2015-2016年辽宁省大连二十九中八年级(上)数学期中试卷及答案

合集下载

辽宁省大连市第二十九中学八年级数学上学期期中复习试

辽宁省大连市第二十九中学八年级数学上学期期中复习试

B'C B A A'图4 N M DCB A ABO D CED CB A辽宁省大连市第二十九中学2015-2016学年八年级数学上学期期中复习试题一、选择题 (本题共10小题,每小题3分,共30分)1.在△ABC 中,∠A=200,∠B=600,则△ABC 的形状是( )A.等边三角形 B.锐角三角形 C .直角三角形 D.钝角三角形 2.下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,143.一个三角形的两个内角分别是550和650,它的外角不可能是( )A. 115︒B. 120︒ C 、125︒. D 、130︒ 4.一个多边形的内角和与外角和相等,则这个多边形是( ) A.四边形 B.五边形C.六边形D.八边形5.如图1,ACB A CB ''△≌△,AC 与A ,C ,是对应边,∠A=60°∠ACB=70°,则∠B ,的度数为( )A .70°B .60°C .50°D .40°图1 图2 图3 6、三角形的外角和是( )A. 720°B. 540°C. 360°D. 180° 7.下列图形中有稳定性的是( )A.正方形B.长方形C.直角三角形D.平行四边形 8.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ) .A . 12 B. 15 C. 9 D .12或159.如图2,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 平分OP10.如图3,AC 与BD 交于点O ,若OA =OD ,用“SAS ”证明△AOB ≌△DOC ,还需( )。

A .AB =DC B.OB =OC C.∠A =∠D D.∠AOB =∠DOC二、填空题(本题共6小题,每小题4分,共24分) 11.如图4, 已知AB=AC ,AB=10cm ,CD=3cm ,AB 的垂直平分线MN 交AC 于点D ,则BD= cm. 12.如图5,在△ABC 中,D 是BC 延长线上一点,∠B =400,∠AC D =1200,则∠A 是 度。

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

辽宁省大连市 八年级(上)期中数学试卷

辽宁省大连市 八年级(上)期中数学试卷

八年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下面4个汽车标志图案,其中不是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A. a3+a3=a6B. (ab)3=a3b3C. a6÷a5=1D. 2(a−1)=2a−13.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20∘B. 30∘C. 35∘D. 40∘4.如图,△ABC中,DE是AC的垂直平分线,AD=5,AE=4,则△ADC的周长是()A. 9B. 13C. 14D. 185.下列条件能判定△ABC≌△DEF的一组是()A. ∠A=∠D,∠C=∠F,AC=DFB. AB=DE,BC=EF,∠A=∠DC. ∠A=∠D,∠B=∠E,∠C=∠FD. AB=DE,△ABC的周长等于△DEF的周长6.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A. 35∘B. 45∘C. 55∘D. 60∘7.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,AC=10cm,AD:CD=5:4,则点D到AB的距离为()cm.A. 5B. 4C. 509D. 4098.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A. 44∘B. 66∘C. 88∘D. 92∘二、填空题(本大题共8小题,共24.0分)9.已知点P(-3,2),点P关于x轴的对称点坐标为______.10.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是______cm.11.已知(2x2-4x+1)(x+b)的结果中不含x2项,则b=______.12.与单项式-3a2b的积是6a3b2-3a2b2+9a2b的多项式是______.13.如图,AB=AC,AD是∠EAC的平分线,若∠B=72°,则∠DAC=______°.14.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,则∠ABC=______.15.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标______.16.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线,若在边AB上截取BE=BC,连接DE,则图中共有______个等腰三角形.三、解答题(本大题共9小题,共72.0分)17.因式分解:(2x+1)2-(x+3)2-(x-1)2+1.18.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.19.先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.20.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)21.如图,在△ABC中,∠ABC=50°,∠ACB=80°,延长CB至D,使DB=BA,延长BC至E,使CE=CA,连接AD和AE,求∠D,∠DAE的度数.22.观察下列各式:12+32-42=-2×1×3;①22+42-62=-2×2×4;②32+52-82=-2×3×5;③…(1)按照上面的规律,请你猜想第n个等式是______;(2)请你用学过的知识证明你的猜想.23.阅读下面材料:勾股定理的逆定理:如果是直角三角形的三条边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.能够成为直角三角形三条边长的正整数,称为勾股数.例如:32+42=52,3、4、5是一组勾股数.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.24.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)25.如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.(1)求证:BE=DC;(2)求∠BOD的度数;(3)求证:OA平分∠DOE.(4)猜想线段OA、OB、OD的数量关系,并证明.答案和解析1.【答案】D【解析】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:A、a3+a3=2a3,故此选项错误;B、(ab)3=a3b3,正确;C、a6÷a5=a,故此选项错误;D、2(a-1)=2a-2,故此选项错误;故选:B.直接利用合并同类项法则以及积的乘方运算法则和同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及积的乘方运算和同底数幂的乘除,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.本题根据全等三角形的性质并找清全等三角形的对应角即可.本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.4.【答案】D【解析】解:∵DE是AC的垂直平分线,∴AD=CD=5,AC=2AE=2×4=8,∴△ADC的周长是:AD+CD+AC=18.故选:D.由DE是AC的垂直平分线,根据线段垂直平分线的性质,可得AD=CD=5,AC=2AE=2×4=8,继而求得△ADC的周长.此题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.5.【答案】A【解析】解:A、∠A=∠D,∠C=∠F,AC=DF符合ASA,能判定两三角形全等,故选项正确;B、AB=DE,BC=EF,∠A=∠D是SSA,不能判定两三角形全等,故选项错误;C、∠A=∠D,∠B=∠E,∠C=∠F是AAA,不能判定两三角形全等,故选项错误;D、AB=DE,△ABC的周长等于△DEF的周长,三边不可能相等,故选项错误.故选:A.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,结合选项逐一检验.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.6.【答案】C【解析】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=(180°-70°)=55°.故选:C.由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.7.【答案】D【解析】解:如图,过点D作DE⊥AB于E,∵AC=10cm,AD:CD=5:4,∴CD=10×=cm,∵∠C=90°,BD平分∠ABC,∴DE=CD=cm,即点D到AB的距离为cm.故选:D.过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等,熟记性质是解题的关键.8.【答案】D【解析】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°-∠A-∠B=92°,故选:D.根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.9.【答案】(-3,-2)【解析】解:根据平面直角坐标系中对称点的规律可知,点P(-3,2)关于x轴的对称点坐标为(-3,-2).根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点解答.主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.【答案】5【解析】解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5cm.故答案为:5.分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC 边的长,即为5cm.此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.11.【答案】2【解析】解:(2x2-4x+1)(x+b)=2x3+2bx2-4x2-4bx+x+b=2x3+(2b-4)x2+(1-4b)x+b,∵(2x2-4x+1)(x+b)的结果中不含x2项,∴2b-4=0,解得:b=2,故答案为:2.原式利用多项式乘多项式法则计算,合并后令x2项系数为0,即可求出b的值.本题主要考查了多项式乘以多项式的法则,理解多项式中不含x2的项即x的二次项的系数为0是解题的关键.12.【答案】-2ab+b-3【解析】解:∵与单项式-3a2b的积是6a3b2-3a2b2+9a2b,∴6a3b2-3a2b2+9a2b÷(-3a2b)=-2ab+b-3.故答案为:-2ab+b-3.根据多项式除以单项式,进而求出即可.此题主要考查了多项式除以单项式,正确把握运算法则是解题关键.13.【答案】72【解析】解:∵AD∥BC,∴∠DAE=∠B=72°,∵AD是∠EAC的平分线,∴∠DAC=∠DAE=72°.故答案为:72.根据两直线平行,同位角相等可得∠DAE=∠B,根据角平分线的定义可得∠DAC=∠DAE解答即可.本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.14.【答案】45°【解析】解:∵AD⊥BC于D,BE⊥AC于E,∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE,(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,又∵AD⊥BC,∴∠ABC=∠BAD=45°.故答案为:45°.根据三角形全等的判定方法,先证△ADC≌△BDF,可得BD=AD,进而得出∠ABC=∠BAD=45°.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,判定两个三角形全等时,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,寻求所需的条件.15.【答案】(1,5)或(1,-1)或(5,-1)【解析】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,-1),(5,-1),故答案为:(1,5)或(1,-1)或(5,-1).根据题意画出符合条件的所有情况,根据点A、B、C的坐标和全等三角形性质求出即可.本题考查了全等三角形性质和坐标与图形性质的应用,关键是能根据题意求出符合条件的所有情况,题目比较好,但是一道比较容易出错的题目.16.【答案】5【解析】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°-∠DBC-∠C=180°-36°-72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°-36°)÷2=72°,∴∠ADE=∠BED-∠A=72°-36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故答案为:5.根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.17.【答案】解:(2x+1)2-(x+3)2-(x-1)2+1=[(2x+1)+(x+3)][(2x+1)-(x+3)]-[(x-1)+1][(x-1)-1]=(3x+4)(x-2)-x(x-2)=(x-2)(2x+4)=2(x-2)(x+2).【解析】首先利用平方差公式重新分组,进而利用提取公因式分解因式得出即可.此题主要考查了平方差公式的应用,熟练应用平方差公式是解题关键.18.【答案】证明:如图,∵AB∥ED,∴∠ABC=∠CED.∵在△ABC与△CED中,AB=CE∠ABC=∠CEDBC=ED,∴△ABC≌△CED(SAS),∴AC=CD.【解析】由全等三角形的判定定理SAS证得△ABC≌△CED,则该全等三角形的对应边相等,即AC=CD.本题考查了全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明19.【答案】解:(a2b-2ab2-b3)÷b-(a+b)(a-b),=a2-2ab-b2-a2+b2,=-2ab,当a=12,b=-1时,原式=-2×12×(-1)=1;【解析】先算乘法和除法,再合并同类项,最后代入求出即可;本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.20.【答案】解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.故桥建立在MN处符合题意.【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AM+BN最短,但AM与BN未连起来,要用线段公理就要想办法使M与N 重合起来,利用平行四边形的特征可以实现这一目的.此题考查了轴对称---最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.21.【答案】解:∵∠ABC=50°,∠ACB=80°(已知),∴∠BAC=180°-∠ABC-∠ACB=180°-50°-80°=50°(三角形内角和等于180°),∵DB=BA(已知),∴∠D=∠DAB=12∠ABC=25°(等边对等角),∵CE=CA(已知),∴∠E=∠CAE=12∠ACB=40°(等边对等角),∴∠DAE=∠DAB+∠BAC+∠CAE=25°+50°+40°=115°.【解析】由题意知,△ABD和△ACE均为等腰三角形,可由三角形内角和定理求得∠BAC的度数,用三角形的外角与内角的关系求得∠D与∠E的度数,即可求得∠DAE的度数.本题考查了等边对等角、三角形的外角与内角的关系、三角形的内角和定理求解;得到角之间的关系利用三角形内角和求解是正确解答本题的关键.22.【答案】n2+(n+2)2-(2n+2)2=-2n(n+2)【解析】(1)解:∵12+32-42=-2×1×3;22+42-62=-2×2×4;32+52-82=-2×3×5;…∴第n个等式是n2+(n+2)2-(2n+2)2=-2n(n+2);(2)证明:∵左边=n2+n2+4n+4-4n2-8n-4=-2n2-4n,右边=-2n2-4n,左边=右边,∴n2+(n+2)2-(2n+2)2=-2n(n+2).(1)两个数的平方和,减去两个数和的平方,结果是这两个数积的2倍的相反数,由此规律得出第n个等式;(2)利用整式的乘法计算整理证明即可.此题考查数字的变化规律,找出数字之间的联系,得出运算规律,利用运算规律解决问题.23.【答案】解:正确.理由:∵m表示大于1的整数,∴a,b,c都是正整数,且c是最大边,∵(2m)2+(m2-1)2=(m2+1)2,∴a2+b2=c2,即a、b、c为勾股数.当m=2时,可得一组勾股数3,4,5.【解析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.本题考查了勾股数.解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.24.【答案】已知:△ABC,△A1B1C1中,AB=A1B1,BC=B1C1,AD,A1D1分别为BC,B1C1边上的中线,AD=A1D1,求证:△ABC≌△A1B1C1.证明:∵AD,A1D1分别为BC,B1C1边上的中线,∴BD=12BC,B1D1=12B1C1,又∵BC=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,AB=A1B1AD=A1D1BD=B1D1,∴△ABD≌△A1B1D1(SSS),∴∠B=∠B1,∵在△ABC与△A1B1C1中,AB=A1B1∠B=∠B1BC=B1C1,∴△ABC≌△A1B1C1(SAS).【解析】先根据条件,利用“SSS”证明△ABD≌△A1B1D1,从而可得∠B=∠B1,再根据“SAS”判断△ABC≌△A1B1C1.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.【答案】(1)证明:∵△ABD和△ACE都是等边三角形,∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,∴∠BAC+∠CAE=∠BAC+∠BAD,即∠BAE=∠DAC.在△ABE和△ADC中∵AB=AD∠BAE=∠DACAE=AC,∴△ABE≌△ADC(SAS),∴BE=DC.(2)解:由(1)知:△ABE≌△ADC,∴∠ADC=∠ABE∴∠ADC+∠BDO=∠ABE+∠BDO=∠BDA=60°∴在△BOD中,∠BOD=180°-∠BDO-∠DBA-∠ABE=180°-∠DBA-(∠ADC+∠BDO)=180°-60°-60°=60°.(3)证明:过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.∵由(1)知:△ABE≌△ADC,∴S△ABE=S△ADC∴12•BE•AM=12•DC•AN∴AM=AN∴点A在∠DOE的平分线上,即OA平分∠DOE.(4)解:结论:OD=OA+OB.理由:在OD上截取一点G,使得OG=OA.由(2)(3)可知:∠AOD=∠BOD=∠AOE=60°,∵OG=OA,∴△AOG是等边三角形,∴AG=AO,∠GAO=60°,∵∠DAB=∠GAO=60°,∴∠DAG=∠BAO,∵AD=AB,AG=AO,∴△DAG≌△BAO(SAS),∴DG=BO,∴OD=OG+DG=OA+OB.【解析】(1)根据等边三角形性质得出AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC.根据SAS证△ABE≌△ADC即可.(2)根据全等求出∠ADC=∠ABE,在△DOB中根据三角形的内角和定理和∠ADB=∠DBA=60°即可求出答案.(3)过点A分别作AM⊥BE,AN⊥DC,垂足为点M,N.根据三角形的面积公式求出AN=AM,根据角平分线性质求出即可.(4)结论:OD=OA+OB.在OD上截取一点G,使得OG=OA.只要证明△DAG≌△BAO(SAS),即可解决问题;本题属于三角形综合题,考查了等边三角形性质,三角形的面积,全等三角形的性质和判定,三角形的内角和定理,角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷
三、 解答题 (共9题;共92分)
19. (20分) (2019七上·萧山月考) 计算:
(1) 22-(5-7);
(2) .
20. (5分) (2019七下·长春期中) 解方程:
21. (5分) (2018七上·鼎城期中) 先化简,再求值: ,其中 , .
22. (5分) (2017七上·东莞期中) (6分)先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=﹣1,y=2.
我们给出如下定义:数轴上给定两点 , 以及一条线段 ,若线段 的中点 在线段 上(点 可以与点 或 重合),则称点 与点 关于线段 径向对称.下图为点 与点 关于线段 径向对称的示意图.
解答下列问题:
如图1,在数轴上,点 为原点,点 表示的数为-1,点 表示的数为2.
(1) ①点 , , 分别表示的数为-3, ,3,在 , , 三点中,________与点 关于线段 径向对称;
① ;② ;③ .其中是完全对称式的是( ).
A . ①②
B . ①③
C . ②③
D . ①②③
8. (2分) (2015七上·港南期中) 某校礼堂第一排有35个座位,往后每一排多2个座位,则第n排的座位用含n的代数式表示为( )
A . 35+2n
B . 35+n
C . 34+n
D . 33+2n
9. (2分) 若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是
16. (1分) (2019九上·滨江竞赛) 若7x=3y,则 =________.
17. (1分) (2015九上·新泰竞赛) 50名学生中,会讲英语的有36人,会讲日语的有20人,既不会讲英语也不会讲日语的有8人,则既会讲英语又会讲日语的人数为________人.

