Dynamical Low-Mass Fermion Generation in Randall-Sundrum Background
人口变动在大城市碳排放中的作用与影响——以北京市为例
人口变动在大城市碳排放中的作用与影响——以北京市为例童玉芬;韩茜【摘要】碳排放是表征一个国家或地区环境状况的重要指标,与经济发展、技术和人口等都有着密切的联系.本文采用了基于环境压力等式IPAT的STIRPAT模型来定量分析北京市人口因素及其他相关因素对北京市碳排放的影响.研究结果显示,北京市的经济水平、城镇人口规模、就业结构、城镇化率和年龄因素对北京市的碳排放具有正效应,即随着上述因素的增大,碳排放也呈现增加趋势,而碳排放强度(技术因素)与碳排放呈现反相关关系.从1980-2010年的上述各类因素的变化以及对碳排放的影响程度上看,经济水平的提高对碳排放的贡献最大,人口规模的增加对碳排放的贡献紧随其后,产业结构升级和城镇化提高都对碳排放产生了明显的促进作用.【期刊名称】《北京社会科学》【年(卷),期】2013(000)002【总页数】7页(P113-119)【关键词】北京市;人口因素;碳排放【作者】童玉芬;韩茜【作者单位】首都经济贸易大学劳动经济学院,北京100070【正文语种】中文【中图分类】C922一、前言近一个世纪以来,矿物燃料 (如煤、石油等)被大量使用,森林被大肆砍伐和焚烧,其排放出大量的二氧化碳等多种温室气体,成为全球气候变暖的主要原因。
政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约1.4-5.8℃ (2.5-10.4华氏度)(IPCC,2007)。
根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,其后果会使全球降水量重新分配、冰川和冻土消融、海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。
改革开放以来,我国国民经济持续增长。
在经济高速增长和社会转型的大背景下,我国的人口发展和居民生活消费方式正发生着深刻变化。
北京作为中国的首都和特大城市,更是经历了社会发展的深刻变革和经济增长的巨大改变,同时伴随着人口的快速增长和结构变化。
2020中国动态血压监测指南
摘要高血压是心脑血管疾病的重要危险因素。
动态血压监测已成为识别和诊断高血压、评估心脑血管疾病风险、评估降压疗效、指导个体化降压治疗不可或缺的检测手段。
本指南对2015年发表的《动态血压监测临床应用专家共识》进行了更新,详细介绍了动态血压计的选择与监测方法、动态血压监测的结果判定与临床应用、动态血压监测的适应证、特殊人群动态血压监测、社区动态血压监测应用以及动态血压监测临床应用展望,旨在指导临床实践中动态血压监测的应用。
关键词 动态血压监测;血压管理;指南;高血压2020 Chinese Hypertension League Guidelines on Ambulatory Blood Pressure MonitoringWriting Group of the 2020 Chinese Hypertension League Guidelines on Ambulatory Blood Pressure Monitoring.Corresponding Author: WANG Jiguang, Email: jiguangwang@2020中国动态血压监测指南中国高血压联盟《动态血压监测指南》委员会指南与共识AbstractHypertension is an important risk factor for cardiovascular and cerebrovascular diseases. Ambulatory blood pressure monitoring (ABPM) has become an indispensable technique for the detection of hypertension, risk assessment of cardiovascular and cerebrovascular diseases, therapeutic monitoring, and guidance of the individualized treatment. Based on the “2015 expert consensus on the clinical use of ambulatory blood pressure monitoring”, the current guideline updates recommendations on the major issues of ABPM, such as the device requirements and methodology, interpretation of the reported results, clinical indications, application on special populations, the utility in the community and future perspectives. It aims to guide the clinical application practice of ABPM in China.Key words ambulatory blood pressure monitoring; blood pressure management; guideline; hypertension(Chinese Circulation Journal, 2021, 36: 313.)高血压是心脑血管疾病的重要危险因素,与心脑血管疾病发病和死亡密切相关[1-3]。
人类发展指数 (HDI) 的计算
成人识字率 (%)
综合毛入学率 (%)
人均国内生产总值
(按美元购买力平价)
极大值 极小值
85 25
100
0
100
0
40,000 100
计算 HDI 此 HDI 计算演示使用了巴西的数据。
1. 计算预期寿命指数 预期寿命指数用于测度一个国家在出生时预期
寿命方面所取得的相对成就。就巴西来说,其 2004 年的预期寿命为 70.8 岁,所对应的预期寿命指数为 0.764。
40
.400
30
成人识字指数 = 88.6 – 0 = 0.886 100 – 0
毛入学指数 = 86 – 0 = 0.857 100 – 0
教育指数 = 2/3 (成人识字指数)+ 1/3 (毛入学指数)
20 10
0
成人识字率 (%)
毛入学率 (%)
.200 0 教育指数
= 2/3 (0.886) + 1/3 (0.857) = 0.876
预期寿命指数 = 70.8 – 25 = 0.764 85 – 25
2. 计算教育指数
90 阈值 85 岁
80 70.8
70
60
50
40
30 阈值 25 岁
20
0.764
预期寿命 (岁)
1.00 .800 .600 .400 .200 0 预期 寿命 指数
教育指数衡量的是一个国家在成人识字及
初、中、高综合毛入学率两方面所取得的相对
GER 指数
教育指数
体面生活 人均国内生产总值 (GDP)
(按美元购买力平价)
GDP 指数
人类贫穷指数 (HPI-1)
维度 指标
Investigating the Properties of Nanofluids
Investigating the Properties ofNanofluids随着科技的发展,人类对于纳米技术的应用越来越深入。
其中一项应用就是纳米流体(nanofluids)技术。
纳米流体就是将微米或纳米级别的颗粒分散于传统的流体中。
这个技术在热传导、摩擦损失等领域有着广泛的应用。
在工程领域中,纳米流体的热传导性能引起了我们的特别关注。
热传导系数决定了材料的导热性能,它的值越大表明材料导热能力越好。
因此,热导率也被广泛地应用在各种领域,例如电池、半导体等。
通过添加纳米颗粒到传统的流体中,可以极大地提高流体的热传导性能。
研究表明,与传统的热传导介质相比,纳米流体的热传导系数要高得多。
这是因为纳米颗粒具有巨大的比表面积;微米或者更大的颗粒的表面积更小,因此纳米颗粒的比表面积较大,导致表面能更强,从而对周围的流体产生更多的振动和搅拌,提高了流体的热导率。
在进行纳米流体的研究时,需要通过一系列的实验来测试纳米流体的物理和化学特性。
以下我们将介绍一些测试方法:1. 热导测试热导测试是测试纳米流体中热传导性能的重要方法。
通常采用热板法或热阻法进行测试。
在热板法中,将一个热板加热至一定的温度,待热板温度稳定后,将添加不同纳米颗粒的流体涂在热板上,并通过传感器进行测试。
在热阻法中,测量热板两面的温差来计算材料的热导率。
2. 稳定性测试稳定性测试是指纳米颗粒在流体中的分散情况。
稳定性好的纳米流体在使用时更为方便和可靠。
通常采用离心法、显微镜、光学薄膜厚度检测器等进行测试。
3. 流变性测试流变性测试是指测量纳米流体的黏度、流动性等指标。
黏度的大小反映了流体内部分子之间的摩擦力大小。
流动性的指标反映了流体内部分子的运动速度。
具有良好流动性的纳米流体在传输和运用时更为方便。
总结:纳米流体技术是一项有潜力的应用技术。
通过添加纳米颗粒到传统的流体中,可以大大提高流体的热传导性能。
但同时需要进行一系列的测试,以确保纳米流体的物理和化学特性稳定,促进其在各个领域的应用。
生活史进化
第2章生活史进化张大勇生活史进化对策的研究起始于本世纪40年代末~50年代初,主要是由动物种群统计学(demography)和进化理论相结合而形成的。
在1920~1950年这一时期,生态学家已经开始广泛地运用寿命表方法研究动物种群,因而对于生活史的定量种群统计学后果已经具备了一个有效的分析方法。
这种方法考察的是特定年龄个体的死亡率和生育率。
生态学家已清楚地知道,这些生活史参数无论是在种内还是在种间都有很大的变异。
种群遗传学和数量遗传学的迅猛发展同时也为达尔文关于表型性状适应价值的论述提供了坚实基础。
在第1章内,我们已经提到,早期的种群生态学并不关注种群内部的遗传变异,而种群遗传学也基本上忽略了种群动态过程。
二者之间的有机结合是生态学领域内长期没有得到很好解决的一个难题;而这对于生活史对策研究却是至关重要的。
尽管Fisher(1930)早在30年代就已经提出应把种群统计学性状看作为表型的一部分并探索它们的适应性基础,但人们公认现代生活史进化理论创立于40年代末到50年代初Lack(1947)关于鸟类窝卵数、Medawar(1946,1952)关于衰老、以及Cole(1954)关于单次生殖/多次生殖进化的研究。
其后,生活史进化方面的研究蓬勃兴起,有关文献可说是浩如烟海。
但在本章内我们并不打算对整个领域进行全面地综述,而是选择几个有代表性的核心问题介绍其理论背景和发展趋势。
如果读者想要更全面地了解该领域,可以参阅Roff(1992)以及Stearns (1992)的专著。
侧重于基础理论方面的书籍有Charlesworth(1994)。
在进入本章具体内容之前,我们有必要首先熟悉一下生活史进化研究的基本途径—表型优化理论(参见第3章)。
2.1 进化生物学中的表型优化研究途径近些年,进化生物学家和生态学家已经开始广泛采用工程学和经济学领域内的数学方法来认识生命的多样性问题(Maynard Smith 1978)。
SPEI和植被遥感信息监测西南地区干旱差异分析
农业机械学报第51卷第12期2020年12月doi:10.6041/j.issn.1000-1298.2020.12.020SPEI和植被遥感信息监测西南地区干旱差异分析史晓亮吴梦月丁皓(西安科技大学测绘科学与技术学院,西安710054)摘要:基于西南地区2000—2018年不同时间尺度的标准化降水蒸散指数(SPEI1、SPEI3、SPEI12),应用线性趋势法和曼肯德尔检验(Mann-Kendall test,M K)法分析了西南地区气象干旱的时间变化特征,评价了日光诱导叶绿素荧光(SIF)、归一化植被指数(NDVI)以及增强型植被指数(EVI)等植被遥感数据对区域植被状况监测的有效性及差异性。
结果表明:2000—2018年西南地区SPEI整体上呈微弱增加趋势,其中,2000—2013年间,SPEI12呈下降趋势(趋势率为-0.05/(10a),R2=0.295),2014—2018年间,SPEI12时间序列呈上升趋势(趋势率为0.04/(10a),R2=0.094),说明在气候变化背景下,近年来西南地区的干旱化趋势有所缓解。
SPEI12的趋势突变点发生在2016年和2017年。
相对于植被绿度指数NDVI和EVI,SIF对植被生长季发生的长期和短期干旱事件均表现岀较大负异常,说明SIF可快速获取水分胁迫下的植被光合作用信息。
森林、农田和草地的SIF与不同时间尺度气象干旱指数的相关性均高于NDVI和EVI,SIF对森林、农田及草地植被生态系统干旱监测的敏感性优于传统的植被绿度指数;草地的SIF与SPEI1的相关性更高(R=0.859,P<0.01),其光合作用对短期水分胁迫最为敏感。
本研究可为西南地区干旱的综合应对、水资源管理调控及生态治理提供科学依据。
关键词:干旱;标准化降水蒸散指数;日光诱导叶绿素荧光;遥感;西南地区中图分类号:S423;S127文献标识码:A文章编号:1000-1298(2020)12_0184_09OSID:普Difference Analysis of SPEI and Vegetation Remote SensingInformation in Drought Monitoring in Southwest ChinaSHI Xiaoliang WU Mengyue DING Hao(College of Geomatics,Xi'an University of Science and Technology,Xi'an710054,China) Abstract:Since2000,drought has occurred frequently in Southwest China,which has seriously affected social production and ecological environment.Therefore,studying the temporal evolution characteristics of meteorological drought and its impact on vegetation growth can provide theoretical basis for scientific management of regional water resources and ecological control.Based on the monthly precipitation and temperature data of Southwest China from2000to2018,the standardized precipitation evapotranspiration index of different time scales was calculated.The linear trend method and Mann Kendall(M K)test were used to analyze the temporal variation characteristics of meteorological drought in Southwest China.The effectiveness and difference of solar-induced chlorophyll fluorescence(SIF),normalized differential vegetation index(NDVI)and enhanced vegetation index(EVI)in vegetation stress monitoring were evaluated.Furthermore,the response of vegetation to drought was also explored.The results showed that SPEI values showed a weak increasing trend in all time scales from2000to2018.From2000to2013, SPEI12showed a downward trend(the trend rate was-0.05/(10a),R2=0.295),and from2014to 2018,SPEI12time series showed an increasing trend(the trend rate was0.04/(10a),R2=0.094), indicating that the drought trend in Southwest China was alleviated in recent years under the background of climate change.The turning point of SPEI12time series occurred in2016and2017respectively.Compared with NDVI and EVI,SIF showed obvious negative anomalies for both long-term and short-term drought events during vegetation growing season,and it can quickly obtain the information of vegetation photosynthesis under water stress.The correlation between SIF of forest,farmland and grassland and meteorological drought index at different time scales was higher than NDVI and EVI,which meant that 收稿日期:20200822修回日期:20200923基金项目:国家自然科学基金项目(52079103)作者简介:史晓亮(1985—),男,副教授,博士,主要从事资源环境遥感研究,E-mail:s_xiaoliang@第12期史晓亮等:SPEI和植被遥感信息监测西南地区干旱差异分析185the sensitivity of SIF of forest,farmland and grassland vegetation ecosystem to drought monitoring was better than that of traditional vegetation greenness index.The correlation between SIF of grassland and SPEI—1was higher(R=0.859,P<0.01),which indicated the grassland photosynthesis was more sensitive to short-term water stress.The research results can provide scientific basis for comprehensive drought coping,water resources management and ecological control in Southwest China.Key words:drought;standardized precipitation evapotranspiration index;solar-induced chlorophyll fluorescence;remote sensing;Southwest China0引言干旱是一种由于长期缺乏降水或降水偏少引发供求失衡的水分短缺现象,是全球范围内最复杂、最常见的自然灾害之一⑴。
