七年级数学上册第一章丰富的图形世界考点展示素材北师大版讲解
北师大版七年级(上册)数学第一章丰富的图形世界知识点归纳
丰富的图形世界一、知识点回顾1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种3—3型2—2—2型总结:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱侧面可以展开为扇形的是:圆锥7 截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。
北师大版七年级上册数学《第一章丰富的图形世界》说课稿
北师大版七年级上册数学《第一章丰富的图形世界》说课稿一. 教材分析《第一章丰富的图形世界》是北师大版七年级上册数学的第一章内容。
本章主要让学生认识和理解一些基本的平面图形和立体图形,如线段、射线、直线、角、三角形、四边形、圆、立方体和圆柱等。
通过本章的学习,使学生能够掌握图形的性质、特点和相互关系,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析七年级的学生已经初步掌握了小学阶段的一些基本数学知识,如加减乘除、方程等。
但是,对于图形的认识和理解还相对较弱,特别是对于立体图形的认识和空间想象能力。
因此,在教学过程中,需要注重培养学生的空间想象能力和逻辑思维能力,让学生能够更好地理解和掌握图形的性质和特点。
三. 说教学目标1.知识与技能目标:使学生能够认识和理解线段、射线、直线、角、三角形、四边形、圆、立方体和圆柱等基本图形,掌握它们的性质和特点。
2.过程与方法目标:通过观察、操作、思考和交流,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和交流沟通能力。
四. 说教学重难点1.教学重点:使学生能够认识和理解线段、射线、直线、角、三角形、四边形、圆、立方体和圆柱等基本图形的性质和特点。
2.教学难点:培养学生空间想象能力和逻辑思维能力,特别是对于立体图形的认识和理解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法和启发式教学法等,引导学生主动参与课堂,培养学生的思维能力和创新能力。
2.教学手段:利用多媒体课件、图形模型、实物模型等辅助教学,帮助学生更好地理解和掌握图形的性质和特点。
六. 说教学过程1.导入:通过一些生活中的实例,引出本节课的主题——丰富的图形世界,激发学生的兴趣和好奇心。
2.新课导入:介绍线段、射线、直线、角、三角形、四边形、圆、立方体和圆柱等基本图形的定义和性质。
3.案例分析:通过一些具体的图形案例,让学生观察、操作和思考,培养学生的空间想象能力和逻辑思维能力。
七年级数学上册第一章丰富的图形世界重点知识汇总
北师大版七年级上册 第一章 丰富的图形世界一、几何体的分类:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⇒⎪⎩⎪⎨⎧⇒⎩⎨⎧椭球圆球球体锥三棱锥、四棱锥、五棱棱锥圆锥椎体柱三棱柱、四棱柱、五棱斜棱柱直棱柱棱柱圆柱柱体几何体 1.n 棱柱有两个底面,n 个侧面,共(n+2)个面;3n 条棱,n 条侧棱;2n 个顶点,底面是n 边形且大小形状完全相同.2.n 棱椎有一个底面,n 个侧面,共(n+1)个面;2n 条棱,n 条侧棱;( n+1)个顶点,底面是n 边形.3.棱柱的侧棱长均相等,直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形,棱锥的侧面是三角形.4. 点、线、面的关系:点动成线、线动成面、面动成体。
面与面相交得到线,线与线相交得到点.二、展开与折叠1、正方体的展开图形 1-4-1型 共6种2-3-1型 共3种2-2型 1种 3-3型 1种注意:常见的易错图形一线超四型:田凹型:2、圆柱的平面展开图3、三棱锥柱的平面展开图4、圆锥的平面展开图5、三棱柱锥的平面展开图6、长方体的平面展开图7、五棱柱的平面展开图8、四棱锥的平面展开图三、图形的切割1、正方体的切割注意:可能出现的:锐角三角型、等边三角形、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形.不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形2、圆柱的切割3、圆锥的切割四、三视图1、三视图主视图:从正面看到的图形.左视图:从左面看到的图形.俯视图:从上面看到的图形.原则:1.位置:主视图左视图俯视图2.大小:长对正,高平齐,宽相等.3.虚实:在画图时,看得见部分的轮廓通常画成实现,看不见部分的轮廓线通常画成虚线.2、常见几何体的三视图:圆柱主视图左视图俯视图圆锥主视图左视图俯视图正方体主视图左视图俯视图三棱柱主视图左视图俯视图四棱柱主视图左视图俯视图球体主视图左视图俯视图3、小立方块搭成几何体的三视图第一章丰富的图形世界经典练习一、选择题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体(D)(B)(C)(A)5.如图,其主视图是( )6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. ( )(A ) (B ) (C ) (D ) 8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是( ). A .5 B . 6 C .7 D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是( )A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π-(C )π、、235- (D)235-、、π二、填空题11.正方体与长方体的相同点是_________________,不同点是_______________。