辽宁省大连市八年级上期中数学试卷解析版

辽宁省大连市八年级上期中数学试卷解析版

2020-2021学年辽宁省大连市八年级上期中数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列图形中,是轴对称图形的是()
A.B.
C.D.
解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误;
故选:C.
2.(3分)全等形是指两个图形()
A.大小相等B.完全重合C.形状相同D.以上都不对解:能够完全重合的两个图形叫做全等形,
故选:B.
3.(3分)下列计算正确的是()
A.a3•a2=a6B.y2+y2=2y4C.(ab2)2=ab4D.x8 ÷x2=x6解:A.a3•a2=a5,故本选项不合题意;
B.y2+y2=2y2,故本选项不合题意;
C.(ab2)2=a2b4,故本选项不合题意;
D.x8÷x2=x6,正确,故本选项符合题意.
故选:D.
4.(3分)如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()
第1 页共15 页。

2015—2016学年度第一学期八年级数学(上)期中测试试卷附答案

2015—2016学年度第一学期八年级数学(上)期中测试试卷附答案

第1题图第13题图第12题图2015—2016学年度第一学期八年级数学(上)期中测试试卷(考试用时:120分钟 ; 满分: 100分)(共:10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是: 点M (3,2)关于x 轴对称的点的坐标为 :A.(—3,2)B.(-3,-2)C. (3,-2)D. (2,-3) 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为:A. 5或7B. 7或9C. 7D. 9 等腰三角形的一个角是80°,则它的底角是:A. 50°B. 80°C. 50°或80°D. 20°或80° 如图:OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,CD=3㎝,则CE 的长度为:A.2㎝B.3㎝C.4㎝D.5㎝如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。

A .30° B. 40° C. 50° D. 60°现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取三根木棒,能组成三角形的个数为:A .1个B .2个C .3个D .4个 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ;(2)AD ⊥BC ;(3)∠B=∠C ;4)AD 是△ABC 的角平分线。

其中正确的有( )。

A .1个 B. 2个 C. 3个 D. 4个如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于BDC 的度数为:A.72°B.36°C.60°D.82°10.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题:(本大题:10小题,每小题2分,共20分.请把答案填写在相应题目后的横线上)11. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ ,12.如图:ΔABE ≌ΔACD ,AB=10cm ,∠A=60°,∠B=30°,则AD=_____ cm ,∠ADC=_____。

2015-2016学年八年级上数学期中考试试卷(2)含答案

2015-2016学年八年级上数学期中考试试卷(2)含答案

2015~2016学年第一学期中考试初二数学试卷2015.11 试卷说明:本次考试满分100分,考试时间 100分钟。

一、精心选一选(每小题3分,共30分)1.计算的结果是().A.B.C.D.2.若分式的值为0,则x的值为().A.2 B.-2 C.D.-3.下列各式中,正确的是().A.B.C.D.4.下列条件中,不能..判定两个直角三角形全等的是().A.两锐角对应相等B.斜边和一条直角边对应相等C.两直角边对应相等D.一个锐角和斜边对应相等5.计算的结果是().A. B. C. D.6.如图,AC与BD交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC,还需条件为.()A. AB=DCB.OB=OCC. ∠A=∠DD. ∠AOB=∠DOC7.下列各式变形中,是因式分解的是()A.a2-2ab+b2-1=(a-b)2-1 B.C.(x+2)(x-2)=x2-4D.x4-1=(x2+1)(x+1)(x-1)8.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.49.下列各式中,能用完全平方公式分解因式的有()①9a2-1;②x2+4x+4;③m2-4mn+n2;④-a2-b2+2ab;⑤⑥(x-y)2-6z(x+y)+9z2.A.2个B.3个C.4个D.5个10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()①②A.B.C.D二.、耐心填一填(每小题2分,共16分)11.当m_______时,(3- m)0=1.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为米.13.当x_________时,分式有意义.14.若,,则的值为.15.若分式的值为0,则a= .16题图 17题图16.如图,在△ABC中,∠A=900,BD平分∠ABC,AC=8cm,CD=5cm,那么D点到直线BC的距离是 cm.17.如图,把△ABC绕C点顺时针旋转30°,得到△A’B’C, A’B’交AC于点D,若∠A’DC=80°,则∠A= °.18.对于实数a、b,定义一种运算“”为:.有下列命题:①;②;③方程的解为;其中正确命题的序号是.(把所有..正确命题的序号都填上).三、解答题(54分)19.把下列各式因式分解(本小题满分10分)(1) (2) 3a2﹣12解: 解:20.已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.(5分)证明:21.计算(5分)EA CB DF23.解方程:.(5分)解:24.列方程解决问题(5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25. 已知求的值(5分)26.已知: 如图, 在△ABC中, ∠CAB = , 且, AP平分∠CAB.若, ∠ABC = 32°, 且AP交BC于点P, 试探究线段AB, AC与PB之间的数量关系, 并对你的结论加以证明; (6分)27.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,求证:AE=AC.(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7,求NC 的长.(8分)图1图2ABD MCNEBCAD初二数学试题参考答案及评分标准一、选择题(共10个小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 C A C A C B D A B C11.m≠312.13.14.15. -216. 317. 70°18.(1)三、解答题(共50分)19.(1)(2)3(a+2)(a-2)20.略21.解:.原式=. =……..3分. =……5分.=……6分22.化简得:,值为0.523.. 解:去分母,得.. 去括号,得移项,得.....-2x=-4x=2 .......经检验:x=2是原方程的解. .....∴原方程的解为:x=224. 解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ...1分据题意:..... 3分解得:4分经检验:是原方程的解. ..... 5分所以答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品、25. 726.关系:AB=AC+PB 证明:略 27.(1)略 (2)5.5辅助线:延长BA,MN 交与E 点,做AB 的平行线交NM 的延长线于FE。

