复数知识点与历年高考经典题型
复数的知识点总结与题型归纳
复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
高考复数知识点经典题型
高考复数知识点经典题型高考是每个学生人生道路中的重要里程碑,对于许多学生而言,复习备考是一项艰巨的任务。
在准备期间,学生需要重点关注高考复数知识点,因为这些知识点经常出现在考试中,且占据很大的比重。
在本文中,我将论述一些常见的高考复数知识点,并带你一起解析经典题型。
一、复数的定义和运算法则复数是由实数和虚数构成的数,通常用 a + bi 表示,其中 a 是实部,b 是虚部。
在复数中,虚数单位 i 的平方等于 -1。
对于复数的加法和减法,只需分别对实部和虚部进行运算即可。
而复数的乘法和除法则需要使用分配律和公式 (a + bi) * (c + di) = (ac - bd) + (ad + bc)i 进行计算。
经典题型:1. 计算复数 (3 + 2i) + (4 - i) 的结果。
2. 计算复数 (2 - 3i) - (5 + 2i) 的结果。
3. 计算复数 (1 - 2i) * (3 + 4i) 的结果。
4. 计算复数 (2 + i) / (1 - 3i) 的结果。
二、复数的共轭和模在复数中,共轭是指改变虚部的正负号,得到的新复数称为原复数的共轭。
复数的模是指复数到原点的距离,也可以理解为复数的绝对值。
经典题型:1. 计算复数 (4 + 3i) 的共轭。
2. 计算复数 (2 - i) 的共轭。
3. 计算复数 (3 + 4i) 的模。
4. 计算复数 (-1 + 2i) 的模。
三、复数的幂和根复数的幂是指将复数连续乘以自身多次。
复数的根是指满足a^k - z = 0 的复数 a,其中 a 是复数的根数,k 是根的次数。
经典题型:1. 计算复数 (1 + i)^2 的结果。
2. 求复数 (3 + 4i) 的平方根。
3. 求复数 (1 - i) 的立方根。
4. 求复数 (-1 + √3i) 的四次根。
四、复数的三角形式复数可以利用直角坐标系和极坐标系来表示。
在复数的三角形式中,复数 z = a + bi 可以改写为z = r(cosθ + isinθ) 的形式,其中 r 是复数的模,θ 是复数的辐角。
复数知识点大题型总结
复数知识点大题型总结一、复数的概念复数是表示两个或两个以上的事物或概念的名称或符号,如“苹果”、“树木”、“星星”等。
在语法学上,复数是动词第三人称单数形式之外的一种形式,如“he plays”(他玩)和“they play”(他们玩)。
二、复数的构成1. 大多数情况下,将名词后面加上“-s”或“-es”构成复数形式。
例子:cat(猫)→cats(猫们), box(盒子)→boxes(盒子们)2. 以“-y”结尾的名词,如果“-y”前面是元音字母,则构成复数时直接加“-s”;如果“-y”前面是辅音字母,则将“-y”改为“-i”,再加“-es”。
例子:boy(男孩)→boys(男孩们), baby(婴儿)→babies(婴儿们)3. 以“-f”或“-fe”结尾的名词,通常变“f”为“v”,再加“-es”构成复数。
例子:wolf(狼)→wolves(狼们), leaf(叶子)→leaves(叶子们)4. 以“-o”结尾的名词,大多数情况下在词尾加“-es”。
例子:potato(土豆)→potatoes(土豆们), mango(芒果)→mangoes/mangoes(芒果)5. 特殊情况:有些名词的复数形式和单数形式相同。
例子:sheep(羊)→sheep(羊), fish(鱼)→fish(鱼)三、复数名词的用法1. 表示数量多于一个例子:There are three dogs in the park.(公园里有三只狗。
)2. 表示多种类型例子:She collected various flowers.(她采集了各种花。
)3. 表示所有例子:The students raised their hands.(学生们都举起了手。
)4. 表示家庭成员例子:My parents are in the living room.(我的父母在客厅里。
)四、不规则复数1. 有些名词的复数形式与单数形式完全不同。
单数:man(男人), woman(女人), child(孩子), tooth(牙齿), foot(脚)复数:men(男人们), women(女人们), children(孩子们), teeth(牙齿们), feet(脚们)2. 有些名词的单复数形式相同。
