耐久疲劳分析-EN方法概述
疲劳分析的各种方法
疲劳分析的各种方法疲劳寿命预测方法很多。
按疲劳裂纹形成寿命预测的基本假定和控制参数,可分为名义应力法、局部应力一应变法、能量法、场强法等。
1名义应力法名义应力法是以结构的名义应力为试验和寿命估算的基础,采用雨流法取出一个个相互独立、互不相关的应力循环,结合材料的S -N 曲线,按线性累积损伤理论估算结构疲劳寿命的一种方法。
基本假定:对任一构件(或结构细节或元件),只要应力集中系数K T相同,载荷谱相同,它们的寿命则相同。
此法中名义应力为控制参数。
该方法考虑到了载荷顺序和残余应力的影响,简单易行。
但该种方法有两个主要的不足之处:一是因其在弹性范围内研究疲劳问题,没有考虑缺口根部的局部塑性变形的影响,在计算有应力集中存在的结构疲劳寿命时,计算误差较大;二是标准试样和结构之间的等效关系的确定十分困难,这是由于这种关系与结构的几何形状、加载方式和结构的大小、材料等因素有关。
正是因为上述缺陷,使名义应力法预测疲劳裂纹的形成能力较低,且该种方法需求得在不同的应力比R和不同的应力集中因子K T下的S-N曲线,而获得这些材料数据需要大量的经费。
因而名义应力法只适用于计算应力水平较低的高周疲劳和无缺口结构的疲劳寿命。
近年来,名义应力法也在不断的发展中,相继出现了应力严重系数法(S. ST)、有效应力法、额定系数法(DRF)等。
2局部应力一应变法局部应力一应变法的基本思想是根据结构的名义应力历程,借助于局部应力-应变法分析缺口处的局部应力。
再根据缺口处的局部应力,结合构件的S-N曲线、材料的循环。
一曲线、E -N曲线及线性累积损伤理论,估算结构的疲劳寿命。
基本假定:若一个构件的危险部位(点)的应力一应变历程与一个光滑小试件的应力一应变历程相同,则寿命相同。
此法中局部应力一应变是控制参数。
局部应力一应变法主要用于解决高应变的低周疲劳和带缺口结构的疲劳寿命问题。
该方法的特点是可以通过一定的分析、计算将结构上的名义应力转化为缺口处的局部应力和应变。
车身疲劳耐久评估方法简介
车身疲劳耐久评估方法简介不知道为什么小时候的我经常遇到需要弄断铁丝却没有老虎钳也没有小李飞刀的直接考验我智商的高光时刻。
虽然显然不能像非洲朋友那样牙咬手撕但我也不是没试过当然最后结局都是没成功。
后来可能是因为吃了家里唯一荤菜鸡蛋脑细胞发育了发现反复折弯再反复折弯铁丝就会突然断了。
至于铁丝为什么会突然断了我不知道反正就是断了。
再后来改革开放了日子好了能吃上猪肉了脑子也发育的差不多了其中的缘由也就慢慢的明白了。
一根铁丝,想要徒手拉断或者瞬间折断那几乎是不可能的,但是如果你将它反复折弯很多次便可以把它折断。
这其实就是铁丝被整疲劳了,发生了疲劳破坏。
因为铁丝等金属件在生产加工过程中会出现各种缺陷,比如宏观的气孔、杂质、表面划痕以及微观的晶体位错、滑移带等。
在外力作用下这些缺陷处会出现局部应力集中,当局部应力大于材料的屈服强度时便会萌生微裂纹,这些微裂纹在交变载荷作用下逐渐扩展,当扩展到一定程度时突然断裂。
铁丝的疲劳破坏过程中交变载荷水平较高,塑性应变起主导作用,疲劳寿命较短,属于应变疲劳或低周疲劳;当交变载荷水平较低,弹性应变起主导作用时,疲劳寿命较长,属于应力疲劳或高周疲劳。
高周疲劳在日常生活中更加普遍,因其交变载荷小,没有明显的塑性变形等前兆,不容易提前发觉,所以具有更大的危险性。
美国空军的一架F-15战斗机曾经在模拟空战时就出现了惊险的一幕,事故造成美军F-15战机大面积停飞,调查结果显示,事故起因于飞机上的一根金属纵梁发生了疲劳破坏。
图1 F-15战机疲劳破坏(图片源自网络)汽车作为我们日常生活中非常重要的代步工具,也是由大量金属件构成的。
当汽车行驶在道路上时由于路面的不平整,车身结构会受到交变载荷作用,从而产生微裂纹并逐渐扩展。
为了保证车身在整个设计生命周期内不发生疲劳破坏,我们需要对车身结构进行疲劳耐久性能评估。
评估方法可分为试验法及CAE(Computer Aided Engineering)仿真分析法,实际的项目开发过程中,两种方法相结合使用。
车辆疲劳耐久分析
车辆疲劳耐久分析1前言传统上所谓的“道路载荷”就是车辆在崎岖不平的道路上行驶,激起轮胎的连续变形。
藉着力的传导,轮胎的反弹力经由悬挂体而传播分布到车身各处。
在重覆的受力状态下,部件若在指定的驶程内产生破裂,则需重新设计。
但是,车辆工程人员迄今仍无法掌握导致部件破裂的“道路载荷”。
而在有测试的前提下,用正确的有限元方法模拟各种工况,和有创新能力的软件商一起完成“道路载荷”的获取是最省事的做法。
二十世纪初期,车辆的耐久性已是车辆设计规范之一。
汽车制造商为了要测定车辆的耐疲劳性,测试人员将各类的车辆,以不同的速度行驶于底特律的各种不同的道路上。
再根据车辆的破坏程度来修正车辆设计上的缺陷。
随着时代的演进和试车场的诞生,车辆的耐疲劳测试逐渐改在可控制的道路状况下重覆的进行测试。
由于测试的技术亦不断的进步,试车员可将耐疲劳的行驶里程由五位数减至四位数并和原先的全程测试得到的结果相仿。
为了缩短出车的时间,大家都在增进效率上努力。
二十世纪末期,复合材料模拟方法,超单元算法,橡胶单元面世,因计算机的速度突飞猛进带动了结构分析软件的技术开发。
一九八四年最好的有限元单元问世,接触面的运算方法和隐式性积分无条件收敛的算法获得验证。
先後为结构分析人员提供了在计算机上,用有限元方法模拟车辆行驶于耐疲劳道路上应力分析的工具。
以期达到减重,耐久,可以免除测试的好处。
开发成功便能取代耗时的耐疲劳行驶测试,缩短产品开发时间,这创新将是产品自主开发的利器。
有限元方法已是成熟的技术。
