大学物理-力学考题上课讲义
大学物理力学基础课件
机械波的产生与传播条件
机械波的产生
需要波源和介质,波源提供能量,介质传递能量和动量。
机械波的传播条件
介质中相邻质点之间存在相互作用力,且能够传递能量和动量。
机械波的分类
横波和纵波,根据质点振动的方向与波传播方向的关系来区分。
波的干涉、衍射和多普勒效应
量纲分析
量纲分析是研究物理量之间关系的一种方法,通过比较物理量的量纲可以确定 它们之间的关系。在力学中,常用的量纲有长度、质量、时间和力等。
02
质点与刚体运动学
质点运动描述方法
80%
矢量描述法
通过位置矢量、速度矢量和加速 度矢量来描述质点的运动状态。
100%
直角坐标法
在直角坐标系中,通过质点的坐 标位置(x, y, z)及其随时间的变化 率来描述运动。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作 用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。
应变的定义
物体在受到外力作用下会产生一定的变形,变形的程度称为应变。
应力与应变的关系
在弹性范围内,应力与应变成正比关系,即符合胡克定律。
弹性模量与泊松比
长度收缩和时间膨胀
相对于观察者运动的物体,其 长度会收缩,时间会变慢。
质能关系式及其意义
质能关系式
E=mc^2,其中E是能量,m是质量,c是光 速。这个公式表明质量和能量之间存在等价 关系。
能量守恒和质量亏损
在核反应等过程中,质量可以转化为能量,同时能 量也可以转化为质量。这种转化遵循能量守恒定律 。
80%
自然坐标法
大学物理教程课件讲义刚体力学基础
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。
大学物理竞赛辅导-力学部分ppt课件
可获得的最大加速度为
,可获得的最大速度值为
。
解: ①质心 的最大加速度
N kx (m1 m2 )ac
k ac m1 m2 x
xl
kl acmax m1 m2
k m1
F m2
f m1
N
F
f
m2
18
②质心 的最大速度
m2过平衡位置时的速度
1 2
kl 2
1 2
m
v2 2 max
10
1、可变质量系统
例3、一雨滴的初始质量为 m0 ,在重力的影响下,
由静止开始降落。假定此雨滴从云中得到质量,
其质量的增长率正比于它的瞬时质量和瞬时速度
的乘积:
dm kmv
式中为常量。试证明dt 雨滴的速率实际上最后成为
常量,并给出终极速率的表达式。忽略空气的阻
力。
11
解:由变质量的运动方程:
a (2R )2 (R 2t 2 )2 R 4 2t 4
B
vc
A 30
例、质量为m,半径为R 的均匀球体,从一倾角为的斜面上滚 下。设球体与斜面间的摩擦系数为m,求使该球体在斜面上只
滚不滑时, 角的取值范围。
解:球体对中心轴的转动惯量为Jc = (2/5)mR2
k m1
v2max
kl m2
=0
v c max
(
m1v1 m1
m2v m2
2
)max
km2 l m1 m2
F m2
19
例:(11th,12)质量为 M 的刚性均匀正方形框架,在某边的中点
开一个小缺口,缺口对质量分布的影响可以忽略。将框架放在以
大学物理-力学考题
大学物理-力学考题实用标准一、填空题(运动学)1、一质点在平面内运动,其rc1,dv/dtc2;c1、c2为大于零的常数,则该质点作运动。
2.一质点沿半径为R1.0m的圆周作逆时针方向的圆周运动,质点在0~t这段时间内所经过的路程为St2t2,式中S以m计,t以计,则在t时刻质点的4角速度为,角加速度为3.一质点沿直线运动,其坐标某与时间t有如下关系:某=Ae-t(A.皆为常数)。
则任意时刻t质点的加速度a=v00,某010m,4.质点沿某轴作直线运动,其加速度a4tm/2,在t0时刻,则该质点的运动方程为某5、一质点从静止出发绕半径R的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。
6.一质点沿半径为R1.0m的圆周作逆时针方向的圆周运动,质点在0~t这段时间内所经过的路程为tt2式中S以m计,t以计,则t=2时,质点的法向加速度大小an=m/2,切向加速度大小a=m/2。
7.一质点沿半径为0.10m的圆周运动,其角位移可用下式表示2t(SI).(1)当3t2时,切向加速度at______________;(2)当的切向加速度大小恰为法向加速度大小的一半时,______________。
(1.2m/,3.33rad)28.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a与时间t有如下关系:a=2+t,则任意时刻t质点的位置为某(动力学)1、一质量为m2kg的质点在力F某23tN作用下由静止开始运动,若此力作用在质点上的时间为2,则该力在这2内冲量的大小I;质点在第2末的速度大小为实用标准2、一质点受力F3某2的作用,式中某以m计,F以N计,则质点从某1.0m沿某轴运动到某2.0m时,该力对质点所作功A.3系统动量守恒的条件是:__________________________;系统机械能守恒的条件是:____________________________________;系统角动量守恒的条件是:_____________________________________。
大学物理刚体力学课件
例 131 如图体系开始静止当摆线由水平摆到竖直时车及球的速度光滑水平面车解体系机械能守恒体系水平方向动量守恒解得如何求物体到达最低点时绳中得张力例 132 一质量为的木块置于光滑的水平面上其上有一半径为的光滑圆弧如图示当质量为的小球沿圆弧由运动到圆弧的底部时二者的速度解本题的特点是作用中体系沿水平方向动量守恒取向左为正方向在最底点时设大木块及球对地均向左运动则有解略过程中对体系仅重力作功故机械能守恒则物体系在竖直方向的动量是否守恒为什么的动能来自何方哪些力对做功与间的一对内力功之和为多少例 210 体系从静止开时经秒后轮的角速度解轮物动量矩定理动量定理二式联立得结果或另一方法例 29 一半径为质量为的均质圆盘置于水平桌面上设盘在桌面上转动的初角速度为盘和桌面间的摩擦系数为μ盘经多长时间停止转动解阻力矩为略去数值例题另一解法例一倔强系数为原长为的弹性绳一端固定另一端系一质量为的小球整个系统在光滑的水平面上如图示开始时如图求物体与O点的最近距离解分析物体绕O运动时受合力恒指向O点故对O点动量矩守恒当物体运动到B点时弹性绳恢复到原长但不是最近距离此后物体惯性运动到C点时为最近距离 B C 2 角动量守恒 1 机械能守恒例一倔强系数为原长为的弹性绳一端固定另一端系一质量为的小球整个系统在光滑的水平面上如图示开始时如图求物体与O点的最近距离解分析物体绕O运动时受合力恒指向O点故对O点动量矩守恒当物体运动到B点时弹性绳恢复到原长但不是最近距离此后物体惯性运动到C点时为最近距离 B C 2 角动量守恒 1 机械能守恒例 212 如图示质量为半径为的均质盘砂轮绕定轴自由转动某瞬时其边缘处爆列一质量为的一小块向上飞去求余下的盘的角速度解小块飞出时此小块与余下的盘部分为一物体系体系的合外力矩为零故此过程中体系的角动量守恒作用前作用后是经常犯的错误解设轮的半径为设人向上爬时物对地速度为体系受合外力矩为零人对地的速度为二者速度大小相同故同时到达作用前体系的动量矩为作用后体系的动量矩为据动量矩守恒定律则有例 214 