精品 八年级数学下册 一次函数基础复习+综合能力提高题

合集下载

精品 八年级数学下册 一次函数综合能力提高题

精品 八年级数学下册 一次函数综合能力提高题

一次函数综合练习题例1.已知直线y=2x+1和y=3x+b的交点在第三象限,求b的取值范围.例2.已知点A(3,1)与点B(-1,2),点P在x轴上为一动点,当PA+PB值最小时,求此时点P坐标即最小值.例 3.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.例4.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示:全部8折收费;乙旅行社表示:若人数不超过30人则按9折收费,超过30人按7折收费.(1)设学生人数为x,甲、乙两旅行社实际收取总费用为y1、y2(元),试分别列出y1、y2与x的函数关系式;(2)讨论应选择哪家旅行社较优惠;例5.某火车货运站现有甲种货物1530吨,乙种货物1150吨,安排一列挂有A,B两种不同规格的货厢共50节的货车将这批货物运往广州.已知:一节A型货厢可用甲种货物35吨和乙种货物15吨装满,运费为0.5万元;一节B型货厢可用甲种货物25吨和乙种货物35吨装满,运费为0.8万元.设运输这批货物的总运费为W万元,用A型货厢的节数为X节.(1)请求W与X的函数关系;(2)有几种运输方案?(3)采用哪种方案运费最少?最少运费是多少万元?课堂练习:1.已知函数y=(m 2+2m)x12-+m m +(2m-3)是x 的一次函数,则常数m 的值为( ) A.-2B.1C.-2或-1D.2或-1 2.若直线mn x y -=不经过第四象限,则( ) A.m >0,n <0 B.m <0,n <0 C.m <0,n >0 D.m >0,n ≤03.已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是( )4.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图,那么小李赚了( )A.32元B.36元C.38元D.44元5.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图1所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )A.①②③B.仅有①②C.仅有①③D.仅有②③6.某物流公司快递车和货车同时从甲地出发,以各自速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货物相遇.已知货车速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B 的坐标为(433,75); ④快递车从乙地返回时的速度为90千米/时.以上4个结论正确的是________ .7.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是 ,从点燃到燃尽所用的时间分别是 ;(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式; (3)当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?8.如图,直线AB 在坐标系中,已知A(032,),B(0,2),C 在直线AB 上,若△OCD 为等边三角形,求C 点及D 点坐标.9.某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg ,或将当日所捕捞的水产品40kg 进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x 名工人进行水产品精加工.(1)求每天做水产品精加工所得利润y (元)与x 的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?10.某乡A,B两村盛产苹果,A村有苹果200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的苹果为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写上表,并求出yA,yB与x之间的函数关系式;(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值11.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球拍,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为(元),在B超市购买羽毛球拍和羽毛球的费用为(元). 请解答下列问题:(1)分别写出和与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?12.如图,已知在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.一次函数测试题1.下面函数图象不经过第二象限的为()A.y=3x+2B.y=3x-2C.y=-3x+2D.y=-3x-22.如图所示,OA、BA分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快()A、2.5mB、2mC、1.5mD、1m3.下列说法中:①直线y=-2x+4与直线y=x+1的交点坐标是(1,1);②一次函数y=kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=-6x是一次函数,且y随着x的增大而减小;④已知一次函数图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为y=-x+6;⑤在平面直角坐标系中,函数y=-x+1的图象经过一、二、四象限;⑥若一次函数(26)5y m x=-+中,y随x的增大而减小,则m的取值范围是m>3;⑦点A的坐标为(2,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(-1,1);⑧直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有5个. 正确的有( )A.2个B.3个C.4个D.5个4.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )A.2个B.4个C.6个D.8个5.如图,长方形ABCD 中,动点P 从点B 出发,沿BC,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A.3B.4C.5D.66.当m= 时,y=()()m x m x m +-+-1122是一次函数.7.将直线y=-2x +3向下平移5个单位,得到直线解析式为8.一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = ;这两条直线与x 轴围成的三角形面积为9.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置。

精品 八年级数学下册 一次函数综合能力提高题

精品 八年级数学下册 一次函数综合能力提高题

一次函数一、选择题:1.下列关系中,符合正比例函数关系的是( )A.边长一定,三角形的面积与该边上的高B.质量一定时,体积与密度C.路程一定时,速度与时间D.长方形的面积一定时,它的长与宽2.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x 中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例3.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )A .m=-3B .m=1C .m=3D .m>-34.已知正比例函数y=(2m -1)x 的图象上两点A(x 1,y 1)、B(x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( ) A.m<12 B.m>12C.m<2D.m>0 5.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能6.若一次函数11b x k y +=和22b x k y +=的图像是两条平行直线,那么( )A.2121,b b k k ==B.2121,b b k k ≠=C.2121,b b k k ≠≠D.2121,b b k k =≠7.已知函数 y =2x -1与y =3x +2的图象交于点P ,则点P 在( )A 第一象限B 第二象限C 第三象限D 第四象限8.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有( )A 、1个B 、2个C 、3个D 、4个二、填空题:9.当a=________时,函数y=(a -3)x +a 2-9是正比例函数.10.正比例函数y=kx ,若自变量取值增加1,函数值相应减小4,则k=______11.关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= 12.函数(2)4y m x m =+++中y 随x 的增大而减小,且图象交y 轴于正半轴,则m 的取值范围是13.若m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m=14.将直线y =3x 向下平移2个单位,得到直线___________;将直线y =-x -5向上平移5个单位,得到直线_____________15.若直线b kx y +=平行于直线35+=x y ,且过点(2,-1),则k= ,b=16.如图,一次函数b kx y +=的图象经过A 、B 两点,则△AOC 的面积为三、综合题:17.已知y -5与3x -4成正比例,且当x=1时,y=2,求当y=11时,x 的值.18.如图所示,若正方形ABCD 的边长为2,P 为DC 上一动点,设DP=x ,求△APD 的面积y 与x 的函数关系式,并画出函数的图象.19.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).20.已知4y+3m 与2x -5n 成正比例,证明y 是x 的一次函数.21.已知一次函数的图象经过点(2,5)和(-1,-1)两点.(1)求这个一次函数的解析式;(2)设该一次函数的图象向上平移2个单位后,与x 轴、y 轴的交点分别是点A 、点B ,试求AOB ∆的面积.22.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).23.直线y= -x+m 与直线y=33-x+2相交于y 轴上的点C ,与x 轴分别交于点A 、B 。