模拟车辆在耐疲劳道路上行驶,除了用正确有限元方法模拟不同零件的方法,祗需要掌握下文叙述的,线性,非线性,子结构分析知识和技术即可。
2结构分析和道路载荷在没有电子计算机的时代,汽车结构分析是用比较性的分析;分析人员仅能将目标车的断面,和设计车的断面,用手运算後作粗枝大叶的比较,谈不上精确度。
设计人员基本上是仰赖车辆在耐疲劳道路上的测试报告为依据。
计算机问世後,结构分析软件也应时而生。
细解Ansys疲劳寿命分析概要
2013-08-29 17:16 by:有限元来源:广州有道有限元ANSYS Workbench 疲劳分析本章将介绍疲劳模块拓展功能的使用:–使用者要先学习第4章线性静态结构分析.•在这部分中将包括以下内容:–疲劳概述–恒定振幅下的通用疲劳程序,比例载荷情况–变振幅下的疲劳程序,比例载荷情况–恒定振幅下的疲劳程序,非比例载荷情况•上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses.A. 疲劳概述•结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关•疲劳通常分为两类:–高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳.–低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算.•在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论.…恒定振幅载荷•在前面曾提到, 疲劳是由于重复加载引起:–当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论.–否则,则称为变化振幅或非恒定振幅载荷…成比例载荷•载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:•在两个不同载荷工况间的交替变化•交变载荷叠加在静载荷上•非线性边界条件…应力定义•考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:–应力范围Δσ定义为(σmax-σmin)–平均应力σm定义为(σmax+σmin)/2–应力幅或交变应力σa是Δσ/2–应力比R 是σmin/ σmax–当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷. 这就是σm= 0 ,R = -1的情况.–当施加载荷后又撤除该载荷,将发生脉动循环载荷. 这就是σm= σmax/2 , R = 0的情况.…应力-寿命曲线•载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:–若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效–如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少–应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系•S-N曲线是通过对试件做疲劳测试得到的–弯曲或轴向测试反映的是单轴的应力状态–影响S-N 曲线的因素很多, 其中的一些需要的注意,如下:–材料的延展性, 材料的加工工艺–几何形状信息,包括表面光滑度、残余应力以及存在的应力集中–载荷环境, 包括平均应力、温度和化学环境•例如,压缩平均应力比零平均应力的疲劳寿命长,相反,拉伸平均应力比零平均应力的疲劳寿命短.•对压缩和拉伸平均应力,平均应力将分别提高和降低S-N曲线.•因此,记住以下几点:–一个部件通常经受多轴应力状态.如果疲劳数据(S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要注意•设计仿真为用户提供了如何把结果和S-N 曲线相关联的选择,包括多轴应力的选择•双轴应力结果有助于计算在给定位置的情况–平均应力影响疲劳寿命,并且变换在S-N曲线的上方位置与下方位置(反映出在给定应力幅下的寿命长短)•对于不同的平均应力或应力比值,设计仿真允许输入多重S-N曲线(实验数据)•如果没有太多的多重S-N曲线(实验数据),那么设计仿真也允许采用多种不同的平均应力修正理论–早先曾提到影响疲劳寿命的其他因素,也可以在设计仿真中可以用一个修正因子来解释…总结•疲劳模块允许用户采用基于应力理论的处理方法,来解决高周疲劳问题.•以下情况可以用疲劳模块来处理:–恒定振幅,比例载荷(参考B节)–变化振幅,比例载荷(参考C节)–恒定振幅,非比例载荷(参考D节)•需要输入的数据是材料的S-N曲线:–S-N曲线是疲劳实验中获得,而且可能本质上是单轴的,但在实际的分析中,部件可能处于多轴应力状态–S-N曲线的绘制取决于许多因素, 包括平均应力. 在不同平均应力值作用下的S-N曲线的应力值可以直接输入, 或可以执行通过平均应力修正理论实现.B. 疲劳程序(基本情况)•进行疲劳分析是基于线性静力分析, 所以不必对所有的步骤进行详尽的阐述.–疲劳分析是在线性静力分析之后,通过设计仿真自动执行的.•对疲劳工具的添加,无论在求解之前还是之后,都没有关系, 因为疲劳计算不并依赖应力分析计算.•尽管疲劳与循环或重复载荷有关, 但使用的结果却基于线性静力分析,而不是谐分析. 尽管在模型中也可能存在非线性,处理时就要谨慎了,因为疲劳分析是假设线性行为的.–在本节中,将涵盖关于恒定振幅、比例载荷的情况. 