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)下列命题中正确的是()A . 三角形的高线都在三角形内部B . 直角三角形的高只有一条C . 钝角三角形的高都在三角形外D . 三角形至少有一条高在三角形内2. (2分) (2016八上·南宁期中) 下列长度的三条线段能围成三角形的是()A . 1, 2, 3B . 4,4,5C . 7, 2,4D . 5,15,83. (2分) (2018八上·苍南月考) 我国纸伞的制作工艺十分巧妙,如图,伞不管张开还是收拢,其中AE=AF,DE=DF,则△AED≌△AFD的依据是()A . SASB . ASAC . AASD . SSS4. (2分) (2019八上·惠山期中) 如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明的依据是()A .D .5. (2分)已知△ABC关于直线MN对称,则下列说法错误的是()A . △A BC中必有一个顶点在直线MN上B . △ABC中必有两个角相等C . △ABC中,必有两条边相等D . △ABC中必有有一个角等于60°6. (2分)如图,B、C、E、F在一条直线上,AC∥DE,且AC=DE,BE=CF,∠FED=50°,∠B=55°,则∠D=()A . 80°B . 75°C . 55°D . 50°7. (2分) (2016八下·微山期中) 如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2 ;④四边形ACEB的面积是16.则以上结论正确的是()A . ①②③B . ①②④8. (2分) (2017九上·下城期中) 如图,是半圆的直径,为弦,于,过点作交半圆于点,过点作于,若,则的长为()A .B .C .D .9. (2分)(2017·港南模拟) 如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=40°,N是弧MB的中点,P是直径AB上的一动点,PM+PN的最小值为()A . 4 +1B . 4C . 4 +1D . 5二、填空题 (共6题;共6分)10. (1分)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是________.11. (1分) (2019七上·宜兴月考) 图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm3.12. (1分) (2020八上·遂宁期末) 如图,在△ABC中,∠ABC<∠BCA<∠BAC,∠BAC和∠ABC的外角平分线AE、BD分别与BC、CA的延长线交于E、D.若AB=AE,BD=BA.则∠BCA的度数为________.13. (1分)已知a、b、c为△ABC的三条边长,则|a﹣b﹣c|+|c﹣b+a|=________.14. (1分)在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为________.15. (1分) (2019七上·惠山期中) 如图,在各个手指间标记字母A,B,C,D.请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,….当字母C第2019次出现时,数到的数恰好是________.三、解答题 (共9题;共77分)16. (5分) (2020八上·昆明期末) 如图,在△ABC中,AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC 的延长线于点E,若∠B=35°,∠ACB=85°,求∠E的度数.17. (5分) (2016八下·宝丰期中) 如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B.若AC=10,AB=25,求CD的长.18. (5分)如图,AB⊥BE,DE⊥BE,垂足分别为B,E,点C,F在BE上,BF=EC,AC=DF.求证:∠A=∠D.19. (5分) (2017八上·乌审旗期中) 如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.20. (2分)如图,△ABC≌△ADE,∠EAB=125°,∠CAD=25°,求∠BFD的度数.21. (15分)如图,在平面直角坐标系中,点,点,点 .(1)画出关于轴的对称图形,并写出点的对称点的坐标;(2)若点在轴上,连接、,则的最小值是________;(3)若直线轴,与线段、分别交于点、(点不与点重合),若将沿直线翻折,点的对称点为点,当点落在的内部(包含边界)时,点的横坐标的取值范围是________.22. (10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求AG的长.23. (15分)(2019·本溪模拟) 已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2 ,直接写出线段BF的范围.24. (15分) (2019九上·江汉月考) 已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF,(1)如图1,请直接给出线段MD、MF的数量及位置关系是________;(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出的值.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共6分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共77分)16-1、17-1、18-1、19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·长清模拟) 下列计算正确的是()A . x6+x6=x12B . (x2)3=x5C . x﹣1=xD . x2•x3=x52. (2分) (2017八上·钦州期末) 下列运算正确的是()A .B .C .D .3. (2分) (2020七上·滨州期末) 下列计算正确的是()A . 2a+3a=5a2B . 5a2b﹣3ab2=2abC . 3x2﹣2x2=x2D . 6m2﹣5m2=14. (2分) (2018八上·北京期中) 代数式中,分式的个数是()A . 1B . 2C . 3D . 45. (2分)计算得()A .B .C .D . 26. (2分)下面的计算正确的是()A . 6a﹣5a=1B . =±6C . (a2)3=a5D . 2(a+b)=2a+2b7. (2分)方程的增根是()A . x=0B . x=-1C . x=1D . x=±18. (2分) (2017七下·农安期末) 在下列长度的四组线段中,能组成三角形的是()A . 3,4,4B . 5,5,10C . 2,4,7D . 4,6,129. (2分) (2018八下·深圳月考) 如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A . ∠ADB=∠ACB+∠CADB . ∠ADE=∠AEDC . ∠B=∠CD . ∠BAD=∠BDA10. (2分) (2018九上·路南期中) 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A . 45度B . 60度C . 72度D . 90度11. (2分) (2020八上·昆明期末) 如图,△ABC 的三边 AB、BC、CA 长分别是 10、15、20,其三条角平分线将△ABC 分为三个三角形,则S△ABO:S△BCO:S△CAO 等于()A . 1∶1∶1B . 1∶2∶3C . 2∶3∶4D . 3∶4∶512. (2分) (2018七下·嘉定期末) 下列说法中,正确的是()A . 腰对应相等的两个等腰三角形全等;B . 等腰三角形角平分线与中线重合;C . 底边和顶角分别对应相等的两个等腰三角形全等;D . 形状相同的两个三角形全等.二、填空题 (共6题;共6分)13. (1分) (2019八下·兴平期末) 分式的值为0,那么x的值为________.14. (1分) (2021九上·建湖月考) 化简求值: ________.(其中x满足).15. (1分) (2016八上·龙湾期中) 如图,已知AB=AC,∠1=∠2,BD=5cm,则BC=________cm.16. (1分) (2019八上·射阳期末) 如图,,若,则 =________.17. (1分) (2020九上·五常期末) 边长为4cm的正三角形的外接圆半径长是________cm .18. (1分) (2019八上·遵义月考) 如图,在中,,、、分别是,,上的点,且, .若,则的度数为________.三、解答题 (共8题;共65分)19. (10分)如图,AD⊥BC,∠1=∠2,∠C=55°.求∠BAC的度数.20. (5分) (2019八上·陆川期中) 如图所示,已知中, .(1)作图:在上有一点 ,连接 ,并在的延长线上取点,使 ,连接 ,作的平分线交于点 (用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,连接 ,求证: .21. (5分) (2019八上·兴化月考) 如图,已知 AB=DC,AC=DB,AC 和 DB 相交于点 O. 求证:OB=OC.22. (5分)先化简,再求值:(a﹣b)2﹣a(a﹣3b),其中a=,b=﹣.23. (5分)(2011·南通) 在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?24. (15分) (2017八下·德惠期末) 先化简,再求值÷(x﹣),其中x= .25. (10分) (2019八上·鄞州期末) 如图,在平面直角坐标系中,,,过点B 画y轴的垂线 l ,点 C 在线段AB 上,连结 OC 并延长交直线 l 于点 D ,过点 C 画CE⊥OC 交直线 l 于点 E .(1)求∠OBA 的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当 BE=1 时,求点C的坐标.26. (10分)(2020·淮安模拟) 在中, . 点P是平面内不与点A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转a得到线段DP,连接AD,BD,CP(1)动手操作如图1,当时,我们通过用刻度尺和量角器度量发现:的值是1;直线BD与直线CP相交所成的较小角的度数是;请证明以上结论正确.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共65分)19-1、20-1、20-2、21-1、22-1、23-1、24-1、25-1、25-2、25-3、26-1、26-2、。

辽宁省大连市八年级上学期期中数学试卷

辽宁省大连市八年级上学期期中数学试卷

辽宁省大连市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个2. (2分) (2016八上·庆云期中) 下面各组线段中,能组成三角形的是()A . 5,11,6B . 8,8,16C . 10,5,4D . 6,9,143. (2分)用形状、大小完全相同的图形不能镶嵌成平面图案的是().A . 正三角形B . 正方形C . 正五边形D . 正六边形4. (2分)如图,在△ABD和△ACE都是等边三角形,则ΔADC≌ΔABE的根据是()A . SSSB . SASC . ASAD . AAS5. (2分) (2019八上·道里期末) 等腰三角形的一个角是100°,则它的底角是()A .B .C .D .6. (2分) (2017七下·水城期末) 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A . 3B . 4C . 6D . 5二、填空题 (共6题;共10分)7. (1分) (2017八上·普陀开学考) 点P(﹣2,3)关于x轴的对称点的坐标是________.8. (1分)如图,已知l1∥l2 ,∠A=40°,∠1=60°,∠2=________ .9. (5分) (2019八下·江苏月考) 如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为8cm,则平行四边形ABCD的周长为__cm10. (1分) (2016八上·东宝期中) 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是________.11. (1分)如图,菱形ABCD周长为8,∠BAD=120°,P为BD上一动点,E为CD中点,则PE+PC的最小值长为________.12. (1分)图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是________ (填上适当的一个条件即可)三、作图题 (共5题;共34分)13. (10分) (2019九上·大丰月考) 已知:如图,△ABC中,AC=2,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的半径.14. (6分)(2018·珠海模拟) 如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=7,CD=5,则CE=________.15. (5分)已知:如图,点D、E分别是等边△ABC的两边AB、AC上的点,且AD=CE,求证:CD=BE.16. (5分) (2019八上·集美期中) 已知:一个多边形的内角角度之和比它的外角和大720°,求它的边数.17. (8分) (2016八上·南开期中) 在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2________;B2________;C2________.四、解答题 (共6题;共59分)18. (9分) (2016九上·新疆期中) 一位同学拿了两块45°的三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为________,周长为________;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为________,周长为________;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.19. (5分) (2018八下·江都月考) 如图,BC是等腰三角形BED底边DE上的高,四边形ABEC是平行四边形.判断四边形ABCD的形状,并说明理由.20. (10分)(2016·巴彦) 如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.21. (10分) (2019八上·扬州月考) 下面是数学课堂的一个学习片断.阅读后,请回答下面的问题.学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的∠A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”,还有一些同学也提出了不同的看法…(1)请写出正确的答案,并说明理由;(2)当张老师追问“己知∠A=40°,当∠B等于多少度时,三角形ABC为等腰三角形”.22. (15分) (2019九下·常熟月考) 如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)23. (10分)(2018·铁西模拟) 如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y= (k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△A BC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、三、作图题 (共5题;共34分)13-1、13-2、14-1、14-2、15-1、16-1、17-1、17-2、四、解答题 (共6题;共59分) 18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