PACC_国际物理学分类表_
如何查PACC代码?PACC代码是《Physics Abstracts,Classification and Contents》的缩略。
PACC专业代码是英国科学文摘(INSPEC)用于论文分类的代码。
按照论文的内容将其分为十大类有0000,1000,……5000,……9000表示,例如:凝聚物质由6000及7000表示,其中6000内包括凝聚物质的结构、热学和力学性质,而7000内包括凝聚物质的电子结构、电学、磁学和光学性质。
再仔细分则由6100……6200等表示,例如6100表示液体和固体结构。
而X射线晶体结构测定及精确化技术表示固体结构的测定包含在6100中,而用6110M来表示。
所以要查出某一论文的PACC专业代码,应先确定该论文主要内容属于哪一大类,就在那一大类中找出其代码,其次再找出该论文包括的其它次要内容的代码。
国际物理学分类表PACC(Physics Abstracts, Classification andContents)0000 总论 GENERAL0100 通讯、教育、历史和哲学 communication,education,history,andphilosophy0110 通报、消息和组织活动announcements, news, and organizational activities0110C 通报、消息和颁奖announcements, news, and awards 0110F 会议、演讲和学会conferences, lectures, and institutes 0110H 物理学组织活动physics organizational activities 0130 物理学文献及出版物physics literature and publications0130B 讲稿的出版(进修学院,暑期学校等)publications of lectures (advanced institutes, summer schools, etc.)0130C 会议录 conferenceproceedings 0130E 专著和著作集 monographs,andcollections 0130K 手册和字典handbooks and dictionaries0130L 物理数据、表格汇编collections of physical data, tables0130N 教科书 textbooks0130Q 报告、学位论文、论文reports, dissertations, theses0130R 评论及教学参考论文,资源通讯reviews and tutorial papers, resource letters0130T 书目 bibliographies 0140 教育 education0140D 课程设置与评价course design and evaluation0140E 中小学科学science in elementary and secondary school0140G 课程设置,教学方法,策略和评价curricula, teaching methods, strategies, and evaluation0140J 教师培训 teachertraining0150 教具(包括设备和实验及教学用材料)educational aids(inc.equipment, experiments andteaching approaches to subjects)0150F 视听教具、电影audio and visual aids, films0150H 计算机在教学中的使用instructional computer use0150K 试验理论和技术testing theory and techniques0150M 示范教学的实验和设备demonstration experiments and apparatus 0150P 实验室实验和设备laboratory experiments and apparatus0150Q 实验室课程设置、组织和评价laboratory course design, organization, and evaluation0150T 建筑物和设备 buildingsandfacilities 0155 普通物理 generalphysics 0160 传记、历史和个人笔记biographical, historical, and personal notes 0165 科学史history of science0170 科学哲学 philosophyofscience 0175 科学与社会 scienceandsociety 0190 其他一般论题other topics of general interest0200 物理学中的数学方法mathematical methods in physics0210 代数、集合论和图论algebra, set theory, and graph theory0220 群论(量子力学中的代数方法见0365;基本粒子物理学中的对称见1130)group theory(for algebraic methods in quantummechanics, see 0365; for symmetries inelementary particle physics, see 1130)0230 函数论,分析function theory, analysis0240 几何学、微分几何学和拓扑学(0400相对论与引力)geometry, differential geometry, andtopology(0400 relativity and gravitation)0250 概率论、随机过程和统计学(0500统计物理学)probability theory, stochastic processes, andstatistics(0500 statistical physics)0260 数字近似及分析numerical approximation and analysis0270 计算技术(数据处理与计算见0650)computational techniques(for data handling and computation, see 0650)0290 物理学中数学方法的其它论题other topics in mathematical methods in physics0300 经典及量子物理学;力学与场classical and quantum physics; mechanics and fields0320 离散系统的经典力学:一般数学问题(离散系统的应用经典力学见4610;天体力学见9510)classical mechanics of discrete systems: generalmathematical aspects ( for applied classicalmechanics of discrete systems, see 4610; forcelestial mechanics, see 9510)0330 狭义相对论 specialrelativity0340 连续介质经典力学:一般数学问题classical mechanics of continuous media: general mathematical aspects0340D 弹性力学的数学理论(4620连续介质力学,4630固体力学)mathematical theory of elasticity(4620 continuummechanics, and 4630 mechanics of solids)0340G 流体动力学:一般数学问题(4700流体动力学)fluid dynamics; general mathematicalaspects(4700 fluid dynamics)0340K 波和波传播:一般数学问题(4630M机械波和弹性波;4320一般线性声学)waves and wave propagation; generalmathematical aspects(4630M mechanical andelastic waves, 4320 general linear acoustics)0350 经典场论 classicalfieldtheory0350D 麦克斯韦理论:一般数学问题(应用经典电动力学,见4100)Maxwell theory: general mathematical aspects(forapplied classical electrodynamics, see 4100)0350K 其它具体经典场论other special classical field theories0365 量子论;量子力学(0530量子统计力学;相对论性波动方程,见1110)quantum theory; quantum mechanics(0530quantum statistical mechanics;for relativisticwave equations, see 1110)0365B 基础、测量理论、其它理论foundations, theory of measurement, miscellaneous theories0365C 形式论 formalism 0365D 泛函分析方法functional analytical methods0365F 代数方法(0220群论;3115分子物理学中计算方法)algebraic methods(02 20 group theory; 3115calculation methods in molecular physics)0365G 波动方程解:边界态solutions of wave equations: bound state0365N 非相对论性散射理论 nonrelativisticscatteringtheory 0365S 半经典理论和应用semiclassical theories and applications0367 量子信息 Quantuminformation 0370 量子场论(1110场论) theory of quantized fields(1110 field theory)0380 散射的一般理论(1120 S-矩阵论;1180相对论性散射)general theory of scattering(1120 S-matrix theory,and 1180 relativistic scattering)0400 相对论与引力(狭义相对论,见0330;相对论性天体物理学,见9530; 相对论性宇宙学,见9880)relativity and gravitation(for special relarivity,see0330;for relativistic astrophysics,see 9530;forrelativistic cosmology,see 9880)0420 广义相对论(0240几何学和拓扑学)general relativity (0240 geometry and topology) 0420C 基本问题和普通形式论fundamental problems and general formalism0420F 典型的形式论、拉氏函数和变分原理canonical formalism, Lagrangians, and variationalprinciples0420J 方程解solutions to equations0420M 守恒定律和运动方程conservation laws and equations of motion 0430 引力波和辐射:理论gravitational waves and radiation: theory0440 连续介质;电磁及其它混合引力系统continuous media; electromagnetic and othermixed gravitational systems0450 统一场论及其它引力理论unified field theories and other theories of gravitation0455 引力替代理论alternative theories of gravitation0460 引力的量子论quantum theory of gravitation0465 超引力 supergravity0470 黑洞物理学(参见9760L 黑洞) physics of black holes (see also 9760L black holes)0480 广义相对论的实验检验及引力辐射观测experimental tests of general relativity andobservations of gravitational radiation0485 中程力(包括第五和第六力) intermediate range forces (inc.fifth and sixth forces)0490 相对论和引力的其它论题other topics in relativity and gravitation0500 统计物理学和热力学(0250概率论、随机过程和统计学)statistical physics and thermodynamics(0250probability thory,stochastic processes,andstatistics)0520 统计力学 statisticalmechanics 0520D 分子运动论 kinetictheory0520G 经典系综论classical ensemble theory0530 量子统计力学(6700量子流体;7100凝聚物质的电子态)quantum statistic al mechanics(6700 quantumfluids, and 7100 electron states in condensedmatter)0530C 量子系综论quantum ensemble theory0530F 费米子系统和电子气Fermion systems and electron gas 0530J 玻色子系统 Bosonsystems0530L 任意子和仲统计学(量子统计力学)anyons and parastatistics (quantum statistical mechanics)0540 涨落现象、随机过程和布朗运动fluctuation phenomena, random processes, and Brownian motion0545 混沌系统的理论和模型(流体系统中的混沌,见4752)theory and models of chaotic systems(for chaos inflowing systems,see 4752)0547 非线性动力学系统和分岔(流体系统中的分岔,见4752)nonlinear dynamical systems and bifurcations(bifurcations in flowing systems,see 4752)0550 点阵理论和统计学;伊辛问题(7510H伊辛模型)lattice theory and statistics; Ising problems(7510HIsing models)0555 分形(流体系统中的分形,见4752)fractals (fractals in flowing systems,see 4752) 0560 输运过程:理论 transportprocesses:theory 0565 自组织系统 Self-organizedsystems0570 热力学(4460热力学过程;6400状态方程,相平衡和相变;6500凝聚物质的热性质 ; 化学热力学,见8260)thermodynamics(4460 thermodynamic processes;6400 equation s of state, phase equilibria andphase transitions; 6500 thermal properties ofcondensed matter;for chemical thermodynamics,see 8260)0570C 热力学函数及状态方程thermodynamic functions and equations of state0570F 相变:一般问题phase transitions: general aspects 0570J 临界点现象critical