而变化振幅、比例载荷的情况和恒定振幅、非比例载荷的情况,将分别在以后的C 和D节中逐一讨论.…疲劳程序•下面用黄色斜体字体所描述的步骤,对于包含疲劳工具的应力分析是很特殊的:–模型–指定材料特性,包括S-N曲线–定义接触区域(若采用的话)–定义网格控制(可选的)–包括载荷和支撑–(设定)需要的结果,包括Fatigue tool–求解模型–查看结果…几何•疲劳计算只支持体和面•线模型目前还不能输出应力结果,所以疲劳计算对于线是忽略的.–线仍然可以包括在模型中以给结构提供刚性, 但在疲劳分析并不计算线模型…材料特性•由于有线性静力分析,所以需要用到杨氏模量和泊松比–如果有惯性载荷,则需要输入质量密度–如果有热载荷,则需要输入热膨胀系数和热传导率–如果使用应力工具结果(Stress Tool result),那么就需要输入应力极限数据,而且这个数据也是用于平均应力修正理论疲劳分析.•疲劳模块也需要使用到在工程数据分支下的材料特性当中S-N曲线数据–数据类型在“疲劳特性”(“Fatigue Properties”)下会说明–S-N曲线数据是在材料特性分支条下的“交变应力与循环”(“Alternating Stress vs. Cycles”)选项中输入的•如果S-N曲线材料数据可用于不同的平均应力或应力比下的情况, 那么多重S-N曲线也可以输入到程序中•添加和修改疲劳材料特性:•在材料特性的工作列表中,可以定义下列类型和输入的S-N曲线–插入的图表可以是线性的(“Linear”)、半对数的(“Semi-Log”即linear for stress, log for cycles)或双对数曲线(“Log-Log”)–记得曾提到的,S-N曲线取决于平均应力。
耐久疲劳分析-SN方法概述
耐久疲劳分析-SN方法概述耐久疲劳分析-SN方法概述SN(名义应力)法是疲劳计算的最古老方法,由德国铁路工程师August W?hler 于1852 年到1870 年之间建立。
他用如下左图所示的实验台同时对两根铁路车轴进行旋转弯曲疲劳试验来研究车轴的累积失效问题,然后将名义应力值和发生失效的循环周数的对应关系绘制在一个图表上,这就是众所周知的SN 曲线图,SN 曲线也叫W?hler 曲线。
SN 方法是目前应用最为广泛的疲劳分析方法,一条典型的SN 曲线如下右图所示。
SN 曲线的几个特征需要说明:在约1000 次循环的转折点以下的SN 曲线是无效的,因为此时的名义应力是弹塑性的,其发生失效的循环次数较少,也成为低周疲劳。
由于疲劳是由塑性剪切应变能的释放来驱动的,因此材料发生屈服之后,应力与应变不再是线性关系,应力就不能再作为疲劳计算的参数,这将由后续介绍到的EN(应变寿命)法来处理。
在转折点和疲劳极限(约10E6-10E8 次循环)之间的应力范围,SN 分析是有效的。
低于疲劳极限的部分,SN 曲线的斜率急剧下降趋于水平,即无限寿命区。
然后实际应用中,无限寿命是很难达到的。
比如,铝合金的SN 曲线没有水平部分,不表现出无限寿命特征。
疲劳分析器中应用“三段线性”曲线来表征SN 曲线,即由三段对数坐标的直线分别对应低周(塑性)、高周(弹性)和无限寿命区间。
两条典型SN 曲线如右图所示,分别代表低合金钢MANTEN和高强度钢RQC100,低于1000 次循环的虚线代表低周区间,10E8次循环处代表疲劳极限点。
为计算构件的疲劳寿命,疲劳分析器需要材料的SN曲线和失效点处的交变应力时域历程两个信息。
首先,疲劳分析器会对时域信号进行雨流分析以提取疲劳循环,然后通过SN 曲线来计算每个循环产生的损伤并对所有损伤值进行线性累积,系统将自动执行这一过程。
汽车零部件疲劳耐久试验
汽车零部件疲劳耐久试验背景介绍汽车零部件的疲劳耐久性能对于汽车的安全和可靠性至关重要。
在汽车运行过程中,各种零部件都会受到复杂的力学和热力学载荷的作用,长期以来,疲劳失效一直是汽车设计与制造中的一个严重问题。
因此,对汽车零部件的疲劳耐久性能进行准确可靠的试验和评价显得非常重要。
本文将介绍汽车零部件疲劳耐久试验的重要性、试验方法以及试验过程中涉及到的一些关键技术。
试验的重要性汽车零部件在长期使用过程中会受到频繁的振动、冲击和变形等力学载荷的作用,这些载荷可能会导致零部件产生疲劳裂纹并最终失效。
因此,对汽车零部件的疲劳耐久性能进行试验是确保汽车安全可靠的关键环节。
通过疲劳耐久试验,可以评估零部件在真实工况下的寿命和可靠性。
通过分析试验结果,能够为零部件的设计和制造提供重要的参考依据,指导工程师们进行设计和材料选择。
同时,试验结果也可以为汽车制造商和维修人员提供有关零部件维修和更换周期的参考。
试验方法1. 材料准备在进行疲劳耐久试验之前,首先需要准备合适的试验样品和材料。
样品通常由汽车零部件的重要结构部分制作而成,例如悬挂系统、转向系统、发动机部件等。
材料的选择应根据零部件的具体工作环境和力学要求来确定。
2. 试验装置进行疲劳耐久试验需要合适的试验装置。
一般来说,试验装置由试验台、驱动系统、载荷传感器等组成。
试验台应具备稳定的结构和可调节的试验参数,以满足不同试验要求。
驱动系统用于施加加载力,而载荷传感器用于采集试验过程中零部件受到的载荷信息。
3. 试验过程疲劳耐久试验一般分为两个阶段:载荷谱制定与应力历程修正阶段和试验加载阶段。
在载荷谱制定与应力历程修正阶段,根据实际使用条件和统计数据,制定合适的载荷谱。
载荷谱是描述零部件受到的力学载荷的时间历程曲线。
然后,根据材料的应力应变性能,对实际工况下的载荷谱进行修正,以得到逼近实际使用条件下的应力历程。
在试验加载阶段,根据修正后的应力历程对试验样品进行加载。