2015-2016学年八年级上学期期中考试数学试卷带答案

2015-2016学年八年级上学期期中考试数学试卷带答案

2015(全卷满分120分,班级 姓名 分数 一. 符合题目要求的。

本大题共15小题,每小题3分,计1.下列计算中正确的是 ( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=-2.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ).A .12B .15C .9D .12或153.下面是某同学在一次测验中的计算摘录,其中正确的个数有 ( ) ①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷-A .1个B .2个C .3个D .4个4.已知210x y -=,则124+-y x 的值为( )A .10B .21C .10-D .21-5.下列各式是完全平方式的是 ( )A .412+-x x B .21x + C .1++xy x D .122-+x x6.若3x =15,3y =5,则3x -y 等于 ( )A .5B .3C .15D .107. 从五边形的一个顶点作对角线,把这个五边形分成三角形的个数是( )A. 5个B. 4个C. 3个D.2个8.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为( )A.32B.3210C.1210D.10129. 下列图形中有稳定性的是 ( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形10.到三角形三边距离相等的点是( )A .三边垂直平分线的交点B .三条高线交点C .三条中线的交点D .三条角平分线的交点11.如图,用尺规作图画角平分线:以O 为圆心,任意长为半径画弧交OA ,OB 于点C ,D ,再分别以C ,D 为圆心,以大于CD 21长为半径 画弧,两弧交于点P ,由此得△POC ≌△POD 依据是( ) A .AAS B. SAS C.SSS D .ASA 12.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且13.若(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( ) A. –3 B. 3 C. 0 D. 1 14.若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为 ( ) A .3:2:1 B .1:2:3 C .3:4:5 D . 5:4:3 15.在ABC Rt ∆中,︒=∠90A ,BD 平分ABC ∠交AC 于点D ,AD=2, AC=5,则D 到BC 的距离是( ) A .2 B .3 C .4 D .5 二、解答题:(请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~17每小题6分,18~19每小题7分,20~21每小题8分,22题10分,23题11分,24题12分,合计75分) 16、计算:2(2)(2)x x x ++- 17.先化简,再求值. 2(3)(3)(3)x x x --+-, 其中x=1 18. 如图,AD 是△ ABC 中∠ BAC 的平分线,DE ⊥ AB 于点E ,DF ⊥AC 交AC 于点F ,S ABC △ =7,DE=2,AB=4, 求AC 的长 19如图,在ABC Rt ∆中,︒=∠90ABC ,点F 在CB 的延长线上且AB=BF ,过F 作AC EF ⊥交AB 于D ,求证:DB=BCDCPOC D C B F A D E20. 如图,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D .(1)求证:△ADC ≌△CEB (2)若AD=8cm ,DE=5cm ,求BE 的长度21. (1)已知 (a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值.(2)已知:x 2+y 2+4x -6y +13=0,x 、y 均为有理数,求x y 的值.22.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B C E ,,在同一条直线上,连结DC .(1).请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2).请判断DC 与BE 的位置关系,并证明;(3).若CE=2,BC=4,求△DCE 的面积.23. 如图,△ABC 中,AB =AC ,∠BAC =90°, (1)CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上,BE 的延长线交CA 的延长线于M ,补全图形,并探究BE 和CD 的数量关系,并说明理由; (2)若BC 上有一动点P ,且∠BPQ =12∠ACB ,BQ ⊥PQ 于Q ,PQ 交AB 于F ,试探究BQ 和PF 之间的数量关系,并证明你的结论. 24.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由; ②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由; (2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,连CF ,已知GD=4,求△CFH 的面积. (12分)ABC DE① ②D图2图1C答案:1-15,DBBBA BCCCD CCADA16, 224x -17.化简后是22223x x a -++,结果是718,AC=319,证△ABC ≌△FBD (AAS 或ASA )20,(1)用AAS 或ASA 证三角形全等(2)由△ADC ≌△CEB 得BE=CD,CE=AD,所以BE=CD=CE-DE=AD-DE=3cm 21,(1) △ABE ≌△ACD(SAS)(2) DC BE ⊥(3)6 22,(1)a 2+b 2=112, ab=3423(1)BE=12CD (2) BQ=12PF 24,(1)①全等,用AAS 或ASA 证三角形全等;②BE=CH(2)①全等②8。

