高等代数第三版

合集下载

高等代数 教材 选用

高等代数 教材 选用

高等代数教材选用
高等代数是数学专业的一门重要基础课程,以下是一些比较受欢迎的高等代数教材:
《高等代数》(第三版,姚慕生、吴泉水、谢启鸿编著)和配套学习指导书(俗称白皮书,第三版,姚慕生、谢启鸿编著):这两本是复旦大学数学学院一年级新生学习高等代数的必备书籍。

《高等代数》(屠伯埙、徐诚浩、王芬编著)和配套学习指导书(屠伯埙编著):对于想做难题,特别是涉及矩阵论技巧的难题的同学,可以参考此书。

《高等代数》(许以超编著):这本教材较好地体现了中国科学院华罗庚先生遗留下的矩阵论技巧。

《高等代数》(张贤科、许甫华编著,第二版)和配套学习指导书(许甫华、张贤科编著,第二版):这两本书论述和论证简洁,补充内容较多,比较适合学有余力的同学参考。

《高等代数》(丘维声编著):分为上下两册,内容知识点齐全,可以配合丘维声教授在b站的课程一起学习。

你可以根据自己的需求和学习风格选择适合自己的教材。

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】

第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。

高等代数(第三版)10.3双线性函数

高等代数(第三版)10.3双线性函数
i=1 i=1 n n
f ( , ) x1 y1
xr yr (0 r n)
第十章 双线性函数与辛空间 10.3 双线性函数
推论2 设V为实数域上n维线性空间, f ( , )V上的一个对称双线性函数, 则存在V的一组基1, 2, , n, 对V中任意向量= xi i , = yi i , 有
结论2 V上的反对称双线性函数f ( , ) 如果是非退化的,则存在V的一组基
1, -1 , r , -r使
f ( i , i ) 1 i 1, , r f ( , ) 0 i j 0 i j
第十章 双线性函数与辛空间 10.3 双线性函数
式中1 , 2 ,1 ,2是V中任意向量, k1 ,k2是P中任意数,则称f ( , ) 为V上的一个双线性函数.
第十章 双线性函数与辛空间 10.3 双线性函数
例1 欧氏空间V的内积是V上双线性函 数 例2 设 f1 ( ), f 2 ( ) 都是线性空间V上的线性函数,则
f ( , ) f1 ( ) f 2 ( )
i=1 i=1 n n
f ( , ) x1 y1 (0 p r n)
x p y p x p 1 y p 1
xr yr
第十章 双线性函数与辛空间 10.3 双线性函数
定义7 设V为数域P上线性空间, f ( , )是V上的对称双线性函数, 当= 时,V上函数f ( , )称为 f ( , )对应的二次齐次函数.
第十章 双线性函数与辛空间 10.3 双线性函数
结论
双线性函数是对称的
当且仅当f ( , )=f ( , ) 当且仅当它在任一组基下的 度量矩阵是对称矩阵. 双线性函数是反对称的 当且仅当f ( , )=-f ( , ) 当且仅当它在任一组基下的 度量矩阵是反对称矩阵.

高等代数第三版 (王萼芳 石生明 著) 课后答案 高等教育出版社

高等代数第三版 (王萼芳 石生明 著) 课后答案 高等教育出版社
22
(3)有五个有理根:3,-1,-1,-1,-1。
第 3 页 共 26 页
3
高等代数第三版(王萼芳 石生明) 习题解答
首都师范大学 数学科学学院 1100500070
28、( 1)因为 ± 1 都不是它的根,所以 x2 +1在有理数域里不可约
(2)利用爱森斯坦判别法,取 p=2,则侧多项式在有理数域上不可约。 (3)不可约 (4)不可约 (5)不可约
1100500070
20、证 因为 f(x)的导函数
所以
于是
从而 f(x)无重根。
21、证 因为

,由于 a 是
的 k 重根,故 a

的 k+1 重根。代入验算知 a 是 g(x)的根。所以 s-2=k+1 ⇒ s=k+3,即证。
22、证 必要性:设 x0 是 f(x)的 k 重根,从而是
的 k-1 重根,是
33
33
(3)u(x)=-x-1, v(x) = x3 + x2 − 3x − 2
⎧u = 0 ⎧u = −2 7、 ⎨⎩t = 2 或 ⎨⎩t = 3
8、思路:根具定义证明
证:易见 d(x)是 f(x)与 g(x)的公因式。另设 ϕ(x) 是 f(x)与 g(x)的任意公因式,下证
ϕ(x) d(x) 。
⎧ p +1+ m2 = 0
⎧⎪m(2 − p − m2 ) = 0 ⎧m = 0 ⎧q = 1
2、( 1) ⎨⎩q − m = 0