人教版八年级数学下册 一次函数综合提高测试题

人教版八年级数学下册 一次函数综合提高测试题

一次函数综合提高测试题一、选择题。

(3分×10)1、已知一次函数,若随着的增大而减小,则该函数的图像经过: k kx y -=y x A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限D .第一、三、四象限2、若函数是一次函数,则的值为: 132-+=m x y m A . B .的全体实数 C .全体实数 D .不能确定1±=m 1±≠m 3、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L ,又知单开进水管10min 可以把容器注满,若同时打开进、出水管,20min 可以把满容器的水放完,现已知水池内有水200L ,先打开进水管5min ,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q (L )随时间t (min )变化的图像是 的交点不可能在: 4+-=x y A .第三象限 B .第四象限 C .第一象限 D .第二象限5、与的图像交于轴上一点,则为: 1+=mx y 12-=x y x m A .2B .C .D .2-2121-6、已知两个一次函数的图像重合,则一次函数的图像所经ax a y x b y 11,42+=--=b ax y +=过的象限为: A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限7、两个物体A 、B 所受的压强分别为与(P) (、为常数),它们所受压力F(N)与受)(P P A B P A P B P 力面积S (㎡)的函数关系图像分别是射线、,(公式),如图所示,则: A I B I S FP = A .>B .<C . ≥D .≤A P B P A P B P A P B P A P BP 89、若 <0,且的图像不过第四象限,则点( c )所在象限为 abc acx a b y -=,b a + A 、一B 、二C 、三D 、四10、如果一次函数当自变量的取值范围是-1<<3时,函数y 的取值范围是-2<<6,那x x y 么此函数解析式为: A 、B 、C 、或D 、或x y 2=42+-=x y x y 2=42+-=x y x y 2-=42-=x y 二、填空题。

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)一.选择题(共15小题)1.下列各图能表示y是x的函数是()A. B.C.D.2.在下列各图象中,y不是x函数的是()A.B.C.D.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.4.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x 的函数的是()A.(1)B.(2)C.(3)D.(4)5.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1006.下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.57.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积8.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣1210.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)11.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个12.如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+513.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm14.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积15.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量二.填空题(共9小题)16.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.17.已知方程x﹣3y=12,用含x的代数式表示y是.18.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.19.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.20.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.21.小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.22.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.23.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是.24.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q 以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x 的值或取值范围是.三.解答题(共16小题)25.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?26.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.27.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?28.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.29.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?30.陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?31.端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里吃饭骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车吧小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发后分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离?(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.32.如图,△ABC底边BC上的高是6厘米,当三角形的定点C沿底边所在直线向点B运动时,三角形的面积发生了变化.1.在这个变化过程中,自变量是,因变量是.2.如果三角形的底边长为x(厘米),三角形的面积y(厘米2)可以表示为.3.当底边长从12厘米变到3厘米时,三角形的面积从厘米2到厘米2;当点C运动到什么位置时,三角形的面积缩小为原来的一半?33.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?34.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.35.圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?36.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.37.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?38.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?39.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?40.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是米,a=.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2015春•唐山期末)下列各图能表示y是x的函数是()A. B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.(2015春•荔城区期末)在下列各图象中,y不是x函数的是()A.B.C.D.【分析】答题时知道函数的意义,然后作答.【解答】解:函数的一个变量不能对应两个函数值,故选C.【点评】本题主要考查函数的概念,基本知识要掌握,不是很难.3.(2016春•天津期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.(2015春•宜春期末)下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数.【解答】解:根据对于x的每一个取值,y都有唯一确定的值与之对应,(1)y=x,(2)y=x2,(3)y=x3满足函数的定义,y是x的函数,(4)|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数,故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.(2015春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.【解答】解:y=100×0.05x,即y=5x.故选:B.【点评】本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.6.(2014秋•阳谷县期末)下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.5【分析】直接利用函数的定义进而分析得出即可.【解答】解:①y=l,y不是x的函数;②y=x2,y是x的函数;③y2=x,y不是x的函数;④y=|x|,y是x的函数;⑤y=,y是x的函数;⑥y=2x,y是x的函数.故选:C.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.7.(2015春•烟台期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A【点评】本题主要考查的是对函数的定义,关键是根据函数的定义对自变量和因变量的认识和理解.8.(2015春•重庆校级期末)如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x【分析】首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.【解答】解:25÷10=所以购买钢笔的总钱数y(元)与支数x之间的关系式为:y=x.故选:D.【点评】此题主要考查了函数关系式的求法,以及单价、数量、总价的关系,要熟练掌握;解答此题的关键是根据单价=总价÷数量,求出每支钢笔的价格是多少.9.(2016春•乐亭县期末)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣12【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣x+12(0<x<24).故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10.(2014秋•章丘市校级期末)若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)【分析】根据底边长+两腰长=周长,建立等量关系,变形即可,再根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.【解答】解:依题意得x+2y=60,即y=(60﹣x)(0<x<30).故选D.【点评】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y与x的函数关系式是解题关键.11.(2013春•涟水县校级期末)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.12.(2015春•泰山区期末)如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+5【分析】观察各选项可知y与x是一次函数关系,设函数关系式为y=kx+b,然后选择两组数据代入,利用待定系数法求一次函数解析式解答即可.【解答】解:根据题意,设函数关系式为y=kx+b,则解得:,则y=2x﹣10.故选:A.【点评】本题考查了函数关系式的求解,根据各选项判断出y与x是一次函数关系是解题的关键,熟练掌握待定系数法求一次函数解析式也很重要.13.(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.14.(2014春•招远市期末)当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积【分析】根据函数的关系,可得答案.【解答】解;雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D.【点评】本题考查了常量与变量,函数与自变量的关系是解题关键.15.(2015秋•高密市期末)下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.【解答】解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二.填空题(共9小题)16.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.17.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x ﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.18.(2015秋•巴南区校级期末)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是③.【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【解答】解:①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故答案为:③.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.(2016春•酒泉期末)某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为y=0.11x﹣0.03.【分析】话费=三分钟以内的基本话费0.3+超过3分钟的时间×0.11,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.11×(x﹣3),通话时间超过3分钟,。

精品 八年级数学下册 一次函数综合提高题56题

精品 八年级数学下册 一次函数综合提高题56题

(4)小明家 8 月份的电费是 328.5 元,这个月他家用电多少千瓦时?
第 5 页 共 21 页
八年级数学
26.某生物小组观察一植物生长,得到植物高度 y(单位:厘米)与观察时间 x(单位:天)的关系,并 画出如图所示的图象(AC 是线段,直线 CD 平行 x 轴) . (1)该植物从观察时起,多少天以后停止长高? (2)求直线 AC 的解析式,并求该植物最高长多少厘米?
A.3km/h 和 4km/h
9.已知整数 x 满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个 x,m 都取 y1,y2 中的较小值,则 m 的最 大值是( A.1 ) B.2 C.24 D.-9
10.已知关于 x 的不等式 kx-2>0(k≠0)的解集是 x>-3,则直线 y=-kx+2 与 x轴的交点是________ 11.已知一次函数 y1=-2x+a,y2=3x-5a,当 x=3 时,y1>y2,则 a 的取值范围为 12.已知直线 y 2 x 4 ,解下列各题: (1)若 x>0,则 y 的取值范围为 (2)若 y>0,则 x 的取值范围为 (3)若 3 x 4 ,则 y 的取值范围为 (4)若 3 y 4 ,则 x 的取值范围为 ; ; ; ; .
C.1ቤተ መጻሕፍቲ ባይዱ 分钟
5.一家电信公司给顾客提供两种上网收费方式: 方式 A 以每分 0.1 元的价格按上网所用时间计算;方式 B 除收月基费 20 元外.再以每分 0.05 元的价格按上网所用时间计费。若上网所用时问为 x 分.计费为 y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论: ①图象甲描述的是方式 A;②图象乙描述的是方式 B;③当上网所用时间为 500 分时,选择方式 B 省钱. 其中,正确结论的个数是( A.3 ) B.2 C.1 D.0

