全国2015年4月高等教育自学考试复变函数与积分变换试题(课程代码 02199)

合集下载

(完整word版)《复变函数》考试试题与答案各种总结(2)

(完整word版)《复变函数》考试试题与答案各种总结(2)

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f (z)在z 0解析. ( ) 2。

有界整函数必在整个复平面为常数. ( ) 3。

若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5。

若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点。

( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9。

若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10。

若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3。

函数z sin 的周期为___________.4。

设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6。

若函数f (z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________。

8.=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ 。

10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三。

20xx年4月全国自考复变函数与积分变换试题及答案解析试卷及答案解析真题.doc

20xx年4月全国自考复变函数与积分变换试题及答案解析试卷及答案解析真题.doc

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考 料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯全国 2018 年 4 月高等教育自学考试复变函数与积分变换试题课程代码: 02199一、单项选择题 (本大题共 15 小题,每小题 2 分,共 30 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设 z=3+4i, ,则 Re z 2=( )A .-7B . 9C . 16D .25 2.下列复数中,使等式1=-z 成立的是 ()zA . z=e 2i B . z=eii3 iD . z= e 4C . z= e 23.设 0<t ≤ 2 , 则下列方程中表示圆周的是 ()A . z=(1+i)tB . z=e it +2iC . z=t+iD . z=2cost+i3sintt4.下列区域为有界单连通区域的是 ()A . 0<|z-i|<1B . 0<Imz<C . |z-3|+|z+3|<123D . 0<argz<45.若 f(z)=u+iv 是复平面上的解析函数,则 f (z)=()A .u iuB .v vxyyix C . ui v D . v ivxxyxA , z 06.设 f(z)=e z 1 z 在整个复平面上解析,则常数A=()z , 0A . 0B . e -1C . 1D . e7.设 f(z)=ax+y+i(bx+y) 是解析函数,则实常数 a,b 为 ()A . a=-1,b=1B . a=1, b=11C. a=-1,b=-1 D . a=1,b=-18.设 z 为复数,则e-iz=()A . cosz+isinzB . sinz+icoszC. cosz-isinz D . sinz-icosz9.设 f(z) 和 g(z)在有向光滑曲线 C 上连续,则下列式子错误的是()..A .g( z)f ( z)dz g( z) f ( z)dzC zB . f (z)dz f (z)dz, 其中 C-为C 的反向曲线C CC.( f ( z) g(z))dz f ( z)dz g(z)dzC C CD .3f (z)dz 3 f (z)dzC C10.设 C 为从 -I 到 I 的左半单位圆周,则| z | dz ( )CA . iB . 2iC. -i D . -2i11.设 C 为正向圆周 |z|=2, 则下列积分值不为 0 的是 ( )..A .z dzB .z3coszdzC z 1 CC.sin z dz D .e z dzC z C z 312.设 D 是单连通区域, C 是 D 内的正向简单闭曲线,则对 D 内的任意解析函数f(z) 恒有( )A . f(z)= 1 f ( ) d , z 在 C 的外部2 i C z1 f ( )d , z 在 C 的内部, n≥ 2B . f (n)(z)=i C ( z) n 12n! f ( )d ,z 在 C 的内部, n≥ 2C. f (n)(z)=i C ( z) n2n! f ( )d ,z在C的内部,n≥2D . f (n)(z)=i C ( z) n 1213.复数列的极限lim e in 是 ( )n nA . 1+iB .C.1D.0214. z=i 是 f(z)= 1 的 ( )( z 2 1) 2A .一阶极点B.二阶极点C.本性奇点D.解析点15.映射 w=2z+z 2在点 z0=1+i 处的伸缩率为 ( )A . 2 5 B.3 5C. 2 2 D. 5 2二、填空题 (本大题共 5 小题,每小题 2 分,共10 分)16. arg(1+i)= .17.设 z=x+iy, 则曲线 |z-1|=1 的直角坐标方程为.18.设 f(z)=ze z, 则f (z) .D ,则 F (z) =19.设函数 f(z) 在单连通区域 D 内解析,且 F(z)= f ( ) d , 其中 z,0 .z120. Res e z, 0 = .三、计算题 (本大题共8 小题,每小题 5 分,共40 分)21.求方程 cosz=5 在复平面上的全部解 .22.讨论函数 w=xy-x+iy 2的可导性,并在可导点处求其导数.23.设C为正向圆周|z-2|=1,计算 I=ze3dz .C (z 2) 324.设 C 为从 0 到 1+2i 的直线段,计算积分I= Rezdz .C25. (1)将函数1在点 z=-1 处展开为泰勒级数;z(2)利用以上结果,将函数f(z)= 1在点 z=-1 处展开为泰勒级数 . z226.求函数 f(z)= 1 的全部孤立奇点 . 若为极点,则指出其阶数 .1) 2 (e z(z 1)27.将函数 f(z)= 1 在圆环域 1<|z|<2 内展开为罗朗级数 .1)(z 2)(ze2 z28.设 f(z)= z5 .(1)计算 Res[f(z),0]3(2) 利用以上结果,计算积分I=f (z)dz , 其中 C 为正向圆周 |z|=1.C四、综合题 (下列 3 小题中, 29 题必做, 30、 31 题中选做一题。