point phenomena0570L 非平衡热力学、不可逆过程(3430势能表面;8200物理化学)nonequilibrium thermodynamics, irreversibleprocesses(3430 potential energy surfaces, 8200physical chemistry)0580 经济物理学 Econophysics0590 统计物理学和热力学的其它论题other topics in statistical physics and thermodynamics0600 测量科学、普通实验室技术及测试设备系统Measurement science, general laboratorytechniques, and instrumentation systems0620 基本度量学 metrology 0620D 测量与误差理论measurement and error theory0620F 单位 units 0620H 测量标准和校正measurement standards and calibration 0620J 基本常数测定determination of fundamental constants 0630 基本变量测量measurement of basic variables0630C 空间变量测量(包括空间延伸的所有变量如:直径、重量、厚度、位移、表面拓扑学、粒子尺寸、弥散系统区)spatial variables measurement(inc.measurementof all variables extending in space e.g. diameter,weight, thickness, displacement , surfacetopography, particle size, area of dispersesystems)0630E 质量与密度的测量mass and density measurement0630F 时间与频率的测量(天文学方面的,见9570)time and frequency measurement(for astronomicalaspects see 9570)0630G 速度、加速度和转动测量(流速测量,见4780)velocity, acceleration and rotationmeasurement(for flow velocity measurement see4780)0630L 基本电磁变量测量(0750电学仪器和技术)measurement of basic electromagneticvariables(0750 electrical instruments andtechniques)0630M 机械变量测量(包括弹性模量,力,冲击,应变,应力,力矩和振动)(压力测量,见0630N;声学变量测量,见4385D;固体力学测量,见4630R;粘度测量,见4780;材料试验,8170)measurement of mechanical variables(inc.elasticmoduli,force,shock ,strain,stress,torque,andvibration)(for pressure measurement,see0630N;for acoustic variables measurement,see4385D;for measurement in the mechanics ofsolids, see 4630R;for viscosity measurement,see4780;for materials testing,see 8170)0630N 压力测量(真空测量,见0730D;高压技术,见0735)pressure measurement(for vacuum measurement,see 0730D;for high-pressure techniques, see0735)0650 数据处理和计算(0270计算技术;2980核信息处理;光学数据处理,存贮及检索, 见423 0;地球物理数据采集和存贮,见9365)data handling and computation(0270computational techniques; 2980 nuclearinformation processing;for optical dataprocessing , storage and retrieval see 4230; forgeophysical data acquisition and storage see9365)0650D 数据搜集、处理、记录、数据显示(含数显技术)data gathering, processing, and recording, datadisplays (including digital techniques)0650M 计算装置与技术computing devices and techniques0660 实验室技术 laboratorytechniques 0660E 样品制备 samplepreparation0660J 高速技术(微秒到微微秒) high speed techniques (microsecond to picosecond)0660S 微检验装置、微定位器和切片机micromanipulators, micropositioners , and microtomes0660V 车间技术(焊接、机械加工、润滑作用和轴承等)workshop techniques ( welding, machining,lubrication, bearings, etc.)0660W 安全(2880辐射监测和防护;8760M辐射剂量测定法;8760P辐射防护)safety( 2880 radiation monitoring and protection,8760M radiation dosimetry, 8760P radiationprotection)0670 普通测试设备 generalinstrumentation 0670D 敏感元件和探测器sensing and detecting devices0670E 试验设备 testingequipment 0670H 显示、记录与指示器display, recording, and indicating instrument s0670M 换能器(电磁辐射换能器见0762;声换能器见4388;液流换能器见4780)transducers(for electromagnetic radiationtransducers see 0762; for acoustic transducers see4388; for flow transducers see 4780)0670T 伺服及控制装置servo and control devices0690 测量科学、普通实验室技术及测试设备系统中的其它论题other topics in measurement science, generallaboratory techniques and instrumentationsystems0700 物理学中普遍使用的专用测试设备与技术(各分支学科的专用测试设备与技术入各自的分支学科)specific instrumentation and techniques of generaluse in physics(within each subdiscipline forspecialized instrumentation and techniques)0710 机械仪器与测量方法(固体力学测量见4630R;材料试验见8170)mechanical instruments and measurementmethods(for measurement in the mechanics of solids, see 4630R; for materials testing, see 8170)0710C 微机械器件和系统(微光学器件和技术,见4283)micromechanical devices and systems (formicrooptical devices and technology,see 4283)0710F 隔振 vibrationisolation0710Y 其他机械仪器和技术(包括摆、陀螺仪、离心器)other mechanical instruments andtechniques(inc.pendulums,gyroscopes,centrifuges)0720 热仪器和技术(4450物质的热性质;4460热力学过程;热辐射的辐射度学和检测, 见 0760D和0762)thermal instruments and techniques(4450 thermalproperties of matter, 4460 thermodynamicprocesses;for radiometry and detection of thermalradiation see 0760D and 0762)0720D 温度测量 thermometry 0720F 量热学 calorimetry 0720H 加热炉 furnaces0720K 高温技术及测试设备;测高温术high temperature techniques and instrumentation; pyrometry0720M 低温实验法 cryogenics 0725 测湿法 hygrometry0730 真空产生与真空技术(包括低于1个大气压的压力;稀薄气体动力学入4745;8115 G 真空淀积)vacuum production and techniques(inc.pressuresbelow 1atmosphere; 4745 rarefied gas dynamics;8115G vacuum deposition)0730B 排空能力、除气、剩余气体evacuating power, degasification, residual gas 0730C 真空泵 vacuumpumps 0730D 真空计 vacuummeters 0730G 真空设备及试验方法vacuum apparatus and testing methods0730K 辅助设备、器件及材料auxiliary apparatus, hardware and materials0735 高压产生与技术(包括大于1个大气压的压力)high pressure production and techniques(inc.pressures above 1 atmosphere)0750 电学仪器及技术electrical instruments and techniques 0755 磁测量仪器及技术magnetic instruments and techniques0758 磁共振谱仪、辅助仪器和技术(6116N电子顺磁共振和核磁共振测定)magnetic resonance spectrometers, auxiliaryinstruments and techniques(6116N EPR and NMRdeterminations)0760 光学仪器和技术(辐射探测见0762;光谱学和光谱计见0765;全息术见4240;光源和标准见4272;光学透镜和反射系统见4278;光学器件、技术和应用见4280;光学试验和加工技术见4285;辐射谱仪和光谱技术见2930;辐射测量、检测和计数见2970)optical instruments and techniques(for radiationdetection, see 0762; for spectroscopy andspectrometers, see 0765; for holography, see4240; for optical sources and standards, see 4272;for optical lens and mirror systems, see 4278; foroptical devices , techniques and applications, see4280; for optical testing and workshop techniques,see 4285; for radiation spectrometers andspectroscopic techniques, see 29 30; for radiationmeasurement, detection and counting, see 2970)0760D 光度学和辐射度学(包括色度学,辐射探测入0762)photometry and radio metry(inc.colorimetry;0762detection of radiation)0760F 偏振测量术与椭园偏振测量术 polarimetryandellipsometry0760H 折射测量术与反射测量术 refractometryandreflectometry 0760L 干涉量度学 interferometry 0760P 光学显微术 opticalmicroscopy0762 辐射探测(测辐射热计、光电管、红外波与亚毫米波探测)detection of radiation (bolometers, photoelectriccells, IR. and submillimetre waves detection)0765 光谱学与光谱计(包括光声谱术) optical spectroscopy and spectrometers(inc.photoacoustic spectroscopy)0765E 紫外和可见光谱学与光谱仪UV and visible spectroscopy and spectrometers 0765G 红外光谱学与光谱仪IR spectroscopy and spectrometers0768 照相术、照相仪器与技术(光敏材料参见4270;照相过程的化学参见8250)photography, photographic instruments andtechniques(for light sensitive materials see also4270 for chemistry of photographic process seealso 8250)0775 质谱仪与质谱测定技术(质谱化学分析见8280)mass spectrometers and m ass spectrometrytechniques(for mass spectroscopic chemicalanalysis, see 8280)0777 粒子束的产生与处理;(2925基本粒子和核物理中的粒子源和靶;4180粒子束和粒子光学)particle beam production and handling;(2925particle sources and targets in elementary particle and nuclear physics, 4180 particle beamsand particle optics)0779 扫描探针显微术及其相关技术(包括扫描隧道显微术,原子力显微术、磁力显微术,摩擦力显微术,和近场扫描光学显微术,(结构测定方面,参见6116P)scanning prob e microscopy and relatedtechniques(inc.scanning tunnellingmicroscopy,atomic force microscopy,magneticforce microscopy,friction force microscopy,andnear field scanning opticalmicroscopy)(structure determination aspects, seealso 6116P)0780 电子与离子显微镜及其技术(6116D凝聚物质中的电子显微术;6116F凝聚物质中的场离子显微术)electron and ion microscopes andtechniques(6116D in condensed matter electronmicroscopy, 6116F field ion microscopy)0781 电子和离子谱仪及其相关技术(参见2930辐射谱仪和光谱技术)electron and ion spectrometers and relatedtechniques(see also 2930 radiation spectrometersan d spectroscopic techniques)0785 X射线与γ射线仪器与技术(包括穆斯堡尔谱仪和技术)X-ray, gamma-ray instruments and techniques(inc.Moessbauer spectrometers and technique s)0788 粒子干涉量度学和中子仪器(粒子束的产生与处理,参见0777;中子谱仪,参见 2930H ,原子干涉量度学,参见3580粒子光学,参见4180)particle interferometry and neutroninstrumentation(for particle beam production andhandling,see 0777;for neutron spectrometers,seealso 2930H;for atomic interferometry,see also3580;for particle optics,see also 4180)0790 专用设备中的其它论题other topics in specialised instrumentation1000 基本粒子物理与场(宇宙线见9440;高能实验技术和设备见 2900)THE PHYSICS OF ELEMENTARY PARTICLESAND FIELDS(for cosmic rays ,see 9440;for highenergy experimental techniques andinstrumentation, see 2900)1100 场和粒子的一般理论(0365量子力学;0370量子场论;0380散射的一般理论)general theory