如图人与物同质量开始体系静止当人以相对速度向上爬动时求二者对地的速度及人与物谁先到达轮处并讨论计论的半径和质量时及二者质量不同时的情形计轮的质量时由角动量守恒律得若人质量为而物体为体系的合外力矩为体系的角动量为由角动量原理或动量矩定理得或即注意到得此时人和物作加速运动角动量角动量在广泛的领域内的应用天体间星体的公转与自转的动量矩以及微观体系内粒子的角动量如电子轨道运动角动量电子中子及其它粒子的自旋角动量等而且据近代物理理论微观粒子的角动量是量子化的自旋及自旋角动量是微观粒子的基本属性用角动量守恒律解释科里奥利力当球在光滑的盘面由A向B运动时其角动量守恒在A点时球在向外运动时增大故对地的角速度减小因而球相对盘面有一与相反的转动球越向外运动其值越大球相对盘面的轨迹为曲线横向力为科氏力如何正确地运用角动量守恒定律关键分析出体系或物体在作用中对轴或一定点的合外力矩为零而不是合外力为零注意动量守恒律和角动量守恒律的区别切无混淆动力学内容比较质点一维运动刚体的定轴转动牛一律牛二律转动定律力矩平衡功动能定理动能定理功动量定理角动量原理冲量矩定理对物体系守恒律条件第五节滚动略讲一刚体的平面平行运动运动学设一圆柱体在地面上滚动质心对地速度轮上某点相对质心的速度轮上某点相对地面的速度为轮纯滚动由于圆柱体与平面间无相对滑动质心平动而轮上各点绕质心转动运动学规律在轮纯滚动时轮缘上的一点P转过角时轮的质心C移动距离为轮的质心速度大小为二轮纯滚动运动学即为纯滚动的运动学条件据速度叠加轮缘上各点的速度为不难得出轮缘上与地面接触点的速度为瞬心质心平动而轮上各点绕质心转动运动学规律该点称为转动瞬心而轮上不同点速度各异三动力学规律静摩擦力瞬心质心运动规律动能如图绕质心转动规律轮做纯滚动与地接触点速度为零可取为瞬时转动中心可以此为瞬轴写出转动定律推广联合解题例讨论圆柱体沿斜面的纯滚动质心运动规律解为何有无能否纯滚动分量式绕质心转动规律联立解得柱与斜面间的最大静摩擦力为若即或则圆柱体不可能在斜面纯滚动了因此圆柱体在斜面上纯滚动的条件为功能关系为不做功为什麽?演示 012 圆柱形刚体静摩擦力纯滚动纯滚动为质心平动和绕质心的转动的合运动静摩擦力产生对质心的力矩重力分力对瞬心产生力矩 o 质心轨迹第六节进动类比法是学习和研究物理的一种基本方法质点与平行物体做直线运动被加速或减速动量的方向不变仅改变大小与垂直时此时力仅改变动量的方向而大小不变如匀速率圆周运动合力与动量垂直动量绕点匀速转动而动量的增量与力同向刚体在定轴转动中和皆沿轴角动量的增量与力矩的方向相同当与的方向一致时刚体加速转动反之减速转动若与垂直刚体做何种运动呢此时的刚体不可能再做定轴转动运动由物理的规律的表达式可知角动量的增量仍是与力矩的方向相同但与角动量本身的方向垂直此时力矩只会改变角动量的方向而不改变其大小结果使角动量在空间转动刚体绕一点进动如同匀速率圆周运动中的动量在空中转动一样解释垂直于的增量与力矩同方向陀螺陀螺角动量绕定点转动即进动应用炮弹运行飞机舰艇急转弯自行车转弯陀螺定向进动应用 1 飞机军舰行进中的快速转动轴承压力的形成 2 定向子弹运行 3 电子轨道在外磁场中的进动 4 双原子分子轨道角动量在绕核间轴的进动 5 自行车的进动飞行的子弹进动图阻力磁矩电子的轨道运动在外磁场中进动示意图本章的重点与难点转动定律角动量原理角动量守恒律一运动学 1 运动方程运动规律2 角速度 3 角加速度匀变速时 4 角量和线量的关系二转动定律瞬时性代数和转动惯量的意义三功与能力矩的功恒力矩的功 1 2 转动动能 3 功能关系如图示系统静止弹簧处于原长处不计摩擦求物体下滑的速度光滑零势能面 4 若仅保守力的力矩做功则机械能守恒四角动量原理角动量守恒定律 1 角动量原理 2 角动量守恒定律体系角动量守恒这个定律的应用有一定的难度关健是有哪些物体构成物体系作用过程中系统的外力矩为零该过程中合力可能不为零动量不守恒机械能也可不守恒角动量质点刚体下一章返回清明清明时节雨纷纷路上行人欲断魂借问酒家何处有牧童遥指杏花村唐杜牧说明 1 角动量是矢量表示为方向与同不过在定轴转动中沿轴仅有两个方向若规定一方向为正则另一方向为负因而在定轴转动中角动量为代数量既可角动量定理矢量式转动方向物理意义为质元的动量与质元到轴的垂直距离的积称为其动量矩与力矩比较L 为组成刚体的各质点动量矩的代数和故又称动量矩角动量定理又称动量矩定理 2 动量矩 3 质点的动量矩角动量质点动量矩角动量的普遍定义式大小矢量式动量在矢径垂直方向的投影与矢径大小的积方向右手螺旋法则定点矢径轨迹例求一沿直线运动的质点的角动量大小方向垂直平面向外解合力质点的角动量定理质点动量的变化率由质点受的合力决定质点角动量的变化率由什么决定呢质点角动量对时间的变化率则式中的称为质点所受合力对此固定点的力矩力矩为矢量方向右手螺旋法则大小定点矢径轨迹且式中的为质点受外力对定点的力矩为动量矩或角动量的增量或称为质点的角动量定理形式同刚体的角动量定理质点系的角动量定理形式同刚体的角动量定理因刚体本身为质点系例 210 体系从静止开时经秒后轮的角速度解轮物动量矩定理动量定理二式联立得结果或另一方法例 29 一半径为质量为的均质圆盘置于水平桌面上设盘在桌面上转动的初角速度为盘和桌面间的摩擦系数为盘经多长时间停止转动解阻力矩为略去数值例题另一解法二角动量守恒定律称为角动量或动量矩守恒律对质点因则三角动量守恒的应用虽然角动量守恒定律由单一刚体绕定轴转动时导出的然而确有更广泛的应用范围归纳如下对定轴转动刚体因若质点受合外力矩为零时即则称为质点的角动量或动量矩守恒律 1 单一质点在很多情形下一质点绕一固定点运动质点受合力的作用线恒过此固定点即合力的力矩为零则质点对该固定点的动量矩角动量守恒如近日点远日点太阳地球动量不守恒但机械能守恒据动量矩角动量守恒定律地球对太阳处的角动量恒定还有电子在原子核的场中运动等因与共线对即太阳处力矩为零即如在地球环绕太阳做椭圆轨道运动时对近日点与远日点有而且机械能守恒例一倔强系数为原长为的弹性绳一端固定另一端系一质量为的小球整个系统在光滑的水平面上如图示开始时如图求物体与O点的最近距离解分析物体绕O运动时受合力恒指向O点故对O点动量矩守恒当物体运动到B点时弹性绳恢复到原长但不是最近距离此后物体惯性运动到C点时为最近距离 B C 2 角动量守恒 1 机械能守恒演示 032 角动量守恒定律向下拉特点小球在绳的作用下运动不断靠近绳穿过的孔此过程中角动量守恒动能不守恒机械能不守恒动量不守恒小孔 2 物体系如图为一定轴转动的刚体角动量守恒恒量想象把此刚体分为若干块它们为一物体系为一些刚体或刚体与质点的组合则体系受合外力矩仍为零体系内各物体间有内力和内力矩但对体系的总角动量无影响由此推出当一物体系在相互作用时即有内力和内力矩而体系所受合外力矩为零则体系的角动量守恒这样把动量矩守恒律推广到物体系内力矩使体系内各物体间的角动量交换作用中是否机械能守恒或动量守恒视是否满足二者的条件而定代数和2 刚体系例如图示若轮B沿轴移向A轮当二者接触后二者因摩擦最后以相同的角速度转动求其值设解当二轮接触后因有轮间的内摩擦力矩A轮转速减慢而B轮加快最后二者以相同的转速转动作用过程中仅内力矩做功故体系的角动量守恒作用前作用后据此得到作用过程中机械能不守恒为什么例 212如图示质量为半径为的均质盘砂轮绕定轴自由转动某瞬时其边缘处爆列一质量为的一小块向上飞去求余下的盘的角速度解小块飞出时此小块与余下的盘部分为一物体系体系的合外力矩为零故此过程中体系的角动量守恒作用前作用后是经常犯的错误 3 刚体与质点系一均质杆自由悬挂处于静止的状态一子弹水平的射向杆当子弹击中杆后嵌入杆内使体系获的角速度作用中系统的外力矩为零包括重力矩和轴处约束力为零体系的角动量守恒作用前作用后杆静止子弹运动对轴有动量矩杆与子弹一起转动但作用中动量不守恒机械能也不守恒此后如何运动遵守什麽守恒率轴对杆有作用力子弹冲量矩定理动量定理杆角动量原理推导设子弹击中杆后与杆的共同角速度为设二者的作用时间为内力二式相加整理得补设轴处的水平作用力为解释杆的动量定理例如图均质杆可绕过质心自由转动的轴在水平面内转动杆静止一刚球垂直射向杆与杆做完全弹性碰撞求作用后杆的角速度作用前解角动量守恒机械能守恒作用后动量不守恒作用中体系所受的外力为轴对体系的作用力解释作用中体系的机械能不守恒动量不守恒在何处有外力请考虑其计算例如图所示均匀细棒 