精品 八年级数学下册 一次函数综合提高题

精品 八年级数学下册 一次函数综合提高题

某商场筹集资金 12.8 万元,一次性购进空调、彩电 30 台.根据市场需要,这些空调、彩电可以全部销售, 全部销售后利润不少于 1.5 万元,已知空调、彩电的进价分别是每台 5400 元、3500 元,售价分别是 6100 元、3900 元.设商场计划购进空调 x 台,空调、彩电全部销售后商场获得的利润为 y 元. (1)写出 y 与 x 的函数关系式; (2)商场有几种进货方案可供选择? (3)选择哪种进货方案,商场获利最大?最大利润是多元? (4)在上述进货方案中,商场想降低空调的售价达到促销,设每台空调的售价降价 m 元,问哪种进货方 案商场获利最大?
1 2 4 ,-4) B.( ,0) C.( ,0) 2 3 3 11.已知 m 是整数,且一次函数 y (m 4) x m 2 的图象不过第二象限,则 m 为
A.( 12.已知一次函数 y kx b 的图象经过点(-2,5),且它与 y 轴的交点和直线 y 关于 x 轴对称,那么这个一次函数的解析式为 . 13.已知直线 y 4 x 2 与直线 y 3m x 的交点在第三象限内,则 m 的取值范围是
第 4 页 共 经过一、二、四象限,则直线 y=bx+k 不经过( A.一象限 B.二象限 C.三象限 ) D.图像不经过第二象限 ) D.四象限
2.一次函数 y=kx+2 经过点(1,1) ,那么这个一次函数( A.y 随 x 的增大而增大 B.y 随 x 的增大而减小
17.如图,在直标系内,一次函数 y kx b(kb 0, b 0) 的图象分别与 x 轴、 y 轴和直线 x=4 相交于 A、 B、 C 三点,直线 x=4 与 x 轴交于点 D,四边形 OBCD(O 是坐标原点)的面积是 10,若点 A 的横坐标是 个一次函数解析式.

(完整版)初二数学一次函数综合习题提高训练及答案详解

(完整版)初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩g gg g g其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭ggk·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯=g =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

(完整版)《一次函数》综合提高题及答案

(完整版)《一次函数》综合提高题及答案

2018 年八年级数学下册一次函数综合复习题知识点复习对于两个变量x,y, 若 x 发生改变 , 与其对应的y 也随之改变 , 且,那函数与变量么 y 叫做 x 的函数 .分析式:形状一条经过 ( ) 的直线正比率函数图象性质k>0 时 , ;k<0 时 , .象限散布增减性k>0 时 , ;k<0 时 , .分析式:形状一条经过 (),() 的直线k>0,b>0 时 , 图象经过象限;一次函数图象性质k>0,b>0 时 , 图象经过象限;象限散布k>0,b>0 时 , 图象经过象限;k>0,b>0 时 , 图象经过象限;增减性k>0 时 , ;k<0 时 , .两条直线地点关系l 1//l 2 时: ;l 1⊥l 2 时: . (k1,k 2的关系)(1) 直线上下平移:与有关 , ;直线左右平移:与有关 ,.直线 y=kx+b 图象平移(2) 已知平移后的分析式 , 求平移前的分析式, 平移方向;(3) 已知直线分析式 , 平移坐标系后对应的分析式, 平移方向。

对于 x 轴对称后的分析式 : ;直线 y=kx+b 图象对称对于 y 轴对称后的分析式 : .一次函数与方程组关系方程组的解在座标系中即为两条直线的.(1)y=0,y>0,y<0 ;(2)y 1=y2,y 1<y2,y 1>y2;一次函数与不等式关系一次函数分析式求法法1. 如图是某蓄水池的横断面表示图, 分深水区和浅水区, 假如向这个蓄水池中以固定的水流量( 单位 时间灌水的体积 ) 灌水,下边图中能大概表示水的深度 h 和时间 t 之间关系的图象是 ( )2. 一次函数 y=-2x+1 的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点 M ( 1,a )和点 N ( 2,b )是一次函数 y=﹣ 2x+1 图象上的两点, 则 a 与 b 的大小关系是 ()A . a >bB . a=bC . a < bD . 以上都不对 4. 以下图中表示一次函数y=mx+n 与正比率函数 y=mnx(m , n 是常数 ) 图像的是 ().5. 已知一次函数 y=kx +b 中 y 随 x 的增大而减小,且 kb < 0, 则直线 y=kx+b 的图象经过 ()A. 第一二三象限B. 第一三四象限C. 第一二四象限D. 第二三四象限6. 已知一次函数 y=-2x+1 经过平移后获取直线 y=-2x+7, 则以下说法正确的选项是 ( )A. 向左平移 3 个单位B.向右平移 3 个单位 C. 向上平移 7 个单位 D. 向下平移 6 个单位7. 直线 y=x-1 与坐标轴交于 A 、B 两点,点 C 在座标轴上,△ ABC 为等腰三角形,则知足条件的三角形最多有()A.5 个B.6 个C.7 个D.8 个8. 当直线 y=x+2? 上的点在直线 y=3x-2 上相应点的上方时,则()A. x < 0B.x <2 > 0 D.x >29. 如图 , 一次函数y=kx + b 的图象与 y 轴交于点 (0,1), 则对于 x 的不等式 kx +b > 1 的解集是 () A . x > 0 B .x < 0 C . x >1 D .x < 110.A , B 两点在一次函数图象上的地点如图, 两点的坐标分别为A(x + a ,y + b) ,B(x ,y) ,以下结论正确的选项是 ()A.a > 0< 0C.B=0< 011. 如图,函数y=2x 和 y=ax+4 的图象订交于点A(m, 3),则不等式2x≥ ax+4 的解集为()3≤ 3 C. x 3≥ 32 212.如图,直线 y=﹣x+m与 y=nx+4n( n≠ 0)的交点的横坐标为﹣ 2,则对于 x 的不等式﹣ x+m> nx+4n> 0 的整数解为()A.﹣1B.﹣5C.﹣4D.﹣313. 把直线 y=﹣ x+3 向上平移 m个单位后,与直线 y=2x+4 的交点在第一象限,则 m的取值范围是()A. 1< m< 7 B. 3< m< 4 C. m> 1 D. m< 414. 在平面直角坐标系中,线段AB 的端点 A(-2 , 4),B(4 , 2), 直线 y=kx-2 与线段 AB 有交点,则 k 的值不行能是()15. 如图 , 在平面直角坐标系中,直线 y= 2x-2与矩形 ABCO的边 OC、BC分别交于点 E、F,已知OA=3,3 3OC=4,则△ CEF的面积是()A.6B .3 C .12 D .4316. 某库房调拨一批物质, 调进物质共用资的速度均保持不变). 该库房库存物质从开始调进到所有调出所需要的时间是A.8.4 小时小时8 小时 . 掉进物质 4 小时后同时开始调出物质w(吨 ) 与时间 t( 小时 ) 之间的函数关系以下图()小时小时( 调进与调出物 ,则这批物质17. 如图,已知 A 点坐标为( 5,0),直线 y=x+b(b>0) 与 y 轴交于点 B,连结 AB,若∠ a=75 , 则 b 的值为( )B. 5C. 5 3D. 3 53 518. 如图 1, 在 Rt△ ABC中 , ∠ ACB=900, 点 P 以每秒 1cm的速度从点A 出发 , 沿折线 AC→ CB运动 , 到点 B 停止 . 过点 P作 PD⊥AB 于点 D,PD 的长 y(cm) 与点 P 的运动时间x( 秒 ) 的函数图象如图 2 所示 . 当点 P 运动 5 秒时 ,PD 的长是()19. 如图 , 已知直线 l:y= 3x, 过点 A(0,1 )作 y 轴的垂线交直线l 于点 B, 过点 B 作直线 l 的垂线交3B ,过点 B 作直线 l 的垂线交 y 轴于点 A ;;按此y 轴于点 A ;过点 A 作 y 轴的垂线交直线于点1 1 1 12 作法持续下去,则点A4 的坐标为()A. ( 0,64 )B. ( 0,128 )C. ( 0,256 )D.(0,512)20. 如图 , 在平面直角坐标系中, 直线 l:y=3x+1交x轴于点A,交y轴于点B,点A1、A2、A3,在x 3轴上,点 B1、 B2、B3,在直线 l 上 . 若△ OB1A1,△ A1B2A2,△ A2B3A3,均为等边三角形 , 则△ A5B6A6的周长是 ( )A.243B.483C.963D.192 321. 函数 y x 中的自变量 x 的取值范围是x 122. 已知函数 y ( m 5) x m2 4m 4 m 2 若它是一次函数,则m=;y 随 x 的增大而.23. 已知一次函数y=(k+3)x+2k-10,y 随 x 的增大而增大 , 且图象不经过第二象限 , 则 k 的取值范围为.24. 已知A(x 1,y 1),B(x 2,y 2)是一次函数y=kx+3(k<0) 图象上的两个不一样的, 若 t=(x 1-x 2)(y 1-y 2 ),点则t 0.25. 已知直线y=kx - 6 与两坐标轴所围成的三角形面积等于12, 则直线的表达式为26.如图,已知一条直线经过点 A ( 0, 2)、点 B ( 1, 0),将这条直线向左平移与x 轴、 y 轴分别交与点 C、点 D.若 DB=DC ,则直线 CD 的函数分析式为.27. 如图,点 A 的坐标为(-2,0),点 B 在直线 y= x- 4 上运动,当线段AB最短时,点 B 的坐标是 ___________。