of fields and particles(0365quantum mechanics, 0370 theory of quantizedfields, 0380 general theory of scattering)1110 场论 fieldtheory 1110C 公理法 axiomaticapproach 1110E 拉氏函数和哈密顿函数法Lagrangian and Hamiltonian approach1110G 重正化 renormalization 1110J 渐近问题与特性asymptotic problems and properties1110L 非线性或非局域理论及模型nonlinear or nonlocal theories and models1110M 史文格源理论 Schwingersourcetheory 1110N 规范场论gauge field theories1110Q 相对论性波动方程relativistic wave equations1110S 束缚与非稳定态;贝特-沙耳皮特方程bound and unstable states; Bethe-Salpeterequations1110W 有限温度场论finite temperature field theory1117 弦理论和其他扩展物质理论(包括超弦和膜)theories of strings and other extendedobjects(inc.superstrings and membranes)1120 S-矩阵论 S-matrixtheory 1120D 散射矩阵和微扰论scattering matrix and perturbation theory1120F 色散关系和S矩阵的分析特性dispersion relations and analytic properties of the S-matrix1130 对称和守恒定律(0220群论) symmetry and conservation laws(0220 group theory)1130C 洛伦兹与庞加莱不变性Lorentz and Poincare invariance1130E 电荷共轭、宇称、时间反演和其它分立对称charge conjugation, parity, time reversal and otherdiscrete symmetries1130J SU(2)和SU(3)对称SU(2) and SU(3) symmetries1130K SU(4)对称 SU(4)symmetry 1130L 其他内部对称和高度对称other internal and higher symmetries1130N 非线性对称和动力学对称性(谱生成对称)nonlinear and dynamical symmetries (spectrum generating symmetries)1130P 超对称 supersymmetry1130Q 自发性对称破缺spontaneous symmetry breaking1130R 手征对称 chiralsymmetries 1140 流及其特性currents and their properties1140D 流的一般理论general theory of currents1140F 流代数的拉格朗日算法Lagrangian approach to current algebras1140H 部分守恒轴矢量流partially conserved axial vector currents 1150 色散关系与求和定则dispersion relations and sum rules1150E n/d法 n/dmethod 1150G 靴襻 bootstraps 1150J 交叉对称 crossingsymmetries 1150L 求和定则 sumrules1150N 多变量色散关系(包括曼德尔斯坦表象)multivariable dispersion relations(inc.Mandelstamrepresentation)1160 复合角动量;雷其(理论)体系(0380一般散射理论;1240强相互作用中的复合角动量)complex angular momentum; Reggeformalism(0380 general theory of scattering, 1240in strong interactions)1180 相对论性散射理论(0380一般散射理论)relativistic scattering theory (0380 general theoryof scattering)1180C 运动特性(螺旋性和不变振幅、运动奇异性等)kinematical properties (helicity and invariantamplitudes, kinematic singularities, etc.)1180E 部分波分析 partial wave analysis1180F 近似法(程函近似法,变分原理等) approximations (eikonal approximation, variational principles, etc)1180G 多道散射 multichannelscattering 1180J 多体散射和Faddeev方程Many-body scattering and Faddeev equation 1180L 多次散射 multiplescattering 1190 一般场论和粒子理论的其它论题other topics in general field and particle theory1200 具体理论和相互作用模型;粒子分类系统specific theories and interaction models; particlesystematics1210 统一场论和模型unified field theories and models1210B 电弱理论 electroweaktheories 1210C 统一化标准模型standard model of unification1210D 标准模型以外的统一模型(包括GUTS,颜色模型和SUSY模型)unified models beyond the standardmodel(inc.GUTS,technicolour and SUSY models)1220 电磁相互作用模型models of electromagnetic interactions1220D 量子电动力学的具体计算和极限specific calculations and limits of quantum electrodynamics1220F 量子电动力学的实验检验experimental tests of quantum electrodynamics 1225 引力相互作用模型(0460引力的量models for gravitational interactions(0460子论) quantum theory of gravitation)1230 弱相互作用模型models of weak interactions1230C 中子流 neutralcurrents 1230E 中间玻色子 intermediatebosons 1235 粒子的复合模型composite models of particles1235C 量子色动力学的一般特性(动力学,禁闭等)general properties of quantum chromodynamics(dynamics, confinement, etc.)1235E 量子色动力学在粒子特性和反应中的应用applications of quantum chromodynamics toparticle properties and reactions1235H 粒子的结构和反应的唯象复合模型(部分子模型,口袋模型等)phenomenological composite models of particlestructure and reactions (partons, bags, etc.)1235K 其它复合模型(包括复合夸克模型和轻子模型)other composite models( posite quarksand leptons)1240 强相互作用模型models of strong interactions1240E 统计模型 statisticalmodels1240F 靴襻模型 bootstrapmodels1240H 二重性和双关模型duality and dual models1240K 强子分类方案 hadronclassificationschemes1240M 复合角动量平面;雷其极点和割线(雷其子)(1160复合角动量,雷其体系的一般理论)complex angular momentum plane; Regge polesand cuts (Reggeons)(1160 for general theory)1240P 吸收模型,光学模型和程函模型(衍射和衍射生成模型见1240S)absorptive, optical, and eikonal models(fordiffraction and diffractive production models, see1240S)1240Q 势模型 potentialmodels1240R 边缘碰撞模型(一个或多个粒子交换) peripheral models (one or more particle exchange)1240S 多重边缘碰撞模型和多雷其模型(包括衍射和衍射生成模型)multiperipheral and multi Reggemodels(inc.diffraction and diffractive productionmodels)1240V 矢量介子优势 Vector-mesondominance 1270 强子质量公式hadron mass formulas1290 其它各种理论设想与模型miscellaneous theoretical ideas and models1300 具体基本粒子反应和唯象论specific elementary particle reactions and phenomenology1310 轻子间的弱相互作用和电磁相互作用weak and electromagnetic interactions of leptons1315 中微子相互作用(包括宇宙射线相互作用)neutrino interactions(inc.interactions involvingcosmic rays)1320 介子的轻子与半轻子衰变leptonic and semileptonic decays of mesons1320C π衰变 pidecays1320E K衰变 Kdecays1320G Ψ/J介子、Υ介子、Φ介子psi/J, upsilon, phi mesons1320H B介子轻子/半轻子衰变 Bmesonleptonic/semileptonicdecays 1320I f介子轻子/半轻子衰变 fmesonleptonic/semileptonicdecays 1320J 其它介子衰变other meson decays1325 介子的强子衰变 hadronicdecaysofmesons 1330 重子的衰变 decaysofbaryons1330C 轻子与半轻子衰变leptonic and semileptonic decays1330E 强子衰变 hadronicdecays 1335 轻子的衰变 decaysofleptons1338 中间玻色子和希格斯玻色子的衰变decays of intermediate and Higgs Bosons1340 电磁过程与特性electromagnetic processes and properties1340D 电磁质量差electromagnetic mass differences1340F 电磁形状因子、电矩和磁矩electromagnetic form factors; electric and magnetic moments1340H 电磁衰变 electromagneticdecays1340K 强相互作用和弱相互作用过程的电磁修正electromagnetic corrections to strong and weakinteraction processes1360 光子及带电轻子与强子的相互作用(中微子相互作用见1315)photon and charged lepton interactions withhadrons(for neutrino interactions, see 1315)1360F 弹性散射与康普顿散射elastic and Compton scattering1360H 总截面和单举(反应)截面(包括深度非弹性过程)total and inclusive crosssections(inc.deep-inelastic processes)1360K 介子产生 mesonproduction 1360M 介子共振产生 Meson-resonanceproduction 1360P 重子和重子共振产生baryon and baryon resonance production1365 电子-正电子碰撞产生强子hadron production by electron-positron collisions1375 强子诱发的低能和中能反应及散射(能量≤10GeV见1385)Hadron-induced low energy and intermediate energy reactions and scattering, energy ≤10GeV( for higher energies, see 1385)1375C 核子-核子相互作用,包括反核子和氘核等(能量≤10GeV;核中的核子-核子相互作用见2130)Nucleon-nucleon interactions, includingantinucleon, deuteron, etc. (energy ≤10GeV)(for n-n interactions in nuclei, see 2130)1375E 超子-核子相互作用(能量≤10GeV)Hyperon-nucleon interactions (energy ≤10 GeV)1375G π介子-重子相互作用(能量≤10GeV) Pion-baryon interactions (energy ≤10 GeV)1375J K介子-重子相互作用(能量≤10GeV) Kaon-baryon interactions (energy ≤10 GeV)1375L 介子-介子相互作用(能量≤10GeV)Meson-meson interactions (energy ≤10 GeV) 1380 光子-光子相互作用和散射 Photon-photon interactions and scattering1385 强子诱发的高能和超高能相互作用(能量>10GeV)(低能情况见1375) Hadron-induced high-energy and super-high-energy interactions, energy > 10GeV(for low energies, see 1375)1385D 弹性散射(能量=10GeV) elastic scattering (energy = 10 GeV)1385F非弹性散射、双粒子终态(能量>10GeV) inelastic scattering, two-particle final states(energy > 10 GeV) 1385H 非弹性散射、多粒子终态(能量>10GeV) inelastic scattering, many-particle final states(energy>10GeV)1385K 单举反应,包括总截面(能量>10GeV) inclusive reactions, including total cross sections,(energy > 10 GeV)1385M 宇宙射线相互作用(9440宇宙线) cosmic ray interactions(9440 cosmic rays)1385N 强子诱发的高能相互作用(能量>1TeV) hadron induced very high energy interactions(energy>1 TeV)1387大Q2基本粒子相互作用中的射流jets in large-Q2 elementary particle interactions 1388相互作用和散射中的极化 polarisation in interactions and scattering 1390基本粒子的具体反应及唯象论的其它论题 other topics in specific reactions and phenomenology of elementary particles 1400具体粒子的性质与共振 properties of specific particles and resonances 1420 重子与重子共振(包括反粒子) baryons and baryon resonances(inc.antiparticles)1420C 中子 neutrons1420E 质子 protons1420G s =0时的重子共振baryon resonances with s=0 1420J超子和超子共振 hyperons and hyperon resonances 1420P双重子 dibaryons1440 介子和介子共振 mesons and meson resonances 1440D π介子 pi mesons1440F K 介子 K mesons1440K Ρ介子、Ω介子和η介子rho, omega, and eta mesons 1440L d 介子和F 介子d and F mesons 1440N Ψ/J 介子、Υ介子、Φ介子psi/J, upsilon, phi mesons 1440P其它介子 other mesons 1460 轻子 leptons1460C 电子和正电子 electrons