OA 可绕过端点的轴在水平面内转动开始棒静止速率为 V 的子弹从棒端穿过后的速率为则该棒的角速度为 2 V A B D C O A L M m m V r 2 V r [ ] 例如图所示均匀细棒AB长质量为可绕过质心的竖直轴在水平面内转动开始棒静止速度为的子弹在棒端击中杆并嵌于其中则杆的角速度为 39 演示角动量守恒定律人相对盘静止随盘一起转动刚体质点系人相对盘沿盘缘跑动过程中体系的角动量守恒为人相对盘的速度解设轮的半径为设人向上爬时物对地速度为体系受合外力矩为零人对地的速度为二者速度大小相同故同时到达作用前体系的动量矩为作用前体系的动量矩为据动量矩守恒定律则有例 214 如图人与物同质量开始体系静止当人以相对速度向上爬动时求二者对地的速度及人与物谁先到达轮处并讨论计论的半径和质量时及二者质量不同时的情形计轮的质量时由角动量守恒律得若人质量为而物体为体系的合外力矩为体系的角动量为由角动量原理或动量矩定理得或即注意到得此时人和物作加速运动人向圆心跑动中体系的角动量守恒 4 轴位置不变转动中无外力矩作用但质量分布变化当体系在无外力矩的情形下对轴的角动量守恒若体系的质量分布变化其转动惯量相应的改变因而角速度变化如花样滑冰跳水跳马巴蕾舞等物体在无外力矩的存在下因内力而使质量分布改变生熟鸡蛋地判断宇宙飞船中的宇航员在空中翻转身体解 1 轴过端点例 23 求均匀直杆的转动惯量 1 轴过端点 2 轴过质心 2 轴过质心可见刚体的转动惯量与轴的位置有关平行轴定理简介解释对过质心轴的转动惯量对与过质心轴相平行轴的转动惯量二轴间的距离证明略例均质杆又刚体对轴和轴的转动惯量为平行轴定理证明取刚体上的过刚体的质心为刚体的质心在同一水平面内它们刚体的质心所以垂直轴定理简介薄板垂直轴定理简介证明薄板对轴的转动惯量对轴的转动惯量对轴的转动惯量则有结论转动惯量 2 与质量的分布有关1 与质量有关 3 与轴的位置有关例 2---4求由杆与球组成的体系对轴的转动惯量解转动惯量具有叠加性例 25 如图半径为质量为的均质圆盘可绕通过质心的水平轴自由转动盘上绕一段绳绳的两端分别系二物体和如图所示求盘的角加速度二物的加速度及绳内的张力设物体运动中绳与轮间无相对运动而且解解题思路本题似曾相识在高中阶段如何求解此题轮质量不计仅研究和二物体绳仅为连接体则有然而此处要考虑轮因给出了质量和半径-----刚体此为一刚体和二质点组成的物体系如何求解用隔离体法分析各物体受力此处因和质量不等二者会加速运动它们的加速度大小与轮的边缘处的切向加速度的大小同值故按转动定律轮所受的合外力矩定不为零故转动的正方向轮投影式对轮运用转动定律则对二物体和运用牛二律则 1 2 3 4 联立可得略例 26 如图半径为质量为的均质圆盘可绕通过质心的水平轴自由转动盘上绕一长绳绳另一端系一质量为的物体求绳中的张力及三式联立求解得运动学联系解力图设转动正方向略本题的转动定律又可写为本题的转动定律又可写为讨论 1 系统从静止开时经时间t物体下落的高度及轮转过的角度 2 若轮转动时轴处的摩擦阻力矩为恒力矩结果如何解轮物转动正方向3 若阻力矩为为恒量求轮的角速度的表达式物解轮二式联立消去在利用分离变量法积分求得略例 27 在外力矩的作用下物体以速度上升撤去外力矩后物体上升多高时开始下落并求轮的角加速度解减速运动设转动正方向联立求解得联立求解解减速运动设转动正方向联立求解得联立求解例 28 求解例2---9 如图为一榔头击打物体时的情形相关说明如下分别为锤柄与锤头的质量为系统的质心手握锤柄处手握锤柄处与锤头中心的距离手握锤柄处与质心中心的距离锤柄长即锤柄端到锤头中心之距被击物对锤头的作用力求打击时的质心加速度及锤柄对手的切向力解设打击时手对柄的切向力为由质心运动定理有 1 以为轴由转动定律有 2 由角量与线量的关系有 3 据质心定义有 4 1 2 3 4 对的转动惯量为 5 以上五式联立解得详见教材讨论略解杆受力如图 1 例 29 如图示一长为质量为的均质杆可绕过一端的水平轴自由转动开始时杆水平若杆突然释放求 1 释放后瞬时杆仍水平的2 当杆转到与水平成时的上述值质心处的由质心运动定理有解得 2当杆转到与水平成某一角时由转动定律有显然杆做变角加速度转动越来越小结果可得质心的求用积分转动定律如何求杆转到时的角加速度与角速度得或积分如何正确地运用转动定律 7 运用运动学条件转动定律是刚体定轴转动时的规律运用时 1 选定刚体盘柱杆等及定轴 2 分析刚体受力并找出各力的力矩 3 求各力的力矩的代数和 4 写出的具体表述 5 该式具有瞬时性与刚体的运动状态的大小和方向无关 6 运用隔离体法对质点运用牛二律一力矩的功设一刚体绕轴转动一力作用在点为简单起见设力的作用线在与轴垂直的平面内如图示为点到轴的垂直距离该力的作用点的轨迹为半径为的圆故该力的元功为第三节力矩的功转动动能功能关系则由以上看出功的定义不变只是用力矩来计算刚体转动中力的功简单当然仍可用力的功若力矩是转角的函数用上式积分若是恒力矩则上式为是转角二转动动能在定轴转动刚体上取一质量为质元其动能为整个刚体的动能为其中转动惯量转动动能 o o 若刚体定轴转动时仅有保守力或保守力的力矩做功则机械能守恒三动能定理机械能守恒律即合外力矩的功等与转动动能的增量 2 杆转到与水平成时的角加速度例 2 9 如图示1 杆水平时的角加速度 3 杆竖直时的角速度解 1 2 3 利用动能定理例 2 9 如图示杆长为质量为求杆由水平位置静止转到竖直位置时的角速度水平位置静止解法 2 用动能定理求解即解得竖直位置某瞬时位置解法 3 考虑到仅重力做功用机械守恒律求解水平位置静止竖直位置零势能面机械能得或利用机械能守恒定律零势能面如何求杆上各点的速度和加速度例 2---16 如图求杆由水平释放后仍水平时杆的和及杆转到竖直位置时的轴解学生自己做例 2----18 求杆的角加速度及转到水平位置时的角速度解学生自己做例 2---19 推证转动的动能定理第四节角动量定理角动量守恒定律一角动量定理转动定律瞬时性则过程性该式的物理意义是瞬时力矩对微小时间累积引起物理量的变化与类比在一段时间内与类比定义冲量矩角动量角动量定理刚体所受合外力矩的冲量矩等于刚体角动量的增量实质讲的力矩的时间累积及效果间的关系若合外力矩是恒力矩则上式简化为返回第二章刚体定轴转动本章将要介绍一种特殊的质点系刚体所遵从的力学规律刚体可以看成由许多质点组成在外力的作用下各质元之间的相对位置保持不变因此刚体是固体物件的理想化模型音乐花径不曾缘客扫蓬门今始为君开名句赏析内容提要刚体定轴转动运动学转动定律刚体定轴转动能定理功能关系角动量原理角动量守恒定律水平面刚体水平面刚体第一节刚体的两种基本运动形式刚体的两种基本运动形式一平动结论刚体在平动运动中连接体内的直线在空间的指向总保持不变各点具有相同的速度相同加速度可按质点力学的规律处理固定轴刚体二定轴转动特点刚体上各点绕轴在与轴垂直的平面内做圆周运动各质点的速度加速度一般不同可按前面的质点运动学处理三刚体更复杂的运动形式平面平行运动定点转动举例说明略讲定轴转动平动一刚体定轴转动的运动方程第二节刚体定轴转动运动学固定轴刚体如图一刚体定轴转动如何确定该刚体的位置在固定轴上固结轴与的夹角不断设想在刚体上有一直线在刚体转动中变化是时间的函数一定则刚体的位置确定或曰刚体上的所有质点的位置确定变化说明刚体的位置变化因而用可确定刚体的位置为刚体定轴转动的运动方程如同质点一维运动时的二角速度设称为角位移代数量则固定轴刚体平均角速度瞬时角速度即对运动方程求一阶导数单位或矢量性角速度可以定义为矢量以表示它的方向规定为沿轴的方向其指向用右手法则确定在定轴转动中因为角速度仅有两个方向故可用代数量来表示其矢量性具体做法是规定一转动方向为正方向当角速度与其同向时取正反之取负详见后面例题分析刚体三角加速度固定轴刚体加速转动减速转动若是变化的同理得瞬时角加速度单位或或由运动方程可得均为代数量矢量式为同样在定轴转动中角加速度仅两个方向当角加速度与其。