北师大版 七年级数学上丰富的图形世界知识点汇总
北师大版七年级数学上丰富的图形世界知识点汇总一、知识梳理一.几种常见的几何体1.柱体①棱柱体:〔如图(1)(2)〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的棱.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.点拨:正方体和长方体是特殊的棱柱,它们都是四棱柱.正方体是特殊的长方体.②圆柱:图(3)中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.点拨:棱柱和圆柱统称柱体.2.锥体①圆锥:〔如图(4)〕图中的圆面是圆锥的一个底面,中间曲面是圆锥的侧面,圆锥只有一个顶点.②棱锥:〔如图(5)〕图中下面多边形面是棱锥的一个底面,其余各三角形面是棱三角形正方形长方形梯形五边形六边形点拨:用平面去截几何体,所得的截面就是这个平面与几何体每个面相交的线所围成的图形.正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.2. 几种常见的几何体的截面:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、正方形、……圆锥圆、三角形、……球圆点拨:用平面去截圆柱体,可以与圆柱的三个面(两个底面,一个侧面)同时相交,由于圆柱侧面为曲面,相交得到是曲线,无法截出三角形.四.识别物体的三视图1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看图叫主视图,从左面看图叫左视图,从上面看图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.(2)球体:三视图都是圆.(3)圆柱体:(4)圆锥体:点拨:圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.用若干个小正方体搭成几何体的三视图如图:从正面看2列每列1层;从左面看2列每列1层;从上面看2列左列2层右列1层.则三视图是:点拨:①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字即为左视图中的列的层数.五.生活中的平面图形1.多边形的定义三角形、四边形、五边形等都是多边形,它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.边长都相等的多边形叫正多边形.2.多边形的分割设一个多边形的边数为n(n≥3) ,从这个n 边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以得到(n-3)条线段,这些线段又把这个n边形分割成(n-2)个三角形.3.扇形与弧的定义及区别(1)弧:圆上两点之间部分叫弧.(2)扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.(3)扇形与弧的区别:弧是一段曲线,而扇形是一个面.重点:常见几何体侧面底面面数顶点数棱数N棱柱N个(平行四边形或矩形)2个(上下各1个),全等N边形2+n 2n 3nN棱椎N个三角形1个N边形N+1 N+1 2nN棱台N个梯形2个(上下各1个)相似的N边形2+n 2n 3n圆锥1个曲面1个圆 2圆柱1个2个(上下各1个),全等的圆3圆台1个2个(上下各1个)相似的圆 3 球1个球面 1。
北师大版七年级数学第一章----丰富的图形世界知识点讲解
第一章 丰富的图形世界思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧—反映几何体的长和宽—从上面看—反映几何体的宽和高—从左面看—反映几何体的长和高—从正面看状从三个方向看物体的形—截面的形状—截一个几何体立体图形—将平面展开图折叠成—折叠圆锥的表面展开图圆柱的表面展开图棱柱的表面展开图几何体的展开展开与折叠—面动成体—面—线动成面—线—点动成线—点图形的构成元素、圆柱、圆锥、球等常见的立体图形:棱柱丰富的图形世界考点精讲考点一生活中的立体图形考点一生活中的立体图形生活中的立体图形1.立体图形:有些几何图形的各部分不都在同一平面内,它们是立体图形.2.生活中常见的几何体通常分为三类:柱体、锥体、球.特别提醒:(1))立体图形都是由一个或几个面围成的;(2)组成棱柱的面都是平面,而圆锥、圆柱的面既有平面,又有曲面.棱柱的有关概念及其特征1.棱柱的有关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.2.棱柱的三个特征一是棱柱的所有侧棱长都相等;二是棱柱的上、下底面的形状、大小相同,并且都是多边形;三是侧面的形状都是平行四边形3.棱柱的分类棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形.人们通常还根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……它们的底面图形的形状分别是三角形、四名称图例特征柱体圆柱底面形状是圆,侧面形状是曲面有两个面(底面)是互相平行的棱柱底面形状是多边形,侧面形状是平行四边形锥体圆锥底面形状是圆,侧面形状是曲面有一个顶点棱锥底面形状是多边形,侧面形状是三角形各侧面有一个公共顶点球体表面是曲面考点二展开与折叠(1)(2)(3)(3)二二二型(中间二连方,两侧各有两个)(如图所示).(4)三三型(两排各三个)(如图所示).棱柱的表面展开图棱柱的表面展开图是由两个大小相同的多边形和一些长方形组成的,沿棱柱的表面不同的棱剪看,可得到不同组合方式的表面展开图.