and positrons 1460E μ介子 muons1460G 中微子 neutrinos1460J重轻子 heavy leptons 1480 其它粒子和假设粒子 other and hypothetical particles1480A 光子 photons1480D 夸克和胶子 quarksandgluons 1480F 中间玻色子 intermediateBosons 1480H 磁单极子 magneticmonopoles1480J 超对称粒子(包括标量粒子,超粒子和超离子)Supersymmetric particles(inc.scalarparticles,superparticles and superions)1480K 其它(包括快子) others(inc.tachyons)2000 核物理学 NUCLEARPHYSICS 2100 核结构 nuclearstructure2110 核的一般和平均性质;核能级性质(按质量范围分类的具体核的性质见2700)general and average properties of nuclei;properties of nuclear energy levels(for propertiesof specific nuclei listed by mass ranges, see 2700)2110D 结合能和质量binding energy and masses2110F 形状、电荷、半径和形状因子shape, charge, radius and form factor s2110H 自旋、宇称和同位旋spin, parity, and isobaric spin2110J 谱因子 spectroscopicfactors 2110K 电磁矩 electromagneticmoments 2110M 能级密度和结构level density and structure2110P 单粒子能级结构single particle structure in levels2110R 集团能级结构(包括旋转能带) collective structure in levels(inc.rotational bands) 2110S 库仑效应 Coulombeffects2130 核力(1375C核子-核子相互作用) nuclear forces(1375C nucleon-nucleon interactions)2140 少核子系统 Few-nucleonsystems2160 核结构模型与方法(强子的原子和分子见3610)nuclear structure models and methods(forhadronic atoms and molecules, see 3610)2160C 壳层模型 shellmodel2160E 集体模型 collectivemodels 2160F 群论模型models based on group theory2160G 集团模型 clustermodels 2160J 哈特里-福克和随机-相位近似Hartree-Fock and random-phase approximations 2165 核物质 nuclearmatter 2180 超核 hypernuclei 2190 核结构的其它论题other topics in nuclear structure2300 放射性和电磁跃迁(8255放射化学)radioactivity and electromagnetic transitions(8255 radiochemistry)2320 电磁跃迁 electromagnetictransitions 2320C 寿命和跃迁几率lifetimes and transition probabilities2320E 角分布和校正测量angular distribution and correlation measurements2320G 多极混合比率 multipolemixingratios 2320J 多极矩阵元素 multipolematrixelements 2320L γ跃迁和能级gamma transitions and level energies2320N 内转换和核外效应internal conversion and extranuclear effects 2320Q 核共振荧光nuclear resonance fluorescence2340 β衰变;电子与μ子俘获beta decay; electron and muon capture2340B 弱相互作用和β衰变的轻子特性weak interaction and lepton aspects of beta decay2340H 核矩阵元和从β衰变推断核结构nuclear matrix elements and nuclear structure inferred from beta decay2360 α衰变 alphadecay 2390 核衰变和放射性的其它论题other topics in nuclear decay and radioactivity 2400 核反应和散射:总论nuclear reactions and scattering:general2410 核反应和散射模型与方法nuclear reaction and scattering models and methods2410D 耦合道和多体论方法coupled channel and many body theory methods2410F 平面和扭曲波玻恩近似法Plane- and distorted-wave Born approximations 2410H 光学模型和衍射模型optical and diffraction models2430 共振反应与散射resonance reactions and scattering2430C 巨共振 giantresonances 2430F 同位旋相似共振 isobaricanalogresonances 2450 直接反应 directreactions 2460 统计理论和涨落statistical theory and fluctuations2470 反应和散射中的极化polarization in reactions and scattering2475 裂变的一般性质general properties of fission2485 原子核和核形成过程的夸克模型quark models in nuclei and nuclear processes2490 核反应和散射的其它论题:一般问题other topics in nuclear reactions and scattering:general2500 核反应和散射:具体反应nuclear reactions and scattering:specific reactions2510 少核子系统的核反应与散射nuclear reactions and scattering involving few-nucleon systems2520 光致核反应和光子散射 photonuclearreactions and photon scattering 2530 轻子诱发反应与散射Lepton-induced reactions and scattering 2530C 电子和正电子反应与散射electron and positron reactions and scattering 2530E μ介子反应和散射muon reactions and scattering2530G 中微子反应和散射neutrino reactions and scattering。
GrowthHistory(宏观经济学-加州大学-詹姆斯·布拉
The Demographic Transition
• In the world today, not all countries have gone through their demographic transitions
– Nigeria, Iraq, Pakistan, and the Congo are projected to have population growth rates greater than 2% per year over the next generation
– sustained increases in the population and the productivity of labor followed
5-8
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
– population growth accelerated – output per capita grew
5-4
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Table 5.1 - Economic Growth through Deep Time
The End of the Malthusian Age
• Over time, the rate of technological progress rose
– by 1500, it was sufficiently high so that natural resource scarcity could not surpass it
自演化分子动力学蒙特卡罗方法
自演化分子动力学蒙特卡罗方法自演化分子动力学蒙特卡罗方法(Self-Evolving Molecular Dynamics Monte Carlo,简称SEMDMC)是一种用于模拟复杂多体系统的计算方法。
该方法结合了分子动力学(MD)和蒙特卡罗(MC)方法的优势,能够在较低的计算成本下获得更准确的模拟结果。
一、SEMDMC方法的基本原理SEMDMC方法的基本原理是将模拟系统分为两部分:演化部分和非演化部分。
演化部分由一组有限数量的粒子组成,这些粒子相互作用并遵循牛顿运动定律。
非演化部分由系统的其余部分组成,被视为静态背景。
在模拟过程中,演化部分的粒子会根据牛顿运动定律进行运动。
同时,会使用MC方法对非演化部分进行采样。
通过不断迭代演化部分和非演化部分,可以获得系统的完整配置空间信息。
二、SEMDMC方法的优势SEMDMC方法具有以下优势:1.能够模拟复杂多体系统:SEMDMC方法可以模拟包含大量粒子的复杂系统,例如生物大分子、材料等。
2.计算效率高:SEMDMC方法结合了MD和MC方法的优势,在较低的计算成本下获得更准确的模拟结果。
3.具有良好的可扩展性:SEMDMC方法可以并行化,从而提高计算效率。
三、SEMDMC方法的应用SEMDMC方法已被广泛应用于材料科学、生物物理、化学等领域。
例如,SEMDMC方法已被用于模拟蛋白质折叠、纳米材料的结构和性能等。
四、以下是一些SEMDMC方法的应用实例:1.模拟蛋白质折叠:SEMDMC方法已被用于模拟蛋白质折叠过程。
通过模拟,可以获得蛋白质折叠的自由能景观,从而了解蛋白质折叠的机制。
2.模拟纳米材料的结构和性能:SEMDMC方法已被用于模拟纳米材料的结构和性能。
通过模拟,可以获得纳米材料的原子结构、电子结构、力学性能等信息。
五、总结SEMDMC方法是一种用于模拟复杂多体系统的计算方法。
该方法具有计算效率高、可扩展性好等优势,已被广泛应用于材料科学、生物物理、化学等领域。
二元液体混合物扩散系数的理论计算
第21卷第6期 高 校 化 学 工 程 学 报 No.6 V ol.21 2007 年12月 Journal of Chemical Engineering of Chinese Universities Dec. 2007文章编号:1003-9015(2007)06-0919-05二元液体混合物扩散系数的理论计算阎建民1, 乐生龙1, KrishnaR 2 (1. 上海交通大学 化学化工学院, 上海 200240; 2. 阿姆斯特丹大学 化工系, 荷兰)摘 要:许多化工过程涉及扩散控制的质量传递,扩散系数的获取对过程工程的精确量化具有重要意义。
今提出了基于局部组成的扩散系数模型,以估算Maxwell-Stefan 扩散系数随浓度的变化。
仅通过无限稀释下的扩散系数,以及溶液的Wilson 或NRTL 参数,能够预测二元混合物的扩散系数。
与文献发表的实验数据比较,对15种二元组分溶液的计算结果平均误差是6.35%。
结果显示,这种模型优于目前常用的Darken 模型。
关键词:扩散系数;局部组成;唯象模型;Maxwell-Stefan 方程中图分类号:TQ021.4 文献标识码:ATheoretical Calculation of Diffusivity in Binary Liquid MixturesYAN Jian-min 1, LE Sheng-long, 1 Krishna R 2(1. College of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;2. van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WVAmsterdam, The Netherlands )Abstract: Since the chemical reactions and separations are often limited by the diffusion process, the knowledge of diffusivity is crucial in many chemical engineering processes. The Maxwell-Stefan approach was considered in this paper, and it was assumed that the diffusive friction of species i in another species j is proportional to the local volume fraction of j (фji ), but not to the mole friction of j (x j ). Based on this local composition model, a new correlation equation for the prediction of the diffusivity in binary liquid mixtures was brought forward via using the diffusivities of infinite dilution and the Wilson and NRTL parameters of the binary solution. The results of theoretical calculation were evaluated with the published experimental data, and the total average relative deviation of the predicted values with respect to experimental data is 6.35% for 15 binary systems including those containing associative component. Results indicate that this model proposed is better than the currently used Darken’s model.Key words: diffusivity; local composition; Phenomenological model; Maxwell-Stefan equation1 引 言扩散过程的精确量化计算已成为化工理论必须面对的问题。
泰力布(Nassim Nicholas Taleb)
泰力布的故事能够给我们很多启示: (1)我们都知道,正如世界上没有“永动机”一样,有效 金融市场上也没有生产财富的机器(money machine),我们 不能构造出一种极度智慧的模型,确保我们源源不断地从市场 上赚钱。 (2)不幸的是,许多人在明白了这个道理之后,仍然相信 自己的分析和模型。这个故事再次提醒我们有效金融市场的理 论的正确性。 (3)当其他投资人都自信地认为他们能够通过模型或者其 他什么分析工具来把握市场机遇的时候,你应该坚决做空股市, 至少也应该撤出资金。因为这个时候,任何投资机会都至少已 经被合理地定价了,剩下的只有发生灾难的可能。
泰力布(Nassim Nicholas Taleb)毕业于芝加 哥大学,获得经济学博士学位。此人个性沉默而内向, 是经济学界典型的数学分析高手。他组建了一家投资 基金公司Empirica,仅从公司名称上就不难看出:这 是一个强调定量分析的投资公司。的确,公司的大部 分雇员来自美国的名牌大学,具有长期从事数学分析、 模型构建的经验和能力。一开始,公司的经营作风和 其他许多华尔街的投资公司一样,整天研究一大堆随 机变量,设计各种模型,以期能够先于市场找到投资 机会。但是,泰力布渐渐发现无论多么先进复杂的数 学工具都不能够使他的基金公司稳赚不赔。
事实上,泰力布发现在华尔街聚集了许多顶尖的投 资高手,按他的讲法就是:俄罗斯来的理论物理学家, 中国来的基础数学家,加上印度来的电脑程序员,天才 们造就的各种数学模型充斥着交易大厅,人们都坚信通 过自己的模型能够取得超额回报。一般来说,我们相信 股票市场的价格波动遵循着一个类似随机过程的规律。 假设有1000个人从事投资,那么,最后可能只有不到10 个人能够在股市的历次波动中都作出准确的判断而暴富 泰力布说,不幸的是,尽管每个人都知道这一点,但是 他们还是坚信只要模型构建得足够精确,自己就能够成 为那幸运的少数人。
非等位基因
非等位基因概述非等位基因是指同一基因座上的不同等位基因。
等位基因是指在某个给定的基因座上,可以存在多种不同的变体。
每个个体继承了一对等位基因,一对等位基因可能会导致不同的表型表达。
非等位基因的存在使得遗传学研究更加复杂,因为不同的等位基因会对个体的表型产生不同的影响。