复变函数14套题目和答案

复变函数14套题目和答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则Cz f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1.=-⎰=-1||00)(z z nz z dz __________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数0n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→nz z z nn (i)21______________.8.=)0,(Re nz ze s ________,其中n 为自然数.9.zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=Cd zz f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D内为常数. 2. 试证: ()(1)f z z z =-在割去线段0R e 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0R e 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)1、 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nnf .( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________. 10.____)1,1(Res 4=-zz .三. 计算题. (40分) 1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dz z zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若nn ni nn z )11(12++-+=,则=∞→nz n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z nz z dz _________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nz ze .三. 计算题. (40分)1. 将函数12()z f z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-Czz z z e )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z 在|z |<1内根的个数. 四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时nz M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数与积分变换》试题及答案.

《复变函数与积分变换》试题及答案.

年级专业: 教学班号:学号: 姓名:装订线课程名称:复变函数与积分变换考试时间:110_分钟课程代码:7100031试卷总分:100_分一、计算下列各题(本大题共3小题,每小题5分,总计15分)1; 2、; 3、'|和它的主值二、(8分)设',函数'■在•平面的哪些点可导?若可导,求出在可导点的导数值。

三、(10分)证明为调和函数,并求出它的共轭调和函 数。

四、(25分,每小题各5分)计算下列积分:的正向;-de + sin 05.五、(10分)将函数 gm 在下列圆环域内分别展开为洛朗级数1.2.;・伫一15界 ^: M=i? ・的正向;3. ,■:的正向; 4.们;<:6山「:的正向;(1)(2)六、(10)1、求将上半平面lm(z>0映射到单位圆域,且满足arg r(n =匸■,的分式线性映射,。

IU-1"=—-2、平面的区域恥环犬-.被映射映射到’平面的什么区域?「2 (ff(t)--七、(5分)求矩形脉冲函数〔° 曲我的傅氏变换。

八、(6分)求’1的拉普拉斯变换。

九、(5分)求的拉氏逆变换。

十、(6分)利用拉氏变换(其它方法不得分)求解微分方程:一、参考答案及评分标准:(本大题共3小题,每小题5分,总计15分)1、* _ JT It &(1 - = ]6[oos( ——) + /sin( ——)] - m + +4 4=16(QDS(-2JT)-F /SII M -2«))=16 (2)3 3、21四、参考答案及评分标准:(每小题 5分,共25分)由柯西-黎曼方程得: '即 '.所以’在 ’可导.三、参考答案及评分标准:(10分)v^= 2-3?十3穴二…欣空二= “&xJ A 2 dy得,卩二J(-6砂必=-3A y 十 g(y}-r故 -?」;、’;J/'二、参考答案及评分标准:( 8 分)解: ■异上F ,因为dv ov=乩——=0,——=2y Exd 2u 沪 口W C?j/,所以为调和函数.证明:P V (? u由"M 得3A1 d g\y}= 2- ?A22 四、参考答案及评分标准:(每小题5分,共25分)3115~/ -1-4 Sill 0—+ - 44 2 iz2? + 5J >-2JZ一心2/1(2 d3+24 .因为-上在c 内无奇点,所以:cir = 0r/ -J6(Z4 2fl(2z+ “vsinZ? --- -------2J >42.1-------------------------------- S -------------所以洛朗级数为H m _送JJ-0所以洛朗级数为原式- 六、参考答案及评分标准: 1解:将上半平面 内点• (每小题 5分,共10分)lm (z>0映射到单位圆域 的变换为 为上半平面,所以-,故 ,所以解:边界1: ,..= i =i "丄 “0x 〉n ,忑〔故 羔K ;>= f ^dfV . -uj解:r (s}= Hr + 3sin(20■+ /cos Z] =r 2] + 3i(sin 2/J + Zj/cos 小八 (2)2 3x 2=—十 -------------------------$ S~ + 4 2 b二—+ — ------解:设二也上一在方程的两边取 拉氏变换并考虑初始条件得:,故七、 Z特殊点:作图参考答案及评分标准:(5分)十、参考答案及评分标准:(6分) 3+2八、 参考答案及评分标准:(6分)S 1 + 1I - y (/ 4 1)? 九、 参考答案及评分标准: (5分)解:取逆变换得:。