★★★疲劳分析解析
、绪论疲劳,是固体力学的一个分支,它主要研究材料或结构在交变载荷作用下的强度问题,研究材料或结构的应力状态与寿命的关系。
金属、塑料、木材、混凝土、玻璃、橡胶和复合材料等各种结构材料及其加工成的结构或设备,在载荷的反复作用下,都会产生疲劳问题。
据统计,在三大主要破坏形式(磨损、腐蚀和断裂)之一的断裂失效中,结构破坏的 80% 以上都是由疲劳引起的。
疲劳破坏在工程结构和机械设备中极为广泛,遍及每一个运动的零部件,不管是脆性材料还是塑性材料,疲劳破坏由于没有明显的宏观塑性变形,破坏十分突然,往往造成灾难性的事故。
因此,对于承受循环载荷的零部件都应进行疲劳强度设计。
疲劳所涉及面之广几乎涵括汽车、铁路、航空航天、海洋工程以及一般机器制造等各个工业领域。
近年来,有限元方法的不断成熟使得 CAE 分析结果的精度和可靠性有了很大的提高。
现在全球各大汽车公司,在产品的并行开发过程中,广泛地将 CAE技术同步应用于车身开发,如刚度、强度、NVH分析、机构运动分析等。
作为车身 CAE 的一个重要方面——疲劳耐久性 CAE 分析技术,基于有限元应力应变结果,结合承受载荷的变化历史和材料的性能参数,并应用相应的疲劳损伤理论来预测构件的疲劳寿命。
与基于试验的传统疲劳分析相比,疲劳 CAE 技术能够提供零部件表面的疲劳寿命分布图,可以在设计阶段判断零部件的疲劳寿命薄弱位置,能够减少试验样机的数量,大大缩短产品的开发周期,降低产品开发成本,提高市场竞争力。
二、疲劳基本概念2.1 疲劳定义疲劳的一词的英文是fatigue,意思是“劳累、疲倦”。
作为专业术语,用来表达材料在循环载荷作用下的损伤和破坏。
国际标准化组织(ISO)在1964年发表的报告《金属疲劳试验的一般原理》中对疲劳所做的定义是:“金属材料在应力或应变的反复作用下所发生的性能变化叫做疲劳;虽然在一般情况下,这个术语特指那些导致开裂或破坏的性能变化” 。
这一描述也普遍适用于非金属材料。
E-N疲劳寿命
E-N疲劳寿命简介在工程领域中,疲劳是材料和结构失效的常见原因之一。
疲劳寿命是指材料或结构在一系列交替加载后能够承受的载荷次数,称为疲劳寿命。
E-N疲劳寿命曲线是一个在一定应变幅值范围内,应力幅与疲劳寿命之间的关系曲线。
本文将介绍E-N疲劳寿命的基本概念和计算方法,并提供一些常见的应用示例。
E-N疲劳寿命曲线E-N疲劳寿命曲线是一种可用于预测材料或结构在不同应力幅值下的疲劳寿命的曲线。
通常,E-N曲线呈现出应力振幅与疲劳寿命呈反比的关系。
较小的应力幅值将导致较长的疲劳寿命,而较大的应力幅值将导致较短的疲劳寿命。
一般情况下,E-N疲劳寿命曲线可分为几个阶段:高应力强度范围、中应力强度范围和低应力强度范围。
在高应力强度范围,材料的疲劳寿命较短,而在低应力强度范围,疲劳寿命较长。
E-N疲劳寿命计算方法E-N疲劳寿命可以通过实验方法或基于材料力学性质的计算方法来确定。
下面分别介绍这两种常见的计算方法。
实验方法实验方法是通过在疲劳试验机上进行一系列疲劳加载试验来确定材料或结构的疲劳寿命。
实验过程中,不同的应力幅值被施加到试样上,并记录下载荷次数和试样失效的次数。
最终,根据实验数据可以绘制出E-N疲劳寿命曲线。
基于材料力学性质的计算方法基于材料力学性质的计算方法是通过分析材料的应力-应变关系、材料的韧度分析等,结合材料的断裂力学理论,推导出材料的疲劳寿命的计算公式。
这种方法需要对材料的强度性能、断裂韧度和材料的动态响应等进行全面的分析和计算。
E-N疲劳寿命的应用示例以下是一些使用E-N疲劳寿命曲线的应用示例:1.材料选择:根据材料的E-N疲劳寿命曲线,可以选择一个能够满足特定工程要求的材料,在不同应力幅值下有足够长的疲劳寿命。
2.结构设计:在设计构件或结构时,可以根据E-N疲劳寿命曲线来估计材料的疲劳寿命,从而优化设计,提高结构的可靠性和安全性。
3.寿命评估:通过测量材料的应力-应变曲线和应力幅值,可以使用E-N疲劳寿命曲线来评估材料的寿命,以确定其可靠性和使用寿命。
结构件的疲劳寿命分析方法1
结构件的疲劳寿命分析方法摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况, 重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。
疲劳是一个既古老又年轻的研究分支,自Wohler 将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。
疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。
金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert 在1829年前后完成的。
他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。
1843 年,英国铁路工程师W.J.M.Rankine 对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。
1852年-1869 年期间,Wohler对疲劳破坏进行了系统的研究。
他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。
1874 年,德国工程师H.Gerber 开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。
Goodman讨论了类似的问题。