(2)由 ⎨ ⎪⎩q
+1−
p
− m2
=
0

⎨ ⎩
p
=
q
+

高等代数_北大第三版_习题答案.pdf

高等代数_北大第三版_习题答案.pdf
P44.3 .2)
∴ ( x3 − x 2 − x) = ( x − 1 + 2i)3 + (2 − 8i )( x − 1 + 2i) 2 −(12 + 8i )( x − 1 + 2i ) − (9 − 8i ) 即余式 −9 + 8i
商 x − 2ix − (5 + 2i )
2
P44. 4.1).
m n
f m , g1 g 2
g n ) = 1 (注反复归纳用 12 题) 。
f(x)=x3+2x2+2x+1, g(x)=x4+x3+2x2+x+1 解:g(x)=f(x)(x-1)+2(x2+x+1), f(x)=(x2+x+1)(x+1) 即(f(x),g(x)) = x2+x+1.
令(x +x+1)=0 得
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
∴ d ( x) h( x) = ( f ( x ), g ( x )) h( x ) = u ( x ) f ( x ) h( x ) + v ( x ) g ( x ) h( x ).
而首项系数=1,又是公因式得(由 P45、8) ,它是最大公因式,且

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。

证因为,于是,所以,且A不是正定矩阵。

故必存在非退化线性替换使,且在规范形中必含带负号的平方项。

于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。

13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。

证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。

14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。

证必要性。

采用反证法。

若正惯性指数秩r,则。

即,22222 若令,y,则可得非零解使。

这与所给条件矛盾,故。

充分性。

由,知,222故有,即证二次型半正定。

.证明:是半正定的。

证()可见:。

21)当不全相等时2)当时f。

2故原二次型是半正定的。

AX是一实二次型,若有实n维向量X1,X2使16.设,。

X1。

证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。

由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。

不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。

令,,,则由可求得非零向量X0使2222,X0即证。

17.A是一个实矩阵,证明:。

证由于的充分条件是与为同解方程组,故只要证明与同解即可。

事实上,即证与同解,故。

注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。

n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。

高等代数 第三版§1.9 有理系数多项式

高等代数 第三版§1.9 有理系数多项式

则称 g ( x ) 为本原多项式.
有关性质
1. f ( x ) Q[ x ], r Q , 使 f ( x ) rg ( x ),
其中 g ( x )为本原多项式.
(除了相差一个正负号外,这种表示法是唯一的). 2.Gauss引理 定理10 两个本原多项式的积仍是本原多项式.
f ( x ) an x n an1 x n1 a0 , 证: 设 g( x ) bm x m bm 1 x m 1 b0
矛盾.
例3
证明: x n 2 在 Q 上不可约.
证:(令 p 2 即可). (可见存在任意次数的不可约有理系数多项式) 例4
x2 x3 xp , 判断 f ( x ) 1 x 2! 3! p!
( p 为素数)在 Q 上是否可约.
解: 令 g( x ) p ! f ( x ), 即
f (1) 3, f ( 1) 5.

矛盾.
所以 f ( x )不可约.
定理13

艾森斯坦因Eisenstein判别法
f ( x ) an x n an1 x n1 a1 x a0 ,
是一个整系数多项式,若有一个素数 p, 使得
1 2 3

p | an p | an1 , an 2 ,, a0 p | a0
例1
4 3 求方程 2 x x 2 x 3 0 的有理根.
1 3 解: 可能有理根为 1, 3, , , 2 2
用综合除法可知,只有1为根.
例2
f ( x ) x 3 5 x 1 在 Q 上不可约. 证明:
证: 若 f ( x ) 可约,则 f ( x ) 至少有一个一次因式, 也即有一个有理根. 但 f ( x ) 的有理根只可能是 1,

高等代数 第三版§1.8 复、实系数多项式

高等代数 第三版§1.8 复、实系数多项式

k1 , , ks , l1 , , l s Z ,
p2 4q 0, i 1,2 r ,即 x 2 pi x qi 为 且
R上的不可约多项式.