初二数学一次函数综合习题提高训练及答案详解

初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭k·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯==8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

精品 八年级数学下册 一次函数基础提高题

精品 八年级数学下册 一次函数基础提高题

2 m 1
4、2y-3 与 3x+1 成正比例,且 x=2,y=12,则函数解析式为________________;
1
题型四、函数图像及其性质 方法: 函数 图象 性质 经过象限 变化规律
ቤተ መጻሕፍቲ ባይዱ
b>0
k>0
b=0
b<0 y=kx+b (k、b 为常数, 且 k≠0)
b>0
k<0
b=0
b<0
☆一次函数 y=kx+b(k≠0)中 k、b 的意义: k(称为斜率)表示直线 y=kx+b(k≠0) 的倾斜程度; b(称为截距)表示直线 y=kx+b(k≠0)与 y 轴交点的 ,也表示直线在 y 轴上 的 。 ☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于 y 轴上同一点。 ☆特殊直线方程: X轴 : 直线 Y轴 : 直线 与 X 轴平行的直线 与 Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数 y=5x+6,y 的值随 x 值的减小而___________。 2、对于函数 y 1 2 x , y 的值随 x 值的________而增大。 2 3 3、一次函数 y=(6-3m)x+(2n-4)不经过第三象限,则 m、n 的范围是__________。 4、直线 y=(6-3m)x+(2n-4)不经过第三象限,则 m、n 的范围是_________。 5、已知直线 y=kx+b 经过第一、二、四象限,那么直线 y=-bx+k 经过第_______象限。 6、无论 m 为何值,直线 y=x+2m 与直线 y=-x+4 的交点不可能在第______象限。

精品 八年级数学下册 一次函数综合能力提高题2

精品 八年级数学下册 一次函数综合能力提高题2

一次函数综合提高练习题例1.如图,△ABC是等腰直角三角形,∠ACB=90°,直角顶点C在x轴上,一锐角顶点B在y 轴上.(1)如图①,若点C的坐标是(x,0),点A的坐标是(-x,-x),设B点的坐标为(0,y),求y与x之间的函数关系式﹙不用写自变量的取值范围﹚;(2)如图②,在(1)的条件下,在坐标轴上是否存在点P,使B、C、P三点所组成的三角形为等腰三角形,若存在,存在几个?并在图中用尺规作图的方法标出来(只保留作图痕迹,不写作法);若不存在请说明理由.(3)如图③,若y轴恰好平分∠ABC,AC与y轴交与点D,过点A作AE⊥y轴于E,求当BD=4.5时AE的长度.例2.如图,在平面直角坐标系中,点P(x ,y)是第一象限直线y=-x+6上的点,点A(5,0),O 是坐标原点,△PAO 的面积为S 。

(1)求S 与x 的函数关系式,并写出x 的取值范围; (2)探究:当P 点运动什么位置时,△PAO 的面积为10.例3.已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值。

课堂练习:1.有一个数值转换器,原来如下:当输入的x 为64时,输出的y 是( ) A.8 B.22 C.32 D.232.满足57-<<x 的整数的个数是( )A.6B.5C.4D.3 3.若22=+m ,则(m+2)2的平方根为( )A.16B.16±C.4±D.2±4.已知224M a b =+,4N ab = (a ,b 为任意有理数)则M 与N 的大小关系是( )A.M>NB.M<NC.M ≥ND.M ≤N 5.将一盛有部分水...的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )6.如图1,长方形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A .3B .4C .5D .67.如图,在长方形ABCD 中,AB=4,BC=34,点E 是折线段A-D-C 上的动点(点E 与A 不重合),点P 是点A 关于BE 的对称点,在点E 运动的过程中,能使△PCB 的等腰三角形的点E 的位置共有( )A.2个B.3个C.4个D.5个8.若A(x 1,y 1),B (x 2,y 2)为一次函数y=3x-1的图象上的两个不同的点,且x1x2≠0,设111x y M +=,222x y N +=,那么M 与N 的大小关系是( ) A.M=N B.M<N C.M>N D.无法确定 9.若21mx =+,34m y =+,用x 的代数式表示y ,则y=10.已知x 、y 满足0242422=+-++y x y x ,则22165y x +=11.若518,53x y ==,则25x y-的算术平方根是12.已知:M=2008×2009×2010,N=2007×2009×2011,则M 、N 的大小关系是 13.如果直线y ax b =+经过一、二、三象限,那么ab 0 (“<”“>”或“=”) 14.如图所示,在△ABC 中,∠C=90°,∠B=15°,AB 的垂直平分线DE 交BC 于点D ,垂足为E ,BD=10cm ,求AC 的长15.若等腰三角形的一角为800,则它腰上的高与底边的夹角是16.若y+b 与x+a (a ,b 是常数)成正比例,且当x=3时,y=5;当x=2时,y=2,则y 与x 的函数关系式为17.直线1y x =+与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有 个.18.已知:y x +=+310,其中x 是整数,且10<<y ,求y x -的相反数.19.已知13的整数部分是a ,小数部分为b ,试求)13(41a b +的值。