高考复数知识点与题型
高考复数知识点与题型高考是每个学生都必须面对的重要考试,其中涵盖的知识点众多。
在数学这一科目中,复数是一个重要且常见的知识点。
复数在数学中具有广泛的应用,不仅贯穿于高中数学的各个章节中,而且在高考考试的题目中也经常出现。
本文将重点分析与复数相关的知识点和题型。
一、复数的定义与运算复数由实部和虚部组成,一般表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
在运算方面,复数的加减法与实数类似,可以将实部与虚部分别相加减。
复数的乘法中,需要注意虚数单位的性质,即i²=-1。
复数的除法可以通过有理化操作将分母变为实数,然后进行分子分母的分别除以实数的运算。
高考常见的复数题型包括求复数的共轭、复数的乘除法、复数的加减法等。
二、复数的平方根和幂次方复数的平方根是指复数的某个平方等于给定复数的性质。
一般来说,复数的平方根有两个解,其中一个解是正实数根,另一个解是负实数根。
对于n次方的复数运算,可以使用De Moivre公式将复数的n次方转化为它的幅角与辐角的函数。
高考中常见的题型包括求复数的平方根或者幂次方。
三、复数的模与辐角复数的模表示复数的长度,也可以理解为复数到原点的距离。
一般使用竖线表示,也可以用绝对值表示。
复数的辐角指的是复数与正实数轴之间的夹角,通常用θ表示。
复数的模和辐角可以通过公式计算出来,也可以通过坐标系进行几何解释。
高考中常见的题型包括给出复数求模和辐角,或者给出模和辐角求复数。
四、复数的几何意义复数在数学中具有重要的几何意义。
可以将复数看作是平面上的向量,复数的实部和虚部可以分别表示向量在x轴和y轴的投影。
将复数在坐标系中表示出来,可以画出复平面图。
复数的加减法可以理解为向量的相加减,复数的乘法可以理解为放缩和旋转。
通过复平面图,可以直观地理解复数的运算与几何意义。
在高考题目中,经常会利用复数的几何意义进行分析和解答。
五、复数方程与不等式复数方程和不等式是高考中较为复杂的考点之一。
复数的知识点总结与题型归纳
复数的知识点总结与题型归纳复数是英语中一个重要的语法概念,表示多于一个的数量或者个体。
在英语中,很多名词在表示复数形式时会发生变化,这需要我们掌握一些复数的知识点和应对不同的题型。
本文将对复数的基本规则进行总结,并归纳一些常见的复数题型。
一、复数的基本规则1. 一般情况下,在名词的末尾加上“s”来表示复数,比如:dogs, books, tables, etc.2. 以以下字符结尾的名词,在表示复数时要注意变化:- 以“s”, “x”, “z”, “ch”或“sh”结尾的名词,在末尾加“es”,比如:buses, boxes, quizzes, watches等。
- 以辅音字母+y结尾的名词,将“y”变为“i”,再加“es”,比如:cities, babies, parties等。
- 以“o”结尾的名词有两种情况:①如果辅音字母在“o”之前,直接加“es”,比如:potatoes, tomatoes, heroes等。
②如果是元音字母在“o”之前,直接加“s”,比如:zoos, radios, videos等。
3. 以“f”或“fe”结尾的名词,在表示复数时通常将“f”或“fe”变为“ves”,比如:leaves, knives, wolves等。
4. 一些特殊变化的名词:- 人称名词的复数形式通常要加“s”或“es”,比如:boys, girls, teachers等。
- 一些外来词在表示复数时保持不变,比如:sheep, fish, deer等。
- 一些不规则的名词形式需要进行记忆,比如:men, women, children等。
二、复数题型归纳在学习复数的过程中,我们还需要掌握如何应对不同类型的复数题型。
以下是一些常见的复数题型及解题方法:1. 给出单数名词,要求写出复数形式。
Example: Write the plural form of "mouse".Answer: mice解题方法:根据基本规则,将“s”替换为“es”。
复数知识点及高考题
解法一:∵ ,表示以(0,0)为圆心,半径为1的圆。
表示圆上的点到点 的距离。
要求 的最值即求圆上的点到点 的最近和最远距离。
过 作连心线并延长,交圆于 两点,
故最小值为 ;最大值为2+1=3。
练习
一、选择题
1、(06年安徽卷)复数 等于( )