辽宁省大连市八年级(上)期中数学试卷

辽宁省大连市八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形中具有稳定性的是()A. B. C. D.2.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B.C. D.3.如图,点B、E、C、F在一条直线上,AB=DE,∠A=∠D,则以下所给的条件不能证明△ABC≌△DEF的是()A. BE=CFB. ∠B=∠DEFC. AC=DFD. AC∥DF4.一个多边形的内角和等于1260°,则它是()A. 五边形B. 七边形C. 九边形D. 十边形5.如图,∠1=∠2,∠B=∠D,则下列结论错误的是()A. △ABC≌△CDAB. ∠1=∠CADC. AD∥BCD. AB=CD6.画△ABC的边BC上的高,正确的是()A. B.C. D.7.如图,为了促进当地旅游发展,某地要在三条公路围成的一块三角形平地ABC上修建一个度假村,要使这个度假村到三条公路的距离相等,应该修在()A. △ABC三边中线的交点B. △ABC三个角的平分线的交点C. △ABC三边高线的交点D. △ABC三边垂直平分线的交点8.如图,在Rt△ABC中,∠ACB=90°,∠B=2∠A,CD⊥AB,BD=1,则AD的长度是()A. 1B. 2C. 3D. 49.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A. 40°B. 75°C. 85°D. 140°10.在四边形ABCD中∠C=55°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△EAF周长最小时,∠EAF的度数为()A. 55°B. 70°C. 125°D. 110°二、填空题(本大题共6小题,共18.0分)11.如图,C是AB中点,AD=CE,CD=BE,则判断△ACD≌△CBE的根据是______.12.如图,在△ABC中,∠A=______.13.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD为______.14.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=37°,PB=PF,则∠APF=______°.15.等腰三角形的周长为18,若一边长为8,则它的腰长为______.16.如图,在等腰△ABC中,AB=AC,∠A=36°,AE=a,CE=b,AB的垂直平分线DE交AB于点D,交AC于点E,请用含a、b的代数式表示△ABC周长为______.三、解答题(本大题共10小题,共102.0分)17.如图,在△ABC中,AD⊥BC,∠1=∠2,∠C=65°.求∠BAC的度数.18.如图,△ADE是等边三角形,DE∥BC,分别交AB、AC于点D、E.求证:△ABC是等边三角形.19.如图,AB=DE,AB∥DE,BE=CF.求证:AC=DF,AC∥DF.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-3,1)、B(-1,-1)、C(-2,2).(1)不用画图,请直接写出△ABC关于y轴对称的图形△A1B1C1的三个顶点的坐标:A1______,B1______,C1______.(2)在图中画出△ABC关于直线m(直线m上各点的横坐标都为1)对称的图形△A2B2C2,并直接写出三个顶点的坐标:A2______,B2______,C2______.(3)若△ABC内有任意一点P的坐标为(x,y),则在△ABC关于直线m(直线m 上各点的横坐标都为1)对称的图形△A2B2C3上,点P的对应点P2的坐标为______(用含x和y的式子表示)(建议:先用铅笔画图,确定无误后用黑色水性笔画在答题卡上).21.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE∥DF.22.求证:如果两个三角形全等,那么它们对应角的角平分线相等.请根据图形,写出已知、求证,并证明.已知:求证:23.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.24.如图,点D为∠ABC的角平分线上一点,DE∥BC交BA于点E,F是线段BD的中点.请过点F画直线分别交射线DE、BC于点G、H(点E与点G不重合),探究BE、BH、EG之间的数量关系,并证明.25.如图1,在等腰△ABC中,AB=AC,∠BAC=45°,BD⊥AC,点P为边AB上一点(不与点A、点B重合),PM⊥BC,垂足为M,交BD于点N.(1)请猜想PN与BM之间的数量关系,并证明;(2)若点P为边AB延长线上一点,PM⊥BC,垂足为M,交DB延长线于点N,请在图2中画出图形,并判断(1)中的结论是否成立若成立,请证明;若不成立,请写出你的猜想并证明.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.答案和解析1.【答案】A【解析】解:A选项中分割成了两个三角形,所以具有稳定性,其他则不具备,故选:A.根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.本题主要考查三角形的稳定性.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.2.【答案】D【解析】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.根据轴对称图形的概念求解.本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.【答案】A【解析】解:∵∠A=∠D,AB=DE,∴添加∠B=∠DEF,利用ASA可得△ABC≌△DEF;∴添加AC=DF,利用SAS可得△ABC≌△DEF;∴添加AC∥DF,∴∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:A.根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS、HL是解题的关键.4.【答案】C【解析】解:设这个多边形的边数为n,∴(n-2)×180°=1260°,解得n=9,∴这个多边形为九边形.故选:C.设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=1260°,然后解方程即可.本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.5.【答案】B【解析】解:∵,∴△ABC≌△CDA,故A正确;∴AB=CD,∠ACB=∠CAD,故D正确;∴AD∥BC,故C正确;故选:B.根据全等三角形的判定和性质判断即可.本题考查了全等三角形的判定,根据全等三角形的判定和性质判断是解题的关键.6.【答案】D【解析】解:A.此图形知BD不是三角形的高,不符合题意;B.此图形中BD是AC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是BC边上的高,符合题意;故选:D.过三角形的顶点向对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高,据此解答.本题考查了三角形的高线,熟记概念是解题的关键.钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.7.【答案】B【解析】解:要使这个度假村到三条公路的距离相等,则度假村应该修在△ABC内角平分线的交点,故选:B.根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC和∠CAB的角平分线的交点处.此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.8.【答案】C【解析】解:在Rt△ABC中,∵∠ACB=90°,∠B=2∠A,∴∠A=30°,∠B=60°.∵CD⊥AB,∴∠BDC=∠ADC=90°.在Rt△DBC中,∵∠B=60°,∴∠BCD=30°,又BD=1,∴BC=2BD=2,∴CD==.在Rt△DAC中,∵∠A=30°,CD=,∴AC=2,∴AD==3.故选:C.利用直角三角形的两锐角互余,求出∠A、∠B的度数,利用直角三角形中含30°角的边间关系,求出BC、AC的长,利用勾股定理求出AD.本题考查了直角三角形中含30°角的边间关系,勾股定理等知识.含30°角的直角三角形的边间关系:在直角三角形中,30°角所对的边等于斜边的一半.解决本题亦可通过相似或者锐角三角函数.9.【答案】C【解析】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.故选:C.根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.10.【答案】B【解析】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=55°,∴∠DAB=125°,∴∠HAA′=55°,∴∠AA′E+∠A″=∠HAA′=55°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=55°,∴∠EAF=125°-55°=70°.故选:B.要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=55°,进而得出∠EA′A=∠EAA′,∠FAD=∠A″,∠EAA′+∠A″AF=55°,即可得出答案.本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.11.【答案】SSS【解析】解:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,,∴△ACD≌△CBE(SSS).故答案为:SSS由已知条件AD=CE,CD=BE,和AC=CB,根据三角形全等的判定定理SSS可证得△ACD≌△CBE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.【答案】60°【解析】解:∵∠ACD=∠A+∠ABC,∴x+70=x+x+10,x=60,∴∠A=60°,故答案为:60°.根据三角形外角的性质列方程可得结论.本题考查了三角形外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和.13.【答案】54°【解析】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.故答案为54°.根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.【答案】74【解析】解:∵△ABC≌△DEF,∴∠E=∠B=37°,∵PB=PF,∴∠PFB=∠B=37°,∴∠APF=37°+37°=74°,故答案为:74.根据全等三角形的性质可得∠E=∠B=37°,再根据等边对等角可得∠PFB=∠B=37°,再由三角形外角的性质可得∠APF的度数.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.【答案】5或8【解析】解:①当等腰三角形的底长为8时,腰长=(18-8)÷2=5;则等腰三角形的三边长为8、5、5;5+5>8,能构成三角形.②当等腰三角形的腰长为8时,底长=18-2×8=2;故答案为:5或8.由于已知长度的边没有指明是等腰三角形的底边还是腰,因此要分类讨论,最后要根据三角形三边关系定理判断求出的结果是否符合题意.本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.16.【答案】3a+2b【解析】解:∵DE垂直平分线段AB,∴EA=EB=a,∴∠A=∠ABE=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠EBC=∠ABC-∠ABE=36°,∴∠BEC=∠C=72°,∴BC=BE=a,∴△ABC的周长=2a+2b+a=3a+2b.故答案为3a+2b.只要证明EA=EB=BC即可解决问题;此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.17.【答案】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠DAC=90°-65°=25°,∠1=∠2=45°,∴∠BAC=∠1+∠DAC=45°+25°=70°.【解析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据三角形的内角和定理求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.本题考查的是三角形内角和定理,垂直的定义,熟知三角形的内角和等于180°是解答此题的关键.18.【答案】证明:∵△ABC是等边三角形,∴∠A=∠B=∠C,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.∵△ABC是等边三角形;【解析】根据△ABC为等边三角形,则∠C=∠B=60°,由DE∥BC得到∠ADE=∠C=∠B=∠AED=60°,然后根据等边三角形的判定方法得到△ADE是等边三角形;本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定与性质是解决问题的关键.19.【答案】证明:∵AB∥DE,∴∠B=∠DEC.∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF,∠ACB=∠F,∴AC∥DF.【解析】先根据平行线的性质求出∠B=∠DEC,再由BE=CF可知BE+EC=CF+EC,即BC=EF,由SAS定理即可得出△ABC≌△DEF,由此可得出结论.本题考查的是全等三角形的判定与性质,熟知判定全等三角形的SAS定理是解答此题的关键.20.【答案】(3,1)(1,-1)(2,2)(4,1)(3,-1)(4,2)(x+5,y)【解析】解:(1)△ABC关于y轴对称的图形△A1B1C1的三个顶点的坐标:A1(3,1),B1(1,-1),C1(2,2).故答案为(3,1),(1,-1),(2,2).(2)△A2B2C2如图所示,A2(4,1),B2(3,-1),C2(4,2),故答案为(4,1),(3,-1),(4,2).(3)点P向右平移5个单位得到点P2,P2坐标为(x+5,y).故答案为(x+5,y).(1)根据关于y轴对称横坐标互为相反数,纵坐标不变即可解决问题;(2)作出A,B,C的对应点A2,B2,C2即可;(3)寻找规律,利用规律即可解决问题;本题考查作图-轴对称变换,解题的关键是解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠B,DF平分∠D,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.【解析】根据角平分线的定义和四边形的内角和进行解答即可.此题考查平行线的判定,关键是根据角平分线的定义和四边形的内角和进行解答.22.【答案】解:已知:△ABC≌△A'B'C',AD平分∠BAC,A'D'平分∠B'A'C',求证:AD=A'D',证明:∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B',∠BAC=∠B'A'C',∵AD平分∠BAC,A'D'平分∠B'A'C',∴∠BAD=∠B'A'D',,∴△ABD≌△A'B'D'(ASA),∴AD=A'D'.【解析】根据全等三角形的性质得出AB=A'B',∠B=∠B',∠BAC=∠B'A'C',根据“SAS”判断△ABD≌△A'B'D',进而证明即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.【解析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.24.【答案】解:分两种情况:(1)当点M在线段ED上时,线段BE、BH、EG之间的数量关系是:BE=EG+BH.证明:如图1,,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,又∵ED∥BC,∴∠CBD=∠BDE,∴∠BDE=∠ABD,∴BE=ED=EG+DG,∵F是线段BD的中点,∴BF=DF,∵ED∥BC,∴∠D=∠FBH,∠DGF=∠BHF,∴△DGF≌△BHF(AAS),∴BE=EG+DG=EG+BH;(2)当点G在线段DE延长线上时,BE、BH、EG之间的数量关系是:BE=BH-EG.证明:如图2,由(1),可得△DGF≌△BHF(AAS),∴DG=BH,∵BE=DE,∴BE=DG-EG=BH-EG.【解析】分两种情况:(1)当点G在线段ED上时,线段BE、BH、EG之间的数量关系是:BE=BG+BH.先根据等角对等边可得BE=DE,证明△DGF≌△BHF,得DG=BH,可得结论;(2)当点G在线段DE延长线上时,BE、BH、EG之间的数量关系是:BE=BH-BG.由(1),可得BH=DG,BE=DE,相减可得结论.本题考查全等三角形的判定和性质、角平分线定义、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.25.【答案】解:(1)结论:PN=2BM.理由:如图1中,作PF∥AC交BC于F,交BD于E.∵BD⊥AC,PF∥AC,∴PF⊥BD,∠BPE=∠A=45°,∴∠BEP=90°,∴∠BPE=∠PBE=45°,∴BE=PE,∵PM⊥BC,∴∠PMB=∠PEN=90°,∵∠BNM=∠PNE,∴∠NPE=∠EBF,∵∠PEN=∠BEF=90°,∴△PEN≌△BEF(ASA),∴PN=BF,∵AB=AC,∴∠ABC=∠C,∵∠PFB=∠C,∴PB=PF,∵PM⊥BF,∴BM=MF,∴PN=2BM.(2)结论不变.理由:如图2中,作PF∥AC交CB的延长线于E,交DB的延长线于F.∵∠ABD=∠PBF=∠BPF=45°,∴BF=PF,∵∠EBF=∠EPM,∠EFB=∠EMP,BF=PF,∴△BFE≌△PFN(ASA),∴PN=BE,∵∠E=∠C=∠ABC=∠PBE,∴PE=PB,∵PM⊥EB,∴EM=BM,∴PN=2BM.【解析】(1)结论:PN=2BM.如图1中,作PF∥AC交BC于F,交BD于E.只要证明△PEN≌△BEF(ASA)即可解决问题;(2)结论不变,证明方法类似(1);本题考查等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.【答案】(1)证明:∵∠ACB=∠AED=90°,∴∠DEF+∠AEC=∠ACE+∠BCG=90°,∵AE=AC,∴∠AEC=∠ACE,∴∠DEF=∠BCG,在△BCG与△DEF中,∴△BCG≌△DEF,(ASA),∴BG=DF,∠BGC=∠DFC,∴∠BGF=∠BFG,∴BF=BG,∴BF=DF;(2)解:CH=EH,理由:如图3,延长FH至L,使HL=FG,连接LE,则HL+HG=FG+HG,即LG=FH,∵∠ACB=∠AED=90°,CF、EG分别为AB、BD的中线,∴CF=EG,∵∠ABC=∠BDE,∠CBF=∠CFB,∠D=∠DGE,∴∠BFC=∠DGE,∵AB=BD,∴BF=BG,∴∠BFG=∠BGF,∵∠BGF=∠DGH,∴∠CFH=∠EGL,在△CFH与△EGL中,,∴△CFH≌△EGL,(SAS),∴CH=EL,∠ELH=∠CHF,∴∠ELH=∠EHL,∴EH=EL,∴EH=CH.【解析】(1)根据余角的性质得到∠DEF=∠BCG,根据全等三角形的性质得到BG=DF,∠BGC=∠DFC,根据等腰三角形的性质即可得到结论;(2)如图3,延长FH至L,使HL=FG,连接LE,于是得到LG=FH,根据直角三角形的性质得到CF=EG,根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定和性质,直角三角形的性质,关键是巧妙作辅助线证明三角形全等.。

