分,共64分)15.(2015长沙中考)中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给的信息,解答下列问题: (1)a =__60__,b =__0.15__; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在__80≤x<90__分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3 000名学生中,成绩为“优”等的大约有多少人?解:(2)如图;(4)3 000×0.4=1 200(人).16.(2015潍坊中考)某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数,设每名学生的阅读本数为n ,并按以下规定分为四档:当n <3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n ≥8时,为“优秀”.将调查结果统计后绘制成如下不完整的统计图表:请根据以上信息回答下列问题: (1)分别求出统计表中的x 、y 的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取2名学生中有1名阅读本数为9的概率.解:(1)x =11,y =3;(2)3+150=8%,400×8%=32(人);(3)P =12.17.(2015兰州中考)为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)请用树状图列举出三次传球的所有可能情况; (2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大? 解:(1)图略;(2)P(三次传球后,球回到甲脚下)=14;(3)P(三次传球后,球回到甲脚下)=14;P(三次传球后,球回到乙脚下)=38,因此球传到乙脚下的概率大.18.根据某网站调查,2016年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他五类,根据调查的部分相关数据,绘制的统计图表如下:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人;(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或画树状图的方法求抽取的两人恰好是甲和乙的概率.解:(1)补全条形统计图如图;(2)根据图表知,关心环保的人数为880×10%=88(万人);(3)画图略,四人中抽取两人共有12种结果,恰好是甲和乙的有2种结果,∴P =212=16.19.(2016南充中考)某校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另外2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的慨率;(2)分别从获得美术奖,音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的慨率.解:(1)获奖男生3人,女生4人,男女生共7人. 参加颁奖学生是男生的概率P =37;(2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表法列出所有可能结果.女∵共有12种等可能出现的结果,其中一男一女的有6种,∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,刚好是一男生一女生的概率P =612=12.20.(2016益阳中考)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了如图频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a =________,b =________,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人? (3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?解:(1)a =0.3,b =4; 补全条形统计图如图所示; (2)180×(0.35+0.20)=99(人); (3)画树状图如下:∴P =312=14.21.(2016郴州中考)在中央文明办对2015年全国文明城市测评中,郴州市在全省五个全国文明城市提名城市中排名第一,成绩的取得主要得力于领导高度重视、整改措施有效、市民积极参与及市民文明素质进一步提高.郴州市某中学数学课外兴趣小组随机走访了部分市民,对A(领导高度重视)、B(整改措施有效)、C(市民积极参与)、D(市民文明素质进一步提高)四个类别进行满意度调查(只勾选最满意的一项),并将调查结果制作了如下两幅不完整的统计图.(1)这次调查共走访市民________人,∠α=________°; (2)请补全条形统计图;(3)结合上面的调查统计结果,请你对郴州市今后的文明城市创建工作提出好的建议. 解:(1)1 000;54; (2)补全图如图所示;(3)整改措施要更有效些,市民的文明素质还要进一步提高等.(只要写得合理即可)22.(2016常德中考)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字) (3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用画树状图或列表法求恰好选中甲、乙两人的概率是多少?解:(1)24 886例;(2)24 886×5 106≈1.27(亿元); (3)(5 106-2 070)÷2 070≈147%; (4)画树状图如下:甲乙丙丁 乙甲丙丁丙甲乙丁丁甲乙丙共有12种等可能的结果,其中选中甲、乙两人的结果数为2,∴恰好选甲、乙两人的概率为P =212=16.。
山西省中考数学模拟考试质量分析与评价报告
山西省中考考前适应性模拟训练试题数学学科质量监测分析与评价报告一、前言1.试题介绍以及试题意义和考查目的《山西省2016 年中考考前适应性训练数学试题》在山西省中考“六个维度” 精神的指导下,与往年试题相比,在试题题型、内容及考查方式上都有一些变化和亮点,为教师和学生下一阶段的中考复习提供了新的思路和方向。
具体来说有以下几点:第一,试题增加了开放性、探究性试题的比例,如第21、23、24 题,问题开放,方法多样,更加注重对学生不同的数学思维品质的考查。
第二,试题重视对阅读能力的考查,整份数学试卷的阅读量与往年相比有所增加,尤其是第18 题、22 题,有关试题内容的文字材料增多,对学生阅读理解的能力要求提高。
第三,试题关注对数学学科素养的考查,如第6 题通过对某一数学思想在数学中的运用过程的描述,考查学生对数学思想的理解;第23 题则是考查学生在实际解题过程中用数学思想方法思考、分析的能力。
第四,试题体现PISA 理念,如第10、13、20、22 题,都是以实际生活中的真实情境为背景,考查学生用数学知识解决实际生活中问题的能力。
第五,试题的考查方式有所改变,如第24 题,以“数学活动课”为背景,以“折纸中的数学”为内容,鼓励学生动手操作、大胆猜想,引导教师进一步改变课堂教学理念。
2.命题依据及考试内容命题依据:以《义务教育数学课程标准(2011 年版)》为依据考试内容:以《课程标准》中的“内容标准”所规定的义务教育阶段第三学段(7~9 年级)四个领域,即数与代数、空间与图形、统计与概率、综合与实践(课题学习)的内容为依据。
二、试卷题型介绍试题题数与分值与往年相比没有变化,题型有所变化,第18 题阅读题与作图题相结合,压轴题24 题变为几何背景。