推论2 实数域上不可约多项式只有一次多项式和某些二 次不可约多项式,所有次数≥3的多项式皆可约. 例1 求 x n 1 在 C 上与在 R 上的标准分解式. 在复数范围内 x n 1 有n个复根,
解: 1)
1, , , ,
2
n1
这里
k
2 2 cos i sin , n 1 n n k 1,2, , n
2 n1
2k 2k cos i sin , n n
∴ 2)
x 1 ( x 1)( x )( x )( x
Higher Algebra
一、复系数多项式
二、实系数多项式
一、复系数多项式
1. 代数基本定理
f ( x ) C [ x ] , 若 ( f ( x )) 1 , 则 f ( x ) 在复数域 C上必有一根.
推论1
f ( x ) C [ x ] , 若 ( f ( x )) 1 , 则存在 x a C [ x ] ,
若 为根,则 f ( ) an n an1 n1 a0 0
两边取共轭有
f ( ) an an1
n
n1
a0 0
∴ 也是为 f ( x ) 复根.
实系数多项式因式分解定理
f ( x ) R[ x ],若 ( f ( x )) 1, 则 f ( x ) 可唯一
使
(x a ) | f ( x ) .

高等代数 第三版§1.3 整除的概念

高等代数 第三版§1.3  整除的概念

0 9 8i 9 8i
有 f (x) g(x) x2 2ix 5 2i 9 8i.
例2. 把 f ( x) x5 表成 x 1的方幂和.
解: ∵ 1 1 0 0 0 0 0 11111
11 1 1
11 2 1
114
3
4
5= c1
(整除关系的传递性)
5) 若 f ( x) | gi ( x),i = 1,2,L ,r
则对 ui ( x) P[ x], i = 1,2,L , r 有
f ( x) | (u1 x g1( x) u2( x)g2( x) L ur ( x)gr ( x))
注:反之不然.如 f ( x) 3x 2, g1( x) x2 1, g2( x) 2x 3,
为 g( x)的倍式. ② g( x)不能整除 f ( x) 时记作: g( x) | f ( x).
③ 允许 g( x) 0,此时有 0 0h( x), h( x) P[x]
即 0 0.
零多项式整除零多项式,有意义.
区别:
00 0


g(
x0)
|
除数为零,无意义. f ( x) 时, 如果 g( x)
再证唯一性.
若同时有 f x q x g x r x,
其中 r x g x或r x=0.
和 f x q x g x r x,
其中 r x g x或r x=0.
则 q x g x r x q x g x r x
即 q x-q x g x=r x-r x.
若q x q x,由g x 0, 有r x-r x 0
证: f ( x) | g( x) h1 x 使得 g( x) f ( x)h1 x; g( x) | f ( x) h2 x 使得 f ( x) g( x)h2 x.

高等代数(第三版)10.4 辛空间.

高等代数(第三版)10.4 辛空间.
辛子空间的概念及性质
第十章 双线性函数与辛空间 10.4 辛空间
辛子空间的概念
定义8 设V为数域P上线性空间,在V 上定义了一个非退化双线性函数,则 V称为一个双线性度量空间. 当f 是非退化对称双线性函数时,V称 为P上的正交空间;当V是n维实线性 空间时,f 是非退化对称双线性函数时, V称为准欧氏空间;当f 是非退化反对称 双线性函数时,V称为辛空间.
第十章 双线性函数与辛空间 10.4 辛空间
定义 两个辛空间(V1 , f1 )及(V 2, f 2),若 有V1到V2的作为线性空间的同构,满足 f1 ( , ) f 2 ( , ), 则称 是(V1 , f1 )到(V 2, f 2)的辛同构
两个辛空间是辛同构当且仅当 它们有相同的维数
第十章 双线性函数与辛空间 10.4 辛空间
小 结
辛空间的概念及性质
作业:P423:15,17
第十章 双线性函数与辛空间 10.4 辛空间
第十章 双线性函数与辛空间ห้องสมุดไป่ตู้10.4 辛空间
定理11 设 是2n维辛空间中的 则它的特征多项式f ( ) | I K | 满足 f ( ) f ( ).若设
2n
辛变换,K是 在某辛正交基下的矩阵, 1

f ( ) a0
2n
a1
2 n 1

a2 n 1 a2 n
则ai a2 n i , i 0,1,
,n
第十章 双线性函数与辛空间 10.4 辛空间
定理12 设i , j 是数域P上辛空间(V , f ) 上的辛变换 在P中的特征值,且i j 1, 设Vi ,V j 是V中对应于特征值i 及 j的特征 子空间,则u Vi , v V j , 有f (u , v) 0, 即Vi 与V j 是辛正交的特别地,当 . i 1时, Vi 是迷向子空间.