大学物理力学与电学复习讲义(工科)
(3)三个守恒定律 ) v v *动量守恒定律: 动量守恒定律: 动量守恒定律 当F = 0时,P = 恒矢量
v r *角动量守恒定律: 当τ = 0时,L = 恒矢量 角动量守恒定律: 角动量守恒定律 *机械能守恒定律: 当A外 + A非保内 = 0时 机械能守恒定律: 机械能守恒定律
v v *保守力做功: A保 = ∫ F 保 ⋅ dr = − ( Ep2 − Ep1 ) 保守力做功: 保守力做功
(2)利用三个定律、三个定理、三个守恒定律联立求解 )利用三个定律、三个定理、 的综合性问题。 的综合性问题。 注意变量代换法 重点关注: 重点关注: 直线运动的非惯性系、 直线运动的非惯性系、 变质量问题, 变质量问题,
第3章 章 刚体的定轴转动 1. 基本概念、基本规律: 基本概念、基本规律: (1)描述刚体定轴转动的物理量及运动学公式: )描述刚体定轴转动的物理量及运动学公式: r r
∆L = ∆L′ 1 − (v c ) 2
∆L′为原长(固有长度) 为原长(固有长度)
2
非原长 = 原长 × 1 − β
(6)相对论质量与速度的关系: )相对论质量与速度的关系:
m=
m0 1 − (v c )2
v (7)相对论动量:v = m v = )相对论动量: p
(8)相对论能量: )相对论能量: 粒子的总能量 静止能量 相对论动能
关注综合问题:几种势能、 关注综合问题:几种势能、几种力做功同时存在
r v 动量守恒 当ΣF = 0时, ΣP = 恒矢量 i i
v t ∫t 0 (ΣFi ) dt
v v = ( ΣPi ) 2 − (ΣPi )1
3. 解题类型: 解题类型:
v v v v 微分方法+牛二律 (1) r → v → a → F 微分方法 牛二律 ) v v v v F → a → v → r 牛二律 积分方法 牛二律+积分方法 v v v 注意 F (t ), F (v ), F ( x ) 的情况
大学物理力学定律重点讲解及练习
大学物理力学定律重点讲解及练习引言本文档旨在重点讲解大学物理力学中的几个重要定律,同时提供相应的练题供学生巩固理解和应用。
通过研究本文档,读者将能够更好地掌握力学定律的概念和应用技巧。
牛顿运动定律牛顿运动定律是力学研究的基础,分为三个定律:1. 第一定律:也称为惯性定律,描述了物体在没有外力作用下保持匀速直线运动或静止的状态。
2. 第二定律:通过描述力与物体运动状态之间的关系,公式为F = ma,其中 F 表示物体所受合力,m 表示物体质量,a 表示物体加速度。
3. 第三定律:也称为作用-反作用定律,描述了两个物体产生的力互相作用,大小相等、方向相反。
万有引力定律万有引力定律是描述天体之间引力作用的定律,公式为 F = G* (m1 * m2) / r^2,其中 F 表示引力,G 是引力常量,m1 和 m2 分别表示两个天体的质量,r 表示它们之间的距离。
阻力和摩擦力阻力和摩擦力是力学中常见的两种力:1. 阻力:描述了物体在流体介质中运动时所受到的阻碍力。
阻力的大小取决于物体的速度和介质的性质。
2. 摩擦力:描述了物体在接触面上相对滑动时所受到的力,分为静摩擦力和动摩擦力。
动量守恒定律动量守恒定律描述了一个系统中总动量的守恒性质。
对于一个封闭系统,如果没有外力作用,系统中物体的总动量将保持不变。
练题以下是一些关于以上定律的练题,供学生巩固理解和运用:1. 一个质量为 2 kg 的物体以 5 m/s 的速度沿直线运动,求它所受到的加速度。
2. 两个质量分别为 3 kg 和 4 kg 的物体之间的引力大小为多少?3. 一个物体在水中受到的阻力大小为 40 N,它的下落加速度为10 m/s^2,求物体的质量。
4. 一个 5 kg 的物体以 2 m/s 的速度运动,受到 10 N 的摩擦力。
求物体的加速度。
总结本文档重点讲解了大学物理力学中的几个重要定律,包括牛顿运动定律、万有引力定律、阻力和摩擦力以及动量守恒定律。
大学物理刚体力学习题课ppt课件
0 3g/ L
(2)弹性碰撞过程,角动量守恒 m
J0 JmvL
机械能守恒
12J02
1J21mv2
22
.
v 1 3gL 2
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2 23 2 3g
l
.
6. 如图所示的阿特伍德机装置中,滑轮和绳子间没
有滑动且绳子不可以伸长,轴与轮间有阻力矩,求
滑轮两边绳子的张力。已知m1=20 kg, m2=10 kg。
滑轮质量为m3=5 kg。滑轮半径为r=0.2 m。滑轮可视
为均匀圆盘,阻力矩Mf=6.6 Nm,圆盘对过其中心且
与盘面垂直的轴的转动惯量为
解:由于摩擦力矩恒定,因此轮子做匀角加速转动, 轮子上的各点做匀变速圆周运动
0t
t1, 0.80
0.20
t2,00.40
当轮子静止时 = 0
2022
2 0
2
02 0.40
2.50
.N 2 .5 0/2 5 0/4
4. 在恒力矩M=12 Nm作用下,转动惯量为4 kgm2 的圆盘从静止开始转动。当转过一周时,圆盘的转 动角速度为 2 3 rad/s。
与O点的距离为3l/4,求:(1)棒开始运动时的角速度;
(2)棒的最大偏转角。
o
解:对题中非弹性碰撞,角动量守恒,
mv 3 l J
4
J
m(3l)2 4
1 3Ml2
36ml
(27m16M)l
3
l 4
l
A
上摆过程, 机械能守恒
1J 2M l(1 g c o) sm3lg (1 c o)s
2
《大学物理力学课件》
碰撞过程中有能量损失的碰撞,动能不守恒但动量守恒。根据能量损 失程度可分为完全非弹性碰撞和部分非弹性碰撞。
04
流体力学简介
流体静力学原理
01
流体静压力及其分布
流体静压力是指流体在静止状态下受到的压力,其分布遵循帕斯卡定律
。
02
浮力与阿基米德原理
浮力是流体对浸入其中的物体产生的向上的力,其大小等于物体所排开
简谐振动的定义和特性
简谐振动是物体在一定位置附近做周期性往返运动的现象,具有特定的频率、振幅和相位。
简谐振动的合成
当两个或多个简谐振动作用于同一物体时,它们的合成振动遵循矢量合成原则,结果振动的频率、振幅和相位由 各个分振动的特性共同决定。
阻尼振动、受迫振动和共振现象
阻尼振动
当振动系统受到摩擦、空气阻力等阻尼力的作用时,振动幅度会 逐渐减小,直至最终停止振动。
受迫振动
当振动系统受到周期性外力的作用时,系统会以该外力的频率进 行振动,称为受迫振动。
共振现象
当受迫振动的频率接近或等于系统固有频率时,振幅会显著增大 ,产生共振现象。
机械波产生条件与传播特性
机械波的产生条件
机械波的产生需要波源和介质两个条件,波源提供振动的能量,介质则将这种能量传播出去。
机械波的传播特性
03
弹性力学基础
弹性形变与胡克定律
弹性形变定义
物体在受到外力作用后,形状或体积发 生改变,当外力撤去后,物体能恢复原 状的形变。
VS
劲度系数k
表示弹簧“软硬”程度的物理量,由弹簧 本身的性质决定,与形变量和弹力无关。
弹性势能及能量守恒
弹性势能定义
发生弹性形变的物体具有的势能,其大小与形变量有 关。
大学物理Ⅰ力学全部课件
A B A B A B 0
i j j i 0 j k ? ki ?