背景在生物学中,基因座是指染色体上一个特定的位置,该位置上的基因决定了某个特征的表达方式。
每个基因座上可以有多种不同的等位基因。
等位基因是指在某个特定基因座上的不同基因变体。
每个个体都会继承一对等位基因,通过这对等位基因的不同组合,决定了个体的表型。
然而,并非所有基因座上的等位基因都具有相同的表现型。
非等位基因的影响非等位基因的存在导致不同等位基因会对个体表型产生不同的影响。
有些非等位基因会表现出显性效应,也就是说,当个体继承了一个突变的等位基因时,即使同时继承了一个正常的等位基因,但显性效应会使得突变的等位基因的表型表达得到体现。
相反,有些非等位基因会表现出隐性效应,当个体继承了两个突变的等位基因时,才会表现出突变的表型。
除了显性和隐性效应之外,非等位基因还可能发生两种其他类型的表型效应。
一种是共显效应,当个体继承了两个不同的突变等位基因时,在表型表达上会表现出一种新的特征,这个特征并不是单个突变等位基因所能导致的。
另一种是部分显性效应,当个体继承了两个不同的突变等位基因时,表型表达将介于两个单独突变等位基因的表型之间。
重组和非等位基因重组是指两个不同的染色体交换部分基因序列的过程。
在重组的过程中,非等位基因可能会发生改变,导致新的等位基因组合形成。
这一过程使得非等位基因的表型效应更加复杂,因为新的等位基因可能将不同基因座的效应组合起来。
非等位基因的重要性非等位基因对生物的适应性和多样性起着重要作用。
通过对等位基因的各种组合的研究,人们可以更好地理解基因与表型之间的关系,并揭示遗传变异对物种适应环境的重要性。
总结非等位基因是指同一基因座上的不同等位基因。
RuC高压相变的第一性原理计算外文翻译及原文
本科毕业设计(论文)外文翻译译文学生姓名:院(系):材料科学与工程专业班级:材料1101指导教师:完成日期:2015年3月1日要求1、外文翻译是毕业设计(论文)的主要内容之一,必须学生独立完成。
2、外文翻译译文内容应与学生的专业或毕业设计(论文)内容相关,不得少于15000印刷符号。
3.外文翻译译文用A4纸打印。
文章标题用3号宋体,章节标题用4号宋体,正文用小4号宋体,20磅行距;页边距上、下、左、右均为2.5cm,左侧装订,装订线0.5cm。
按中文翻译在上,外文原文在下的顺序装订。
4、年月日等的填写,用阿拉伯数字书写,要符合《关于出版物上数字用法的试行规定》,如“2005年2月26日”。
5、所有签名必须手写,不得打印。
RuC高压相变的第一性原理计算First-principle calculations of high-pressure phasetransformations in RuC作者:Jian Hao, Xiao Tang, Wenjing Li, Yinwei Li起止页码:46004-p1~p5出版日期(期刊号):EPL, 105 (2014) 46004,2014年2月27日出版单位:IOP, EPL (Europhysics Letters)摘要- 使用第一原理计算在高压下RuC的结构稳定性。
结果表明,在9.3GPa的压力下,RuC从ZB型(闪锌矿型)结构转变为空间群为I4mm的四面体结构。
通过RuC5金字塔构造的I4mm结构的稳定性达26GPa,在更高压力下,则更有利成为WC型结构。
观察到伴随ZB型→ I4mm → WC型的相序,配位数增加从4至5,然后至6。
能带结构的计算表明,ZB型相是半导体,而I4mm和WC型相是金属。
此外,对所有三个阶段的RuC的机械特性进行了讨论。
简介-经压缩,由于原子间相互作用的变化和电子密度的再分配,化合物通常经历若干次相变。
结构的变化也因此可以引起物理性质的剧烈变化[1]。
英文参考文献按字母顺序排列
英文参考文献按字母顺序排列在学术论文或研究报告中,参考文献是必不可少的一部分。
参考文献可以增强论文的可信度,让读者更好地理解研究背景和关键问题。
在英文参考文献中,按字母顺序排列通常是一种常见的规范。
下面列出一些常见的英文参考文献范例,并按字母顺序排列。
A1. Altman, D. G. (1991). Practical Statistics for Medical Research. CRC Press.B2. Burke, M., & Kraut, R. (2016). The relationship between Facebook use and well-being depends on communication type and tie strength. Journal of Computer-Mediated Communication, 21(4), 265-281.C3. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates.D4. Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.E5. Ekström, M. (2017). Teaching and learning in the digital age: Online and offline pedagogies. Routledge.F6. Freud, S. (1900). The Interpretation of Dreams. The Hogarth Press.G7. Goleman, D. (1995). Emotional Intelligence. Bantam Books.H8. Hargittai, E. (2015). Is bigger always better? Potential biases of big data derived from social media. Annals of the American Academy of Political and Social Science, 659(1), 63-76.I9. Ivanova, A., & Zhang, L. (2016). Work-family conflict in the new era of Chinese industrialization: A study of gender, social class, and subjective work-family conflict. Journal of Family Issues, 37(2), 238-261.J10. Johnson, S. (2006). The Ghost Map: The Story of London's Most Terrifying Epidemic--and How It Changed Science, Cities, and the Modern World. Riverhead Books.K11. Kim, K. (2018). The influence of social media usage on civic engagement: A comparison of young adults in the United States and South Korea. Information, Communication & Society, 21(10), 1439-1455.L12. Luthans, F., & Youssef-Morgan, C. M. (2017). Psychological Capital and Beyond. Oxford University Press.M13. Marwick, A. E., & Boyd, D. (2010). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. New Media & Society, 13(1), 114-133.N14. Newman, A., Donohue, R., & Eva, N. (2017). Psychological safety: A systematic review of the literature. Human Resource Management Review, 27(3), 521-535.O15. O’Connor, A., & Joffe, H. (2014). Intercoder reliability in qualitative research: debates and practical guidelines. International Journal of Qualitative Methods, 13(1), 1-12.P16. Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), 1-6.QNo entry starting with "Q" is available.R17. Reisler, R. B., & Reisler, E. (2017). Guide to Technology in Psychiatry. CRC Press.S18. Saldaña, J. (2015). The Coding Manual for Qualitative Researchers. Sage Publications.T19. Turkle, S. (2011). Alone Together: Why We Expect More from Technology and Less from Each Other. Basic Books.UNo entry starting with "U" is available.V20. Van Dijk, J. (2012). The Network Society: Social Aspects of New Media. Sage Publications.W21. Weick, K. E., & Sutcliffe, K. M. (2007). Managing the Unexpected: Resilient Performance in an Age of Uncertainty. John Wiley & Sons.XNo entry starting with "X" is available.YNo entry starting with "Y" is available.ZNo entry starting with "Z" is available.这些英文参考文献范例可以让你更好地了解如何按字母顺序排列参考文献。
thegiftoflife新编大学英语生命的礼物
The textbooks provide teachers with a range of teaching methods, including traditional lectures, group work, and flipped classroom techniques
Technology Integration
Make use of digital tools and resources to enhance the learning experience, including online quizzes, interactive maps, and video content
Active courses
The textbooks can be used in active courses where students have a choice of topic areas to explore in more depth
Application scenarios of textbooks in teaching
Exam results are used as an indicator of the effectiveness of the textbooks in terms of student learning outcomes Comparative data on exam performance before and after using the textbooks can be analyzed to assess their impact
Teachers are resourced to observe and evaluate the effectiveness of the textbooks in their classrooms, based on student engagement, comprehension, and retention
Does Dark Matter at the Center and in the Halo of the Galaxy Consist of the Same Particles
a rXiv:as tr o-ph/111536v128Nov21Does Dark Matter at the Center and in the Halo of the Galaxy Consist of the Same Particles?Neven Bili ´c 1,F austin Munyaneza,Gary B.Tupper,and Raoul D.Viollier 2Institute of Theoretical Physics and Astrophysics Department of Physics,University of Cape Town Private Bag,Rondebosch 7701,South Africa After a discussion of the properties of degenerate fermion balls,we analyze the orbits of the star S0-1,which has the smallest projected distance to Sgr A ∗,in the supermassive black hole as well as in the fermion ball scenarios of the Galactic center.It is shown that both scenarios are consistent with the data,as measured during the last six years by Genzel et al.and Ghez et al..We then consider a self-gravitating ideal fermion gas at nonzero temperature as a model for the Galactic halo.The Galactic halo of mass ∼2×1012M ⊙enclosed within a radius of ∼200kpc implies the existence of a supermassive compact dark object at the Galactic center that is in hydrostatic and thermal equilibrium with the halo.The central object has a maximal mass of ∼2.3×106M ⊙within a minimal radius of ∼18mpc or ∼21light-days for fermion masses ∼15keV.We thus conclude that both the supermassive compact dark object and the halo could be made of the same weakly interacting ∼15keV particle.PRESENTED ATCOSMO-01Rovaniemi,Finland,August 29–September 4,20011IntroductionIn the past,self-gravitating degenerate neutrino matter has been suggested as a model for quasars,with neutrino masses in the0.2keV∼<m∼<0.5MeV range[1].Later it was used to describe dark matter in clusters of galaxies and in galactic halos,with neutrino masses in the1∼<m/eV∼<25range[2].More recently,supermassive compact dark objects consisting of weakly interacting degenerate fermionic matter,with fermion masses in the10∼<m/keV∼<20range,have been proposed[3,4,5,6,7]as an alternative to the supermassive black holes that are believed to reside at the centers of many galaxies.It has been pointed out that such degenerate fermion balls could cover[5]the whole range of the supermassive compact dark objects that have been observed so far with masses ranging from106to3×109M⊙[8].Most recently,it has been shown that a weakly interacting dark matter particle in the mass range1∼<m/keV∼<5could solve the problem of the excessive structure generated on subgalactic scales in N-body and hydrodynamical simulations of structure formation in this Universe[9].So far the masses of∼20supermassive compact dark objects at the center of galaxies have been measured using various techniques[8].The most massive compact dark object ever observed is located at the center of M87in the Virgo cluster,and it has a mass of about 3×109M⊙[10].If we identify this object of maximal mass with a degenerate fermion ball at the Oppenheimer-Volkoff(OV)limit[11],i.e.,M OV=0.54M3Pl m−2g−1/2≃3×109M⊙[5],where M Pl=The required weakly interacting fermion of∼15keV mass cannot be an active neu-trino,as it would overclose the Universe by orders of magnitude[14].Moreover,an active neutrino of∼15keV is disfavored by the experimental data on solar and atmospheric neutrinos,as these are most probably oscillating into active neutrinos with smallδm2[15], and theνe mass has been determined to be<3eV[16].However,the∼15keV fermion could very well be a sterile neutrino,contributingΩd≃0.3to the dark matter fraction of the critical density today.Indeed,as has been shown for an initial lepton asymmetry of∼10−3,a sterile neutrino of mass∼10keV may be resonantly produced in the early Universe with near closure density,i.e.