1910年,O.H.Basquin提出了描述金属S-N 曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。
Bairstow 通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。
1929年B.P.Haigh研究缺口敏感性。
1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。
1945年M.A.Miner 在J.V.Palmgren 工作的基础上提出疲劳线性累积损伤理论。
L.F.Coffin 和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin —Manson 公式,随后形成了局部应力应变法。
★★★疲劳分析解析
一、绪论疲劳,是固体力学的一个分支,它主要研究材料或结构在交变载荷作用下的强度问题,研究材料或结构的应力状态与寿命的关系。
金属、塑料、木材、混凝土、玻璃、橡胶和复合材料等各种结构材料及其加工成的结构或设备,在载荷的反复作用下,都会产生疲劳问题。
据统计,在三大主要破坏形式(磨损、腐蚀和断裂)之一的断裂失效中,结构破坏的80%以上都是由疲劳引起的。
疲劳破坏在工程结构和机械设备中极为广泛,遍及每一个运动的零部件,不管是脆性材料还是塑性材料,疲劳破坏由于没有明显的宏观塑性变形,破坏十分突然,往往造成灾难性的事故。
因此,对于承受循环载荷的零部件都应进行疲劳强度设计。
疲劳所涉及面之广几乎涵括汽车、铁路、航空航天、海洋工程以及一般机器制造等各个工业领域。
近年来,有限元方法的不断成熟使得CAE分析结果的精度和可靠性有了很大的提高。
现在全球各大汽车公司,在产品的并行开发过程中,广泛地将CAE技术同步应用于车身开发,如刚度、强度、NVH分析、机构运动分析等。
作为车身CAE的一个重要方面——疲劳耐久性CAE分析技术,基于有限元应力应变结果,结合承受载荷的变化历史和材料的性能参数,并应用相应的疲劳损伤理论来预测构件的疲劳寿命。
与基于试验的传统疲劳分析相比,疲劳CAE技术能够提供零部件表面的疲劳寿命分布图,可以在设计阶段判断零部件的疲劳寿命薄弱位置,能够减少试验样机的数量,大大缩短产品的开发周期,降低产品开发成本,提高市场竞争力。
二、疲劳基本概念2.1 疲劳定义疲劳的一词的英文是fatigue,意思是“劳累、疲倦”。
作为专业术语,用来表达材料在循环载荷作用下的损伤和破坏。
国际标准化组织(ISO)在1964年发表的报告《金属疲劳试验的一般原理》中对疲劳所做的定义是:“金属材料在应力或应变的反复作用下所发生的性能变化叫做疲劳;虽然在一般情况下,这个术语特指那些导致开裂或破坏的性能变化”。
这一描述也普遍适用于非金属材料。
2.2 疲劳破坏特点构件的疲劳破坏与静力破坏有着本质的不同,主要具有以下特点:(1) 在交变载荷作用下,构件中的交变应力在远小于材料的强度极限,甚至小于材料的弹性极限时,破坏就可能发生。
疲劳分析简介
02
循环计数法通常采用实验方法 进行,需要记录材料在不同应 力水平下的循环次数。
03
循环计数法适用于确定材料的 低周疲劳性能和疲劳极限。
裂纹扩展分析
基于裂纹扩展的疲劳分析方 法,通过研究裂纹在交变应 力作用下的扩展规律来预测
材料的疲劳寿命。
裂纹扩展分析通常采用实验 方法和有限元分析方法进行
。
涉及裂纹扩展速率、临界裂 纹长度等概念。
3. 提供了详细的疲劳数据报告,方便用 户理解和评估结果。
2. 支持各种材料类型,包括金属、塑料 、复合材料等。
特点
1. 提供了多种疲劳算法,包括名义应力 、应变-寿命、应力-寿命等。
FatigueMaster软件
特点
2. 支持多种疲劳预测方法,包括 名义应力法、局部应力应变法等 。
介绍:FatigueMaster是一款专业 的疲劳分析软件,广泛应用于汽 车、航空航天、电子设备等领域 。
多轴复杂应力状态下的疲劳研究
多轴复杂应力状态下的疲劳行为
在许多工程应用中,材料和结构常常受到多轴复杂应力作用,如航空航天、核能等领域中的关键部件 。因此,研究多轴复杂应力状态下的疲劳行为及其机理,对于提高这些部件的疲劳寿命和安全性具有 重要意义。
多轴复杂应力状态下的疲劳损伤演化机制
多轴复杂应力状态下的疲劳损伤演化机制是疲劳分析中的重要问题之一。因此,研究多轴复杂应力状 态下的疲劳损伤演化机制,对于揭示材料和结构的疲劳失效机理、预测其疲劳寿命具有重要作用。
汽车领域应用
要点一
车身结构分析
汽车车身结构在行驶过程中受到振动和冲击载荷的作用, 可能产生疲劳裂纹。通过对车身结构进行疲劳分析,可以 预测和防止疲劳裂纹的产生,提高车辆的安全性能。
疲劳性能分析也称为疲劳耐久性分析...
机车车辆牵引制动系统性能的问题机车车辆的牵引制动性能是关系到车辆运行安全与否的一个重要因素。
机车车辆的牵引制动系统的牵引制动性能除了要考虑牵引电机、传动系统、制动系统之外,还要考虑轮轨接触的影响。
通过MSC.ADAMS/Rail可以对机车车辆的牵引制动性能进行精确的仿真。
利用ADAMS/Rail的模板建模方式可以很方便的建立牵引制动系统的模板,然后建立牵引制动子系统,再与转向架和车体等其它子系统组装成整车模型。
在ADAMS/Rail中可以定义轮轨之间非线性的摩擦特性,随着蠕滑率的变化而变化的摩擦系数是进行牵引或制动性能分析至关重要的特性。
同时,还可以定义随着轨道长度方向变化的摩擦系数,这样可以分析钢轨表面干燥/潮湿的影响。
下面是这方面的应用实例。
实例1:Voith Turbo是德国铁道车辆传动系统的一级供应商,主要开发、制造并组装机械、液压及电动系统。