2015-2016年辽宁省大连二十九中八年级上学期期中数学试卷和答案

2015-2016年辽宁省大连二十九中八年级上学期期中数学试卷和答案

2015-2016学年辽宁省大连二十九中八年级(上)期中数学模拟试卷(1)一、选择题:1.(3.00分)下列计算结果正确的是()A.b3•b3=2b3B.(2x5)2=2x10 C.(﹣xy6)2=x2y12D.x5•x2=x102.(3.00分)下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆3.(3.00分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC4.(3.00分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等5.(3.00分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°6.(3.00分)在△ABC与△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是()A.AB=EF B.BC=EF C.AB=AC D.∠C=∠D7.(3.00分)如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP 沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°二、填空题:8.(3.00分)等腰三角形的一个底角为30°,则顶角的度数是度.9.(3.00分)若n边形的每个内角都等于150°,则n=.10.(3.00分)﹣(﹣2a2b)3=.11.(3.00分)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=度.12.(3.00分)已知点A(3,3)和点B是平面内两点,且它们关于直线x=2轴对称,则点B的坐标为.三、解答题:13.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.四、解答题:(本题共2小题,每题12分,共24分)14.已知:如图,AB=AC,BD⊥AC于D,请探究∠DBC与∠A的数量关系并说明理由.15.如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.五、解答题:(本题共3小题,每题12分,共36分)16.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=.17.如图,在等边三角形ABC中,AB=6,点P是AB边上的任意一点(点P不与点A、点B重合),过点P作PD⊥AB,交直线BC于点D,作PE⊥AC,垂足为点F.(1)求∠APE的度数;(2)连接DE,当△PDE为等边三角形时,求BP的长.18.已知:△ABC中,AB=AC,∠B=α.(1)如图1,点D,E分别在边AB,AC上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N,求证:BD+CE=BC.需补充条件∠EMN=(用含α的式子表示)补充条件后并证明;(2)把(1)中的条件改为点D,E分别在边BA、AC延长线上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N(如图2),并补充条件∠EMN=(用含α的式子表示),通过观察或测量,猜想线段BD,CE与BC之间满足的数量关系,并予以证明.2015-2016学年辽宁省大连二十九中八年级(上)期中数学模拟试卷(1)参考答案与试题解析一、选择题:1.(3.00分)下列计算结果正确的是()A.b3•b3=2b3B.(2x5)2=2x10 C.(﹣xy6)2=x2y12D.x5•x2=x10【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、积的乘方等于乘方的积,故C正确;D、同底数幂的乘法底数不变指数相加,故D错误;故选:C.2.(3.00分)下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆【解答】解:A、等边三角形是轴对称图形,有3条对称轴;B、正方形是轴对称图形,有4条对称轴;C、正六边形是轴对称图形,有6条对称轴;D、圆是轴对称图形,有无数条对称轴.故选:A.3.(3.00分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC【解答】解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选:C.4.(3.00分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等【解答】解:A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选:D.5.(3.00分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°【解答】解:∵AB=AD,∴∠B=∠ADB,由∠BAD=80°得∠B==50°=∠ADB,∵AD=DC,∴∠C=∠ACD,故选:D.6.(3.00分)在△ABC与△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是()A.AB=EF B.BC=EF C.AB=AC D.∠C=∠D【解答】解:添加BC=EF.∵∠A=∠D,∠B=∠E,BC=EF∴△ABC≌△DEF.(AAS)故选:B.7.(3.00分)如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP 沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°【解答】解:连接AP,∵P为其底角平分线的交点,∴点P是△ABC的内心,∴AP平分∠BAC,∵AB=AC,设∠A=2x,则∠DAP=x,∠PBC=∠PCB=45°﹣x,∵DA=DP,∴∠DAP=∠DPA,由折叠的性质可得:∠PDC=∠PBC=45°﹣x,则∠ADP=180°﹣∠PDC=135°+x,在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+x=180°,解得:x=18,则∠A=2x=36°.故选:D.二、填空题:8.(3.00分)等腰三角形的一个底角为30°,则顶角的度数是120度.【解答】解:因为其底角为30°,所以顶角=180°﹣30°×2=120°.故填120.9.(3.00分)若n边形的每个内角都等于150°,则n=12.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故答案为:12.10.(3.00分)﹣(﹣2a2b)3=8a6b3.【解答】解:原式=﹣(﹣8a6b3)=8a6b3,故答案为:8a6b3.11.(3.00分)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=30度.【解答】解:∵在Rt△ABC中,∠C=90°,△BCE与△BDE重合,∴ED⊥AB,∠EBA=∠EBC,又点D是AB的中点,∴EA=EB,∴∠A=∠EBA=∠EBC.设∠A=∠EBA=∠EBC=x∵∠A+∠EBA+∠EBC=90°,∴3∠x=90°,∴x=30°.∴∠A=30°.12.(3.00分)已知点A(3,3)和点B是平面内两点,且它们关于直线x=2轴对称,则点B的坐标为(1,3).【解答】解:设点B的横坐标为x,∵点A(3,3)与点B关于直线x=2对称,∴=2,解得x=1,∵点A、B关于直线x=2对称,∴点A、B的纵坐标相等,∴点B(1,3).故答案为(1,3).三、解答题:13.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【解答】证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC.四、解答题:(本题共2小题,每题12分,共24分)14.已知:如图,AB=AC,BD⊥AC于D,请探究∠DBC与∠A的数量关系并说明理由.【解答】解:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠A)∵BD⊥AC∴∠DBC=90°﹣(180°﹣∠A)=∠A.15.如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.【解答】证明:作DE⊥AB于E,∵△ABC是等腰直角三角形,∴∠B=45°,又DE⊥AB,∴DE=BE,∵AD为△ABC的底角的平分线,∠C=90°,DE⊥AB,∴DE=DC,则CD=BE,在△CAD和△EAD中,,∴△CAD≌△EAD,∴AC=AE,AB=AE+EB=AC+CD.五、解答题:(本题共3小题,每题12分,共36分)16.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=AE.【解答】解:结论:BF=AE.证明:∵CF⊥BE,∴∠BFC=90°,又∵AD∥BC,∴∠AEB=∠FBC;由于以点B为圆心,BC长为半径画弧,∴BE=BC,在△ABE与△FCB中,,∴△ABE≌△FCB(AAS),∴BF=AE.17.如图,在等边三角形ABC中,AB=6,点P是AB边上的任意一点(点P不与点A、点B重合),过点P作PD⊥AB,交直线BC于点D,作PE⊥AC,垂足为点F.(1)求∠APE的度数;(2)连接DE,当△PDE为等边三角形时,求BP的长.【解答】解:(1)∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵PE⊥AC,∴∠AEP=90°,∴∠APE=180°﹣∠A﹣∠AEP=180°﹣60°﹣90°=30°;(2)设BP=x,则AP=6﹣x,在Rt△BPD中,PD=BP•tan60°=x,在Rt△APE中,PE=AP•sin60°=,∵△PDE为等边三角形,∴PD=PE,即=(6﹣x),解得:x=2,∴当△PDE为等边三角形时,BP的长为2.18.已知:△ABC中,AB=AC,∠B=α.(1)如图1,点D,E分别在边AB,AC上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N,求证:BD+CE=BC.需补充条件∠EMN=α(用含α的式子表示)补充条件后并证明;(2)把(1)中的条件改为点D,E分别在边BA、AC延长线上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N(如图2),并补充条件∠EMN=α(用含α的式子表示),通过观察或测量,猜想线段BD,CE与BC之间满足的数量关系,并予以证明.【解答】解:(1)当∠EMN=α时,BD+CE=BC.理由:如图1所示:连接DM.∵AB=AC,∴∠B=∠C=α.∵MN是DE的垂直平分线,∴DN=NE,DM=EM.在△MND和△MNE中,,∴△MND≌△MNE.∴∠DMN=∠EMN=α.∴∠DME=α.∵∠C+∠CEM=∠DMB+∠DME,∠C=∠DME=α,∴∠DMB=∠CEM.在△BDM和△CME中,,∴△BDM≌△CME.∴BD=MC,EC=BM.又∵MB+MC=BC,∴BD+EC=BC.(2)当∠EMN=α时,BD=CE+BC.∵AB=AC,∴∠ABC=∠ACB.∴∠DBM=∠MCE.∵MN是DE的垂直平分线,∴DN=NE,DM=EM.在△MND和△MNE中,,∴△MND≌△MNE.∴∠DMN=∠EMN=α.∴∠EMD=∠B=α∵∠BMD+∠MDB=α,∠EMC+∠CMD=α,∴∠EMC=∠MDB.在△BDM和△CME中,,∴△BDM≌△CME.∴BD=MC,EC=BM.又∵MB+BC=MC,∴EC+BC=BD.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2015~2016学年度上期期中质量监测八年级数学试题附答案

2015~2016学年度上期期中质量监测八年级数学试题附答案
A.-81的平方根是±9 B.任何数的平方是非负数,因而任何数的平方根也是非负数
C.任何一个非负数的平方根都不大于这个数 D.2是4的平方根
7.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.若正比例函数y=kx的图象经过点(1,2),则k的值为( )
15.计算:(1) . (2)
16.计算:
四、解答题(每小题8分,共16分)
17.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根。
18.如图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长。
五、解答题(19题10分,20题10分,共20分)
19.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为( ,5),( ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
20.某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时问x(小时)之间的函数图像如图所示,结合图像回答下列问题:
1
第3排
1
第4排
1
第5排
……
……
25.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.
二、解答题(本题8分)
26、已知a、b、c满足 .

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷

辽宁省大连市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列各组数中互为相反数的一组是()A . -|-2|与B . -4与C . - 与| |D . - 与2. (2分) (2017八上·深圳期中) 下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A . 3,4,5B .C . 6,8,10D . 9,12,153. (2分) (2018八下·瑶海期中) 下列计算正确是A .B .C .D .4. (2分) (2017八上·南海期末) 下列实数中,不属于无理数的是()A .B .C . 100πD .5. (2分) (2019七下·香洲期末) 如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=()A . 0B . -1C . -2D . 36. (2分) (2020八下·西山期末) 如图,已知函数和的图象交于点,则根据图象可得不等式的解集是()A .B .C .D .7. (2分) (2019八上·海伦期中) 下列各点中,在第二象限的点是()A . (2,3)B . (2,-3)C . (-2,-3)D . (-2,3)8. (2分)在平面直角坐标系中,点(﹣1,2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A . 6cmB . cmC . 8cmD . cm10. (2分) (2015八下·泰兴期中) 函数y=mx+n与y= ,其中m≠0,n≠0,那么它们在同一坐标系中的图像可能是()A .B .C .D .11. (2分)点A(﹣5,4),B在平面直角坐标系中,且AB∥y轴,若△ABO的面积为5,则点B的坐标为()A . (﹣5,2)B . (﹣5,6)C . (﹣5,﹣6)D . (﹣5,6)或(﹣5,2)12. (2分)(2012·绵阳) 如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A . 1:B . 1:2C . :2D . 1:二、填空题 (共4题;共4分)13. (1分) (2017七上·绍兴月考) 化简: =________.14. (1分) (2020八下·滨州月考) 直线y=-2x+b上有三个点(-2.4,y1),(-1.5,y2),(1.3,y3),则y1 , y2 , y3的大小关系是________。

大连市八年级上学期数学期中考试试卷

大连市八年级上学期数学期中考试试卷

大连市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·都匀模拟) 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019八上·北流期中) 下列长度的三条线段,能组成三角形的是()A .B .C .D .3. (2分)点P(﹣1,2)关于y轴对称点的坐标是()A . (1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (2,﹣1)4. (2分)(2011·连云港) 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A .B .C .D .5. (2分)(2020·北京模拟) 如图,经过直线AB外一点C作这条直线的垂线,作法如下:⑴任意取一点K,使点K和点C在AB的两旁.⑵以点C为圆心,CK长为半径作弧,交AB于点D和E.⑶分别以点D和点E为圆心,大于的长为半径作弧,两弧相交于点F.⑷作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A . △CDFB . △CDKC . △CDED . △DEF6. (2分)(2017·莱芜) 一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A . 12B . 13C . 14D . 157. (2分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,则添加下列条件后不能判定两个三角形全等的是()A . AC=A'C'B . BC=B'C'C . ∠B=∠B'D . ∠C=∠C'8. (2分) (2019九上·平川期中) 如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交AC于点F,点E为垂足,连接DF,则∠CDF=()A . 50°B . 40°C . 30°D . 15°9. (2分)如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于()A . 15°B . 25°C . 35°D . 65°10. (2分) (2016八上·萧山期中) 已知等腰△两条边的长分别是3和6,则它的周长是()A . 12B . 15C . 12或15D . 15或1811. (2分) (2019八上·江津期末) 若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A . 50°B . 80°C . 65°或50°D . 50°或80°12. (2分)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A . 50°B . 60°C . 70°D . 80°二、填空题 (共6题;共8分)13. (1分) (2019八下·潘集期中) 如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD,交AD 于点E,若AB=6,EF=2,则BC的长为________.14. (1分) (2016九上·长清开学考) 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=________°.15. (2分) (2019八上·南岗月考) 已知,△ABC中,∠ACB=90°,AC=BC,以AC为边在同一平面内作等边△ACD,连接BD,则∠ADB=________.16. (2分)如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是以AB为底的等腰三角形,则∠PBC的度数为________.17. (1分)(2018·深圳) 如图,四边形ACFD是正方形,∠CEA和∠ABF都是直角且点E、A、B三点共线,AB=4,则阴影部分的面积是________.18. (1分) (2019八上·香坊月考) 如图,在△ABC中,AB=AC=5,F是BC边上任意一点,过F作FD⊥AB 于D,FE⊥AC于E,若S△ABC=10,则FE+FD=________.三、解答题 (共8题;共52分)19. (5分) (2017八上·天津期末) 如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,点F 在AC上,BD=DF,求证:CF=BE.20. (5分) (2019八下·洛川期末) 如图,在平行四边形中,,于点,试求的度数.21. (10分)已知函数y=kx+b的图象经过点A(-3,-2)及点B(1,6)(1)求此一次函数解析式;(2)求此函数图象与坐标轴围成的三角形的面积。