北京大学数学系《高等代数》(第3版)(章节题库 λ-矩阵)

北京大学数学系《高等代数》(第3版)(章节题库 λ-矩阵)

,则
,从而
,于是
由于
的若当标准形依次为
故 A*的若当标准形为
7.求 A 的全体零化多项式集,其中
解:将特征矩阵化为标准形
得 A 的最小多项式为
,故 A 的零化多项式的集合为
最小多项式有着广泛的用途,例如求矩阵的若当标准形,判定
矩阵能否对角化等等.
8.设实数域 R 上矩阵
5 / 64
圣才电子书

标准形为
A 的初等因子是 A+3,(λ-1)2;不变因子是

,故 A 的有理标准形为
4.已知
(1)求 A 的不变因子,初等因子和最小多项式.(2)求 A 的若当标准形. 解:(1)用初等变换将 λE-A 化为标准形,
于是 A 的不变因子是 1)2,(λ-1)2;最小多项式为(λ-1)2.
(2)A 的若当标准形为
十万种考研考证电子书、题库视频学习平 台
(1)求 A 的特征多项式 f(λ). (2)f(λ)是否为 R 上不可约多项式?(3)求 A 的最小多项式,要写出理由;(4) A 在 R 上可否对角化? 解:将 λE-A 化为标准形
故 A 不变因子为
(1)A 的特征多项式
(2)由 R 上的不可约多项式仅有 2 次,2 次多项式,故 f(λ)在 R 上可约.
故 a=b=c.由
,即
故 A 至少有两个特征值为 0. 3.设
求矩阵 A 的不变因子,初等因子,若当标准形,有理标准形. 解:因为
2 / 64
圣才电子书

十万种考研考证电子书、题库视频学习平 台
故 A 的特征值为 λ2=3,λ2=1(2 重),1 的几何重数为 3-r(E-A)=1,故 A 的若当

姚慕生,谢启鸿-高等代数学(第3版)答案(复旦绿皮书)

姚慕生,谢启鸿-高等代数学(第3版)答案(复旦绿皮书)
5 / 62
复旦大学高等代数教材第二章答案
部分习题答案引用自白皮书的例题或训练题.
2.1
(
)(
1. (1) 3 0 ; (2) 3
−3 1
0
() (
2. (1) 1 5 ; (2) −2
21
−2
2.2
√) (
3 2 ; (3) 1
−12
8
1 1
)
6 √
;
52
(4)
00
0 0
3

5 2
1 3 −3
)(
1.6
1.
(−1)N(n,n−1,n−2,··· ,1)
=
(−1)
n(n−1) 2
.
2. 请读者自行验证.
3. 由行列式的性质 8 及定理 1.6.1, |A| = |A′| =

a1k1 a2k2 · · · ankn .
(k1,k2,··· ,kn)∈Sn
4. 例 1.10.
5. 例 1.9.
6. 例 1.11.
(In − A)(In + A + A2 + · · · + Am−1) = (In + A + A2 + · · · + Am−1)(In − A) = In.
7. 由于 B(A + B)−1A(A−1 + B−1) = In, 故 A−1 + B−1 奇异. 8. 由 A2 = In 可得 (A + In)(A − In) = O. 又 In + A 非异, 故 A − In = O, 即 A = In. 9. 由 A2 = A 可得 A2 − A − 2In = −2In, 即 (A + In)(A − 2In) = −2In, 故 A + In 非异. 10. 由 A2 − A − 3In = O 可得 (A + In)(A − 2In) = In, 故 A − 2In 非异.

高等代数(北大版第三版)习题答案

高等代数(北大版第三版)习题答案

高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第一部分,其他请搜索,谢谢!第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。

解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。

2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。

解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。

2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。

3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。

解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。

4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。

高等代数(第三版)1.9

高等代数(第三版)1.9

f ( x ) g ( x ) h( x )
这里
g ( x) b0 b1 x bk x ,
k
h( x) c0 c1 x cl x ,
l
并且 k < n , l < n , k + l = n , 由此得到
a0 b0 c0 .
因为 a 0 被p整除,而p是一个素数, 所以b 或c 被p 整除. 0 0 但 a 0不能被 p 2整除, 所以 b0与c0不能同时被p整除.
第一章 多项式
2. 有理系数多项式环中存在任意次的
不可约多项式 定理13 (Eisenstein判断法)
设f( x ) = a n x
( 1) p|a / n;
n
+ a n - 1x
n- 1
+ L + a 0是一个
整系数多项式,如果有一个素数p 使得
( 2 ) p|a n -1 , a n - 2 , L , a 0 ; ( 3 ) p 2 /| a 0
1 |3 3
第一章 多项式
3
2
-1
2 3
3 -1
2 3 3
-1
3
-2
至此已经看到,商式不是整系数多项式,因此不必再除 1 下去就知道, 不是g ( x) 的根,所以它也不是f (x)的 3 根. 再作综合除法:
1 3 3 - 1 1 3 0 3 - 1
0 1 3 0
1 所以 是g ( x)的一个根,因而它也是f (x)的一个根, 3 1 容易看出, 不是f ( x) 的重根. 3
第一章 多项式
例1 求多项式
f ( x) 3 x 4 5 x 3 x 2 5 x 2