圆柱、圆锥的表面展开图1.圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成的,其中长方形的一边的长是底面圆的周长,另一边的长是圆柱的高.圆柱的侧面展开图是长方形,如图所示(1);圆柱的表面展开图如图所示(2).2.圆锥的表面展开图是由一个扇形(侧面)和一个圆(底面)组成的,其中扇形的半径长是圆锥的母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长.圆锥的侧面展开图是扇形,如图(1)所示;圆锥的表面展开图如图(2)所示.特别提醒:(1)同一个几何体,其表面按照不同的形式展开,得到的表面展开图不一定相同;(2)一个几何体的表面展开图并不是唯一确定的,但无论是哪种方式的表面展开图,将其围成的几何伂都是同一个.将表面展开图折叠成几何体由表面展开图通过折叠得到几何体与将几何体的表面展开是两个互逆的过程,由表面展开图判断几何体的形状的方法有两种:一是制作模型,动手操作;二是发挥空间想象能力,根据图形特征来判断.考点三截一个几何体截面用一个平面去截一个几何体,截出的面叫做截面.截面形状通常为三角形、正方形、长方形、梯形、圆等,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.截一个几何体所得截面的形状几种常见的几何体的截面如下(1)用平面去截正方体正方体的几种截面,如图所示:(2)用平面去截圆柱圆柱的几种截面,如图所示:(3)用平面去截圆锥圆锥的几种截面,如图所示(4)用平面去截球用平面截球时,截面的形状都是圆.特别提醒:(1)一般地,用平行于底面的平面去截柱体时,截面是一个与底面完全相同的平面图形;用垂直于底面的一个平面去截直棱柱或圆柱时,截面是一个长方形.用一个平行于底面的平面去截锥体时,得到的是一个与底面形状相同,但比底面小的面.(2)截面是一个平面图形,由于面与面相交得到线,截面的边是由截面与被截几何体的面相交而成的,所以截面与被截几何体的几个面相交,得到的截面就是几边形.考点四从不同的方向观察物体1.我们从不同的方向观察同一物体时,通常可以看到不同的形状.我们常常从正面、上面、左面三个不同的方向看物体,然后描绘出观察到的形状,这样就可以把一个立体从三个方向看物体的形状图形的特征转化为平面图形的特征.特别提醒:从三个方向看,得到的形状图与立体图形的相互转化可用如下方法:(1)从正面和上面看,得到的形状图的长度相等,且相互对正,即“长对正”(2)从正面和左面看,得到的形状图的高度相等,且相互平齐,即“高平齐”(3)从上面和左面看,得到的形状图的宽度相等,即“宽相等” .2.常见立体图形分别从正面、左面、上面看所得到的平面图形如下表画从三个方向看到的物体的形状图从正面看到的物体的形状和从上面看到的物体的形状共同反映了物体左右方向的尺寸;从正面看到的物体的形状和从左面看到的物体的形状共同反映了物体上下方向的尺寸;从上面看到的物体的形状和从左面看到的物体的形状共同反映了物体前后方向的尺寸.特别提醒:(1)无论从哪个方向看一个几何体,实际上都只能看到一个平面图形.(2)从同一个方向看物体时,因物体摆放的方式不同,得到的平面图形一般也会有所不同.判断几何体的形状根据从不同方向看物体得到的形状图所具有的特征进行综合判断并想象出物体的形状,这是由平面图形转化为立体图形的过程.(1)长、宽、高的关系:从正面看到的图和从上面看到的图的长度相等;从正面看到的图和从左面看到的图的高度相等;从上面看到的图和从左面看到的图的宽度相等.(2)上下、前后、左右的关系:读图时,可根据从正面看到的图分清物体各部分的上下和左右的位置关系;根据从上面看到的图分清物体各部分的左右和前后的位置关系;根据从左面看到的图分清物体各部分的上下和前后的位置关系.拓展:根据展开图判断立体图形的规律(1)展开图全是长方形(或正方形)时,应考虑长方体(或正方体).(2)展开图中含有三角形时,应考虑棱锥或棱柱.如展开图中只含有2个三角形和3个长方形时,可考虑三棱柱;若展开图全是三角形(4个),则可考虑三棱锥.(3)展开图中只含有圆和长方形(或正方形)时,应考虑圆柱.(4)展开图中含有扇形时,应考虑圆锥.。
七年级数学上册第一章丰富的图形世界4从三个方向看物体的形状知识全解素材北师大版
1。
4从三个方向看物体的形状新知概览:知识要点课标要求中考考点从三个方向看物体会画出从三个方向看物体所得到的图形确定几何体从三个看到的图形常见几何体的从三个方向看理解并会画常见几何体的从三个方向看到的图形常见几何体与其三个方向看到的图形之间的转化小立方体搭建的几何体的从三个方向得到的图形的画法会画小立方体搭建的几何体的从三个方向得到的图形,理解几何体与三个方向看到图形之间的对应关系推断几何体中小立方体的个数,有上面看到的图形确定另两个方向看到的图形本节重、难点1。
重点:几何体从三个不同方向看到的图形的识别.2。
难点:推断几何体中小立方体的个数.知识全解知识点1从不同方向看物体的形状知识详解:从不同方向看物体的形状图分为从几何体正面看到的图形;从几何体左面看到的图形;从几何体上面看到的图形.知识警示:从不同方向看物体得到的形状图分别体现了几何体长、高、宽,其中从正面看得到的图形体现了物体的长和高,从左面看得到的图形体现了物体的宽和高,从上面看得到的图形体现了物体的宽和长.【试练例题1】小杰观察如图1-4-1的热水瓶时,从正面得到得到的是( ),从左面得到得到的是( ), 从上面得到得到的是( )思路引导:从不同方向看物体得到的图形是由观察方位决定图形形状,热水瓶从正面和左面看到瓶盖、瓶颈、瓶体及瓶把的形状,但应注意二者瓶把位置的差异;正上面往下看,看到的一定是热水瓶圆形的上口和圆形的热水瓶底及左侧的杯柄.解:A,B,C方法:组合图形的从三个方向看物体形状得到的图形,此时应该认真分析参与组合的几何体的一些重要特征及位置关系,然后通过这些特征做出最终的判断.