三、适应性训练的整体情况1.试题均分及难度试题难题比例较少,中档题比例较大。
2.样本特征数从以上数据来看,试题的信度高,区分度好,能够真实准确地反映学生的学习水平,有较高的参考价值。
山西省中考数学真题汇编 统计与概率
山西省中考数学真题汇编统计与概率一、单选题1.(2017·山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【答案】D【解析】【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好;2.(2018·山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【答案】C【解析】【解答】首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故答案为:C.【分析】将这九个市的2018年1~3月份邮政快递业务量按从小到大排列,找出处于最中间位置的数据从而得出答案。
3.(2018·山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】【解答】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为4 9,故答案为:A.【分析】根据题意画出树状图,由图知:共有9种等可能结果,其中两次都摸到黄球的有4种结果,根据概率公式即可算出两次都摸到黄球的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 统计与概率自我测试
一、选择题(每小题6分,共30分)
1.(2015·徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( A ) A .至少有1个球是黑球 B .至少有1个球是白球 C .至少有2个球是黑球 D .至少有2个球是白球 2.(2015·山西百校联考四)下列说法正确的是( B )
A .为了了解山西省中学生的心理健康情况,应采用全面调查的方式
B .一组数据5,6,7,6,6,8,10的众数和中位数都是6
C .一个游戏的中奖率是0.1,则做10次这样的游戏一定会中奖
D .若甲组数据的方差S 甲2=0.05,乙组数据的方差S 乙2=0.1,则乙组数据比甲组数据稳定
3.(2015·自贡)如图,随机闭合开关S 1,S 2,S 3中的两个,则能让灯泡⊗发光的概率是( C ) A .12 B .13 C .23 D .14
4.(2015·株洲)从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b)在函数y =12x 的
图象上的概率是( D ) A .12 B .13 C .14 D .16
5.(2015·福州)若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值不可能是( C ) A .0 B .2.5 C .3 D .5
二、填空题(每小题6分,共30分) 6.(2015·武汉)一组数据2,3,6,8,11的平均数是__6__. 7.(2015·广西)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为__随机__事件(填“必然”或“不可能”或“随机”). 8.(2015·株洲)某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__90__分.
9.(2015·南通)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是__甲__.(填“甲”或“乙”)
10.(2015·成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽
取一张,记卡片上的数字为a ,则使关于x 的不等式组⎩⎪⎨⎪⎧4x ≥3(x +1),2x -x -12<a 有解的概率为__4
9__. 三、解答题(共40分) 11.(10分)(2015·厦门)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.
,谁将被录取?
解:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取
12.(10分)(2015·茂名)在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.
(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;
(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是2
3
,请求出后来放入袋中的红球的个数.
解:(1)∵共10个球,有2个黄球,∴P(黄球)=210=1
5 (2)设有x 个红球,根据题意得:
5+x 10+x =2
3
,解得:x =5.故后来放入袋中的红球有5个
13.(10分)(2015·山西百校联考三)为了增强学生的国防意识,发挥中学生在国防后备建设中的骨干力量,某中学准备开展“国防教育进校园”系列活动.现有15名学生志愿者准备参加该活动的组织协调工作,其中男生6人,女生9人.
(1)若从这15人中随机选取一人作为联络员,求选到女生的概率;
(2)若活动中的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为1(A ),2,3,4的扑克牌数字朝下洗匀后放于桌面,甲、乙两人依次从中各取1张(不放回),若两张牌的牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
解:(1)∵现有15名学生志愿者准备参加活动组织协调工作,其中男生6人,女生9人,∴从这15人中随机选取一人作为联络员,选到女生的概率为915=3
5
(2)画树状图为:
牌面数字之和共有12种情况,且可能性相同,其中和为偶数有4种,奇数有8种,∴得到偶数概率为412=13,得奇数概率为812=2
3,∴甲参加的概率<乙参加的概率,∴这个游戏不公
平
14.(10分)(2015·山西中考适应性训练)某学习小组想了解某县每个居民一天的平均健身时间,准备采用以下调查方式中的一种进行调查:
①从一个乡镇随机选取400名居民作为调查对象;②从该县体育活动中心随机选取400名锻炼身体的居民作为调查对象;③从该县公安局户籍管理处随机抽取400名城乡居民作为调查对象.
(1)在上述调查方式中,你认为最合理的是__③__(填序号);
(2)该活动小组采用一种调查方式进行了调查,并将所得到的数据制成了如图所示的条形统计图,写出这400名居民每天平均健身时间的众数是__1__小时,中位数是__2__小时;
(3)小明在求这400名居民每人每天平均健身时间的平均数时,他是这样分析的: 第一步:求平均数的公式是x =x 1+x 2+…+x n
n
;
第二步:在该问题中,n =4,x 1=1,x 2=2,x 3=3,x 4=4; 第三步:x =1+2+3+4
4
=2.5(小时).
小明的分析正确吗?如果不正确,请求出正确的平均数;
(4)若该县有40万人,根据抽样结果估计该县每天健身2小时及以上的人数是多少?你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.
解:(3)不正确,正确的平均数为x =1×188+2×104+3×76+4×32
400=1.88(小时) (4)根据
题意,得40×104+76+32
400)=21.2(万人),该县平均每天健身2小时及以上的居民人数约是
21.2万人.这个调查活动的设计有不合理的地方,由于该县有40万人,而样本只选取了400人,不具有广泛性。