精品 八年级数学下册 一次函数综合能力提高题3

精品 八年级数学下册 一次函数综合能力提高题3

一次函数(一)1.正比例函数的定义:一般地,形如y=kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.2.正比例函数的图像:正比例函数y=kx (k 是常数且k ≠0)的图像是一条经过原点(0,0)的直线,当k>0时,直线y=kx 经过第一,三象限,y 随着x 的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y 随着x 的增大而减少.3.一次函数的定义:如果y=kx+b (k ,b 为常数,且k ≠0),那么y 叫做x 的一次函数.一次函数的标准形式为y=kx+b ,是关于x 的一次二项式,其中一次项系数k 必须是不为零的常数,b 可以为任何常数.当b=0而k ≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b ≠0时,它不是一次函数.4.一次函数的图像:一次函数y=kx+b (k ≠0)的图像是一条直线,通常也称直线y=kx+b ,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b ),(-b k,0)就行了. 5.一次函数的图像与性质 k>0b>0 第一,二,三象限 y 随x 的增大而增大 b<0 第一,三,四象限 k<0 b>0第一,二,四象限 y 随x 的增大而减小b<0 第二,三,四象限 6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b 沿着y 轴向上(“+”)、下(“-”)平移m (m>0)•个单位得到一次函数y=kx+b ±m ;一次函数y=kx+b 沿着x 轴向左(“+”)、•右(“-”)平移n (n>0)个单位得到一次函数y=k (x ±n )+b ;直线y=kx+b 与x 轴交点为(-b k,0),与y 轴交点为(0,b ),且这两个交点与坐标原点构成的三角形面积为k b S 22= 例1.在直线2121+=x y 且到x 轴或y 轴距离为1的点有( )个。

人教版数学八年级下册:第19章《一次函数》综合提高题及答案

人教版数学八年级下册:第19章《一次函数》综合提高题及答案

一次函数 综合复习题知识点复习对于两个变量 x,y,若 x 发生改变,与其对应的 y 也随之改变,且,那函数与变量么 y 叫做 x 的函数.解析式:形状一条经过( )的直线正比例函数图象性质象限分布增减性k>0 时, ;k<0 时, .k>0 时, ;k<0 时, .一次函数图象性质解析式:形状 一条经过( ),( )的直线k>0,b>0 时,图象经过 象限;k>0,b>0 时,图象经过 象限; 象限分布k>0,b>0 时,图象经过 象限;k>0,b>0 时,图象经过 象限;增减性k>0 时, ;k<0 时, .两条直线位置关系直线 y=kx+b 图象平移直线 y=kx+b 图象对称l 1//l 2 时: ;l 1⊥l 2 时: .(k 1,k 2 的关系)(1) 直 线 上 下 平 移 : 与 有关, ;直线左右平移:与 有关, .(2)已知平移后的解析式,求平移前的解析式,平移方向 ;(3)已知直线解析式,平移坐标系后对应的解析式,平移方向 。

关于 x 轴对称后的解析式: ; 关于 y 轴对称后的解析式:.一次函数与方程组关系方程组的解在坐标系中即为两条直线的.(1)y=0,y>0,y<0;(2)y 1=y 2,y 1<y 2,y 1>y 2;一次函数与不等式关系一次函数解析式求法 法1.如图是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是()2.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是().5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过()A.第一二三象限B.第一三四象限C.第一二四象限D.第二三四象限6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有()A.5个B.6个C.7个D.8个8.当直线y=x+2•上的点在直线y=3x-2上相应点的上方时,则()A.x<0B.x<2C.x>0D.x>29.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<110.A,B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.B=0D.ab<0B.x≤3C. x ≤D.x≥315.如图,在平面直角坐标系中,直线 y= x- 与矩形 ABCO 的边 OC 、BC 分别交于点 E 、F ,已知 OA=3,11.如图,函数 y=2x 和 y=ax+4 的图象相交于点 A (m ,3),则不等式 2x≥ax+4 的解集为()A. x ≥ 3 32 212.如图,直线 y=﹣x+m 与 y=nx+4n (n≠0)的交点的横坐标为﹣2,则关于 x 的不等式﹣x+m >nx+4n>0 的整数解为( )A . ﹣1B . ﹣5C . ﹣4D . ﹣313.把直线 y=﹣x+3 向上平移 m 个单位后,与直线 y=2x+4 的交点在第一象限,则 m 的取值范围是( )A .1<m <7B .3<m <4C .m >1D .m <414.在平面直角坐标系中,线段 AB 的端点 A(-2,4),B(4,2),直线 y=kx-2 与线段 AB 有交点,则 k 的值不可能是( )A.5B.-5C.-2D.32 23 3OC=4,则△CEF 的面积是()A .6B .3C .12D .4316.某仓库调拨一批物资,调进物资共用 8 小时.掉进物资 4 小时后同时开始调出物资(调进与调出物 资的速度均保持不变).该仓库库存物资 w(吨)与时间 t(小时)之间的函数关系如图所示,则这批物资 从开始调进到全部调出所需要的时间是( )A.8.4 小时B.8.6 小时C.8.8 小时D.9 小时A.3B. 5C. 53D.17.如图,已知 A 点坐标为(5,0),直线 y=x+b(b>0)与 y 轴交于点 B ,连接 AB ,若∠a=750,则 b 的 值为( )3 53518.如图 1,在 Rt△ABC 中,∠ACB=90 0,点 P 以每秒 1cm 的速度从点 A 出发,沿折线 AC→CB 运动,到点 B 停止.过点 P 作 PD⊥AB 于点 D,PD 的长 y(cm)与点 P 的运动时间 x(秒)的函数图象如图 2 所示.当点 P 运动 5 秒时,PD 的长是( )A.1.2cmB.1.5cmC.1.8cmD.2cm19.如图,已知直线 l:y= 3 3x,过点 A (0,1)作 y 轴的垂线交直线 l 于点 B,过点 B 作直线 l 的垂线交 y 轴于点 A 1;过点 A 1 作 y 轴的垂线交直线于点 B 1,过点 B 1 作直线 l 的垂线交 y 轴于点 A 2;…;按此 作法继续下去,则点 A 4 的坐标为( ) A.(0,64) B.(0,128) C.(0,256) D.(0,512)20.如图,在平面直角坐标系中,直线 l:y= 3 3x+1 交 x 轴于点 A,交 y 轴于点 B ,点 A 1、A 2、A 3,…在 x轴上,点 B 1、B 2、B 3,…在直线 l 上.若 OB △1A △1, A 1B 2A △2, A 2B 3A 3,…均为等边三角形,则A △5B 6A 6的周长是( )A .24 3B .48 3C .96 3D .192 321.函数 y =x中的自变量 x 的取值范围是x + 122.已知函数 y = (m - 5) x m 2-4m -4 + m - 2 若它是一次函数,则 m=;y 随 x 的增大而.23.已知一次函数 y=(k+3)x+2k-10,y 随 x 的增大而增大,且图象不经过第二象限,则 k 的取值范围 为 .24.已知 A(x 1,y 1),B(x 2,y 2)是一次函数 y=kx+3(k<0)图象上的两个不同的点,若 t=(x 1-x 2)(y 1-y 2), 则 t 0.25.已知直线 y=kx -6 与两坐标轴所围成的三角形面积等于 12,则直线的表达式为 26.如图,已知一条直线经过点 A (0,2)、点 B (1,0),将这条直线向左平移与 x 轴、y 轴分别 交与点 C 、点 D .若 DB=DC ,则直线 CD 的函数解析式为 .27.如图,点 A 的坐标为(-2,0),点 B 在直线 y =x -4 上运动,当线段 AB 最短时,点 B 的坐标 是___________。