他们提供铁道动车的驱动系统,可使机械系统运转更有效,使车辆运营速度更高,更舒适,并节省能源,减少噪音。
(摘自:)Voith Turbo公司的分析部门需要研究驱动系统和动车系统之间在牵引或制动时的相互耦合作用,如在牵引/制动时的轴系的谐振问题。
ADAMS/Rail、ADAMS/Flex、ADAMS/Exchange使得Voith Turbo实现了在其产品开发流程内虚拟产品开发的技术。
ADAMS/Rail的模版建模方式使得Voith Turbo能够将其建立的驱动系统模型与其他的供应商提供的车辆模型(包括转向架和车身子系统)联合起来建立一个包含驱动系统的整车模型,非常容易测试配置不同驱动系统的车辆的动力学性能。
其意义在于可以对驱动系统的谐振和稳定性进行研究,并进行优化,以使驱动系统的悬挂装置所受的冲击加速度不超过许可的范围。
上图所示为考虑传动系统的整车模型在通过湿滑轨面启动时牵引电机的输出扭矩随着仿真时间的变化过程,通过仿真发现了由于轨面的湿滑而导致输出扭矩的振动现象,这一现象是由于机车经过湿滑轨面时产生了打滑现象,引起了传动系统的扭振,所以电机的输出扭矩出现了上下的波动。
车辆疲劳耐久性分析、试验与优化关键技术
喷涂技术
喷涂技术可以提高车辆的外观质量和耐腐蚀性,如电泳涂装、静电喷涂等技术在车辆制造车辆疲劳耐久性研究展望
1
深入研究车辆疲劳损伤机理
2
3
深入研究金属材料疲劳裂纹萌生和扩展机理,包括微裂纹、界面裂纹等特殊疲劳损伤机理。
试验过程
01
安装样品
将选择的样品按照规定的安装方式安装在试验台上,确保安装牢固、稳定。
02
预处理样品
在试验开始前,对样品进行必要的预处理,如表面处理、涂层等,以消除样品本身对试验结果的影响。
数据整理
对试验过程中记录的数据进行整理,提取与疲劳耐久性相关的数据,如应力、应变、循环次数等。
数据统计
对提取的数据进行统计和分析,计算相应的指标和参数,如疲劳寿命、应力幅等。
优化设计
对新设计的发动机支架进行疲劳试验,并与原车型进行对比评估,以确保优化后的支架疲劳性能得到提升。
验证与评估
A
B
C
D
整体结构分析
利用三维扫描技术获取重型卡车的整体结构模型,进行详细的应力、应变分析。
优化设计
根据预测结果,对重型卡车的整体结构进行优化设计,如改变车身形状、增加支撑结构等。
验证与评估
针对不同使用工况和环境条件,进行疲劳寿命预测模型的修正和优化,提高预测的准确性和可靠性。
01
03
02
研究新型高强度材料和先进制造技术,以提高车辆结构和零部件的抗疲劳性能。
发展车辆疲劳耐久性设计方法和优化策略,包括优化零部件的几何形状、受力分析和优化布局等。
探索基于健康监测和无损检测的车辆疲劳损伤监测与评估技术,及时发现和修复潜在损伤,延长车辆使用寿命。
疲劳分析简介
裂纹的产生和扩展: STAGE I AND II
裂纹的产生和扩展: STAGE I AND II (续)
Persistent Slip Band Formation
Stage I Crack Growth
• 描述循环一个好的方法是雨流循环计数矩阵
循环计数矩阵
分析流程 – 综述
时间历程
峰谷提取
雨流循环计数
不精确的频率信息
不精确的频率信息
S tre ss o r S tra in S tre ss o r S tra in
Time
Time
LIFE
寿命
损伤直方图
S
100 MPa
60000
N
损伤计数
FACTORS INFLUENCING FATIGUE LIFE
σN
-σM (Compressive mean)
(Tensile mean)
• Tensile mean stress reduces fatigue life. • Compressive mean stress has little effect.
σm σM
平均应力
• 应力比率: R = smin/smax • 绝大多数试验采用 R = -1 (全交变载荷). • 如果我们循环载荷采用其它R值,那么我们需要修正应力范围,以能
E-N 方法
• 也称作局部应变方法,裂纹萌生方法,和应变-寿命方法。 • E-N方法是汽车行业里评估寿命方法中最常用的一个。 • 实际上,裂纹萌生意味着已经有1-2mm的裂纹发生。这往往在部件寿命中占较高比例。 • 许多汽车部件的设计允许使用中出现大的塑性变形(特别是在试车场)。这种情况下 E-N
Ncode-EN疲劳耐久参数
1EN疲劳分析参数其它参数参考SN分析参数定义。
1.2.1 Analysis Runs/Runs1:1.2.2 Analysis Runs/Runs1/AnaDef/ENEngine:1)ENMethod:Standard(默认即可)。
2)CombinationMethod:部件某一点的应力张量是随着时间变化的,为了能利用EN曲线计算疲劳损伤,需要把此张量转化为一标量。
AbsMaxPrincipal:绝对值最大主应力。
SignedVonMises:带符号的米赛斯应力。
SignedShear:带符号的剪应力。
CriticalPlane:关键截面。
TypeBCriticalPlaneShearStrain:B型关键面切应变。
3)MeanStressCorrection:平均应力修正。
SmithWatsonTopper:简称SWT,对于每个应力滞后环,软件会通过下面公式计算一中间值Pswt。
此公式考虑了平均应力的影响,计算的Pswt再与由平均应变为零的EN曲线得到的Pswt-N曲线结合,得到每一个应力滞回环的寿命值。