Ωd∼1[17].The resulting energy spectrum of the sterile neutrinos is cut offfor energies larger than the resonance energy,thus mimicking a degenerate fermion gas.As an alternative possibility,the∼15keV sterile neutrino could be replaced by the axino[18]or the gravitino[19,20]in soft supersymmetry breaking scenarios.In the recent past,galactic halos have been successfully modeled as a self-gravitating isothermal gas of particles of arbitrary mass,the density of which scales asymptotically as r−2,yieldingflat rotation curves[21].As the supermassive compact dark objects at the galactic centers are well described by a gas of fermions of mass m∼15keV at T=0, it is tempting to explore the possibility that one could describe both the supermassive compact dark objects and their galactic halos in a unified way in terms of a fermion gas atfinite temperature.We will show in this paper that this is indeed the case,and that the observed dark matter distribution in the Galactic halo is consistent with the existence of a supermassive compact dark object at the center of the Galaxy which has about the right mass and size,and is in thermal and hydrostatic equilibrium with the halo.2Dynamics of the Stars Near the Galactic Center We now would like to compare the predictions of the black hole and fermion ball scenarios of the Galactic center,for the stars with the smallest projected distances to Sgr A∗,based on the measurements of their positions during the last six years[7,12].The projected orbits of three stars,S0-1(S1),S0-2(S2)and S0-4(S4),show deviations from uniform motion on a straight line during the last six years,and they thus may contain nontrivial information about the potential.For our analysis we have selected the star,S0-1,because its projected distance from Sgr A∗in1995.53,4.4mpc or5.3light-days,makes it most likely that it could be orbiting within a fermion ball of radius∼18mpc or∼21light-days. We thus may in principle distinguish between the black hole and fermion ball scenarios for this star.The dynamics of the stars in the gravitationalfield of the supermassive compact dark object can be studied solving Newton’s equation of motion,taking into account the initial position and velocity vectors at,e.g.,t0=1995.4yr,i.e., r(t0)≡(x,y,z)and ˙ r(t0)≡(v x,v y,v z).For the fermion ball the source of gravitationalfield is the mass M(r) enclosed within a radius r[3,7]while for the black hole it is M c=M(R c)=2.6×106M⊙.2The x-axis is chosen in the direction opposite to the right ascension(RA),the y-axis inthe direction of the declination,and the z-axis points towards the sun.The black hole and the center of the fermion ball are assumed to be at the position of Sgr A∗which isalso the origin of the coordinate system at an assumed distance of8kpc from the sun.In Figs.1and2the right ascension(RA)and declination of S0-1are plotted as a function of time for various unobservable z’s and v z=0in1995.4,for the black hole andfermion ball scenarios.The velocity components v x=340km s−1and v y=−1190kms−1in1995.4have beenfixed from observations.In the case of a black hole,both RA and declination depend strongly on z in1995.4,while the z-dependence of these quantities inthe fermion ball scenario is rather weak.We conclude that the RA and declination data of S0-1are wellfitted with|z|≈0.25′′in the black hole scenario,and with|z|∼<0.1′′in thefermion ball case(1′′=38.8mpc=46.2light-days at8kpc).Of course,we can also trytofit the data varying both the unknown radial velocity v z and the unobservable radial distance z.The results are summarized in Fig.3,where the z−v z phase-space of1995.4,thatfits the data,is shown.The small range of acceptable|z|and|v z|values in the black hole scenario(solid vertical line)reflects the fact that the orbit of S0-1depend stronglyon z.The weak sensitivity of the orbit on z in the fermion ball case is the reason forthe much larger z−v z phase-spacefitting the data of S0-1[12],as shown by the dashed box.The dashed and solid curves describe the just bound orbits in the fermion ball andblack hole scenarios,respectively.The star S0-1is unlikely to be unbound,because inthe absence of close encounters with stars of the central cluster,S0-1would have to fall in with an initial velocity that is inconsistent with the velocity dispersion of the stars atinfinity.Fig.4shows some typical projected orbits of S0-1in the black hole and fermion ballscenarios.The data of S0-1may befitted in both scenarios with appropriate choices of v x,v y,z and v z in1995.4.The inclination angles of the orbit’s plane,θ=arccos L z/| L| , with L=m r×˙ r,are shown next to the orbits.The minimal inclination angle thatdescribes the data in the black hole case isθ=70o,while in the fermion ball scenario it isθ=0o.In the black hole case,the minimal and maximal distances from Sgr A∗are r min =0.25′′and r max=0.77′′,respectively,for the orbit with z=0.25′′and v z=0which has a period of T0≈161yr.The orbits with z=0.25′′and v z=400km s−1or z=0.25′′and v z=700km s−1have periods of T0≈268yr or T0≈3291yr,respectively.In the fermion ball scenario,the open orbit with z=0.1′′and v z=0has a“period”of T0≈77yr with r min=0.13′′and r max=0.56′′.The open orbits with z=0.1′′and v z=400 km s−1or z=0.1′′and v z=900km s−1have“periods”of T0≈100yr or T0≈1436yr, respectively.In concluding,it is important to note that,based on the data of the star S0-1[12],the fermion ball scenario cannot be ruled out.In fact,in view of the z−v z phase space,that is much larger in the fermion ball scenario than in the black hole case,there is reason to treat the fermion ball scenario of the supermassive compact dark object at the center of our Galaxy with the respect it deserves.33Dark Matter in the Center and the Halo of the GalaxyDegenerate fermion balls are well understood in terms of the Thomas-Fermi theory applied to self-gravitating fermionic matter at T=0[3].Extending this theory to nonzero temperature[22,23,24],it has been shown that at some critical temperature T=T c, a self-gravitating ideal fermion gas,having a mass below the OV limit enclosed in a spherical cavity of radius R,may undergo afirst-order gravitational phase transition from a diffuse state to a condensed state.This is best seen plotting the energy and free energy as functions of the temperature which are three-valued in some temperature interval, exhibiting a Maxwell-Boltzmann branch at high temperatures and the degenerate branch at low temperatures.However,thisfirst-order phase transition can only take place if the Fermi gas is able to get rid of the large latent heat which is due to the binding energy of the fermion ball.As the short-range interactions of the fermions are negligible,the