八年级数学下《一次函数》综合提高题及答案

八年级数学下《一次函数》综合提高题及答案

八年级数学下《一次函数》综合提高题及答案1.某蓄水池横断面示意图如下,分为深水区和浅水区。

如果以固定的水流量(单位时间注水的体积)向蓄水池中注水,水深h与时间t之间的关系大致如下图所示:[插入示意图]2.一次函数y=-2x+1的图象不经过第二象限。

3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系为a>b。

4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是[插入图像]。

5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过第一三四象限。

6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则向上平移6个单位。

7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有6个。

8.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则x<2.9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是x>(1-b)/k。

10.A、B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),则结论a<0成立。

11.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为x≥3.12.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的整数解为x≤-5.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是m>1.22.已知函数 $y=(m-5)x^{m-4}-4m-4+m-2$,若它是一次函数,则 $m=5$;$y$ 随 $x$ 的增大而增大。

23.已知一次函数 $y=(k+3)x+2k-10$,$y$ 随 $x$ 的增大而增大,且图像不经过第二象限,则 $k>-3$。

一次函数综合复习提高题及答案(汇编)

一次函数综合复习提高题及答案(汇编)

⼀次函数综合复习提⾼题及答案(汇编)⼋年级数学下册⼀次函数综合复习题1.积)注⽔,下⾯图中能⼤致表⽰⽔的深度h和时间t之间关系的图象是( )2.⼀次函数y=-2x+1的图象不经过() A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限3.已知点M (1,a )和点N (2,b )是⼀次函数y=﹣2x+1图象上的两点,则a 与b 的⼤⼩关系是() A . a >b B . a=b C. a <b D .以上都不对4.下图中表⽰⼀次函数y=mx+n 与正⽐例函数y=mnx(m ,n 是常数)图像的是( ).5.已知⼀次函数y=kx +b 中y 随x 的增⼤⽽减⼩,且kb <0,则直线y=kx+b 的图象经过( ) A.第⼀⼆三象限 B.第⼀三四象限 C.第⼀⼆四象限 D.第⼆三四象限6.已知⼀次函数y=-2x+1通过平移后得到直线y=-2x+7,则下列说法正确的是( )A.向左平移3个单位B.向右平移3个单位C.向上平移7个单位D.向下平移6个单位 7.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三⾓形,则满⾜条件的三⾓形最多有()A. 5个B.6个C.7个D.8个8.当直线y=x+2?上的点在直线y=3x-2上相应点的上⽅时,则()A. x <0B.x <2C.x >0D.x >29.如图,⼀次函数y=kx +b 的图象与y 轴交于点(0,1),则关于x 的不等式kx +b >1的解集是( )A .x >0B .x <0C .x >1D .x <110.A ,B 两点在⼀次函数图象上的位置如图,两点的坐标分别为A(x +a ,y +b),B(x ,y),下列结论正确的是( )A.a >0B.a <0C.B=0D.ab <011.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为()A.23≥x B.x ≤3 C.23≤x D.x ≥3 12.如图,直线y=﹣x+m 与y=nx+4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x+m >nx+4n >0的整数解为()A .﹣1B .﹣5C .﹣4D .﹣313.把直线y=﹣x+3向上平移m 个单位后,与直线y=2x+4的交点在第⼀象限,则m的取值范围是()A .1<m <7B .3<m <4C .m >1D .m <414.在平⾯直⾓坐标系中,线段AB 的端点A(-2,4),B(4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是()A.5B.-5C.-2D.315.如图,在平⾯直⾓坐标系中,直线y=23x-23与矩形ABCO 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的⾯积是()A .6B .3C .12D .4316.某仓库调拨⼀批物资,调进物资共⽤8⼩时.掉进物资4⼩时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w(吨)与时间t(⼩时)之间的函数关系如图所⽰,则这批物资从开始调进到全部调出所需要的时间是( ) A.8.4⼩时 B.8.6⼩时 C.8.8⼩时 D.9⼩时17.如图,已知A 点坐标为(5,0),直线y=x+b(b>0)与y 轴交于点B ,连接AB ,若∠a=750,则b 的值为( )A.3B.5C.335 D.553 18.如图1,在Rt △ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停⽌.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所⽰.当点P 运动5秒时,PD 的长是() A.1.2cm B.1.5cmC.1.8cmD.2cm19.如图,已知直线过点A (0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为()A.(0,64)B.(0,128)C.(0,256)D.(0,512)20.如图,在平⾯直⾓坐标系中,直线l:y=33x+1交x 轴于点A,交y 轴于点B ,点A 1、A 2、A 3,…在x 轴上,点B 1、B 2、B 3,…在直线l 上.若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…均为等边三⾓形,则△A 5B 6A 6的周长是( )A .243B .483C .963D .192321.函数1+=x xy 中的⾃变量x 的取值范围是 22.已知函数2)5(442-+-=--m x m y m m若它是⼀次函数,则m= ;y随x 的增⼤⽽ .23.已知⼀次函数y=(k+3)x+2k-10,y 随x 的增⼤⽽增⼤,且图象不经过第⼆象限,则k 的取值范围为 .24.已知A(x 1,y 1),B(x 2,y 2)是⼀次函数y=kx+3(k<0)图象上的两个不同的点,若t=(x 1-x 2)(y 1-y 2), 则t 0.25.已知直线y=kx -6与两坐标轴所围成的三⾓形⾯积等于12,则直线的表达式为26.如图,已知⼀条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为.27.如图,点A 的坐标为(-2,0),点B 在直线y =x -4上运动,当线段AB 最短时,点B 的坐标是___________。