A. B. C. D.
题型三复数的运算
方法思路:在进行复数的除法运算时,要将分母化成实数,相当于分母有理化的过程,
要重视复数相等在解题中的应用。
【例5】已知 ,且 ,求x、y的值。
解:由已知,得 。
∴ ,
∴ ,
∴ ∴
【例6】设 ,若 ,求实数a、b。
解:∵ ,
∴
∴
整理得
∴
∴
题型四最值及不等式类型问题
方法思路:利用复数的几何意义求最值,或者用三角函数的办法代换模;利用不等式方法是直接应用模运算结果,要主要取等条件。
解得m=3
(2)当 时z是实数,
解得 或 。
(3)要使z对应的点位于复平面的第二象限,
需 解得
即
30、已知虚数z满足 ,且z+1的实部与虚部相等且都大于0,求z。
解:设 ,
则
依题意 的虚部为 =0
即 =0……①
又∵z+1=(a+1)+bi的实部与虚部相等,∴a+1=b……………………………………②
联立①②
【答案B】解析:∵复数 =(m2-m)+(1+m3)i是实数,
∴ 1+m3=0解得m=-1
7、(06年全国II)=()
A. B. C. D.-
复数的概念及运算 知识点+例题 全面分类
[例2] 设复数z 满足)1)(23(i i iz -+=-,则.______=z i 51+[巩固1] 复数i i a 212+-是纯虚数,则实数a 的值为________.4[巩固2] 如果)(112R m mi i ∈+=-,那么._____=m 1[例3] 已知i z 34+-=,则._______2=-z i 36+[巩固1] 已知复数i z 211+=,i z 322-=,则21z z +的共轭复数是___________.i +3[巩固2] 已知i 是虚数单位,R n m ∈,,且ni i m -=+22,则ni m ni m -+的共轭复数为_________.i[例4] 计算:(1)3)2)(1(ii i ++-(2)22)1(1)1(1i i i i -+++-[巩固] 计算:(1))1()2()23(i i i +---++;(2))2)(1(2013i i i -+⋅;(3)ii 4321-+1.复平面:我们把建立了直角坐标系来表示复数的平面叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.2.复数的模:22b a bi a z +=+=3.bi a z +=1,di c z +=2,则2221)()(d b c a z z -+-=- 两个复数的差的模就是复平面内与这两个复数对应的两点间的距离.[例1] 已知复数i i z -+=12,则._____=z 210[巩固1] 复数)0(21<+=a iai z ,其中i 为虚数单位, 5=z ,则a 的值为__________.-5[巩固2] 若2=z ,求i z 43-+取最大值时的.______=z i 5856-[例2] 复数)(23)1(2R a i a a i z ∈++--=(1)若z z =,求z ;(2)若在复平面内复数z 对应的点在第一象限,求a 的范围. 知识模块3复数的模精典例题透析[巩固] 已知z为复数,iz2+为实数,且zi)21(-为纯虚数,其中i为虚数单位.(1)求复数z;(2)若复数z满足1=-zw,求w的最小值.题型一:复数的概念[例](1)已知a∈R,复数z1=2+a i,z2=1-2i,若z1z2为纯虚数,则复数z1z2的虚部为_______.(2)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的_________条件.(填充分不必要,必要不充分,充要或既不充分也不必要)答案(1) 1(2) 充分不必要条件解析(1)由z1z2=2+a i1-2i=(2+a i)(1+2i)5=2-2a5+4+a5i是纯虚数,得a=1,此时z1z2=i,其虚部为1.(2)由⎩⎪⎨⎪⎧m2+m+1=3,m2+m-4=-2,解得m=-2或m=1,所以“m=1”是“z1=z2”的充分不必要条件.[巩固](1)设i是虚数单位.若复数a-103-i(a∈R)是纯虚数,则a的值为__________.(2)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的____________条件.(填充分不必要,知识模块4经典题型必要不充分,充要或既不充分也不必要)答案 (1) 3 (2) 既不充分也不必要条件解析 (1)a -103-i=a -(3+i)=(a -3)-i ,由a ∈R , 且a -103-i为纯虚数知a =3. (2)当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.题型二:复数的运算[例] 计算:(1)3(1+i )2i -1=________; (2)(1+i 1-i )6+2+3i 3-2i=________. 答案 (1)3-3i (2)-1+i解析 (1)3(1+i )2i -1=3×2i i -1=6i i -1=-6i (i +1)2=-3i(i +1)=3-3i. (2)原式=[(1+i )22]6+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i. [巩固](1)已知复数z 满足(3+4i)z =25,则z 等于_________.(2)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________. 答案 (1) 3-4i (2)-1解析 (1)方法一 由(3+4i)z =25,得z =253+4i =25(3-4i )(3+4i )(3-4i )=3-4i. 方法二 设z =a +b i(a ,b ∈R ),则(3+4i)(a +b i)=25,即3a -4b +(4a +3b )i =25,所以⎩⎪⎨⎪⎧ 3a -4b =25,4a +3b =0,解得⎩⎪⎨⎪⎧a =3,b =-4,故z =3-4i. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2=1+i 2+2i 1+i 2-2i =i -i=-1.题型三:复数的几何意义[例] 如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →、BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解 (1)AO →=-OA →,∴AO →所表示的复数为-3-2i.∵BC →=AO →,∴BC →所表示的复数为-3-2i.(2)CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i.[巩固](1)在复平面内复数Z =i(1-2i)对应的点位于第_____象限.答案 一解析 ∵复数Z =i(1-2i)=2+i ,∵复数Z 的实部2>0,虚部1>0,∴复数Z 在复平面内对应的点位于第一象限.(2)已知z 是复数,z +2i 、z 2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围.解 设z =x +y i(x 、y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2.∵z 2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0, 解得2<a <6,∴实数a 的取值范围是(2,6).1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为___________.答案 -1解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1,故选A. 2.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是__________.答案 -3-4i解析 因为CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i的点是______点. 夯实基础训练。
复数知识点与历年高考经典题型
数系的扩充与复数的引入知识点(一)1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。
2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ;(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
(6)特殊复数的运算:① ni (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模, 且2||z z z ⋅==a 2+b 2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩.两个复数不能比较大小,只能由定义判断它们相等或不相等。