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

4月全国自考复变函数与积分变换试题及答案解析

4月全国自考复变函数与积分变换试题及答案解析

1全国2018年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( ) A.不连续 B.可导 C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( ) A.f (z )=x 2-y 2+i 2xy B.f (z )=x -iy C.f (z )=x +i 2yD.f (z )=2x +iy4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰Cz z d ||=( )A.2πiB.0C.1D.25.设C 为正向圆周|z |=1,则⎰-Cz z z)2(d =( )A.-πiB.0C.πiD.2πi6.设C 为正向圆周|z |=2,则⎰-Ciz i z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i2 7.z =0是3sin z z 的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.zzsin B.2)1(1-z zC.z1eD.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=( ) A.-2 B.-1C.1D.2 10.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________. 12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰Cz 3 d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-Ciz e 2dz=______________. 15.设C 为正向圆周|z|=1,则⎰Cz cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________. 三、计算题(本大题共8小题,共52分) 17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分) 18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)3 20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分)21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分) 23.设C 为正向圆周|z-2|=1,求⎰-Cz z z 2)2(e d z .(7分)24.设C 为正向圆周|z|=1,求⎰Cz1sind z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

10月自考复变函数与积分变换(02199)试题及答案解析与评分标准

10月自考复变函数与积分变换(02199)试题及答案解析与评分标准
广告文案
广告文案
很多企业中,都有了的专职的文案人员,只有当需要搞一些大型推广活动、做商业策划案、写可行性分析报告等需求量大的项目时,才需要对外寻求合作。以往一般企业都会找广告、文化传媒等公司合作。这些公司一般都有专业的文案、设计团队,经验也相对丰富,但因为业务量大,范围广泛,在针对性方面会较为薄弱。随着社会经济不断发展,对专业文案的要求更加严格,逐渐衍生了一些专注于文字服务的文案策划公司。这类企业发展速度很快,大多数都是从工作室形式转型而来,也有从文化传播机构独立出来的。
文案来源于广告行业,是"广告文案"的简称,由copy writer翻译而来。多指以语辞进行广告信息内容表现的形式,有广义和狭义之分,广义的广告文案包括标题、正文、口号的撰写和对广告形象的选择搭配;狭义的广告文案包括标题、正文、口号的撰写。
在中国,由于各个行业发展都相对不够成熟,人员素质也参差不齐,这使得"文案"的概念常常被错误引用和理解。最典型的就是把文案等同于"策划",其实这是两种差别很大,有着本质区别的工作。只是由于文案人员常常需要和策划人员、设计人员配合工作,且策划人员也需要撰写一些方案,这使得很多人误认为文案和策划就是一回事,甚至常常把策划与文案的工作会混淆在一起(这也和发源于中国的"策划学"发展不够成熟有关)。
折叠编辑本段主要工作
撰写报纸广告、杂志广告、海报;撰写企业样本、品牌样本、产品目录;撰写日常宣传文案白领一族
文案白领一族
单页、各类宣传小册子;撰写DM直邮广告,包括信封、邮件正文;撰写电视广告脚本,包括分镜头、旁白、字幕;撰写电视专题片脚本;撰写电视广告的拍摄清单;撰写广播广告;将海外版广告文案作汉化(翻译);撰写广告歌词,或汉化(翻译)外文歌词;撰写各种形式的网络广告;为网站栏目命名;撰写网站内部文案;撰写手机短信广告;撰写各类广告作品的创意阐述;撰写广告口号;撰写产品包装文案,包括:品牌名、使用说明、产品成分等;为产品或品牌命名,并作创意阐述;为路演或活动命名,并作创意阐述;撰写活动请柬及活动现场宣传品上的文字;为各种礼品命名,并作创意阐述;为专卖店命名,并作创意阐述;撰写商店的橱窗或店内POP物料文案;撰写软文、新闻式、故事式、评论式;撰写策划书,或协助策划人员优化、润色方案文字;协助客户企业内刊的编辑,提供主题方向,审核文字。不同的环境对文案撰稿人有着不同的锤炼和要求。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