知识点2常见几何体的从三个方向看物体形状知识详解:几种常见几何体的从三个方向看物体形状A. B. C. D.正面方向1-4-1知识警示:(1)所有几何体中正方体、球体的从三个方向看物体形状得到的图形完全相同,即正方体的从三个方向看物体形状得到的图形都是正方形,球体的三中从三个方向得到的图形都是圆;(2)圆锥的从上面方向得到的图形是圆及中间一点,棱锥的从上面方向得到的图形是多边形及中间一点,且此点和多边形各个顶点相连接.【试练例题2】下面四个几何体中,从正面方向得到的图形与其它几何体的从正面方向得到的图形不同的是( )思路引导:选项A、B、D的从正面方向得到的图形都是长方形,只有选项C的从正面方向得到的图形是三角形与其它三个几何体的从正面方向得到的图形不同.A B C D解:C方法:解题的关键是明确从正面方向得到的图形的意义,并能进行立体图形与平面图形的相互转化.知识点3小立方体搭建的几何体的从三个方向得到的图形的画法知识详解:从三个方向得到的图形包括从正面方向得到的图形、从左面方向得到的图形和从上面方向得到的图形,从正面方向得到的图形主要反映物体的长和高,从左面方向得到的图形主要反映物体的宽和高,从上面方向得到的图形主要反映物体的长和宽,因此从正面方向得到的图形与从左面方向得到的图形的高相等,从正面方向得到的图形与从上面方向得到的图形长相等,从左面方向得到的图形与从上面方向得到的图形宽相等,即.由立体图形到三个方向看物体得到的图形的过程,要注意两点:一是长、宽、高的关系;二是上下、左右、前后的关系.知识警示:三个方向看物体得到的图形与几何体颜色无关,只与几何体形状有关.【试练例题3】分别画出图1—4—2中几何体的从正面方向得到的图形、从左面方向得到的图形、从上面方向得到的图形.思路引导:从正面看从左往右4列正方形的个数依次为1,1,3,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.解:1-4-2方法:画小立方体搭建的几何体的从三个方向看物体形状得到的图形,就是从不同方向看这个几何体有几列,则相应其它方向看物体得到的图形画几列,每列有几层,则相应其它方向看物体得到的图形就画几层.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
北师大版七年级上册数学第一章丰富的图形世界讲义(学生、家长、教师必备)
第一章丰富的图形世界■通关口诀:平面立体要分清;直曲分为两线型。
平面直线和曲线;三角四边多边形。
圆与抛物和双曲;立体图形柱锥球。
展开折叠十一型;主要针对正方体。
平面去截几何体;截面边数不超面。
■数学学堂第一讲:生活中的立体图形【知识点一】生活中常见几何图形的基本特征及分类。
1.常见的几何体的基本特征(顶点、面、棱):⑴正方体、长方体−−−→推广棱柱。
⑵圆柱。
⑶棱锥、圆锥−−−→推广锥体。
⑷球体。
2.生活中常见几何图形的分类。
简单的几何体柱体锥体球体圆柱圆锥〖母题示例〗1.试一试在括号里写出它们的名称.2.将下列几何体分类,柱体有:,锥体有,球体有。
(填序号)【知识点二】棱柱及其特征。
1.特征:所有侧棱长都相等;棱柱的上下底面是相同的多边形;侧面都是平行四边形。
2.按棱分类、命名:三、四、五---棱柱。
正方体和长方体都是四棱柱。
3.棱柱可分为直棱柱和斜棱柱:直棱柱的侧面是长方形。
初中只学习和讨论直棱柱。
4.数量特征:一个n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。
〖母题示例〗1.下列说法中,正确的是()(A)正方体不是棱柱。
(B)圆锥是由3个面围成。
(C)正方体的各条棱都相等。
(D)棱柱的各条棱都相等。
2.五棱柱有个顶点,条棱,条侧棱,个面,个侧面。
【知识点三】组合几何体。
1.生活中的物体→抽象→分解为基本几何体。
体会和认识数学的抽象性。
2.简单的几何体:构成了复杂的、形形色色、丰富多彩的生活空间。
〖母题示例〗以下建筑中,那些由基本几何体组合而成。
由哪些几何体组成?(选三个)。
ABCD【知识点四】图形的构成元素及其关系。
1.图形的构成:⑴图形是由点、线面构成的。
⑵线有直线和曲线;面有平面和曲面。
⑶线与线相交得点;面与面相交得线。
2.用运动的观点看几何体:几何体曲面曲线平面直线点动动动动−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧−→−−→−−→−〖母题示例〗观察图形,回答问题:⑴图中的几何体各由几个面围成?围成这些面的几何体有什么特点?⑵图中的几何体的“交线”各有什么特点? ⑶图中的几何体有无顶点?有几个顶点?【知识点五】平面图形旋转成几何体。
北师大版数学七年级上册第一章丰富的图形世界知识点总结
第一章丰富的图形世界知识点知识点一:棱柱分为(直棱柱)和(斜棱柱)。
人们通常根据(底面图形的边数)将棱柱分为三棱柱、四棱柱、五棱柱┈┈。
知识点二:如上图所示,n棱柱的面有(n+2)个,其中侧面有(n)个;顶点有(2n)个;棱有(3n)条,其中侧棱有(n)条。
知识点三:如上图所示,棱柱的两个底面是(多边形),他们的大小和形状(相同),侧棱的长度(相同),侧面均为(长方形),但侧面的大小(不一定相同)。
知识点四:将以上几何体进行分类:(一)按照“柱锥球”划分柱体:正方体、长方体、圆柱、五棱柱。
锥体:圆锥。
球体:球(二)按照有无曲面划分都是平面的:正方体、长方体、五棱柱。
至少有一个面是曲面:球、圆柱、圆锥(三)按照有无顶点划分有顶点:正方形、长方形、圆锥、五棱柱。
没有顶点:球、圆柱知识点五:点动成(线),线动成(面),面动成(体)。
粉笔再黑板上划线是(点动成线),钟表指针在表盘上转动是(线动成面),硬币立在桌面上转动是(面动成体)。