复数的知识点总结与题型归纳
1/ 9复数的知识点总结与题型归纳一、知识要点1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模.的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有,有交换律 z 1·z 2=z 2·z 1 结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3) 分配律z 1(z 2+z 3)=z 1z 2+z 1z 311.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷i)÷((c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例典例]] 实数x 分别取什么值时,复数z=x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数. (2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例典例] ] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例典例]] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:满足下列条件:(1)在复平面的第二象限内.在复平面的第二象限内.(2)在复平面内的x 轴上方.轴上方.[解] (1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例典例]] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2iB .-1-2iC .±1±1±2i 2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例典例]] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例典例]] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例典例]] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:求:(1) AO ――→表示的复数;表示的复数; (2)对角线CA ――→表示的复数;表示的复数; (3)对角线OB ――→表示的复数.表示的复数. [解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例典例]] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.B.112 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示,解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例典例]](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A.2 B.1 2C.-12D.-2(2)(江苏高考)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是________.[解析](1)(1+a i)(2+i)=2-a+(1+2a)i,要使复数为纯虚数,所以有2-a=0,1+2a≠0,解得a=2.(2)(1+2i)(3-i)=3-i+6i-2i 2=5+5i,所以z的实部是5.题型十:复数代数形式的除法运算[典例典例]](1)若复数z满足z(2-i)=11+7i(i是虚数单位),则z为() A.3+5i B.3-5iC.-3+5i D.-3-5i(2)设i是虚数单位,复数1+a i2-i为纯虚数,则实数a为()A.2 B.-2C.-12 D.12[解析](1)∵z(2-i)=11+7i,∴z=11+7i2-i=(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a5+1+2a5i,由1+a i2-i是纯虚数,则2-a5=0,1+2a5≠0,所以a=2.[答案](1)A(2)A题型十一:i的乘方的周期性及应用[典例典例]](1)(湖北高考)i为虚数单位,i607的共轭复数为() A.i B.-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i 2 016)1-i =i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i 1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
复数知识点总结和例题
复数知识点总结和例题一、名词的复数形式1. 一般情况下,名词构成复数的规则是在单数形式后面加上-s,如book-books,cat-cats,dog-dogs等。
2. 以-s, -ss, -sh, -ch, -x结尾的名词,复数形式应在词尾加-es,如bus-buses,class-classes,box-boxes等。
3. 以辅音字母+y结尾的名词,复数形式应将y变为i再加上-es,如baby-babies,city-cities等。
4. 以-f或-fe结尾的名词,复数形式应将f变为v再加上-es,如leaf-leaves,knife-knives 等。
5. 一些名词的复数形式是不规则变化的,需要独立记忆,如child-children,man-men,woman-women等。
二、不可数名词不可数名词是指不能用于单复数变化的名词,它们通常表示一种概念、物质或抽象事物,如water, milk, money, information等。
不可数名词没有复数形式,不能与不定冠词a/an连用,通常用于表示数量的量词或用作可数名词的量词修饰。
例题一:1. The teacher gave us some useful _______ for the exam. (information)A. informationsB. informC. informationD. informs答案:C. information2. There are too many ______ in the river. (fish)A. fishsB. fishC. fishesD. fishies答案:B. fish3. He bought two new ______ at the bookstore yesterday. (novel)A. novellsB. novlesC. novelD. novels答案:D. novels4. There is some ______ on the table, could you please pass me the ______? (butter)A. buttersB. butterC. buttersD. butteries答案:B. butter5. Please give me some more ______ for my cup of ______. (milk)A. milksB. milkC. milkieD. milkies答案:B. milk三、名词的数量表达1. 在表示数量的名词或代词前,应使用相应的量词来修饰,如a few, a little, some, many, much, a lot of, plenty of等。
高考数学复数经典题型
高考数学复数经典题型
高考数学复数经典题型
一、基本概念
1.什么是复数?
答:复数是一个具有实部和虚部的数,实部为实数,虚部为虚数。
2.怎样表示复数?
答:复数可以用符号表示,常见的有a+bi的形式,a为实部,b 为虚部,a、b都是实数。
3.复数的模是什么?
答:复数的模是表示复数的大小的一个数值,也叫做复数的模长。
记为|z|,它的值等于复数z的实部和虚部的平方和的开方。
二、复数的运算
1.复数的乘法怎么运算?
答:复数的乘法运算可以借助共轭复数的概念,将乘法运算转化为加法运算。
例如:(a+bi)·(c+di)=(ac-bd)+(ad+bc)i
2.复数的除法怎么运算?
答:复数的除法运算也可以借助共轭复数的概念,将除法运算转化为乘法运算。
例如:(a+bi)÷(c+di)=(ac+bd)/(c^2+d^2) +
(ad-bc)/(c^2+d^2)i
三、复数的其他用法
1.复数与实数的大小比较?
答:可以比较复数的模,如果两个复数的模大小相等,则可以比较它们的实部和虚部,实部大的复数比较大,虚部大的复数比较大。
2.复数的平面坐标表示?