思 考:
AB ?
七:矢量的矢积(叉积)
定义:两矢量相乘得到一个矢量
C AB
大小: 方向:
A B Sin A B Sin( A、B)
c
右手系
由定义可知: 当 θ=0 时 Sinθ=0
AB 0
B
一. 刚体的运动形式
§3.1 刚体的运动
1 平动:刚体内任意两点之间的连线方向保持不变。
刚体做平动时
质点运动
2. 定轴转动 :运动中各质元均做圆周运动,且各圆心都在同一条 固定的直线(转轴)上。
3.一般运动
平动 + 转动
二. 刚体定轴转动的描述
采用角量描述
1 引入角速度矢量
大小
d
dt
方向: 沿转动轴,且与刚体转向成右手螺旋关系
曲线在某点的曲率圆(密切圆,密接圆)半径 称为曲线在该点的曲率半径。
加速度
a
tˆ d v
nˆ v 2
dt
§1.5 相对运动
相对运动问题指的是在不同参考系中观察同一物体运动所给出的运动描 述之间的关系问题。
·
Δr
B
A
Δr′
u
Δr0
A′
x
由图有:位移关系 即:
r
r
r0
r人 地 r人 车 r车 地
四. 速度与速率 1. 平均速度 2. 平均速率
v
r
=位移/时间
t
V S =路程/时间 t
3.(瞬时)速率
V lim V lim S ds t 0 t 0 t dt
4.(瞬时)速度
v
lim
大学物理重点知识考试必备ppt课件
可用计算器,但不准借用 考试日期:2015.7.7下午
26
认真复习! 杜绝抄袭!
27
掌握旋转矢量法,并能用以分析有关问题
机械波 (第十一章)
理解机械波产生的条件,掌握根据已知质 点的简谐振动方程建立平面简谐波的波 动方程的方法
波动方程的物理意义,理解波形曲线
22
第十章 机械振动
•简谐运动 •简谐运动的振幅、周期、频率和相位 •振动方程
•简谐运动的能量
第十一章
•波动的基本概念 •横波和纵波 •波长、波的周期和频率、波速
记住三种保守力的作功
特点: 保守力所做的功只与初始位置、末了位置有关, 与路径无关。
5
能力要求
1、会由已知运动方程计算速度,加速度,并会判断是什么运动。 2、理解速度,速率,加速度及力的关系。 解题中要善于画受力分析图
3、理解曲线运动中的切向和法向加速度,并会分析两者和运动的关系。
4、会分析圆周运动的速度、加速度。 5、掌握牛顿运动定律及其应用,会用牛顿定律来分析、计算质点 运动的简单力学问题。 6、理解冲量概念,会分析力的冲量,会利用动量定理算冲量和力。 7、掌握动量守恒定律及其应用,掌握动量守恒条件。 8、会计算相对运动的速度。 9、会利用功能关系解题。 10、会区分动能和动量。 11、掌握机械能守恒定律及其条件,保守力和非保守力与机械能的关系。 并会用机械能守恒定律来分析、计算、解题
7、理解热力学第二定律的两种表述 8、理解卡诺循环特点及效率问题
18
第五章参考题 P180思考题5-4-3 P187思考题5-5-6
大学物理力学复习ppt课件
作用在系统上的合外力等于系统的总质量乘以质心的 加速度——质心运动定律
.
11
二、动量定理和动量守恒定理
(力的时间累积效果)
1、动量、冲量的概念,.
P mv
It1 t2F (t)d t F(t2t1)
2、质点动量定理
t P
Id It0F d tP 0d P P P 0
即
I m v m v 0
J mjrj2
j
J r2dm
刚体的转动惯量与以下三个因素有关: i)与刚体的质量有关.
ii)与刚体的几何形状及质量的分布有关.
iii)与转轴的位置有关.
平行轴定理: JOJCmd2
d
C mO
3、转动定理.
M J J d
. dt
22
三、力矩的时间累积作用
冲量矩、角动量、角动量定理.
1、角动量.
x
t t0
方向:右手螺旋方向
角加速度
dω dt
d2
d2t
dt
v rωe t at r anrω2
a re trω 2e n
二、力矩的瞬时作用规律----转动定律
1、力矩M的概念.
M
r
F
上式中, r是力的作用. 点相对于转轴的位矢
21
2、转动惯量.
转动惯量是表征刚体转动惯性大小的物理量,它定义为
第二章
运动的守恒量 和守恒定律
.
10
一、质心 质心运动定律
1、质心 r C m 1 m r 1 1 m m 2 2 r 2 m m ii r i (i n 1m ir i)/m
n
mixi
xC
i 1
m
n
mi yi
大学物理竞赛辅导-力学
l. 水平轻绳跨过固定在质量为m 1的水平物块的一个小圆柱棒后,斜向下连接质量为m 2的小物块,设系统处处无摩擦,将系统从静止状态自由释放,假设两物块的运动方向恒如图所示,即绳与水平桌面的夹角α始终不变,试求α.21,,a a α1a .2a 1a 1m 2mα1a .2a 1a 1m 2m 解:画隔离体图,受力分析α1a 1m TT1a .2a 2m T例7. 光滑水平面上有一半径为R 的固定圆环,长为l 2的匀质细杆AB 开始时绕着C 点旋转,C 点靠在环上,且无初速度.假设而后细杆可无相对滑动地绕着圆环外侧运动,直至细杆的B 端与环接触后彼此分离,已知细杆与圆环间的摩擦系数μ处处相同,试求μ的取值范围.Rl lABC 解:设初始时细杆的旋转角速度为0ω,转过θ角后角速度为ω.由于摩擦力并不作功,故细杆和圆环构成的系统机械能守恒例8. 两个均质圆盘转动惯量分别为1J 和2J 开始时第一个圆盘以10ω的角速度旋转,第二个圆盘静止,然后使两盘水平轴接近,求:当接触点处无相对滑动时,两圆盘的角速度10ω1r 2r解:受力分析:1r 2r 10ω1N gm 1ffgm 22N 1o 2o 无竖直方向上的运动g m f N 11+=gm f N 22=+以O 1点为参考点,计算系统的外力矩:))((2122r r g m N M +-=0)(21≠+-=r r f例9: 质量为2m,半径为R 的均质圆盘形滑轮,挂质量分别为m 和2m 的物体,绳与滑轮之间的摩擦系数为μ,问μ为何值时绳与滑轮之间无相对滑动.解: 受力分析:mg1T mg22T m 2m2T 1Tββθ。
大学物理力学的题目库及问题详解
一、选择题:(每题3分)1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ d ]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m .(B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ b ]3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比较是(A) 到a 用的时间最短.(B) 到b 用的时间最短.(C) 到c 用的时间最短.(D) 所用时间都一样. [ d ]4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ d ]5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ b ]6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ d ]-12a p7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ b ]8、 以下五种运动形式中,a 保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动.(E) 圆锥摆运动. [ d ]9、对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ b ]10、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ d ]11、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ b c ] 12、 一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是(A) g t 0v v -. (B) gt 20v v - . (C)()g t 2/1202v v -. (D) ()g t 22/1202v v - . [ c ]13、一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠= [ d ]14、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i +2j . (B) -2i +2j . (C) -2i -2j . (D) 2i -2j . [ b ]15、一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A到B ,则(A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A .(C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ a ]16、一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,方向是(A) 南偏西16.3°. (B) 北偏东16.3°.(C) 向正南或向正北. (D) 西偏北16.3°.(E) 东偏南16.3°. [ e c ]17、 下列说法哪一条正确?(A) 加速度恒定不变时,物体运动方向也不变.(B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成(v 1、v 2 分别为初、末速率) ()2/21v v v +=.(D) 运动物体速率不变时,速度可以变化. [ d ]18、 下列说法中,哪一个是正确的?(A) 一质点在某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m的路程.(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大.(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零.(D) 物体加速度越大,则速度越大. [ c ]19、 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?(A) 北偏东30°. (B) 南偏东30°.(C) 北偏西30°. (D) 西偏南30°. [ a c ]20、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ c ]21、 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ.(D) ctg θ =μ. [ d c ]22、 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g . (B) g M m . (C) g M m M +. (D) g mM m M -+ . (E) g M m M -. [ c ]23、如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为(A) g sin θ. (B) g cos θ.(C) g ctg θ. (D) g tg θ. [ c ]24、如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量a 1(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定. [ b ]25、升降机内地板上放有物体A ,其上再放另一物体B ,二者的质量分别为M A 、M B .当升降机以加速度a 向下加速运动时(a <g ),物体A 对升降机地板的压力在数值上等于(A) M A g. (B) (M A +M B )g.(C) (M A +M B )(g +a ). (D) (M A +M B )(g -a ). [ d ]26、如图,滑轮、绳子质量及运动中的摩擦阻力都忽略不计,物体A 的质量m 1大于物体B 的质量m 2.在A 、B 运动过程中弹簧秤S 的读数是(A) .)(21g m m + (B) .)(21g m m -(C) .22121g m m m m + (D) .42121g m m m m + [ a d ]27、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为(A) θcos mg . (B) θsin mg . (C) θcos mg . (D) θsin mg .[ c ]28、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N应有 (A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F. [ b ]29、 用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变 [ a b ]131、竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为(A) R g μ (B)g μ(C) R g μ (D)R g [ a c32、 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为(A) g l . (B) gl θcos . (C) g l π2. (D) g l θπcos 2 . [ d ] 33、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A) Rg . (B) θtg Rg .