Morrow:Morrow法通过以下公式计算每一滞回环的寿命值,公式也是考虑了平均应力的影响。
Interpolate:ENMethod选择MultiMeanCurve或者MultiRRatioCurve时才起作用。
4)InterpolationLimit: 在ENMethod选择MultiMeanCurve或者MultiRRatioCurve时才起作用。
5)MultiAxialAssessment:应力的多轴状态,振动疲劳(Vibration)此选项不起作用,保持默认Standard 即可。
6)ElasticPlacsticCorrection:弹塑性修正。
Neuber,假设这两条曲线围成的面积相同,适用于单轴状态。
HoffmannSeeger:此方法在弹塑性修正时考虑到了应力的当前状态,适用于多轴状态。
疲劳试验方法_标准_概述说明以及解释
疲劳试验方法标准概述说明以及解释1. 引言1.1 概述疲劳试验方法是一种重要的工程实验方法,用于评估材料或构件在循环加载条件下的耐久性和可靠性。
在现代工程设计和材料科学领域,疲劳试验方法被广泛应用于各种应用中,如航空航天、汽车制造、机械工程等。
通过模拟真实使用环境下的循环负载,疲劳试验可以揭示材料和构件在长时间使用过程中存在的弱点和故障机理。
1.2 文章结构本文将详细介绍疲劳试验方法及其标准,并对其进行解释和讨论。
文章由引言、疲劳试验方法、疲劳试验标准、疲劳试验概述说明、解释与讨论以及结论等部分组成。
引言部分将给出关于疲劳试验方法的整体概述,并简单介绍文章结构。
1.3 目的本文旨在提供对疲劳试验方法及其标准的全面理解。
通过对常见的疲劳试验方法和标准进行介绍和解析,读者将了解到选择适当的疲劳试验方法的考虑因素,以及疲劳试验标准的重要性和作用。
此外,本文还将详细说明疲劳试验的基本原理和过程概述,以及分析疲劳试验结果、对不同标准进行疲劳试验比较和解读疲劳断口特征及其含义的常用方法。
最后,通过总结疲劳试验方法和标准的重要性,并对未来发展进行展望,希望能够促进相关领域的研究与应用。
(文章正文内容根据实际需求填写即可)2. 疲劳试验方法2.1 定义和背景疲劳试验方法是用于评估材料、结构或设备在重复加载下的耐久性能的实验方法。
疲劳是指物体在反复循环载荷作用下逐渐损坏的现象,它可能导致结构失效或材料断裂。
疲劳试验方法旨在模拟实际使用条件下的循环荷载以确定材料或结构的疲劳极限、寿命和可靠性。
2.2 常见的疲劳试验方法常见的疲劳试验方法包括:- 轴向拉压疲劳试验:通过施加轴向拉力或压力来对材料进行循环加载,以评估其抗拉/压疲劳性能。
- 弯曲疲劳试验:施加弯曲力以模拟结构在实际使用中所受到的曲度变化,并评估材料或结构的抗弯曲疲劳性能。
- 扭转疲劳试验:通过扭转加载对材料进行循环应变,以评估其抗扭转疲劳性能。
- 振动疲劳试验:通过施加振动载荷模拟实际使用条件下的震动环境,评估材料或结构的抗振动疲劳性能。
疲劳分析方法及应用
疲劳分析方法及应用第一章:疲劳的基本概念1、疲劳疲劳,是固体力学的一个分支,主要研究材料或结构在交变载荷作用下的强度问题,研究材料或结构的应力状态与寿命的关系。
在交变载荷作用下,材料或结构的破坏现象,叫做疲劳破坏。
疲劳破坏时,应力值未超过强度极限,甚至会低于弹性极限。
2、疲劳破坏特征(较静力破坏)a、静力破坏是一次最大载荷作用下的破坏;疲劳破坏是多次反复载荷作用下的破坏,非短期内,而是经历一定的时间。
b、静应力小于屈服极限或强度极限不会发生静力破坏;交变应力在远小于静强度极限、甚至屈服极限下,即可发生疲劳破坏。
c、静力破坏常有明显的塑性变形;疲劳破坏常没有外在宏观的显著的塑性变形。
d、静力破坏断口,呈现粗粒状或纤维状特征;疲劳破坏断口,呈现2个区域特征:平滑区、粗粒状或纤维状。
e、静力破坏的抗力主要取决于材料本身;疲劳破坏的抗力与材料、结构形状尺寸、表面状况、外界环境有关。
3、疲劳破坏过程a、裂纹的产生——裂纹扩展——失稳断裂;由于裂纹失稳断裂是一个很快的过程,对疲劳寿命影响非常小,在疲劳分析中一般不予考虑。
所以一般考虑裂纹产生和裂纹扩展2部分的寿命。
其中裂纹产生阶段占了整个疲劳寿命的极大部分。
4、疲劳分类疲劳前循环次数:高周疲劳:材料所受到交变应力低于材料屈服极限,甚至只有屈服极限的三分之一左右,疲劳前循环次数大于10e5到10e7;低周疲劳:材料所受的交变应力较高,通常接近或超过屈服极限,疲劳破坏前循环次数较少,一般小于10e4到10e5.按应力状态:单轴疲劳:单向循环应力作用下的疲劳,即只承受单向正应力或单向剪应力。
多轴疲劳:多项应力作用下的疲劳,也称复合疲劳,如弯扭复合疲劳、双轴拉伸疲劳、三轴应力疲劳等。
按载荷的幅度与频率恒幅疲劳:交变应力的幅度与频率均固定不变;变幅疲劳:交变应力的幅度变化,频率不变;随机疲劳:应力幅度与频率都随机变化。
按载荷工况与工作环境常规疲劳:在室温、空气介质中疲劳;低温疲劳:低于室温的疲劳;高温疲劳:高于室温的疲劳;机械疲劳:仅有交变应力或应变波动造成的疲劳;热疲劳:温度循环变化产生的热应力所致的疲劳;热—机械疲劳:温度循环与应变循环叠加的疲劳;腐蚀疲劳:腐蚀环境与循环应力(应变)的复合作用下导致的疲劳;接触疲劳:材料在循环接触应力作用下,产生局部永久性积累损伤,经一定的循环次数后,接触表面产生麻点、浅层或深层剥落的失效形式;冲击疲劳:重复冲击载荷导致的疲劳。
混凝土结构的疲劳分析
混凝土结构的疲劳分析一、疲劳分析的概念和意义疲劳是指结构在长期重复循环荷载作用下发生的损伤和破坏现象。
混凝土结构在使用过程中,受到交通荷载、风荷载、自重荷载等多种荷载的作用,这些荷载的作用是交替的、随机的,会导致结构的疲劳破坏。