答:复数也可以用平面直角坐标表示,实部用横坐标表示,虚部用纵坐标表示,用(x, y)表示复数z,则有z=x+yi。
专题09:复数知识点及典型例题(解析版)-2022年高考数学一轮复习课件+知识清单+练习题
A. 4 2i
12.A 【分析】
B. 4 2i
利用复数的加法法则直接计算即可.
C.1 4i
D.1 5i
【详解】
(3 4i) (1 2i) 3 1 4 2 i 4 2i .
故选:A.
【点睛】
本题考查复数的加法运算,属于基础题.
13.如图,在复平面内,若复数 z1 , z2 对应的向量分别是 OA ,OB ,则复数
zm zn zmn , (zm )n zmn , (z1z2 )n z1n z2n
15.复数 z 2 i1 2i 在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
15.A
【分析】
利用复数的乘法化简复数 z ,利用复数的乘法可得出结论.
【详解】
z 2 i1 2i 2 3i 2i2 4 3i ,
D.1 3i
7.A
【分析】
由图形得复数对应点的坐标,利用复数的运算法则求解.
【详解】
由题意可得
z
1i
,所以 z
4 =1 i+ 4
z
1i
1 i 21 i 3 i .
故选:A.
【点睛】
本题考查复数的运算、几何意义,属于基础题.
8.在复平面内,若表示复数 z m2 1 1 i 的点在第四象限,则实数 m 的取值范围是( ) m
z 2i,
则 z 的虚部是 1.
故选: B .
21.设复数
z
1 i2020 1i
(其中
i
为虚数单位),则
z
在复平面内对应的点所在象限为(
)
A.第四象限 21.A
B.第三象限
C.第二象限
复数知识点及题型总结
复数知识点及题型总结一、复数的构成1. 一般情况下,在词尾加 -s 表示复数形式例子:book → books, cat → cats, dog → dogs2. 以 s, x, sh, ch 结尾的词,在词尾加 -es 表示复数形式例子:box → boxes, bus → buses, brush → brushes, church → churches 3. 以辅音字母+y 结尾的词,变 y 为 i, 再加上-es 表示复数形式例子:baby → babies, city → cities, family → families4. 以 f 或 fe 结尾的词,变 f 或 fe 为 v, 再加上-es 表示复数形式例子:leaf → leaves, calf → calves, knife → knives5. 以 o 结尾的名词,有时加 -es 表示复数形式例子:tomato → tomatoes, hero → heroes, echo → echoes6. 某些词有不规则的复数形式例子:man → men, foot → feet, child → children, tooth → teeth二、复数的用法1. 表示两个或两个以上的事物,用复数形式例子:There are three cats in the garden.2. 表示概括的一类事物,用复数形式例子:Dogs are loyal animals.3. 表示一些特定的事物,用复数形式例子:They have two cars.4. 数词或量词后接名词时,名词用复数形式例子:Three books, five apples三、复数名词的题型1. 单选题例题:Which of the following is the plural form of "child"?A. childsB. childesC. childD. children答案:D. children分析:这是一道对复数形式的选择题,考查学生对复数构成规则的掌握情况。
高中数学复数题型归纳总结
高中数学复数题型归纳总结一、复数概念复数是由实部和虚部构成的数,可以用形如a+bi的形式表示,其中a为实数部分,b为虚数部分,i为虚数单位,且i^2=-1。
二、常见运算法则1.加法和减法:实部与实部相加减,虚部与虚部相加减。
2.乘法:使用分配律展开,i^2=-1,进一步简化计算。
3.除法:用有理化的方法进行分子分母的有理化,并利用i^2=-1进行简化。
三、复数的表示形式1.代数形式:a+bi,a、b为实数。
2.三角形式:r(cosθ+isinθ),r为复数的模,θ为辐角或幅角。
3.指数形式:re^(iθ),r为复数的模,θ为辐角或幅角。
四、复数共轭对于复数z=a+bi,其共轭复数记为z*,即共轭复数与原复数的虚部符号相反,即z*=a-bi。
五、复数的模对于复数z=a+bi,其模记为|z|,即模等于复数的实部与虚部构成的向量的长度,即|z|=√(a^2+b^2)。
六、复数的辐角或幅角对于复数z=a+bi,其辐角或幅角记为arg(z),即辐角或幅角等于复数与实轴正方向形成的夹角。
七、复数的乘方对于复数z=a+bi,其乘方可以使用三角形式来计算,即z^n=r^n(cos(nθ)+isin(nθ)),这里r为模,θ为辐角或幅角。
八、复数的根式对于复数z=a+bi,其根式可以使用三角形式来计算,即z^(1/n)=r^(1/n)(cos(θ/n)+isin(θ/n)),这里r为模,θ为辐角或幅角。
九、复数的应用领域1.电学领域:交流电的分析与计算可以使用复数来表示。
2.物理领域:波函数等的计算与分析可以使用复数来表示。
3.工程领域:信号处理、图像处理等需要对信号进行计算与分析的领域中,复数也有着广泛的应用。
综上所述,复数是由实部和虚部构成的数,具有加法、减法、乘法、除法等运算法则。
复数可以用代数形式、三角形式和指数形式来表示,其中三角形式和指数形式可以方便地进行复数的乘法、除法、乘方和根式运算。
复数在电学、物理和工程等领域有着广泛的应用,是高中数学中重要的内容之一。
高中数学《复数》基础知识及经典练习题(含答案解析)
高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。
只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。
4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。
横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。
8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。
(完整版)高三复数总复习知识点、经典例题、习题
复数一.基本知识【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部实数:当b = 0时复数a + b i 为实数虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数(2)两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且(3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =叫做复数z 的模;【2】复数的基本运算设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++;(2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。
(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-⋅⋅⋅⋅⋅⋅【3】复数的化简c di z a bi+=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+ 对于()0c di z a b a bi +=⋅≠+,当c d a b=时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi+==+进一步建立方程求解二. 例题分析【例1】已知()14z a b i =++-,求(1) 当,a b 为何值时z 为实数(2) 当,a b 为何值时z 为纯虚数(3) 当,a b 为何值时z 为虚数(4) 当,a b 满足什么条件时z 对应的点在复平面内的第二象限。
高考文科复数复习知识点+例题+练习
复数的概念及运算一. 知识回顾1. 复数的有关概念形如______________的数叫做复数,其中i 叫做虚数单位,满足_________,a 叫做_________,b 叫做________,复数集记作_______________________。
2. 复数的分类复数),(R b a bi a ∈+是实数的充要条件是_________;是纯虚数的充要条件是__________.3. 复数相等两个复数)(2,1R d c b a di c z bi a z ∈+=+=、、、,若21z z =,则____________。
4. 共轭复数如果两个复数实部________,而虚部___________,则这两个复数互为_____________,即复数bi a z +=的共轭复数为z =_________。