高等代数第三版习题答案

高等代数第三版习题答案

高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。

第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。

以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。

第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。

- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。

例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。

习题2:证明线性空间的基具有唯一性。

- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。

根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。

由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。

这意味着两个基是等价的,从而证明了基的唯一性。

第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。

- 解:核N(T)是所有满足T(v) = 0的向量的集合。

设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。

解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。

因此,核是一维的,由向量(0, 0, 1)生成。

习题2:证明线性变换的复合是线性的。

- 解:设T: V → W和S: W → X是两个线性变换。

对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显然仍不能整除 f x .
第一章 多项式
假定 g x 0,那么在F[x]里,以下等式成立: 并且 r x 0 .但是F [x]的多项式 qx 和r ( x) 都是
F[ x] 的多项式,因而在 F[ x] 里,这一等式仍然成立.
f x g x qx r x
qx 0, r x f x (ii)若 f x 0 ,且 f x g x . 把f x 和g ( x)
按降幂书写: n n 1 f x an x an1 x a1x a0 g x bm x m bm1 x m1 b1x b0
于是由 r x 的唯一性得出,在 F[ x] 里 g x 也不能整除
f x .
总之,两个多项式之间的整除关系 不因为系数域的扩大而改变.
第一章 多项式
例1
确定m ,使 x 1 | x mx mx 1 .
1 n m 令q1 x a n bm x ,并记 f1 x f x q1 x g x,
这里an 0, bm 0,并且 n
m
第一章 多项式
则f1 x 有以下性质:
或者 f1 x 0或 f1 x f x
f k 1 x f k x qk 1 x g x
f x f1 x g x
由于多项式 f1 x, f 2 x,的次数是递降的, 故存在k使
f k x 0或 f k x g x ,于是
第一章 多项式
3、多项式的带余除法定理
定理 设f x, g x F[ x] ,且 g x 0 ,则存在
qx , r x F[ x], 使得 f x g xqx r x
这里 r x 0 ,或者 r x g x . 并且满足上述பைடு நூலகம்件的 qx 和r ( x) 只有一对
1、 多项式的整除概念
设F是一个数域. F [x]是F上一元多项式环.
设f x ,g x F[ x ], 如果存在 hx F[ x] ,使得
定义1
,记为 g x f x 整除 ,则称 f x g xhx
g x | f x ,此时称 g x 是 f x 的因式,否则称
q x q x g x r x r x 上式右边或者为零,或者次数小于 g x 而左边或者是零,或者次数不小于 g x
那么
1 2 2 1
; ;
因此必须两边均为零,从而
q1 x q2 x及r1 x r2 x
第一章 多项式
4、系数所在范围对整除性的影响
设F和F 是两个数域,并且F F ,那么多项式环F[ x] 含有多项式环F [x].因此F上的一个多项式 f x 也是
F 上的一个多项式.
f x , g x F[ x],则如果在F [x]里 g x 不能整除 f x
,那么在 F[ x] 里 g x 也不能整除 f x . 不能整除 f x , f x 不能等于0.因此在F[ x] 里 g x 事实上,若 g x 0 ,那么由于在F [x]里 g x
g x 不能整除 f x ,记为 g( x ) | f(x)
第一章 多项式
2、多项式整除性的一些基本性质
(1) hx | g x, g x | f x hx | f x (2) hx | f x, hx | g x hx | f x g x (3) hx | f x, g x F[ x] hx | f xg x (4) hx | f i xi 1,2,, k , g i xi 1,2,, k hx | f1 g1 f k g k (5) 0 c F , f x F[ x] c | f x (6) 0 c F , f x F[ x] cf x | f x (7) f x | g x, g x | f x f x cg x0 c F
注1:qx , r x 分别称为 g x 除f ( x)所得的商式和
余式
注2: g x 0, g x | f x r x 0.
第一章 多项式
证:先证定理的前一部分. (i)若 f x 0 , 或 f x g x . 则可以取
qx q1 x qk x 及r x f k x
便给出了所说的表示。
第一章 多项式
现在证明定理的后一部分.假设f (x)有两种符合定 理中要求的表示法:
f x g xq1 x r1 x g xq2 x r2 x
若是 f1 x 0且 f1 x g x . 则对 f1 x 重复上面的过程。如此进行,我们得出一列多项式:
f1 x , f 2 x ,, f k x , 及 q1 x , q2 x ,, qk x ,
使得 而
相关文档
最新文档