全国2002年4月高等教育自学考试 复变函数与积分变换试题 课程代码02199

全国2002年4月高等教育自学考试 复变函数与积分变换试题 课程代码02199

全国2002年4月高等教育自学考试复变函数与积分变换试题课程代码:02199第一部分 选择题 (共40分)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.复数z=1625825-i 的辐角为( ) A.arctan 12B.-arctan12 C.π-arctan 12D. π+arctan122.方程Rez 2=1所表示的平面曲线为( ) A.圆 B.直线 C.椭圆 D.双曲线3.复数z=--355(cossin )ππi 的三角表示式为( ) A.-+34545(cos sin )ππi B.34545(cos sin )ππ-i C. 34545(cos sin )ππ+iD.--34545(cos sin )ππi4.设z=cosi ,则( ) A.Imz=0B.Rez=πC.|z|=0D.argz=π 5.复数e 3+i 所对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限6.设w=Ln(1-i),则Imw 等于( ) A.-π4B.2401k k ππ-=±⋅⋅⋅,,, C.π4D.2401k k ππ+=±⋅⋅⋅,,, 7.函数w=z 2把Z 平面上的扇形区域:0<argz<π3,0<|z|<2映射成W 平面上的区域( ) A.0<argw<23π,0<|w|<4 B.0<argw<π3,0<|w|<4 C.0<argw<23π,0<|w|<2D.0<argw<π3,0<|w|<2 8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分f z z a dz n C ()()-+⎰1等于( )A.211πin f a n ()!()()++ B.2πin f a !()C.2πif a n ()()D.2πi n f a n !()()9.设C 为正向圆周|z+1|=2,n 为正整数,则积分dz z i n C()-+⎰1等于( )A.1B.2πiC.0D.12πi10.设C 为正向圆周|z|=1,则积分dzz C ||⎰等于( ) A.0 B.2πi C.2πD.-2π11.设函数f z e d z()=⎰ξξξ0,则f(z)等于( )A.ze z +e z +1B.ze z +e z -1C.-ze z +e z -1D.ze z -e z +112.设积分路线C 是由点z=-1到z=1的上半单位圆周,则z z dz C +⎰12等于( )A.2+πiB.2-πiC.--2πiD.-+2πi13.幂级数z n n n -=∞∑11!的收敛区域为( ) A.0<|z|<+∞ B.|z|<+∞ C.0<|z|<1 D.|z|<114.z=π3是函数f(z)=sin()z z --ππ33的( ) A.一阶极点 B.可去奇点 C.一阶零点D.本性奇点15.z=-1是函数cot ()πzz +14的( )A.3阶极点B.4阶极点C.5阶极点D.6阶极点16.幂级数()!()!n n z n n+=∞∑120的收敛半径为( ) A.0 B.1 C.2D.+∞ 17.设Q(z)在点z=0处解析,f(z)=Q z z z ()()-1,则Res[f(z),0]等于( )A.Q(0)B.-Q(0)C.'Q ()0D.-'Q ()018.下列积分中,积分值不为零的是( )A.()z z dz C 323++⎰,其中C 为正向圆周|z -1|=2B.e dz z C ⎰,其中C 为正向圆周|z|=5C.zzdz C sin ⎰,其中C 为正向圆周|z|=1 D.cos zz dz C -⎰1,其中C 为正向圆周|z|=2 19.映射w=z 2+2z 在下列区域中每一点的伸缩率都大于1的是( ) A.|z+1|>12B.|z+1|<12C.|z|>12D.|z|<1220.下列映射中,把角形域0<argz<π4保角映射成单位圆内部|w|<1的为( ) A.w=z z 4411+- B.w=z z 4411-+ C.w=z i z i44-+D.w=z i z i44+-第二部分 非选择题 (共60分)二、填空题(本大题共10空,每空2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