(C) θθ2sin cos Rg . (D) θctg Rg [ b ]34、 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦系数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率(A) 不得小于gR μ. (B) 不得大于gR μ.(C) 必须等于gR 2. (D) 还应由汽车的质量M 决定. [ b ]35、 在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rg s μω≤. (B) R g s 23μω≤. (C) R g s μω3≤. (D) Rg s μω2≤. [ a ]36、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v .(B) m v . (C) m v . (D) 2m v .[ a c ]37、一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ a ]38、 如图所示,砂子从h =0.8 m 高处下落到以3 m /s 的速率水平向右运动的传送带上.取重力加速度g =10 m /s 2.传送带给予刚落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下. (B) 与水平夹角53°向上.(C)与水平夹角37°向上.(D) 与水平夹角37°向下. [ b ]39、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ a ]40、质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ c ]41、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ a c ]2343、A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为(A) 21. (B) 2/2. (C) 2. (D) 2. [ d ]44、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) m v . (B) 0.(C) 2m v . (D) –2m v . [ d45、机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ d c ]46、人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ c ]47、一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ c ]48、一个质点同时在几个力作用下的位移为:实用标准文案k j i r 654+-=∆ (SI) 其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J . (B) 17 J .(C) 67 J . (D) 91 J . [ c ]49、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ b ]50、如图所示,木块m 沿固定的光滑斜面下滑,当下降h 高度时,重力作功的瞬时功率是: (A)21)2(gh mg . (B)21)2(cos gh mg θ. (C)21)21(sin gh mg θ. (D)1)2(sin gh mg θ. [ d ]51、已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ d ]52、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ d ]53、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化. [ d ]54、作直线运动的甲、乙、丙三物体,质量之比是 1∶2∶3.若它们的动能相等,并且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是(A) 1∶2∶3. (B) 1∶4∶9.(C) 1∶1∶1. (D) 3∶2∶1.实用标准文案55、 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ d ]56、 考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A) 物体作圆锥摆运动.(B) 抛出的铁饼作斜抛运动(不计空气阻力).(C) 物体在拉力作用下沿光滑斜面匀速上升.(D) 物体在光滑斜面上自由滑下. [ c ]57、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2.(C) 为2d .(D) 条件不足无法判定. [ c ]58、A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ b ]59、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同.(C) 动量不同,动能也不同.(D) 动量不同,动能相同. [ a ]60、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O点拉到N 点,再由N 点送回M 点.则在这两个过程中(A) 弹性力作的功相等,重力作的功不相等. (B) 弹性力作的功相等,重力作的功也相等. (C) 弹性力作的功不相等,重力作的功相等. (D) 弹性力作的功不相等,重力作的功也不相等. [ b ]61、物体在恒力F 作用下作直线运动,在时间∆t 1内速度由0增加到v ,在时间∆t 2内速度由v 增加到2 v ,设F 在∆t 1内作的功是W 1,冲量是I 1,在∆t 2内作的功是W 2,冲量是I 2.那么,(A) W 1 = W 2,I 2 > I 1. (B) W 1 = W 2,I 2 < I 1.(C) W 1 < W 2,I 2 = I 1. (D) W 1 > W 2,I 2 = I 1. [ c ]62、两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒. [ c ]63、 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ b ]64、一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m 和M 组成的系统动量守恒.(B) 由m 和M 组成的系统机械能守恒.(C) 由m 、M 和地球组成的系统机械能守恒.(D) M 对m 的正压力恒不作功. [ b ]65、两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒.(C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.(D) A 离开墙后,整个系统的总机械能为2021kx ,总动量为零. [ c ] 66、两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与65厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ b ]67、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ c ]68、 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ b ]69、 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ b ]70、 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωRm J J +. (C) 02ωmR J . (D) 0ω. [ a ] 71、 如图所示,一水平刚性轻杆,质量不计,杆长l=20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ] 68、69、72、 刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]73、 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]74、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]75、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]76、 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]77、光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l32v . (C) l 43v . (D) lv 3. [ ]78、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 79、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 80、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]二、填空题:81、一物体质量为M ,置于光滑水平地板上.今用一水平力F 通过一质量为m 的绳拉78、俯视图79、O v俯视图 81_________________.82、图所示装置中,若两个滑轮与绳子的质量以及滑轮与其轴之间的摩擦都忽略不计,绳子不可伸长,则在外力F 的作用下,物体m 1和m 2的加速度为a =______________________,m 1与m 2间绳子的张力T=________________________.83、在如图所示的装置中,两个定滑轮与绳的质量以及滑轮与其轴之间的摩擦都可忽略不计,绳子不可伸长,m 1与平面之间的摩擦也可不计,在水平外力F 的作用下,物体m 1与m 2的加速度a =______________,绳中的张力T =_________________.84、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max =_______________________________________.85、一物体质量M =2 kg ,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =__________.86、设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.83、87、一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.88、两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=______________________;(2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.89、有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg , 第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F = 50 N 的水平力来拉绳子,则5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.90、质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2) 地面对小球的水平冲量的大小为________________________.91、质量为M 的平板车,以速度v 在光滑的水平面上滑行,一质量为m 的物 体从h 高处竖直落到车子里.两者一起运动时的速度大小为_______________.92、如图所示,质量为M 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上.设碰撞是完全弹性的,则小球对斜面的冲量的大小为________,87y 021y方向为____________________________.93、一质量为m 的物体,以初速0v 从地面抛出,抛射角θ=30°,如忽略空气阻力,则从抛出到刚要接触地面的过程中(1) 物体动量增量的大小为________________,(3) 物体动量增量的方向为________________.94、如图所示,流水以初速度1v 进入弯管,流出时的速度为2v ,且v 1=v 2=v .设每秒流入的水质量为q ,则在管子转弯处,水对管壁的平均冲力大小是______________,方向__________________.(管内水受到的重力不考虑)95、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.96、质量为m 的质点,以不变的速率v 经过一水平光滑轨道的︒60弯角时,轨道作用于质点的冲量大小I=________________.97、质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.98、一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s -1的速率水平向北运动。