5. 复数的几何意义(1)建立了直角坐标系来表示复数的平面叫做复平面,在复平面内,x 轴叫做 ,y 轴叫做 ,x 轴的单位是1,y 轴的单位是i.显然,实轴上的点都表示 ;除原点以外,虚轴上的点都表示 。
(2)复数z =a +b i 、有序实数对(a ,b )、点Z (a ,b )是一一对应的.(3)设OZ →=a +b i ,则向量OZ →的长度叫做复数a +b i 的 (或 ),记作|a +b i|,且|a +b i|= .(4)复数的加法可以按照向量的加法来进行,这就是复数加法的几何意义.6. 复数的代数运算对于i 有i 4n =______,i 4n +1=_____,i 4n +2=_____,i 4n +3=_____(n∈Z).已知两个复数z1=a +bi ,z2=c +di(a 、b 、c 、d∈R),则z1±z2=______________,z1·z2=_______________ ,z1z2=a +bic +di =________________.特别地,若z =a +bi ,则z·z =a 2+b 2.二. 例题讲解已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R).求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.【解答】 (1)当z 为实数时,则⎩⎪⎨⎪⎧ a 2-5a -6=0,a 2-1≠0,∴⎩⎪⎨⎪⎧ a =-1或a =6,a ≠±1.故当a =6时,z 为实数.(2)当z 为虚数时,则有⎩⎪⎨⎪⎧ a 2-5a -6≠0,a 2-1≠0,∴⎩⎪⎨⎪⎧a ≠-1且a ≠6,a ≠±1,∴a ≠±1且a≠6.∴当a ∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z 为虚数.(3)当z 为纯虚数时,则有⎩⎪⎨⎪⎧ a2-5a -6≠0,a 2-7a +6a 2-1=0. ∴⎩⎪⎨⎪⎧a ≠-1且a ≠6,a =6且a ≠±1. ∴不存在实数a 使z 为纯虚数.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( )A.-1 B .0 C .1 D .-1或1计算:(1)2-i 31-2i ; (2)-23+i 1+23i +⎝ ⎛⎭⎪⎪⎫21-i 2011. 【解答】 (1)2-i 31-2i =2+i 1-2i =(2+i)(1+2i)(1-2i)(1+2i)=2i +i1+2=i.(2)-23+i 1+23i +⎝ ⎛⎭⎪⎪⎫21-i 2011=i(1+23i)1+23i +⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫21-i 21005·21-i=i +⎝ ⎛⎭⎪⎪⎫2-2i 1005·21-i =i +i 1005·21-i=i +i·21-i =-22+⎝ ⎛⎭⎪⎪⎫22+1i.i 是虚数单位,若1+7i2-i =a +b i(a ,b ∈R),则乘积ab 的值是()A .-15B .-3C .3D .15复数综合练习题一.选择题1.湖南 复数21i=- ( ) A1+i B 1-i C-1+i D-1-i2.全国23()1i i-=+ ( ) A -3-4i B-3+4i C3-4i D3+4i3.陕西 复数Z= 1i i+在复平面内对应的点在 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限4.辽宁 设a,b,c R ∈若121i i a bi+=++则 ( ) A a= 32 b= 12 B a=3 b=1 C a=12 b=32 D a=1 b=3 5.江西 已知)()(1,x i i y x y +-=则分别为 ( )A x=-1 y=1B x=-1 y=2C x=1 y=1D x=1 y=26.安徽 ()21i i =-=已知则 ( )A i =B i =C i =D i =7.浙江 已知i 为虚数单位则51i i-=+ ( ) 23A i -- B 23i -+ C 23i - D 23i +8.山东 已知2a i b i i+=+ ,a,b R ∈ 则a+b= ( ) A-1 B1 C2 D39.北京在复平面内,复数6+5i 与 -2+3i 对应的点分别为A , B.若C 为AB 的中点,则点C 对应的复数为 ( )A 4+8iB 8+2iC 2+4iD 4+i10.四川,设i 是虚数单位,计算23i i i ++= ( )A-1 B1 C-i Di11.天津,复数31i i+=- ( ) A1+2i B2+4i C-1-4i D2-i12.复数a+bi 与c+di 的积是实数的充要条件是 ( )A ad+bc=0B ac+bd=0C ac=bdD ad=bc13.当213m ﹤﹤时,复数m(3+i)-(2+i)在复平面内对应的点位于() A 第一象限 B 第二象限 C 第三象限 D 第四象限二.计算题1.一直复数Z 与)(228Z i +-都是纯虚数,求Z2.已知i 是虚数单位21mim R i -∈+且是纯虚数,求20112()2mi mi -+3. 设为共轭复数,且 ,求的值。
高中复数知识点和相关练习试题百度文库
一、复数选择题1.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97-B .7C .97D .7-2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1C .z =D .复数z 在复平面内对应的点在第四象限3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i4.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <-C .12a -<<D .21a -<<5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .6.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+7.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -8.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3C .3iD .i -9.若()()324z i i =+-,则在复平面内,复数z 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.设21iz i+=-,则z 的虚部为( ) A .12B .12-C .32D .32-11.若复数z 满足213z z i -=+,则z =( ) A .1i +B .1i -C .1i -+D .1i --12.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( )A .75B .75-C .15D .15-13.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i14.在复平面内,复数z 对应的点的坐标是(1,1),则zi=( ) A .1i - B .1i --C .1i -+D .1i +15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =17.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为18.设复数z 满足1z i z+=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z =19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限21.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限23.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω= B .31ω=-C .210ωω++=D .ωω>24.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =25.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为226.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数27.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =28.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根29.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++= 30.