全国高等教育自学考试复变函数与积分变换真题与答案

全国高等教育自学考试复变函数与积分变换真题与答案

全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

全国2014年4月自考复变函数与积分变换试题02199

全国2014年4月自考复变函数与积分变换试题02199

- 本套试题共分3页,当前页是第1页-绝密★考试结束前全国2014年4月高等教育自学考试复变函数与积分变换试题课程代码:02199请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设z =3-4i ,则arg z = A.3arctan 4⎛⎫- ⎪⎝⎭B.3a r c ta n 4C.4arctan 3⎛⎫- ⎪⎝⎭D.4arctan 3 2.下面方程中表示直线的是A.z =z 0+(1+i )t ,-∞<t <+∞B.0z z R -=C.z =z 0+R e it ,0≤t ≤2πD.(z -z 0)(0z z -)=R 2 3.下列各式中正确的是A.ln(z l z 2)=ln z 1+ln z 2B.1212e e e z z z z +=C.|sin z |≤1D.ln 12z z =ln z 1-ln z 2 4.若f (z )=y +2λxi 解析,则λ=A .12 B.-1 C.12- D.1 5.设C 是正向圆周|z |=2.下列积分中,积分值为零的是 A.sin d 1C z z z -⎰ B. 2e d z C z z ⎰- 本套试题共分3页,当前页是第2页- C .1d C z z⎰ D. d 3C z z z -⎰ 6.()2222d iz z -+-+=⎰A.3i -B.i -C.3i D. i 7.以z =0为本性奇点的函数是A.tan ()z f z z= B.21()f z z = C.z 1()e f z z = D.1()sinf z z = 8.设z 0是f (z )的孤立奇点,下列说法正确的是A.当n >0时,f (z )的罗朗级数的系数0()()!n n f z c n = B.若f (z )=(z -z 0)-mφ(z ),φ(z )在z 0解析,m 是正整数,则z 0为f (z )的m 阶极点C.若z 0为f (z )的可去奇点,则()0lim z z f z →存在D.f (z )在z 0只有一个罗朗展开式9.设f (z )=n 0z n n a ∞=∑在复平面解析,k 为正整数,则()Res ,0k f z z ⎡⎤⎢⎥⎦⎣=A.(k -1)!a k -1B.a k -1C. a kD.a k +110.若f (z ),g (z )分别以z =a 为m 阶与n 阶极点,且m <n ,则点a 是()()f z g z 的 A.(n-m )阶零点B.(n +m )阶零点C.(n-m )阶极点D.(n +m )阶极点非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

全国4月高等教育自学考试复变函数与积分变换试题课程代码02199(2)

全国4月高等教育自学考试复变函数与积分变换试题课程代码02199(2)

全国2007年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.包含了单位圆盘|z|<1的区域是( )A.Re z<-1B.Re z<0C.Re z<1D.Im z<02.设v(x,y)=e ax siny 是调和函数,则常数a=( )A.0B.1C.2D.33.设f(z)=z 3+8iz+4i ,则f ′(1-i)=( )A.-2iB.2iC.-2D.2 4.设C 为正向圆周|z-a|=a(a>0),则积分⎰-C a z dz 22=( ) A.ai2π- B. a i π- C. a i 2π D. ai π 5.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( ) A.0B.πiC.2πiD.6πi 6.f(z)=211z +在z=1处的泰勒展开式的收敛半径为( ) A.23 B.1 C.2 D.37.下列级数中绝对收敛的是( ) A.∑∞=+1!)43(n nn i B. n n i ∑∞=+1)231( C. ∑∞=1n nn i D. ∑∞=+-11)1(n n n i8.可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞C. 0<|z-2|<2D. 0<|z-2|<+∞ 9.点z=-1是f(z)=(z+1)5sin )1(1+z 的( ) A.可去奇点 B.二阶极点C.五阶零点D.本性奇点 10.设C 为正向圆周|z |=1,则⎰=c zdz cot ( ) A.-2πiB. 2πiC. -2πD. 2π二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