知识点六:将长5cm和宽3cm的长方形分别绕长、宽旋转一周,得到两个不同的几何体,求出他们的体积。
35 3(一)绕宽旋转时:3.14×42×3=3.14×16×3=150.72(cm3)(二)绕长旋转时:3.14×32×4=3.14×9×4=113.04(cm3)知识点七:正方体至少切割(7)下才能展开成平面图形,而且最多可以得到(11)中平面展开图。
我们把他们分为四类,分别是(141型)(231型)(222型)(33型)。
正方体的展开图相对的两个面遵循(隔一个格)的规律。
有三种情况可以直接排除不是正方体的平面展开图,即(一字行)(田字格)(凹字体)。
知识点八:正方体的平面展开图得到六个大小一模一样的(正方形)圆柱的平面展开图是一个(长方形)和两个(圆)。
圆锥的平面展开图是一个(扇形)和一个(圆)。
第一章丰富的图形世界讲义北师大版七年级数学上册
第一章丰富多彩的世界1 生活中的立体图形立体几何:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥.表1立体几何的分类及其特征:棱柱的特征及其分类棱柱可以分为直棱柱与侧棱柱。
直棱柱的侧面都是长方形,侧棱柱的侧面都是平行四边形。
直棱柱斜棱柱在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.棱柱的特征:(1)所有棱长都是相等的;(2)上、下两个底面的形状、大小完全相同;(3)侧面的形状都是平行四边形。
底面图形为n边形的棱柱叫做n棱柱一个n棱柱一共有2n个顶点;有n个侧面,2个底面,共有(n+2)个面;有n条侧棱,共3n条棱。
知识点三几何体的构成任何几何体图形都是由点、线、面构成的。
体:由面围成的。
线:面与面相交成线。
点:线与线相交成点。
点、线、面、体之间的关系(动态),即点动成线、线动成面、面动成体。
【考点一立体图形的识别】其中,是柱体的序号为;是锥体的序号为;是球的序号为变式1 将下列图形绕直线l旋转一周,可以得到如图所示的立体图形的是()A.B.C. D.变式 2 圆柱是由长方形绕着它的一边旋转一周所得到的,下列四个平面图形绕着直线旋转一周可以得到左图的是()A.B.C.D.【考点二立体图形点、线、面之间的关系】世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体 4 4长方体 8 6 12正八面体 8 12正十二面体 20 12 30你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.素养提升训练1.如图所示,下面图形是由哪两个图形旋转后构成的()A.长方形和三角形B.长方体和三棱锥C.圆和三角形D.圆柱和圆锥2.如图中柱体的个数是()A.3B.2C.5D.43.旋转门的旋转属于以下哪项几何知识的实际应用()A.点动成线B.线动成面C.面动成体D.以上答案都正确4.如图一个直六棱柱,它的底面边长是4cm,侧棱是7cm,回答下列问题:(1)这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?(3)这个六棱柱一共有多少条棱?它们的长度之和是多少?参考答案例1.(1)(2)(4)(7);(5)(6);(3)例2.(1)6;6;V+FE=2;(2)20;(3)这个多面体的面数为x+y,棱数为36条,根据V+FE=2可得24+(x+y)36=2,∴ x+y=14.素质提升训练1.A2.A3.C4.(1)8个面,6个面为长方形,2个面为六边形(2)168平方厘米(3)18条棱,36cm。
北师大版七年级数学上册第一章知识点整理
北师大版七年级数学上册第一章知识点整理北师大版七年级数学上册第一章知识点整理七上第一章丰富的图形世界1.生活中常见的立体图形:圆柱、圆锥、棱柱、棱锥、球1)圆柱与棱柱相同点:圆柱和棱柱都有两个底面且两个底面的形状、大小完全相同。
不同点:①圆柱的底面是圆,棱柱的底面是多边形。
②圆柱的侧面是一个曲面,棱柱的侧面是由几个平面围成的,且每个平面都是平行四边形,棱柱的底面是多边形,而圆柱的底面是圆。
2)棱柱的有关概念及特点(1)棱柱的有关概念:在棱柱中相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱。
(2)棱柱的三个特征:一是棱柱的所有侧棱长都相等;二是棱柱的上、下底面的形状相同,并且都是多边形;三是侧面的形状都是平行四边形。
(3)棱柱的分类:棱柱可分为直棱柱和斜棱柱。
本书只讨论直棱柱(简称棱柱),直棱柱的侧面是长方形。
人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……它们的底面图形的形状分别是三角形、四边形、五边形……(4)棱柱中的点、棱、面之间的关系:底面多边形的边数n确定该棱柱是n棱柱,它有2n个顶点,3n条棱,其中有n条侧棱,有(n+2)个面,n个侧面。
3)点、线、面构成立体图形(图形的构成元素)图形是由点、线、面构成的,其中面有平面,也有曲面;线有直线也有曲线。
点、线、面、体之间的关系是:点动成线,线动成面、面动成体,面与面相交得到线,线与线相交得到点。
2.展开与折叠1)棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
沿棱柱表面不同的棱剪开,可得到不同组合方式的表面展开图。
2)圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
3)圆锥的表面展开图是由一个扇形(侧面)和一个圆(底面)组成,其中扇形的半径长是圆锥母线的长,而扇形的弧长则是圆锥底面圆的周长。
4)正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方形的表面展开,可得到11个不同的展开图。