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先求出,再解不等式组即得解. 【详解】 依题意,, 因为复数为纯虚数, 故,解得. 故选:B 【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上. 解析:B 【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解.【详解】依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =.故选:B 【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.2.C 【分析】利用复数的除法运算求出,即可判断各选项. 【详解】 , ,则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;对应的点为在第一象限,故D 错误. 故选:C.解析:C 【分析】利用复数的除法运算求出z ,即可判断各选项. 【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正;2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.3.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以,解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B4.A 【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果. 【详解】 因为,,所以,, 所以或. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A 【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果. 【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->, 所以2a >或1a <-. 故选:A 【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题.5.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z ==6.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是, 故选:A解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A7.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B8.B 【分析】化简,利用定义可得的虚部. 【详解】则的虚部等于解析:B 【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部. 【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3 故选:B9.D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】 ,则复数对应的点的坐标为,位于第四象限. 故选:D .解析:D 【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果. 【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限. 故选:D .10.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.11.A 【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果. 【详解】 设,则, ,,解得:, . 故选:A.解析:A 【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果. 【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩,1z i ∴=+. 故选:A. 12.D 【分析】先化简,求出的值即得解. 【详解】 , 所以. 故选:D解析:D 【分析】 先化简345ia bi -+=,求出,ab 的值即得解. 【详解】22(2)342(2)(2)5i i ia bi i i i ---+===++-,所以341,,555a b a b ==-∴+=-. 故选:D13.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+-1i =-故选:C14.A 【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解. 【详解】因为在复平面内,复数对应的点的坐标是, 所以, 所以, 故选:A解析:A 【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解. 【详解】因为在复平面内,复数z 对应的点的坐标是(1,1), 所以1z i =+,所以11i i i z i+==-, 故选:A 15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题16.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】 本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.17.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 18.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.21.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.22.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.AC根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.24.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.25.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围26.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则122z =-,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.27.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.28.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 29.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.30.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题. 故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数系的扩充与复数的引入知识点(一)
1.复数的概念:
(1)虚数单位i ;
(2)复数的代数形式z=a+bi ,(a, b ∈R);
(3)复数的实部、虚部、虚数与纯虚数。
2.复数集
整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环
小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩
3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
4.复数的四则运算
若两个复数z1=a1+b1i ,z2=a2+b2i ,
(1)加法:z1+z2=(a1+a2)+(b1+b2)i ;
(2)减法:z1-z2=(a1-a2)+(b1-b2)i ;
(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ;
(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;
(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
(6)特殊复数的运算:
① n
i (n 为整数)的周期性运算; ②(1±i)2 =±2i ;
③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.