自学考试复变函数与积分变换试题与答案

自学考试复变函数与积分变换试题与答案

全国2012年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设2()32f z z iz =+-,则()f z 的零点个数为( )A .0 B.1C.2D.32.函数2()f z z =在复平面上( )A .处处不连续 B.处处连续,处处不可导C.处处连续,仅在点z =0可导D.处处连续,仅在点z =0解析3.2sin i =( )A .1()e e i -- B.1()e e i -+C .1()e e i --D .1e e -+4.设C 是正向圆周2z =,则2C dzz ⎰=( )A .0B .2i π-C .i πD .2i π5.设C 是绕点00z ≠的正向简单闭曲线,则530()C z dz z z =-⎰ ( ) A .2i π B .3020z i πC .502z i π D .06.1C ,2C 分别是正向圆周1z =与21z -=,则1211sin 2222zC C e zdz dzi z i z ππ+=--⎰⎰() A .2i π B .cos2C .0D .sin27.函数21()=(-56)f z z z z +在下列哪个区域内不能..展开为罗朗级数( )A .z <1B .0<z <2C .2<<3zD .>3z 8.幂级数01(-1)2nn n n z ∞=+∑的收敛半径为( ) A .12 B .2C .4D .+∞ 9.设C 为正向圆周1z =,则112sin C dz i z π=⎰ ( ) A .2i π-B .2i πC .-1D .1 10.函数3511cos (1)(1)z z --在点1z =处的留数为( ) A.0 B.1C.2D.3 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

复变函数与积分变换试题(九)

复变函数与积分变换试题(九)

九江学院精品课程 复变函数与积分变换《复变函数与积分变换》试题(九)第一部分 选择题 (共30分)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第Ⅱ象限的复数是( )A.1+iB.1-iC.-1+iD.-1-i 2.下列等式中,对任意复数z 都成立的等式是( ) A.z·z =Re(z·z )B. z·z =Im(z·z )C. z·z =arg(z·z )D. z·z =|z|3.不等式4z arg 4π<<π-所表示的区域为( ) A.角形区域B.圆环内部C.圆的内部D.椭圆内部4.函数z1=ω把Z 平面上的单位圆周|z|=1变成W 平面上的( )A.不过原点的直线B.双曲线C.椭圆D.单位圆周5.下列函数中,不解析...的函数是( ) A.w=zB.w=z2C.w=e zD.w=z+cosz 6.在复平面上,下列关于正弦函数sinz 的命题中,错误..的是( ) A.sinz 是周期函数B.sinz 是解析函数C.|sinz|1≤D.z cos )z (sin ='7.在下列复数中,使得e z =2成立的是( ) A.z=2 B.z=ln2+2i π C.z=2D.z=ln2+i π8.若f(z)在D 内解析,)z (Φ为f(z)的一个原函数,则( ) A.)z ()z (f Φ=' B. )z ()z (f Φ='' C. )z (f )z (='ΦD. )z (f )z (=Φ''9.设C 为正向圆周|z|=1,则⎰+-C2dz )i 1z (1等于( )A.0B.i21πC.i 2πD.i π10.对于复数项级数∑∞=+0n nn6)i 43(,以下命题正确的是( ) A.级数是条件收敛的B.级数是绝对收敛的C.级数的和为∞D.级数的和不存在,也不为∞11.级数∑∞=-0n n )i (的和为( )九江学院精品课程 复变函数与积分变换A.0B.不存在C.iD.-i12.对于幂级数,下列命题正确的是( ) A.在收敛圆内,幂级数条件收敛 B.在收敛圆内,幂级数绝对收敛C.在收敛圆周上,幂级数必处处收敛D.在收敛圆周上,幂级数必处处发散13.z=0是函数zz sin 2的( ) A.本性奇点 B.极点 C.连续点D.可去奇点14.z1sin在点z=0处的留数为( )A.-1B.0C.1D.2 15.将点∞,0,1分别映射成点0,1,∞的分式线性映射是( ) A.1z z w -=B. z 1z w -=C. zz1w -=D. z11w -=第二部分 非选择题 (共70分)二、填空题(本大题共5小题,每小题2分,共10分) 16.设4i e2z π=,则Rez=____________.17.f(z)=(x 2-y 2-x)+i(2xy-y 2)在复平面上可导的点集为_________. 18.设C 为正向圆周|z-i 4π|=1,则积分⎰=C dz z cos 1____________.19.函数)1z (z 1z)z (f 2-+=在奇点z=0附近的罗朗级数的收敛圆环域为_______.20.3)1z (1-在点z=1处的留数为____________.三、计算题(本大题共8小题,每小题5分,共40分) 21.设i3i 2z -+=,求z+z 和z-z.22. 设z cos 2z1z)z (f 22+-=. (1)求f(z)的解析区域,(2)求).z (f '23.设f(z)=x 2-2xy-y 2-i(x 2-y 2).求出使f(z)可导的点, (2)求f(z)的解析区域.24.设z=x+iy,L 为从原点到1+i 的直线段.求.dz )iy y x (L2⎰++25.计算积分⎰+-i30.dz )3z 2(九江学院精品课程 复变函数与积分变换26.设C 为正向圆周|z-1|=3,计算积分I=⎰-C2z.dz )2z (z e27.将函数f(z)=)i z (z i 2+在圆环0<|z|<1内展开成罗朗级数.28.将函数f(z)=ln(3-2z)在点z=0处展开为泰勒级数,并求其收敛半径.四、综合题(下列3个小题中,29题必做,30、31题中只选做一题,需考《积分变换》者做31题,其他考生做30题,两题都做者按31题给分。