2015-2016学年八年级上数学期中考试试卷含答案

2015-2016学年八年级上数学期中考试试卷含答案


29. 已知:在平面直角坐标系中,△ABC的顶点A、C分
别在轴、轴上,且∠ACB=90°,AC=BC.
(1)如图1,当,点B在第四象限时,
则点B的坐标为 ;
图1
(2)如图2,当点C在轴正半轴上运动,点A在轴正半轴上运动,点B在第四象限时,作BD⊥轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.
示为( )
A. B. C. D.
3. 下列各式:其中分式共有( )个。
A.2 B. 3 C. 4 D. 5
4. 多项式 各项的公因式是( )
一.用心选一选:(每小题3分,共30分)
1.下列各式是因式分解且完全正确的是( )
A.++=+)+ B.
C.(+2)(-2)=- D.-1=(+1)(-1)
2.医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表
E是BC的中点, DE平分ÐADC, ÐCED = 35°, 则ÐEAB的度数
是 ( )
A.65° B.55° C.45° D.35°
二.细心填一填:(每小题3分,共24分) .
11.计算:= .
16. 如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,
使得△AOB≌△DOC,你补充的条件是 .
17. 如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.
已知PE=3,则点P到AB的距离是_________________.
18. 在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,
附加题
1.选择题: C
2.填空题: 正确的命题是 1,2,3,4 ,5