大学物理(力学)试卷附问题详解
大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有 (A) A =B . (B) A >B . (C)A <B .(D) 开始时A =B ,以后A <B . []2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于. (B) 大于,小于2.(C) 大于2. (D) 等于2. [ ]6.(本题3分)AMBFm 2 m 1O花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 310.(B) ()3/10. (C)30. (D) 30.[ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的. (B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为OMmm(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ] 二、填空题(共25分) 10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为0=5 rad / s ,t =20 s时角速度为= 0.80,则飞轮的角加速度=______________,t =0到 t =100 s 时间飞轮所转过的角度=___________________.12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度0=10rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=_____________________.16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度与套管离轴的距离xmml0v ϖ俯视图的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0.设它所受阻力矩与转动角速度成正比,即M =-k (k 为正的常数),求圆盘的角速度从0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳的力. 20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:BCAωmω0l l 21mm,r m2mm,rABCωA(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为0.质量为m 的小球静止在环最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的壁和小球都是光滑的,小球可视为质点,环截面半径r <<R.) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么? (3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 11=r 22 ,1 = 1 / t 1 , 1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev 11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分) 12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)R A ω0BC参考解: a t =R ·=0.15 m/s 2 a n =R 2=R ·2=1.26 m/s 213.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N ·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分[注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分) 解:根据转动定律:J d / d t = -k∴t Jkd d -=ωω2分 两边积分: ⎰⎰-=t t Jk 02/d d 100ωωωω得ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有力矩作用,故系统角动量守恒1分 J AA +J BB = (J A +J B ), 2分又B =0得 J A A / (J A +J B ) = 20.9 rad / s转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (-A ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反.B 轮受的冲量矩⎰t MBd = J B ( - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同. 21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 00=(J 0+mR 2)① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:=J 0/ (J 0 + mR 2)1分代入式②得222002J mR RJ gR B ++=ωv 1分当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分)m 2m βT 2 2P ϖ1P ϖTa T 1a22.(本题5分)答:设刚体上任一点到转轴的距离为r,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t=rβ1分法向加速度a n=rω21分对匀变速转动的刚体来说β=dω/d t=常量≠0,因此dω=βd t≠0,ω随时间变化,即ω=ω(t).1分所以,刚体上的任意一点,只要它不在转轴上(r≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变.2分(未指出r≠0的条件可不扣分)23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒.1分因人收回二臂时要作功,即非保守力的功不为零,不满足守恒条件.1分(2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零.1分(3) 哑铃的动量不守恒,因为有外力作用.1分哑铃的动能不守恒,因外力对它做功.1分刚体题一选择题1.(本题3分,答案:C;09B)一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的力(A) 处处相等.(B) 左边大于右边.(C) 右边大于左边.(D) 哪边大无法判断.2.(本题3分,答案:D;09A)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0,角速度为0.然后她将两臂收回,使转动惯量减少为31J.这时她转动的角速度变为(A)31.(B) ()3/10.m2m1O(C) 30.(D) 3 0.3.( 本题3分,答案:A,08A)1.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.O A(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.二、填空题1(本题4分,08A, 09B)一飞轮作匀减速运动,在5s角速度由40πrad/s减少到10πrad/s,则飞轮在这5s总共转过了圈,飞轮再经的时间才能停止转动。
大学物理知识点力学ppt课件
dW外 dW非保内 0
E 常数
刚体力学内容总结
刚体定轴转动的角量描述
d
dt
d d 2
dt dt2
线量与角量的关系
si ri
i ri
ai
di
dt
ri
ain
i2
ri
ri2
刚体定轴转动的角动量与转动惯量
L I I m iri2 r 2 d m
刚体定轴转动的角动量定理
3、速度
υ
dr
dx
i
dy
j
dz
k
dt dt dt dt
大小
方向
d d 2r d 2 x d 2 y d 2z
4、加速度 a i j k
大小:
dt
a
dt2
a
dt2 dt2
a2 a2 a2
x
y
z
dt2
方向: cos ax cos ay cos az
a
a
a
5、切向加速度、法向加速度
)若dW外 dW非保内 0 EK EP 常量
解题方法小结
•第一类:求刚体转动某瞬间的角加速度,一般用转动 定律求解。如质点和刚体组成的系统,对质点列牛顿 运动方程,对刚体列转动定律方程,再列角量和线量 的关联方程,并联立求解。
• 第二类:求刚体与质点的碰撞、打击问题。把它们 选作一个系统时,系统所受合外力矩常常等于零, 所以系统角动量守恒。列方程时,注意系统始末状 态的总角动量中各项的正负。
3 ) 已 知 ax ( x),求υx ( x)
4 ) 已 知 υx (t ),求 x(t ) 5) 已 知 υx ( x),求 x(t )
ax ( x)dx υxdυx dx x(t)dt
《大学物理复习题》课件
第二章:热学与热力学
1 热力学第一定律
讨论能量守恒的原理,研究热量传递和对物 体的工作。
2 热力学第二定律
探究热能的不可逆流动性质,研究热机效率 和热传导的方向性。
3 热力学第三定律
介绍了温度的绝对零度,研究物质在零温下 的性质。
4 气体定律与理想气体模型
使用理想气体模型,解释气体的压强、体积 和温度之间的关系。
第三章:电磁学
电荷与电场强度
描述了电荷的性质和电场强度的定义,探究电荷之 间来自相互作用。电势与电势差
介绍了电势的概念和电势差的计算方法,讨论电势 与电场之间的关系。
法拉第电磁感应定律
研究磁场变化导致电流感应的现象,了解电磁感应 引发的电磁场。
洛伦兹力与广义洛伦兹力
探讨带电粒子在电磁场中受到的洛伦兹力和广义洛 伦兹力。
《大学物理复习题》PPT课件
第一章:力学
牛顿三大定律
描述了物体在力作用下的运动规律,是经典力学 的基础。
科里奥利力与洛伦兹力
研究物体在旋转或带电状态下的受力现象,涉及 到力的矢量叉乘运算。
动量定理与动量守恒
分析物体受到的力与动量的关系,以及在封闭系 统中动量守恒的原理。
阻力与滑动摩擦力
探究物体在运动时受到的空气阻力和表面之间的 滑动摩擦力。
第四章:光学
1
光的波动性与粒子性
研究光的双重性质以及光在不同介质中的传播方式。
2
光的干涉与衍射现象
讨论光的干涉和衍射现象,揭示波动光学的基本原理。
3
像差与透镜成像
探索透镜的成像原理以及像差现象的来源与修正。
第五章:现代物理
相对论与狭义相 对论
介绍了相对论的基本 原理,以及狭义相对 论在光速限制下的效 应。
大学物理I(力学篇)讲解
参考系:参考空间+测量时间的时钟
z 坐标系:在参考空间中任选一点作为原点, 可建立各种坐标系。
时间的零点也可任选
O
y
x
相对运动的参考系
两个参考系之间若有相对运动,
他们观测同一个运动物体 是否会得到相同的距离和时间?
v
z
O
y
x
选取的参考系不同,对物体运动情况的描述不同, 这就是运动描述的相对性.
子弹在枪膛中的加速度510车祸瞬间的加速度110致人晕眩的加速度710地球表面的重力加速度98月球表面的重力加速度17地球自转引起赤道上的加速度3410地球公转的加速度610太阳绕银河系中心转动的加速度31010第一类问题运动方程确定质点的位置位移速度和加速度第二类问题已知质点运动的加速度和初始条件求速度运动方程advdt126tdtdldtdxdtdvdtdldtdxkvdtdvkvdtdvdxkvdxdtdv直角坐标系自然坐标系极坐标系curvilinearmotion抛体运动圆周运动坐标表示方法直角坐标描述自然坐标描述曲线运动类型抛体运动圆周运动自然坐标描述角坐标描述一抛体运动1
Z • P(x,y,z) r
r ——位矢
r (t) x(t)i y(t) j z(t)k
O
X
Y
——运 动 方程 or 运动函数
式中 i、 j、 分k 别为x、y、z
方向的单位矢量.