北师大版七年级上册数学第一章丰富的图形世界知识点归纳
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共()个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
总结:
中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线
6、其他常见图形的平面展开图:
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
形分割成(n-2)个三角形。
2.若用f表示正多面体的面数,
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
七年级数学上册 第一章 丰富的图形世界 1 生活中的立体图形教材解读素材 北师大版(2021年整理)
七年级数学上册第一章丰富的图形世界1 生活中的立体图形教材解读素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第一章丰富的图形世界1 生活中的立体图形教材解读素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第一章丰富的图形世界1 生活中的立体图形教材解读素材(新版)北师大版的全部内容。
1。
1 生活中的立体图形新知概览:知识要点课标要求中考考点节内对应例题节内对应习题生活中常见几何体的基本特征及其分类认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类识别柱体、锥体、球体试练例1,2,3;易错典例1;题型典例1,2,3,4,6;新题精炼1,2,9,10,11,12,11棱柱的特征知道常见几何体的特征求棱柱的棱数,面数试练例4,5;题型典例7;新题精炼3,4,7,8,9,10,12图形的构成要素认识点、线、面,理解“点动成线、线动探索平面图形旋转的旋转体试练例6;易错典例2;题型典例4,5,新题,5,6,13,14知识全解知识点1生活中常见几何体的基本特征及其分类 知识衔接:几何图形包括立体图形和平面图形. 1。
平面图形:数学上所说的平面没有边界,可以向四面八方无限延伸.如果一个图形的各个部分都在同一个平面内,那么这个图形是平面图形,常见的平面图形有三角形、正方形、长方形、平行四边形、梯形、圆等.2。
如图1—1—1我们学过长方体,正方体等称为立体图形,这样的几何图形上的点不都在在同一平面内.知识详解:(1)几何体的分类:长方体 正方体1—1—1(2)几何体的基本特征:体是由面围成的;面有两种,平面和曲面.①柱体的相同点是上下两个面完全相同.不同点是圆柱的底面是圆,侧面是一个曲面,直棱柱底面是多边形,侧面都是长方形;②锥体相同点是都有一个顶点.不同点是圆锥的底面是一个圆,侧面是一个曲面,棱锥的底面是一个多边形,侧面都是三角形;③球体由一个曲面围成.知识警示:(1)立体图形是由一个或几个面围成的,如:球是有一个面围成的,而长方体是由六个面围成的,组成棱柱和棱锥的面都是平的,而组成圆锥、圆柱、球的面都是曲的.(2)我们直研究直棱柱,不作特殊说明,棱柱都指直棱柱;(3)长方体、正方体是棱柱;(4)几何体的分类可按“有无顶点”、“有无曲面"等不同的标准来区分.【试练例题1】如图1—1—2所示,请分别指出下列物体的形状分别类似于哪种几何体.思路导引:观察实物轮廓、分析轮廓特征、抽象几何体.解:茶叶盒类似棱柱;地球仪类似球体;魔方类似棱柱;字典类似棱柱;金字塔类似棱锥;彩笔类似棱柱.方法:由实物的形状想象几何体是一个观察、体验、抽象的过程,解决此类问题应从实物的轮廓特征入手,抽象出几何体,进而确定是哪种几何体,即“有物悟形”、“由形命名”.【试练例题2】如图1—1—3将下列几何体进行分类,并说明理由.1—1—2思路导引:把几何体进行分类,一定要注意根据不同的分类标准,分类情况不尽相同,切记不要混淆分类标准,分类要做到不重不漏.解:如一类是(1)(2)(4)(5)是柱体,另一类(3)(7)是椎体,第三类(6)是球体;或一类是(1)(4)(5)(7),有平面围成,另一类(2)(3)(6),有曲面参与围成.方法:几何体分类,先确定分类标准,按有无曲面来分较常用,在此标准下几何体可分为多面体(围成几何体的面都是平面)和旋转体(由平面图形旋转形成,围成几何体的面有曲面).【试练例题3】如图1—1-4所示,陀螺是由下面哪两个几何体组合而成的()A。
七年级数学上册第一章丰富的图形世界考点展示素材北师大版
《丰富的图形世界》考点展示动手实践、自主探索与合作交流是新课程倡导的学生学习数学的三种重要学习方式.近年各地的中考试题中体现新课程概念题崭露头角,现把《丰富的图形世界》一章的考点展示如下:考点1:生活中的立体图形 例1下列几何体:都分别填入下面的集合中,请在后面填上各集合名称的代码.A .柱体;B 。
锥体;C 。
球体;D.全部由平面组成;E 。
至少有一个曲面。
{(1)、(2)、(4)、(6)、(7)}( );{(5)}( );{(3)}( );{(3)、(4)、(5)}( );{(1)、(2)、(6)、(7)}( )。
解析:依次填A例2中的( )旋转得到。
A.(1)、(2)、(3);B 。
(1)、(3)、(4); C 。
(2)、(3)、(4);D 。
(2)、(4)、(3)。
解析:通过观察会发现答案应为D.评注:解答此类题的关键是:弄清各类几何体的本质特征. 要在具体情景中,通过自己的例3 一个正方体的每个面分别标有 1,2,3,4,5,6. 根据图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是.解析:仔细观察正方体A 、B 、C 三种状态,不难发现:标有1的面与标有6的面相对,标有2的面与标有5的面相对,标有3的面与标有4的面相对,且1、2、3所在的三个面两两相交,1、4、5所在的三个面两两相交,所以4、5、6所在的三个面两两相交。