最新人教版八年级下册数学试题:一次函数 课后提升训练( 解析版)

最新人教版八年级下册数学试题:一次函数 课后提升训练( 解析版)
【解析】
解:(1)、将点A(﹣3,﹣2)代入一次函数y=kx+4,得:﹣3k+4=﹣2,
解得k=2. 所以这个一次函数的关系式为y=2x+4.
(2)、把x=﹣5代入y=2x+4中,得y=﹣6≠3,
所以B(﹣5,3)不在这个函数图象上.
19.(1) 时, 是一次函数;(2) 时,y的值为3.
【解析】
(1)由 是一次函数得 ,
A.y1<y2B.y1>y2C.y1=y2D.不能确定
9.一次函数 ymx 的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )
A.1B.3C.1D.1 或 3
10.若一次函数 的函数值 随 的增大而增大,则( )
A. B. C. D.
二、填空题
11.若函数的图象经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式______.
则 ,解得
故一次函数的解析式是y=-x+3.
(2)点C(4,-2)不在该一次函数的图象上.
理由:对于y=-x+3,当x=4时,y=-1≠-2,
所以点C(4,-2)不在该函数的图象上.
(3)在y=-x+3中,令y=0,得x=3,则点D的坐标是(3,0),
则S△BOD= ×OD×2= ×3×2=3.
人教版八年级下册数学试题:一次函数 课后提升训练(带解析)
一、单选题
1.下列函数:① ;② ;③ ;④ ;⑤ .其中,是一次函数的有( )
A.1个B.2个C.3个D.4个
2.一次函数 的图像与y轴交点的坐标是( )
A.(0,-4)B.(0,4)C.(2,0)D.(-2,0)
3.直线y=2x向下平移2个单位长度得到的直线是( )

(人教版)八年级数学下册《一次函数》提高测试卷及答案

(人教版)八年级数学下册《一次函数》提高测试卷及答案

一次函数一、选择题(每小题4分,共12分)1.(2013·眉山中考)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是( )2.把函数y=-2x+3的图象向下平移4个单位后的函数图象的解析式为( )A.y=-2x+7B.y=-6x+3C.y=-2x-1D.y=-2x-53.(2013·福州中考)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0B.a<0C.b=0D.ab<0二、填空题(每小题4分,共12分)4.(2013·永州中考)已知一次函数y=kx+b的图象经过点A(1,-1),B(-1,3)两点,则k 0(填“>”或“<”).5.(2013·鞍山中考)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.6.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是.三、解答题(共26分)7.(8分)如图,一次函数y=(m-3)x-m+1的图象分别与x轴,y轴的负半轴相交于点A,B.(1)求m的取值范围.(2)若该一次函数向上平移2个单位就过原点,求m的值.8.(8分)已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=240.求△ABP的面积.【拓展延伸】9.(10分)已知一次函数y=(m-2)x-+1,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象过点(0,-3)?(3)m为何值时,函数图象平行于直线y=2x?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数01函数与变量1.变量:在一个变化过程中可以取不同数值的量,函数中用x 表示。

常量:在一个变化过程中只能取同一数值的量,往往用c 来表示。

2.函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

3.定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4.函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5.函数的图像:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6.函数的表示方法:(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

例1:(1)摄氏温度C 与华氏温度F 之间的对应关系为5(F-32)9C =℃,则其中的变量是 ,常量是(2)在△ABC 中,它的底边是a ,底边上的高是h ,则三角形的面积 ah S 21=,当底边a 的长一定时,在关系式中的常量是 ,变量是(3)写出下列各问题中的关系式,并指出其中的常量与变量。

①甲乙两地相距1000千米,一人骑自行车以15千米/小时的速度从甲地前往乙地,用行驶时间t(小时)表示自行车离乙地的距离S(千米);②直角三角形中一个锐角α与另一个锐角β之间的关系;③一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y (吨);④小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系.例2.某校师生为四川汶川地震灾民捐款,平均每人捐50元.(1)写出捐款总额y (元)与捐款人数x (人)之间的关系式,指出式子中的变量与常量,并指出在这个变化过程中,哪一个量是自变量?哪一个量是因变量?(2)如果该校有师生3000人,那么此次该校师生共为汶川灾区捐款多少元?例3.某公司决定投资新项目,通过考察确定有6个项目可供选择,各项目所需要资金及预计年利润如下表:所需资金(亿元)12 467 8 预计利润(千万元) 0.20.350.55 0.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多少个项目的投资,预计最大利润是多少?例4.下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x 表示时间,y 表示小明离他家的距离.小明家,菜地,玉米地在同一条直线上。

1.从家到菜地用了多少时间? 菜地离小明家有多远? 2.小明给菜地浇水用了多少时间?3.从菜地到玉米地用了多少时间? 菜地离玉米地有多远?4.小明给玉米地锄草用了多少时间?5.玉米地离家有多远?小明从玉米地回家的平均速度是多少?例5.小明从家到达A 地立即返回,离家的路程y(m)与所用时间x(min)的函数图象如图所示,小明去时路过报亭与返回报亭C 相隔10min. (1)求小明去A 地的速度;(2)求报亭C 与A 地的路程.例6.画出函数:(1)5.0+=x y (2)xy 6=()0>x 的图像例7.一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度:(1)由记录表推出这5小时中水位高度y (单位:米)随时间t(单位:时)变化的函数解析式,并画出函数图像;(2)据估计按这种上涨规律还会持续上涨2小时,预测再过2小时水位高度将达到多少米.课堂练习:1.一本笔记本每本4.5元,买x 本共付y 元,则4.5和y 分别是( )A.常量、常量B.变量、变量C.常量、变量D.变量、常量 2.关于l=2πr ,下列说法正确的是( )A.2为常量,π,l,r 为变量B.2π为常量,l,r 为变量C.2,l 为常量,π,r 为变量D.2,r 为常量,π,l 为变量3.若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s (千米)与行驶的时间t (时)之间的函数关系式是( )A.S=50+50tB.s=50tC.s=50-50tD.以上都不对 4.下列函数中,自变量的取值范围为x ≥2的是( )A.y=2+xB.y=2-xC.y=21+x D.y=21-x 5.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是( ) A.沙漠 B.体温 C.时间 D.骆驼6.圆筒形水管的外径为R ,内径是8,横截面积S 是外径R 的函数,S=π(R 2-64),则R 的取值范围是( )A.全体正数B.全体非负实数C.所有大于8的实数D.全体实数 7.下列函数中,与y=x 表示同一个函数的是( )8.在常温下向一定量的水中加入食盐Nacl ,则能表示盐水溶液的浓度与加入的Nacl 的量之间的变化关系的图象大致是( )9.清晨一农家将一筐新鲜草莓拿到市场上去销售,下午为了尽快售完,进行了一次降价,下面的函数图象是反映果农身上的钱数(M )随时间(T )变化的状况,其中最合理的是图2中的( )10.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm ,与所挂物体的质量x(kg)间有下表所示关系,则下列说法中,错误的是( )A.x 与y 都是变量B.所挂物体为6kg 时,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg 物体时,弹簧一定比原长增加15cm 11.如果A 、B 两人在一次百米赛跑中,路程s (米)与赛跑的时间t (秒)的关系如图所示,则下列说法正确的是( )A.A 比B 先出发B.A 、B 两人的速度相同C.A 先到达终点D.B 比A 跑的路程多x/kg 0 1 2 3 4 ··· y/cm88.599.510···12.已知函数(1)xy 1=;(2)12+=x y (3)x y = (4)x y -=2 (5)x y -= 其中图像经过原点的有( )A.1个B.2个C.3个D.4个13.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( )数量x(千克 ) 1 234 ··· 售价y(元)8+0.416+0.8 24+1.232+1.6···A.y=8.4xB.y= 8x +0.4C.y=0.4x +8D. y=8x14.地壳的厚度约为8~40km ,在地表以下不太深的地方,温度可按y=35x+t 计算,其中x 是深度,t 是地球表面温度,y 是所达深度的温度。