【免费下载】大工15春复变函数与积分变换开卷考试期末复习题

【免费下载】大工15春复变函数与积分变换开卷考试期末复习题

D、 cos 2

C、 e2i
C、πi
C
C、| z | 1
C、2
B、1
1
D、
e
C、五阶零点
D、 2 i
共 21 页

D、 2 e2i
D、 f (z)dz 0
C
D、1+πi
D、不确定
D、3 D、本性奇点
答案:A
16、函数
A、 i(b a)
C、 a b
答案:D
eiaz eibz z2
C
B、| z | 1
B、1

B、二阶极点
C、 i
C
0 处展成泰勒级数,其收敛区域为(
dz z2

第2页


对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

4月浙江自考复变函数试题及答案解析

4月浙江自考复变函数试题及答案解析

1浙江省2018年4月自学考试复变函数试题课程代码:10019一、填空题(本大题共8小题,每小题2分,共16分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.arg [(3+i )-3] =___________.2. 函数w =z 1将z 平面上的直线y =x 变成w 平面上的___________. 3.⎰+C dz z z 2sin = ___________,其中C 是椭圆x 2+42y =1. 4.∑∞=-1)1(n n n z i 的收敛半径是___________.5.e 3z 在z =0的幂级数展开式为___________.6. 设w 是1的n 次方根,且w ≠1,则1+w +w 2+…+w n -1=___________.7.zz z z z z sin cos lim 0--→=___________. 8.e 2iz 的周期是___________.二、判断题(本大题共7小题,每小题2分,共14分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

1.若)(lim 0z f z z →存在,则存在z 0的某个邻域,使得f (z )在此邻域内有界.( ) 2.设f (z )在D ∶|z -a |<R 内解析,若z =a 是f (z )零点的一个聚点,则在D 上f (z )≡0.( )3.设函数f n (z )(n =1,2,…)在区域D 内连续,且级数∑∞=1)(n n z f在D 内收敛于函数f (z ),则f (z )在区域D 内连续.( )4.若w =f (z )在区域D 内单叶解析,则其在D 内是共形的.( )5.任何有界的复数列必存在一收敛的子数列.( )6.若函数f (z )在z 0点解析,则f (z )在z 0点连续.( )7.设z 0是f (z )和g (z )的奇点,则z 0也必是f (z )+g (z )的奇点.( )2三、完成下列各题(本大题共6小题,每小题5分,共30分)1.问当x ,y 等于什么实数时,等式iy i x 35)3(1+-++=1+i 成立? 2.讨论函数f (z )=z 1在z 平面上的可微性与解析性.3.求方程z 5+5z 3+z -2=0在|z |<25内的零点个数. 4.若z n =n ni n n )11(12++-+,求n n z ∞→lim . 5.求函数f (z )=)2)(1(1--z z 在区域1<|z |<2内的洛朗(Laurent )展开式. 6.求tan z +cot z 在z =0处的留数.四、(本大题10分)求出函数f (z )=z e z z π++πsin )1)(1(12的奇点,并确定其类别(对于极点,要指出它们的阶,不考虑无穷远点).五、(本大题10分)设w =3z 确定在从原点z=0起沿负实轴割破了的z 平面上,并且w (i )=-i,试求w (-i )的值.六、(本大题10分)设C 为圆周x 2+y 2=3,f (z )=⎰-++C d zξξξξ1732,求f ′(1+i )及f ′(3+i ). 七、(本大题10分)求出将上半z 平面Im z >0共形映射成圆|w |<R 的分式线性变换w =L (z ),且满足L (i )=0, L ′(i )>0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档