辽宁初二初中数学期中考试带答案解析

辽宁初二初中数学期中考试带答案解析

辽宁初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、解答题1.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.2.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC和AB的长;(2)证明:∠ACB=90°.3.如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.计算:(2)(﹣2)×﹣6(3)(+)(-)+2.(4)×﹣4××(1﹣)0;5.当时,求和xy2+x2y的值.6.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.7.如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.8.已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积的多少?(4)图乙的b是多少?二、选择题1.(4分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠22.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=7,则CP的长为()A.3B.3.5C.4D.4.53.(2015秋•深圳期末)如图,已知数轴上的点A、B、O、C、D、E分别表示数﹣3、﹣2、0、1、2、3,则表示数﹣1+的点P应落在线段()A.AB上 B.OC上 C.CD上 D.DE上4.如图中字母A所代表的正方形的面积为()A.4B.8C.16D.645.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里三、填空题1.最简二次根式与是同类二次根式,则.2.函数y=自变量x 的取值范围是______________3.在直角三角形中,若其中的两条边的长分别为6cm ,8cm ,则斜边长为_____________.4.如图,□ABCD 的对角线相交于点O,且AD≠CD,过点O 作OM ⊥AC,交AD 于点M,如果△CDM 的周长是10㎝,则□ABCD 的周长为______________5.如图,以平行四边形ABCD 的边CD 为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E 在平行四边形内部,连接AE 、BE,则∠AEB 的度数是(_______)6.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为________m.7.如图,矩形ABCD 中,AB=6,BC=8,E 是BC 边上的一定点,P 是CD 边上的一动点(不与点C 、D 重合),M ,N 分别是AE 、PE 的中点,记MN 的长度为a ,在点P 运动过程中,a 不断变化,则a 的取值范围是___________.8.如图,已知∠AOB=45°,A 1、A 2、A 3、…在射线OA 上,B 1、B 2、B 3、…在射线OB 上,且A 1B 1⊥OA ,A 2B 2⊥OA ,…A n B n ⊥OA ;A 2B 1⊥OB ,…,A n+1B n ⊥OB (n=1,2,3,4,5,6…).若OA 1=1,则A 6B 6的长是 .四、单选题1.下列二次根式中是最简二次根式的是( ) A .B .C .D .2.变量x,y 有如下关系:①x+y=10②y=③y=︱x-3︱④y 2=8x.其中y 是x 的函数的是( )A .①②②③④B .①②③C .①②D .①3.小明同学在作业本上做了以下4道题:①-=;②3-=3;③2+3=5;④-=.其中做对的题目的个数是( )A .0B .1C .2D .34.如图,下列四组条件中,能判定□ABCD 是正方形的有( ) ①AB=BC ,∠A=90°;②AC ⊥BD ,AC=BD ;③OA=OD ,BC=CD ;④∠BOC=90°,∠ABD=∠DCA.A. 1个B. 2个C. 3个D. 4个辽宁初二初中数学期中考试答案及解析一、解答题1.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.【答案】(1)证明见解析;(2)CF=BC+CD;(3)①CF=CD-BC;②△AOC是等腰三角形.理由见解析.【解析】(1)①根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据正方形的性质可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠ACF+∠ACB=90°,从而得证;②根据全等三角形对应边相等可得BD=CF,从而求出CF=BC-CD;(2)与(1)同理可得BD=CF,然后结合图形可得CF=BC+CD;(3)①与(1)同理可得BD=CF,然后结合图形可得CF=CD-BC;②根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.试题解析:(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;②由①△BAD≌△CAF可得BD=CF,∵BD=BC-CD,∴CF=BC-CD;(2)与(1)同理可得BD=CF,所以,CF=BC+CD;(3)①与(1)同理可得,BD=CF,所以,CF=CD-BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°-45°=135°,∴∠FCD=∠ACF-∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=DF,∵在正方形ADEF中,OA=AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.【考点】1.正方形的性质;2.全等三角形的判定与性质;3.等腰三角形的判定.2.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC和AB的长;(2)证明:∠ACB=90°.【答案】(1)CD=12;AB=25;(2)见解析【解析】(1)在Rt△BCD中利用勾股定理即可求出CD的长,在Rt△ACD中利用勾股定理求出AD的长,然后根据AB=AD+BD计算即可得出AB的长;(2)在△ABC中,利用勾股定理的逆定理证明即可.试题解析:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=19+9=25;(2)在△ABC中,∵AC=20,BC=15,AB=25,且,即,所以∠ACB=90°.【考点】勾股定理及其逆定理.3.如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【考点】1.平行四边形的性质;2.角平分线的性质;3.勾股定理的逆定理;4.矩形的判定.4.计算:(2)(﹣2)×﹣6(3)(+)(-)+2.(4)×﹣4××(1﹣)0;【答案】(1)1;(2);(3);(4).【解析】本题考查的是二次根式的计算.试题解析:=(2)(﹣2)×﹣6=(3)(+)(-)+2= =(4)×﹣4××(1﹣)0=5.当时,求和xy2+x2y的值.【答案】2,112【解析】本题考查的是二次根式的化简求值题.试题解析:∵,∴∴=xy2+x2y=6.如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【答案】见解析【解析】试题分析:从题中可知:(1)△ABC和△EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE即可证明.(2)根据全等三角形的性质,利用平行四边形的性质求解即可.(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD.(2)解:∵AE平分∠DAB(已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°.∵△ABC≌△EAD,∴∠AED=∠BAC=85°.【考点】平行四边形的性质;全等三角形的判定与性质.7.如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.【答案】证明见解析.【解析】本题考查的是连接MF、ME,根据直角三角形斜边上的中线等于斜边的一半可得到 MF=BC,再根据等腰三角形的三线合一的性质即可推出MN⊥EF.试题解析:证明:连接MF、ME,∵CF⊥AB,在Rt△BFC中,M是BC的中点,∴MF=BC(斜边中线等于斜边一半),同理ME=BC,∴ME=MF,∵N是EF的中点,∴MN⊥EF.点睛:此题主要考查直角三角形斜边上的中线的性质及等腰三角形三线合一的性质的综合运用.8.已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙.若AB=6,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积的多少?(4)图乙的b是多少?【答案】(1)8㎝(2)24㎝2(3)60㎝2(4) 17秒【解析】(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) (3分)=×6×8=24(㎝2) (6分)(2) a=S△ABC(3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝∴图1中的图象面积为4×8+2×14=60㎝2 (9分)(4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒 (12分)(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.二、选择题1.(4分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【答案】C.【解析】A.当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∵AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDF(SAS),故此选项错误;C.当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B.当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∵AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDF(SAS),故此选项错误;D.当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∵∠1=∠2,AB=CD,∠ABE=∠CDF,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【考点】1.全等三角形的判定;2.平行四边形的性质.2.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=7,则CP的长为()A.3B.3.5C.4D.4.5【答案】B.【解析】试题解析:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=7,∴BD=7,∵P点是BD的中点,∴CP=BD=3.5.故选B.【考点】1.直角三角形斜边上的中线;2.等腰三角形的判定与性质.3.(2015秋•深圳期末)如图,已知数轴上的点A、B、O、C、D、E分别表示数﹣3、﹣2、0、1、2、3,则表示数﹣1+的点P应落在线段()A.AB上 B.OC上 C.CD上 D.DE上【答案】C【解析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.解:由被开方数越大算术平方根越大,得2<<3.由不等式的性质,得1<﹣1+<2,P点在CD上.故选:C.【考点】实数与数轴;估算无理数的大小.4.如图中字母A所代表的正方形的面积为()A.4B.8C.16D.64【答案】D【解析】根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.【考点】勾股定理.5.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里【答案】D【解析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:(海里),故选D.【考点】本题考查的是勾股定理的应用点评:解答本题的关键是读懂题意,根据方位角知道两船所走的方向正好构成了直角.三、填空题1.最简二次根式与是同类二次根式,则.【答案】6【解析】根据同类二次根式定义可得:a-1=5,所以a=6.【考点】同类二次根式2.函数y=自变量x的取值范围是______________【答案】x≥-1且x≠1【解析】分析:本题考查的是函数有意义的条件,分母不为零,被开方数是非负数.解析:根据题意,故答案为x≥-1且x≠1.3.在直角三角形中,若其中的两条边的长分别为6cm,8cm ,则斜边长为_____________.【答案】10或8【解析】分析:本题考查的是直角三角形的三边关系,利用勾股定理解决即可.解析:(1)当已知边为直角边时,斜边为10;(2)当已知边一条直角边一条斜边时,斜边为8.故答案为10或8.4.如图,□ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长是10㎝,则□ABCD的周长为______________【答案】20cm【解析】分析:本题考查的是平行四边形的对角线互相平分,对边相等,利用垂直平分线的性质得出结论即可.解析:在□ABCD中,OA=OC,AB=CD,AD=BC,∵OM⊥AC,∴AC="CM," ∵△CDM的周长是10㎝, ∴□ABCD的周长为20cm.故答案为20cm.5.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(_______)【答案】135 °【解析】分析:本题考查的是平行四边形的性质和等腰三角形的性质解决问题即可.解析:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADC+∠BCD=180°,∵△CDE是等腰直角三角形,∴∠EDC=∠ECD=45°,则∠ADE+∠BCE=∠ADC+∠BCD-∠EDC-∠ECD=90°,∵AD=DE,∴∠DEA=∠DAE=(180°-∠ADE),∵CE=AD=BC,∴∠CEB=∠CBE=(180°-∠BCE),∴∠DEA+∠CEB=(360°-∠ADE-∠BCE)=×270°=135°∴∠AEB="360°-∠DEC-∠DEA" -∠CEB =360°-90°-135°=135°故答案为135 °6.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为________m.【答案】480【解析】分析:本题考查的是利用勾股定理求出直角边的长.解析:根据题意,故答案为480.7.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是___________.【答案】4<a <5【解析】分析:本题根据矩形的性质求出AC ,然后求出AP 的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP解析:∵矩形ABCD 中,AB=6,BC=8,∴对角线AC=10,∵P 是CD 边上的一动点(不与点C 、D 重合),∴8<AP <10,连接AP ,∵M ,N 分别是AE 、PE 的中点,∴MN 是△AEP 的中位线,∴MN=AP ,∴4<a <5.故答案为4<a <5.点睛:本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP 的取值范围是解题的关键.8.如图,已知∠AOB=45°,A 1、A 2、A 3、…在射线OA 上,B 1、B 2、B 3、…在射线OB 上,且A 1B 1⊥OA ,A 2B 2⊥OA ,…A n B n ⊥OA ;A 2B 1⊥OB ,…,A n+1B n ⊥OB (n=1,2,3,4,5,6…).若OA 1=1,则A 6B 6的长是 . 【答案】32 【解析】由题意,可知图中的三角形均为等腰直角三角形, OA 1=1,A 1B 1=A 1A 2=1;B 1A 2=B 1B 2=,A 2B 2=A 2A 3=2;B 2A 3=B 2B 3=,A 3B 3=A 3A 4=4,……,从中发现规律为A n B n =2A n ﹣1B n ﹣1,其中A 1B 1=1,∴A n B n =2n ﹣1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年辽宁省大连二十九中八年级(上)期中数学模拟试卷(1)一、选择题:1.(3.00分)下列计算结果正确的是()A.b3•b3=2b3B.(2x5)2=2x10 C.(﹣xy6)2=x2y12D.x5•x2=x102.(3.00分)下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆3.(3.00分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC4.(3.00分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等5.(3.00分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°6.(3.00分)在△ABC与△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是()A.AB=EF B.BC=EF C.AB=AC D.∠C=∠D7.(3.00分)如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP 沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°二、填空题:8.(3.00分)等腰三角形的一个底角为30°,则顶角的度数是度.9.(3.00分)若n边形的每个内角都等于150°,则n=.10.(3.00分)﹣(﹣2a2b)3=.11.(3.00分)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=度.12.(3.00分)已知点A(3,3)和点B是平面内两点,且它们关于直线x=2轴对称,则点B的坐标为.三、解答题:13.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.四、解答题:(本题共2小题,每题12分,共24分)14.已知:如图,AB=AC,BD⊥AC于D,请探究∠DBC与∠A的数量关系并说明理由.15.如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.五、解答题:(本题共3小题,每题12分,共36分)16.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=.17.如图,在等边三角形ABC中,AB=6,点P是AB边上的任意一点(点P不与点A、点B重合),过点P作PD⊥AB,交直线BC于点D,作PE⊥AC,垂足为点F.(1)求∠APE的度数;(2)连接DE,当△PDE为等边三角形时,求BP的长.18.已知:△ABC中,AB=AC,∠B=α.(1)如图1,点D,E分别在边AB,AC上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N,求证:BD+CE=BC.需补充条件∠EMN=(用含α的式子表示)补充条件后并证明;(2)把(1)中的条件改为点D,E分别在边BA、AC延长线上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N(如图2),并补充条件∠EMN=(用含α的式子表示),通过观察或测量,猜想线段BD,CE与BC之间满足的数量关系,并予以证明.2015-2016学年辽宁省大连二十九中八年级(上)期中数学模拟试卷(1)参考答案与试题解析一、选择题:1.(3.00分)下列计算结果正确的是()A.b3•b3=2b3B.(2x5)2=2x10 C.(﹣xy6)2=x2y12D.x5•x2=x10【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、积的乘方等于乘方的积,故C正确;D、同底数幂的乘法底数不变指数相加,故D错误;故选:C.2.(3.00分)下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆【解答】解:A、等边三角形是轴对称图形,有3条对称轴;B、正方形是轴对称图形,有4条对称轴;C、正六边形是轴对称图形,有6条对称轴;D、圆是轴对称图形,有无数条对称轴.故选:A.3.(3.00分)如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC【解答】解:∵AB=AC,AD=AE,∠B=∠C不是已知两边的夹角,A不可以;∠D=∠E不是已知两边的夹角,B不可以;由∠1=∠2得∠BAD=∠CAE,符合SAS,可以为补充的条件;∠CAD=∠DAC不是已知两边的夹角,D不可以;故选:C.4.(3.00分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等【解答】解:A、两个直角三角形只能说明有一个直角相等,其他条件不明确,所以不一定全等,故本选项错误;B、两个等腰三角形,腰不一定相等,夹角也不一定相等,所以不一定全等,故本选项错误;C、两个等边三角形,边长不一定相等,所以不一定全等,故本选项错误;D、它们的夹角是直角相等,可以根据边角边定理判定全等,正确.故选:D.5.(3.00分)如图所示,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C的大小为()A.50°B.40°C.20°D.25°【解答】解:∵AB=AD,∴∠B=∠ADB,由∠BAD=80°得∠B==50°=∠ADB,∵AD=DC,∴∠C=∠ACD,∴∠C=∠ADB=25°故选:D.6.(3.00分)在△ABC与△DEF中,如果∠A=∠D,∠B=∠E,要使这两个三角形全等,还需要的条件可以是()A.AB=EF B.BC=EF C.AB=AC D.∠C=∠D【解答】解:添加BC=EF.∵∠A=∠D,∠B=∠E,BC=EF∴△ABC≌△DEF.(AAS)故选:B.7.(3.00分)如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP 沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°【解答】解:连接AP,∵P为其底角平分线的交点,∴点P是△ABC的内心,∴AP平分∠BAC,∵AB=AC,∴∠ABC=∠ACB,设∠A=2x,则∠DAP=x,∠PBC=∠PCB=45°﹣x,∵DA=DP,∴∠DAP=∠DPA,由折叠的性质可得:∠PDC=∠PBC=45°﹣x,则∠ADP=180°﹣∠PDC=135°+x,在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+x=180°,解得:x=18,则∠A=2x=36°.故选:D.二、填空题:8.(3.00分)等腰三角形的一个底角为30°,则顶角的度数是120度.【解答】解:因为其底角为30°,所以顶角=180°﹣30°×2=120°.故填120.9.(3.00分)若n边形的每个内角都等于150°,则n=12.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故答案为:12.10.(3.00分)﹣(﹣2a2b)3=8a6b3.【解答】解:原式=﹣(﹣8a6b3)=8a6b3,故答案为:8a6b3.11.(3.00分)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=30度.【解答】解:∵在Rt△ABC中,∠C=90°,△BCE与△BDE重合,∴ED⊥AB,∠EBA=∠EBC,又点D是AB的中点,∴EA=EB,∴∠A=∠EBA=∠EBC.设∠A=∠EBA=∠EBC=x∵∠A+∠EBA+∠EBC=90°,∴3∠x=90°,∴x=30°.∴∠A=30°.12.(3.00分)已知点A(3,3)和点B是平面内两点,且它们关于直线x=2轴对称,则点B的坐标为(1,3).【解答】解:设点B的横坐标为x,∵点A(3,3)与点B关于直线x=2对称,∴=2,解得x=1,∵点A、B关于直线x=2对称,∴点A、B的纵坐标相等,∴点B(1,3).故答案为(1,3).三、解答题:13.已知,如图:AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【解答】证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B=90°,∴∠CAB+∠C=90°∴∠CAB+∠EDA=90°,∴∠AFD=90°,∴ED⊥AC.四、解答题:(本题共2小题,每题12分,共24分)14.已知:如图,AB=AC,BD⊥AC于D,请探究∠DBC与∠A的数量关系并说明理由.【解答】解:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠A)∵BD⊥AC∴∠DBC=90°﹣(180°﹣∠A)=∠A.15.如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.【解答】证明:作DE⊥AB于E,∵△ABC是等腰直角三角形,∴∠B=45°,又DE⊥AB,∴DE=BE,∵AD为△ABC的底角的平分线,∠C=90°,DE⊥AB,∴DE=DC,则CD=BE,在△CAD和△EAD中,,∴△CAD≌△EAD,∴AC=AE,AB=AE+EB=AC+CD.五、解答题:(本题共3小题,每题12分,共36分)16.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD 相交于点E,连接BE,过C点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=AE.【解答】解:结论:BF=AE.证明:∵CF⊥BE,∴∠BFC=90°,又∵AD∥BC,∴∠AEB=∠FBC;由于以点B为圆心,BC长为半径画弧,∴BE=BC,在△ABE与△FCB中,,∴△ABE≌△FCB(AAS),∴BF=AE.17.如图,在等边三角形ABC中,AB=6,点P是AB边上的任意一点(点P不与点A、点B重合),过点P作PD⊥AB,交直线BC于点D,作PE⊥AC,垂足为点F.(1)求∠APE的度数;(2)连接DE,当△PDE为等边三角形时,求BP的长.【解答】解:(1)∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵PE⊥AC,∴∠AEP=90°,∴∠APE=180°﹣∠A﹣∠AEP=180°﹣60°﹣90°=30°;(2)设BP=x,则AP=6﹣x,在Rt△BPD中,PD=BP•tan60°=x,在Rt△APE中,PE=AP•sin60°=,∵△PDE为等边三角形,∴PD=PE,即=(6﹣x),解得:x=2,∴当△PDE为等边三角形时,BP的长为2.18.已知:△ABC中,AB=AC,∠B=α.(1)如图1,点D,E分别在边AB,AC上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N,求证:BD+CE=BC.需补充条件∠EMN=α(用含α的式子表示)补充条件后并证明;(2)把(1)中的条件改为点D,E分别在边BA、AC延长线上,线段DE的垂直平分线MN交直线BC于点M,交DE于点N(如图2),并补充条件∠EMN=α(用含α的式子表示),通过观察或测量,猜想线段BD,CE与BC之间满足的数量关系,并予以证明.【解答】解:(1)当∠EMN=α时,BD+CE=BC.理由:如图1所示:连接DM.∵AB=AC,∴∠B=∠C=α.∵MN是DE的垂直平分线,∴DN=NE,DM=EM.在△MND和△MNE中,,∴△MND≌△MNE.∴∠DMN=∠EMN=α.∴∠DME=α.∵∠C+∠CEM=∠DMB+∠DME,∠C=∠DME=α,∴∠DMB=∠CEM.在△BDM和△CME中,,∴△BDM≌△CME.∴BD=MC,EC=BM.又∵MB+MC=BC,∴BD+EC=BC.(2)当∠EMN=α时,BD=CE+BC.∵AB=AC,∴∠ABC=∠ACB.∴∠DBM=∠MCE.∵MN是DE的垂直平分线,∴DN=NE,DM=EM.在△MND和△MNE中,,∴△MND≌△MNE.∴∠DMN=∠EMN=α.∴∠EMD=∠B=α∵∠BMD+∠MDB=α,∠EMC+∠CMD=α,∴∠EMC=∠MDB.在△BDM和△CME中,,∴△BDM≌△CME.∴BD=MC,EC=BM.又∵MB+BC=MC,∴EC+BC=BD.。

相关文档
最新文档