当x 为22km 时,地壳的温度(地表温度为2°C )( )A.24°CB.772°CC.70°CD.570°C 15.据调查,•北京石景山苹果园地铁站自行车存车处在某星期日的存车量为4000次,其中电动车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.•若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y=0.1x+800(0≤x ≤4000)B .y=0.1x+1200(0≤x ≤4000)C .y=-0.1x+800(0≤x ≤4000)D .y=-0.1x+1200(0≤x ≤4000)16.若每千克散装色拉油售价6.25元,则货款金额y (元)与购买数量x (千克)之间的函数关系式为_______,其中_______是自变量,_______是______的函数.17.已知三角形底边长为4,高为x ,三角形的面积为y ,则y 与x 的函数关系式为_______________;其中 是 的函数, 是自变量。

18.下列各式中,y 是x 的函数的有: ①4x-3y=2,②y=∣x ∣,③y=5x,④y 2=2x ,⑤x =∣y ∣ 19.函数y=3x-5中,自变量x 的取值范围是______ 20.函数y=xx --32中,自变量x 的取值范围是_______21.函数512+=x y 中,自变量x 的取值范围是 22.某种活期储蓄的月利率是0.16%,存入10000元本金,按国家规定,•取款时应缴纳利息部分20%的利息税,则这种活期储蓄扣除利息税后,实得本息和y (元)与所存月数x 之间的函数关系式为________.23.如图,老师让小强和小华都画函数y=x2的图象,结果两个人画的不太一样.图中甲是小强画的的,乙是小华画的.你认为画的图象比较正确的是________同学.24.如图,图象反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是________min.25.围猪舍三间,它们的形状是一排大小相等的三个矩形,一面利用旧墙(长为10米),包括隔墙在内的其他各墙均用木料,已知现有木料可围24米的墙,设整个猪舍的长为x(米),宽为y(米),则y关系x的函数关系式为,x的取值范围是26.一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?27.出租车收费按路程计算,3km内(包括3km)收费10元,超过3km每增加1km加收1.6元,写出车费y(元)与路程x(km)之间的函数关系式.如果小红身上仅带了14元钱,她乘出租车去距离6km的郊区看望奶奶,她的车费够不够?请说明理由.28.小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.(1)下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.(2)在来回的过程中,小明经过一个汽车站台,若来回速度相同,从遇到站台到返回站台共用了3分钟,求该站台离小明家距离多远?29.如图所示,正方形ABCD的边长为5,P为BC上一动点,若CP=x,△ABP的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围.30.按如图所示堆放钢管.(1)填表:层次x 1 2 3 4 (x)…钢管总数y(2)当堆到x层时,求钢管总数y关于层数x的函数关系式.31.一个小球由静止开始在一个斜坡上向下滚动,•其速度每秒增加2米,到达坡底时,小球速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)之间的函数关系式;(2)求3.5秒时小球的速度;(3)求几秒时小球的速度为16米/秒.课后练习:1.下列说法正确的是()A.变量x、y满足x+2y=-3,则y是x的函数B.变量x、y满足|y|=x,则y是x的函数C.变量x、y满足y2=x,则y是x的函数D.变量x、y满足y2=x2,则y是x的函数2.以固定的速度v向上抛一个小球,小球的高度h与小球的运动时间t之间的关系式是h=vt-4.9t2,在这个关系式中,变量、常量分别是()A.4.9是变量,t、h是变量 B.v是常量,t、h是变量C.v、-4.9是常量,t、h是变量 D.4.9是常量,t、h是变量3.一辆汽车以60千米/时的速度行驶,行驶的路程s(km)与行驶时间t(h)之间的关系式为s=60t,其中变量是()A.速度与路程B.速度与时间C.时间与路程D.速度、时间、路程4.已知a=3b-4,若用a表示b,则()A.变量为a和b,常量为3和-4B.变量不是a和bC.变量为13和43D. 变量为13-和43-5.下列各曲线中哪些表示y是x的函数?6.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是().7.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水. 在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x ,瓶中水位的高度为y ,下列图象中最符合故事情景的是( )8.长方形的周长为24cm ,其中一边为x (其中x>0),面积为y cm 2,则这样的长方形中y 与x 的关系可以写为( )A.y=x 2B.y=(12-x )2C.y=(12-x )xD.y=2(12-x ) 9.函数 431-+=x x y 中,自变量x 的取值范围是( )A.34≠x B.1≠x C.134-≠<x x 且 D.34>x10.函数112++--=x x x y 的自变量x 的取值范围为( ) A .x ≠1 B .x >-1 C .x ≥-1 D .x ≥-1且 x ≠111.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,•则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是( • ) A.S=120-30t (0≤t ≤4) B.S=30t (0≤t ≤4) C.S=120-30t (t>0) D.S=30t (t=4)12.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:新鞋码(y ) 225 245 … 280 原鞋码(x ) 3539…46如果获奖运动员李伟领取的奖品是43(原鞋码)的运动鞋,则这双运动鞋的新鞋码( ) A. 270 B. 255 C. 260 D. 265 13.已知函数xx y -12+=,点P (x ,y )在该函数的图象上.那么,点P (x ,y )应在直角坐标平面的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限14.已知函数y=212x x -+中,当x=a 时的函数值为1,则a 的值是( ) A .-1 B .1 C .-3 D .315.在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式S=V 2/300,其中V 表示刹车前汽车行驶的速度(单位:千米/小时),计算当V 取80时,相应的S 值约为( )A.21米B.21千米C.30米D.30千米16.一个容量为100立方米的水池,原有水60立方米,现以每分钟2立方米的速度匀速向水池中注水,设注水时间t 分钟,水池有水Q 立方米,则注满水池的时间t 为( ) A.50分钟 B.20分钟 C.30分钟 D.40分钟17.学校广播室每天的投稿数y 和星期数n 的关系式为y=-n 2+12n+15,这个问题中,变量是________,常量是_________。

相关文档
最新文档