故可推出“?”处的数字是6。
考点2:展开与折叠例4下列图形中,不是立方体表面展开图的是( )解析:本题主要考查学生的动手能力和空间想象能力,通过自己对这四个图形动手操作,会发现C 图不能折合成一个正方体。
故应选C.例5水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似"表示正方体的前面,“锦”表示右面,“程"表示下面。
则“祝”、“你”、“前"分别表示正方体_________。
七年级数学上册 第一章 丰富的图形世界 1 生活中的立体图形例题讲解与变式素材 北师大版(2021
七年级数学上册第一章丰富的图形世界1 生活中的立体图形例题讲解与变式素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第一章丰富的图形世界1 生活中的立体图形例题讲解与变式素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第一章丰富的图形世界1 生活中的立体图形例题讲解与变式素材(新版)北师大版的全部内容。
《生活中的立体图形》例题讲解与变式知识点1:生活中的立体图形例1请你分别举出在学校中常见的类似于下列几何体的两个实例.长方体:圆柱体:圆锥体:棱柱体:球体:分析要举出实例,我们必须掌握这几种几何体的特征.如长方体是由六个面组成,至少有四个面是长方形,另两个面可能是长方形,也可能是正方形,并且长方体相对的两个面是完全相同的两个长方形式正方形.所以,我们在学校常见的装墨水瓶的纸盒,桌子上平放的教科书等.解长方体:装墨水瓶的纸盒,桌子上平放的教科书.圆柱体:没有使用过的圆柱形铅笔,圆柱形水桶.圆锥体:学校实验室里用的圆锥形漏斗的圆锥形部分,圆口形防火用桶的底部.棱柱体:师生骑的自行车上的六角螺母,楼房中的混凝土房梁.球体:学校的体育用品足球、乒乓球.点评:(1)我们在把学校实验室里用的圆锥形漏斗的圆锥形部分看成圆锥时,我们是把圆锥形部分和管的接口看成了一点.(2)圆柱体和棱柱体自身的上下两个底面是完全相同的两个图形,否则就不是圆柱体或棱柱体.如上底大、下底小的圆口形水桶,就不是圆柱体.变式练习1在下面四个物体中,最接近圆柱的是()变式练习2 如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.参考答案:1、C2、知识点2:几何体的分类例2把下面几何体的标号写在相对应的括号里.长方体:()棱柱体:()圆柱体:()球体:()圆锥体:()分析该题就是按括号前给出的几何体的名称进行分类,属于哪类的图形就把这个图形的标号写在对应的括号中.解长方体:((2)(5)(8))棱柱体:((2)(4)(5)(8))圆柱体:((1)(3)(6))球体:((7)(9))圆锥体:((10))点评(1)在判断几何体的类别时应注意抓住几何体的本质特征,不要受几何体的摆放角度所影响,如(1)(3)(6)虽然大小不一样,摆放的角度也不一样,但都是圆柱体.(2)长方体、正方体都符合棱柱体的特征,所以都是棱柱体.变式练习1 指出如图所示的立体图形中的柱体、锥体、球.变式练习2观察图中的立体图形:(1)分别写出它们的名称.(2)请将以上几何图形分类,并说明理由.参考答案:1、①②⑤⑦⑧是柱体;④⑥是锥体;③是球.2、(1)它们的名称分别是:球;六棱柱;圆锥;正方体;三棱柱;圆柱;四棱锥;长方体;(2)分类:①球体:球.②柱体:六棱柱,正方体,三棱柱,长方体:③锥体:圆锥、四棱锥.知识点3:点、线、面、体例3 图中的立体图形是由哪个平面图形旋转后得到?请用线连起来.分析三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.解如图.点评熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.变式练习1 如图,各图中的阴影图形绕着直线l旋转360°,各能形成怎样的立体图形?变式练习2 如图,第二行图形绕虚线旋转一周,便能形成第一行的某个几何体,请用线连接起来.参考答案:1、圆柱、圆锥、球.2、。
北师大版七年级上册数学第一章丰富的图形世界知识点归纳及巩固练习
七年级数学上-—第一章丰富的图形世界—-知识点归纳1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成①点:线和线相交的地方是点,它是几何图形中最基本的图形。
②线:面和面相交的地方是线,分为直线和曲线。
③面:包围着体的是面,分为平面和曲面。
④体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(点无大小,线无宽窄,面无厚度)3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱:棱柱三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 圆锥(圆锥的侧面是曲面,底面的圆)锥棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种3—3型2—2—2型总结:中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天天见;中间没有面,三三连一线6、其他常见图形的平面展开图:侧面可以展开成长方形的是:圆柱和棱柱;侧面可以展开为扇形的是:圆锥7、截一个正方体:用一个平面去截一个正方体,截出的面可能是:三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 、三视图:物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图.左视图:从左面看到的图,叫做左视图。