因此,对混凝土结构的疲劳分析是非常必要的。
疲劳分析的主要意义在于:1.疲劳分析可以预测结构在长期重复循环荷载作用下的疲劳寿命,为结构的设计和维护提供科学依据。
2.疲劳分析可以帮助工程师了解结构的疲劳性能,优化结构设计,降低结构的疲劳破坏风险。
3.疲劳分析可以提高工程师对结构的认识,增强结构的安全性和可靠性。
二、混凝土结构的疲劳机理混凝土结构的疲劳机理主要有两种:1.微观疲劳机制混凝土是一种多孔材料,其中的孔隙会导致混凝土的强度和韧性下降。
在疲劳荷载作用下,混凝土中的孔隙会发生压缩-张拉循环变形,导致孔隙扩大、连接和合并,最终导致混凝土的微裂纹扩展和疲劳破坏。
2.宏观疲劳机制混凝土结构在长期重复循环荷载作用下,会发生宏观损伤和破坏。
这种疲劳机制主要是由于荷载作用下的应力集中和应力分布不均匀导致的,最终导致混凝土的裂纹扩展和疲劳破坏。
三、混凝土结构的疲劳分析方法混凝土结构的疲劳分析方法主要有以下几种:1.应力范围法应力范围法是一种基于疲劳试验数据的经验法,适用于轴心受拉的混凝土柱和梁的疲劳分析。
应力范围法通过对应力范围和疲劳寿命的关系进行分析,预测结构的疲劳寿命。
2.极限状态法极限状态法是一种基于结构极限状态设计思想的疲劳分析方法,适用于混凝土桥梁、隧道、堤坝等大型混凝土结构的疲劳分析。
极限状态法通过确定结构的极限状态和荷载历程,计算结构的疲劳损伤度,预测结构的疲劳寿命。
3.裂纹扩展法裂纹扩展法是一种基于混凝土裂纹扩展和断裂力学的疲劳分析方法,适用于混凝土结构中存在明显裂缝的疲劳分析。
裂纹扩展法通过确定结构的裂纹长度和裂纹扩展速率,预测结构的疲劳寿命。
四、混凝土结构的疲劳寿命预测方法混凝土结构的疲劳寿命预测方法主要有以下几种:1.应力范围法预测疲劳寿命的方法在应力范围法中,预测混凝土结构的疲劳寿命需要确定以下参数:(1)结构的应力水平和荷载历程(2)结构的疲劳极限和疲劳极限应力范围(3)结构的疲劳寿命和疲劳寿命应力范围通过计算结构的应力范围和疲劳寿命应力范围的关系,可以预测结构的疲劳寿命。
疲劳分析及概念
疲劳分析及概念>疲劳破坏的概念当材料或结构受到多次重复变化的载荷作用后,在应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏。
这种在交变载荷持续作用下材料或结构的破坏现象,就叫做疲劳破坏。
>疲劳破坏的特征材料力学是根据静力试验来确定材料的机械性能(比如弹性极限、屈服极限、强度极限)的,这些机械性能没有充分反映材料在交变载荷作用下的特性。
因此,在交变载荷作用下工作的零件和构件,如果还是按静载荷去设计,在使用过程中往往就会发生突如其来的破坏。
>疲劳破坏与传统静力破坏的本质区别* 静力破坏是一次最大载荷作用下的破坏;疲劳破坏是多次反复载荷作用下产生的破坏,它不是短期内发生的。
* 当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈服极限的情况下,疲劳破坏就可能发生。
* 静力破坏通常有明显的塑性变形产生;疲劳破坏通常没有外在宏观的显著塑性变形迹象,即便是塑性良好的金属,其疲劳破坏形式也象脆性破坏一样,事先不易觉察出来,这表明疲劳破坏具有更大的危险性。
* 在静力破坏的断口上,通常只呈现粗粒状或纤维状特征;而在疲劳破坏的断口上,总是呈现两个区域特征,一部分是平滑的,另一部分是粗粒状或纤维状。
因为疲劳破坏时,首先在某一点(通常接近构件表面)产生微小的裂纹,其起点叫"疲劳源",而裂纹从疲劳源开始,逐渐向四周扩展。
由于反复变形,裂开的两个面时而挤紧,时而松开,这样反复摩擦,形成一个平滑区域。
在交变载荷继续作用下,裂纹逐渐扩展,承载面积逐渐减少,当减少到材料或构件的静强度不足时,就会在某一载荷作用下突然断裂,其断裂面呈粗粒状或纤维状。
* 静力破坏的抗力主要取决于材料本身;而疲劳破坏的抗力与材料的组成、构件的形状或尺寸、表面加工状况、使用条件以及外部工作环境都有关系。
ANSYS FE-SAFE概述ANSYS FE-SAFE由用户界面、材料数据库管理系统、疲劳分析程序和信号处理程序组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耐久疲劳分析-EN概述
随着现代研究技术和手段的发展,可对疲劳裂纹开展更加详细的研究。
我们现在知道了一条疲劳裂纹是包含了萌生和扩展两个阶段过程,初期阶段裂纹是沿着与施加载荷方向约为45 角(最大剪应力)方向扩展的,穿过2到3 个晶粒边界后,裂纹扩展的方向变为与施加载荷方向约为90 角,这就是众所周知的裂纹扩展阶段I 和阶段II,如图所示。
此外,我们现在还知道了疲劳裂纹的萌生和扩展是由于微观角度的局部塑性剪切应变而产生的结果。
当August Wöhler首先提出最早的疲劳分析方法(SN)时,他还没发现疲劳裂纹扩展过程的2个阶段,因此SN方法计入了这两个阶段的寿命。
事实上,每个阶段包含了不同的物理机理,我们现在可以分别采用不同的分析方法。
EN(局部应变)法即用来计算阶段I的裂纹萌生寿命,而用断裂力学方法来计算阶段II的裂纹扩展寿命。
对于大多数构件来说,阶段II的裂纹扩展速度都是很快的以至于其寿命可以忽略掉。
局部塑性剪应变是真正驱动疲劳裂纹扩展的原因,因此以应变作为EN方法的输入是很合适的。
EN曲线可被认为是SN曲线的简单延伸,当应力是线弹性(如高周疲劳)时,通过两条曲线计算将得到相同的寿命结果。
当失效发生在1000次循环以下时,SN曲线是不可用的,此时只能用EN曲线来进行计算。
下图给出两条曲线应用场合的比较。
1。