5.共轭复数与复数的模
(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).
(2)复数z=a+bi 的模
|Z|=且2||z z z ⋅==a 2+b 2.
6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相
等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩.
两个复数不能比较大小,只能由定义判断它们相等或不相等。
7.复数a+bi 的共轭复数是a -bi ,若两复数是共轭复数,则它们所表示的点关于实轴对称。
若b=0,则实数a 与实数a 共轭,表示点落在实轴上。
8.复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i 2=-1结合到实际运算过程中去。
如(a+bi)(a -bi)= a 2+b 2
9.复数的除法是复数乘法的逆运算将满足(c+di)(x+yi)=a+bi (c+bi ≠0)的复数x+yi 叫做复数a+bi 除以复数c+di 的商。
由于两个共轭复数的积是实数,因此复数的除法可以通过将分母实化得到,即22()()()()()a bi a bi c di ac bd bc ad i c di c di c di c d ++-++-==++-+.
10.复数a+bi 的模的几何意义是指表示复数a+bi 的点到原点的距离。
(二)典型例题
例1.使不等式m2-(m2-3m)i <(m2-4m +3)i +10成立的实数m
= .
例2.证明:i z
i z +-=1.
数系的扩充与复数的引入(历年高考经典题型)(二)
一、选择题
1.设复数z 满足(1-i)z=2 i,则z= ( )
A.-1+i
B.-1-i
C.1+i
D.1-i
2. =-+2)1(21i i
( )
A. i 21
1-- B. i 211+- C. i 211+ D. i 21
1-
3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭
复数的点是( ) A.A B.B C.C D.D
4.已知i 是虚数单位,则(-1+i)(2-i)= ( )
A.-3+i
B.-1+3i
C.-3+3i
D.-1+i
5. 2
1i =+( )
A. B.2
C. D.1
6.
()3=( )
A.8-
B.8
C.8i -
D.8i
7.已知i 是虚数单位,则(2+i)(3+i)= ( )
A.5-5i
B.7-5i
C.5+5i
D.7+5i
8.复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为(
) A.2+i B.2-i C. 5+i D.5-i
9.若复数z 满足|34|)43(i z i +=-,则z 的虚部为( )
A. 4-
B. 54-
C. 4
D. 54
10.复数)()2(2
为虚数单位i i i z -=,则=||z ( ) A.25 B. 41 C.5 D.5
11. 设z 1, z 2是复数, 则下列命题中的假命题是 ( )
A. 若12||0z z -=, 则12z z =
B. 若12z z =, 则12z z =
C. 若,21z z = 则2112··z z z z =
D. 若,21z z = 则212
2
z z =
12.设z 是复数, 则下列命题中的假命题是 ( )
A. 若20z ≥, 则z 是实数
B. 若20z <, 则z 是虚数
C. 若z 是虚数, 则20z ≥
D. 若z 是纯虚数, 则
20z < 13.复数z=i·(1+i )(i 为虚数单位)在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
14.已知集合M={1,2,zi },i 为虚数单位,N={3,4},M ∩N={4},则复数z= ( )
A. -2i
B. 2i
C. -4i
D.4i
15.复数z=i (-2-i )(i 为虚数单位)在复平面内所对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
16.设i 是虚数单位,_
z 是复数z 的共轭复数,若22z zi z ⋅+= ,则z = ( )
A.1+i
B.1i -
C.1+i -
D.1-i -
17.设i 是虚数单位,若复数10()3--∈a a R i 是纯虚数,则a 的值为 ( ) A.-3 B.-1 C.1 D.3
18.在复平面内,复数(2-i)2对应的点位于 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
19.在复平面内,复数i (2-i )对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
20.已知复数z 的共轭复数i 21z += (i 为虚数单位),则z 在复平面内对应的点位于 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
21.复数的()12Z i i =--为虚数单位在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
22.若复数z 满足iz =2+4i ,则在复平面内,z 对应的点的坐标是( )
A. (2,4)
B.(2,-4)
C. (4,-2) D(4,2)
23.若i(i)34i x y +=+,,x y ∈R ,则复数i x y +的模是( )
A .2
B .3
C .4
D .5
24.复数11z i =
-的模为( )
1
....22A B C D
25.在复平面内,复数z=i
1i 2+(i 为虚数单位)的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题
26.已知a,b ∈R ,i 是虚数单位.若(a+i)(1+i)=bi,则a+bi= .
27.已知复数512i z i
=+(i 是虚数单位),则z = 28.设m ∈R,m 2+m-2+( m 2-1)i 是纯虚数,其中i 是虚数单位,则m= . 29. i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若
123i z =-,则2z = .
30.设2)2(i z -=(i 为虚数单位),则复数z 的模为。