北师大版新初一上册数学第一章丰富的图形世界知识点归纳69133.doc
精心整理丰富的图形世界一、知点回1、几何形从物中抽象出来的各种形,包括立体形和平面形。
立体形:有些几何形的各个部分不都在同一平面内,它是立体形。
平面形:有些几何形的各个部分都在同一平面内,它是平面形。
2、点、、面、体(1)几何形的成点:和相交的地方是点,它是几何形中最基本的形。
:面和面相交的地方是,分直和曲。
面:包着体的是面,分平面和曲面。
体:几何体也称体。
(2)点成,成面,面成体。
3、生活中的立体形柱(柱的面是曲面,底面是)柱生活中的立体形球棱柱:三棱柱、四棱柱(方体、正方体)、五棱柱、⋯⋯(棱柱的面是若干个小方形构成,底面是多形)( 按名称分 ) (的面是曲面,底面的)棱(棱的面是若干个三角形构成,底面是多形)4、棱柱及其有关概念:棱:在棱柱中,任何相两个面的交,都叫做棱。
棱:相两个面的交叫做棱。
n 棱柱有两个底面, n 个面,共( n+2)个面; 3n 条棱, n 条棱; 2n 个点。
5、正方体的平面展开: 11 种:中四个面,上下各一面;中三个面,一二隔河;中两个面,楼梯天天;中没有面,三三一6、其他常形的平面展开:面可以展开成方形的是:柱和棱柱面可以展开扇形的是:7 截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四形,五形,六形。
可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8三物体的三指主、俯、左。
3— 3 型2—2—2主:从正面看到的,叫做主。
左:从左面看到的,叫做左。
型俯:从上面看到的,叫做俯。
注意:从立体得到它的三是唯一的,但从三复原回它的立体却不一定唯一。
精心整理精心整理9 多形:由一些不在同一条直上的段依次首尾相成的封平面形,叫做多形。
1. 从一个 n 形的同一个点出,分接个点与其余各点,可以把个 n 形分割成( n-2 )个三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《丰富的图形世界》考点展示
动手实践、自主探索与合作交流是新课程倡导的学生学习数学的三种重要学习方式.近年各地的中考试题中体现新课程概念题崭露头角,现把《丰富的图形世界》一章的考点展示如下:
考点1:生活中的立体图形 例1下列几何体:
都分别填入下面的集合中,请在后面填上各集合名称的代码. A .柱体;B.锥体;C.球体;D.全部由平面组成;E.至少有一个曲面.
{(1)、(2)、(4)、(6)、(7)}( );{(5)}( );{(3)}( );{(3)、(4)、(5)}( );{(1)、(2)、(6)、(7)}( ).
解析:依次填A 、B 、C 、E 、D.
例2下列图形:
中的( )旋转得到.
A.(1)、(2
)、(3);
B. (1)、(
3)、(4);
C.(2)、(3)、(4);
D. (2)、(4)、(3). 解析:通过观察会发现答案应为D.
评注:解答此类题的关键是:弄清各类几何体的本质特征. 要在具体情景中,通过自己的观察,加深“点动成线、线动成面、面动成体”的认识.
例3 一个正方体的每个面分别标有 1
,2,3,4,5,6. 根据图
中该正方体A 、
B 、
C 三种状态所显示的数字,可推出“?”处的数字是 .
解析:仔细观察正方体A 、B 、C 三种状态,不难发现:标有1的面与标有6的面相对,标有2的面与标有5的面相对,标有3的面与标有4的面相对,且1、2、3所在的三个面两两相交,1、4、5所在的三个面两两相交,所以4、5、6所在的三个面两两相交. 故可推出
“?”处的数字是6.
考点2:展开与折叠
例4下列图形中,不是立方体表面展开图的是( )
解析:本题主要考查学生的动手能力和空间想象能力,通过自己对这四个图形动手操作,会发现C 图不能折合成一个正方体. 故应选C.
例5水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平
面展开图,若图中的“似”表示正方体的前面,“锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体
_________.
解析:本题也是主要考查学生的动手操作图形的能力和空间想象能力. 弄清楚已知的面,亲自折合成正方体. 不难得到其它的面:“祝”、“你”、 “前”分别表示正方体的后面、上面、左面.
考点3:截一个几何体 例6圆柱的轴截面是(
)
A 、等腰三角形
B 、等腰梯形
C 、矩形
D 、圆 解析:根据截面的概念,不难想象圆柱的轴截面是矩形. 故应选C.
例7如图,把一个边长为2cm 的立方体截成八个边长 为1cm 的小立方体,至少需截
次. 解析:如图所示(虚线为截线),至少需截3次.
考点4:从不同方向看
例8(1)中几何体的主视图是( )
解析:根据主视图的概念知,(
1
)的主视图应是左边纵排两个正方形,底层横排三个正
程
前 你 祝
似 锦
(1)
A B
C
D
方形. 故应选D.
例9某物体的三视图是如图所示的三个图形,那么该物体形状是( ) A 、长方体;B 、圆锥体; C 、立方体;D 、圆柱体.
解析:四个选项的三视图分别是:
A 是长方形、长方形、正方形或长方形;
B 是三角形、三角形、圆;
C 是正方形、正方形、正方形;
D 是长方形、长方形、圆. 故应选D.
例10由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.
(1)请你画出这个几何体的一种左视图; (2)若组成这个几何体的小正方体的块 数为n ,请你写出n 的所有可能值. 解析:(1)左视图有如下几种: (2)n = 8,9,10,
11.
正
视图
左视图
俯视图
主视图
俯视图。