r 位矢 的值为
r r x2 y2 z2
r 位矢 的方向余弦
cos x r
cos y r
cos z r
电子和信息技术的物理基础
➢ 1925年量子力学建立 ➢ 1926年Fermi-Dirac 统计法提出 ➢ 1929年能带理论提出并得到证实,从理论上解释了导体、半导 体、绝缘体的性质和区别;Fermi面概念及其可测量的提出 ➢ 1947年发明晶体管(肖克莱、巴丁、布拉顿获1956年诺贝尔物 理奖) ➢ 1957年建立Fermi面编目 ➢ 1962年制成集成电路(IC) ➢ 1965年摩尔定律:芯片容量每18-24个月翻番。 ➢ 70年代末大规模和超大规模集成电路(VLIC)
大学物理刚体力学习题讲解
m ,r
m1
6 解:撤去外加力矩后受力分析如图所示
m1g-T = m1a
Tr=J
a=r a = m1gr / ( m1r + J / r) 代入J =
a
T
P
m1 v 0
m, r1 2 mrFra bibliotek2m1 g a= = 6.32 ms2 1 m1 m 2
∵
v 0-at=0
∴
t=v / a=0.095 s
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg 由此解出
mgR 2 mR J
而用拉力时, mgR = Jβ`
mgR J
/
故有 β`>
3. 三个质量均为m的质点,位于边长为a的等边 三角形的三个顶点上.此系统 对通过三角形中心并垂直于三角形平面的轴的转 动惯量J0=ma2 , 对通过三角形中心且平行于其一边的轴的转动惯 量为JA=1/2ma2, 对通过三角形中心和一个顶点的轴的转动惯量为 JB=1/2ma2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理-力学考题一、填空题(运动学)1、一质点在平面内运动, 其1c r =ρ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。
2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。
3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。
则任意时刻t 质点的加速度a = 。
4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。
5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。
6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。
7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示32t +=θ (SI). (1) 当2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度大小的一半时,θ= ______________。
(rad s m 33.3,/2.12)8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。
(动力学)1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第s 2末的速度大小为 。
2、一质点受力23x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m 沿X 轴运动到0.2x =m 时,该力对质点所作功=A 。
.3 系统动量守恒的条件是:__________________________;系统机械能守恒的条件是:____________________________________;系统角动量守恒的条件是:_____________________________________。
(合外力为0,只有保守内力做功,合外力矩为0)4.一质量为m 的质点沿x 轴正向运动,假设该质点通过坐标为x 的位置时速度的大小为 kx ( k 为正值常量),则此时作用于该质点上的力F =_______________,该质点从 0x x =点出发运动到 1x x =处所经历的时间为___________________。
12ln 1,x x k mkx 5.根据质点系的动量定理、动能定理和角动量定理可知:内力对系统的____________改变和___________改变无贡献,而对系统的____________改变有贡献。
(动量、角动量、动能)6、质量为2kg 的质点沿x 轴运动,受到力)(32N i t f ϖϖ=的作用,t=0时质点的速度为0,则在t=0到t=2(s )时间内,力f ϖ的冲量大小为 ,第2秒末的速度为 。
7、质量为0.10kg 的质点,由静止开始沿曲线j t i t r ρρρ2653+=(SI )运动,则在t=0到t=2s 时间内,作用在该质点上的合外力所作的功为 。
(刚体)1、一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为30J ,则她此时自转的角速度=ω 。
2.一刚体绕定轴转动,初角速度80=ωrad/s ,现在大小为8(N ·m )的恒力矩作用下,刚体转动的角速度在2秒时间内均匀减速到4=ωrad/s ,则刚体在此恒力矩的作用下的角加速度=α______ _____,刚体对此轴的转动惯量=J 。
3.在光滑水平面上有一静止的直杆,其质量为1m ,长l ,可绕通过其中点并与之垂直的轴转动,如下左图。
一质量为2m 的子弹,以v 的速率射入杆端(入射速度的方向与杆及轴正交)。
则子弹随杆一起转动的角速度为____________________。
lm l m v m 21236+7. 如上右图所示,一轻绳绕于半径0.2m r = 的飞轮边缘,并施以98N F = 的拉力,若不计轴的摩擦,飞轮的角加速度等于239.2rad/s ,此飞轮的转动惯量为_________________;若撤去拉力,改用一质量为kg 10的物体挂在绳子末端,则此时飞轮获得的角加速度等于______________。
)/36,5.0(22s rad kgm8、一长为l ,质量为m 的匀质细杆,可绕通过其一端的光滑水平轴在竖直平面中转动。
初始时,细杆竖直悬挂,现有一质量也为m 的子弹以某一水平速度0v 射入杆的中点处,并随杆子一起运动,恰好上升到水平位置,如图所示,则杆子初始运动的角速度大小为 ,子弹的初速度0v 为 。
9.一飞轮以角速度ω 0绕轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的2倍,啮合后整个系统的角速度ω = 。
10一刚体对某定轴的转动惯量10=J kg ·m 2,它在恒力矩作用下由静止开始做角加速度5=αrad/s 2的定轴转动,此刚体在5秒末的转动动能=K E 。
二(选择题)1.下列说法中正确的是( )。
(A )加速度恒定不变时,质点运动方向也不变;(B )平均速率等于平均速度的大小;(C )当物体的速度为零时,其加速度必为零;(D )曲线运动中质点速度大小变化是因为有切向加速度。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴移动,B 点沿x 轴移动,则B点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 3.下列四种说法中,正确的为:( )A. 物体在恒力作用下,不可能作曲线运动;B. 物体在变力作用下,不可能作曲线运动;C. 物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动;D. 物体在不垂直于速度方向的力作用下,不可能作圆周运动;4.有两辆构造相同的汽车在相同的水平面上行驶,其中甲车满载,乙车空载,当两车速度相等时,均关掉发动机,使其滑行,若从开始滑行到静止,甲车需时t 1,乙车为t 2,则有:( )A. t 1 = t 2B. t 1> t 2C. t 1 < t 2D. 无法确定谁长谁短5. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与水泥硬地面碰撞时,则有: ( )A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大;D 无法确定反冲量谁大谁小。
6. 一背书包的小学生位于湖中心光滑的冰面上,为到达岸边,应采取的正确方法是: ( )A. 用力蹬冰面v 选择题2图B. 不断划动手臂C. 躺在冰面上爬行D. 用力将书包抛出7. 一条长为L 米的均质细链条,如图所示,一半平直放在光滑的桌面上,另一半沿桌边自由下垂,开始时是静止的,当此链条末端滑到桌边时(桌高大于链条的长度),其速率应为: ( )A .gLB .gL 2C .gL 3D .gL 3218. 一颗卫星沿椭圆轨道绕地球旋转,若卫星在远地点A 和近地点B 的角动量与动能分别为L A 、E k A 和L B 、E k B ,则有:( )A. L B > L A , E k B > E k AB. L B = L A , E k B > E k AC. L B > L A , E k B = E k AD. L B = L A , E k B = E k A9、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则( )(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大.10、 物体质量不变,下列说法正确的是:( )(A) 如果物体的动量不变,则动能也一定不变(B)如果物体的动能变化,则动量不一定变化选择题7图地BA选择题8图(C)如果物体的动量变化,则动能也一定变化(D) 如果物体的动能不变,则动量也一定不变1、 D ;2、 C ;3、 C ;4、 A ;5、 B ;6、 D ;7、 D ;8、 C ;9、 C ; 10、 D ;二:计算题1.一质点在平面内运动,其运动方程为23,341x t y t t =⎧⎨=++⎩,式中x 、y 以m 计,t 以秒s 计,求:(1) 轨迹方程;(2) 在11=t s 及22=t s 时刻的位置矢量;计算在1~2s 这段时间内质点的平均速度;(3)在11=t s 及22=t s 时刻的瞬时加速度。
. (1)22143()4113333x x y x x =++=++…………(5分) (2)23(341)r ti t t j =+++v v v …………(2分)138r i j =+v v v …………(1分)2621r i j =+v v v …………(1分)21313(/)21r r v i j m s -==+-v v v v v …………(2分) (3)3(64)dr v i t j dt ==++v v v v …………(2分)26(/)a j m s =v v …………(2分) 2.一质点在平面内运动,其运动方程为 22 ,441x t y t t =⎧⎨=++⎩,式中x 、y 以m 计,t 以秒s 计,求:(1) 以t 为变量,写出质点位置矢量的表达式;(2) 轨迹方程;(3) 计算在1~2s 这段时间内质点的位移、平均速度;(4) t 时刻的速度表达式;(5) 计算在1~2s 这段时间内质点的平均加速度;在11=t s 时刻的瞬时加速度。
(1) ())m (14422j t t i t r ρρρ+++=; …………(3分) (2)2)1(+=x y ;…………(3分)(3)(m)162Δj r ρρρ+=i ; (m/s)162j ρρρ+=i v ; …………(3分) (4))m/s ()48(2j t i dt r d ρρϖρ++==v ;…………(3分) (5) )(m/s 82j ρρ=a ;)(m/s 82j ρρ=1a …………(3分)3. 一质点在xoy 平面内运动,其位置矢量为j t t i t r ρρρ)532()1(3+++-=式中x 、y 以米计,t 以秒计,求:(1)运动方程;(2)轨迹方程;(3)计算在1~2s 这段时间内质点的平均加速度1. (1)31235x t y t t =-⎧⎨=++⎩ …………(2分) (2)3322(1)3(1)526910y x x x x x =++++=+++…………(5分)(3)2(63)v i t j =++v v v …………(3分)19v i j =+v v v …………(1分)227v i j =+v v v …………(1分)211821v v a j -==-v v v v …………(3分) 5. 对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,从OX 轴正方向开始以角速度ω逆时针旋转,如图所示:(1)试用半径R 、角速度ω 和单位矢量表示其t 时刻的位置矢量.(2)求质点的速度与加速度的矢量表示式;(3)试证加速度指向圆心。