gas cannot release its latent heat;it will thus be trapped for temperatures T<T c in a thermodynamic quasi-stable supercooled state close to the point of gravothermal collapse. The Fermi gas will be caught in the supercooled state even if the total mass of the gas exceeds the OV limit,as a stable condensed state does not exist in this case.The formation of a supercooled state close to the point of gravothermal collapse,may be understood as a process similar to that of violent relaxation,which was introduced to describe rapid virialization of stars of different mass in globular clusters[25,26]with-out invoking binary collisions of the stars,as these would not contribute significantly to thermalization on a scale of the age of the Universe.Through the gravitational collapse of a cold overdensefluctuation,∼1Gyr after the Big Bang,part of gravitational energy transforms into the kinetic energy of random motion of small-scale densityfluctuations. The resulting virialized cloud will thus be well approximated by a gravitationally stable thermalized halo.In order to estimate the mass-temperature ratio,we assume that the cold overdense cloud of the mass of the Galaxy M stops expanding at the time t m,reach-ing its maximal radius R m and minimal average densityρm=3M/(4πR3m).The total energy per particle is just the gravitational energyE=−3R m.(1)Assuming spherical collapse[27]one arrives atρm=9π216Ωdρ0(1+z m)3,(2)where¯ρ(t m)is the background density at the time t m or cosmological redshift z m,and ρ0≡3H20/(8πG)is the present critical density.We now approximate the virialized cloud by a singular isothermal sphere[26]of mass M and radius R,characterized by a constant4circular velocity Θ=(2T/m )1/2and the density profile ρ(r )=Θ2/4πGr 2.Its total energy per particle is the sum of gravitational and thermal energies,i.e.,E =−1R =−15G (6Ωd ρ0M 2)1/3(1+z m ).(4)Taking Ωd =0.3,M =2×1012M ⊙,z m =4,and H 0=65km s −1Mpc −1,we find Θ≃220km s −1,which corresponds to the mass-temperature ratio m/T ≃4×106.Next,we briefly discuss the general-relativistic extension of the Thomas-Fermi theory[23]for a self-gravitating gas of N fermions with mass m and degeneracy factor g at the temperature T enclosed in a sphere of radius R .We denote by p ,ρ,and n the pressure,energy density,and particle number density of the gas,respectively.In the following we use the units in which G =1.The metric generated by the mass distribution is static,spherically symmetric,and asymptotically flat,i.e.,ds 2=ξ2dt 2−(1−2M /r )−1dr 2−r 2(dθ2+sin θdφ2).(5)For numerical convenience,we introduce the parameter α=µ/T and the substitution ξ=(ϕ+1)−1/2µ/m ,where µis the chemical potential associated with the conserved particle number N .The equation of state for a self-gravitating gas may thus be represented in parametric form [28]asn =11+exp {[(y 2+1)1/2/(ϕ+1)1/2−1]α},(6)ρ=11+exp {[(y 2+1)1/2/(ϕ+1)1/2−1]α},(7)p =11+exp {[(y 2+1)1/2/(ϕ+1)1/2−1]α},(8)where appropriate length and mass scales a and b ,respectively,have been chosen such that a =b =(2/g )1/2/m 2.Restoring ¯h ,c ,and G ,we havea =g¯h M Pl2m 2km ,(9)b = g M 3Pl 2m2M ⊙.(10)5Thus fermion mass,degeneracy factor,and chemical potential are eliminated from the equation of state.Einstein’sfield equations for the metric(5)are given bydϕr(r−2M),(11)d Mdr=4πr2(1−2M/r)−1/2n(13) imposing particle-number conservation as a condition at the boundaryN(R)=N.(14) Eqs.(11)-(13)should be integrated using the boundary conditions at the origin,i.e.,ϕ(0)=ϕ0>−1,M(0)=0,N(0)=0.(15) It is useful to introduce the degeneracy parameterη=αϕ/2,which,in the Newtonian limit,approachesηnr=(µnr−V)/T,withµnr=µ−m being the nonrelativistic chemical potential and V the Newtonian potential.Asϕis monotonously decreasing with increas-ing r,the strongest degeneracy is obtained at the center withη0=αϕ0/2.The parameter η0,uniquely related to the central density and pressure,will eventually befixed by the requirement(14).For r≥R,the functionϕyields the usual empty-space Schwarzschildsolutionϕ(r)=µ2r −1−1,(16)withM=M(R)= R0dr4πr2ρ(r).(17) Given the temperature T,the set of self-consistency equations(6)-(13),with the bound-ary conditions(14)-(17)defines the general-relativistic extension of the Thomas-Fermi equation.4Numerical ResultsThe numerical procedure is now straightforward.For afixed,arbitrarily chosenα,wefirst integrate Eqs.(11)and(12)numerically on the interval[0,R]tofind the solutions for various central values of the degeneracy parameterη0.Integrating(13)simultaneously,6yields N(R)as a function ofη0.We then select the value ofη0for which N(R)=N.The chemical potentialµcorresponding to this particular solution is given by Eq.(16)which in turn yields the parametric dependence on the temperature throughα=µ/T.The quantities N,T,and R are free parameters of our model and their range of values are dictated by the physics of the problem at hand.At T=0the number of fermions N is restricted by the OV limit N OV=2.89×109radius is at which the r−2asymptotic behavior of the density begins.Theflattening of the Galactic rotation curve begins in the range1∼<r/kpc∼<10,hence the solution(3’) most likely describes the Galaxy’s halo.This may be verified by calculating the rotational curves in our model.We know already from the estimate(4)that our model yields the correct asymptotic circular velocity of220km/s.In order to make a more realistic com-parison with the observed Galactic rotation curve,we must include two additional matter components:the bulge and the disk.The bulge is modeled as a spherically symmetric matter distribution of the form[31]ρb(s)=e−hs[(u+1)8−1]1/2,(18)where s=(r/r0)1/4,r0is the effective radius of the bulge and h is a parameter.We adopt r0=2.67kpc and h yielding the bulge mass M b=1.5×1010M⊙[32].In Fig.8the mass of halo and bulge enclosed within a given radius is plotted for variousη0.Here,the gravitational backreaction of the bulge on the fermionic halo has been taken into account. The data points,indicated by squares,are the mass M c=2.6×106M⊙within18mpc, estimated from the motion of the stars near Sgr A∗[12],and the mass M50=5.4+0.2−3.6×1011 within50kpc,estimated from the motions of satellite galaxies and globular clusters[30]. Variation of the central degeneracy parameterη0between24and32does not change the essential halo features.In Fig.9we plot the circular velocity components of the halo,the bulge,and the disk. The contribution of the disk is modeled as[33]Θd(r)2=Θd(r o)21.97(r/r o)1.22one important difference:in the Maxwell-Boltzmann case the curve continues to spiral inwards ad infinitum approaching the point of the singular isothermal sphere,that is characterized by an infinite central density.In Fermi-Dirac case the spiral consists of two almost identical curves.The inwards winding of the spiral begins for some negative central degeneracy and stops at the point T=2.3923×10−7m,E=−1.1964×10−7m, whereη0becomes zero.This part of the curve,which basically depicts the behavior of a nondegenerate gas,we call Maxwell-Boltzmann branch.By increasing the central de-generacy parameter further to positive values,the spiral begins to unwind outwards very close to the inwards winding curve.The outwards winding curve will eventually depart from the Maxwell-Boltzmann branch for temperatures T∼>10−3m.Further increase of the central degeneracy parameter brings us to a region,where general-relativistic effects become important.The curve will exhibit another spiral for temperatures and energies of the order of a few10−3m approaching the limiting temperature T∞=2.4×10−3m and energy E∞=3.6×10−3m with both the central degeneracy parameter and the central density approaching infinite values.It is remarkable that gravitationally stable configura-tions with arbitrary large central degeneracy parameters exist atfinite temperature even though the total mass exceeds the OV limit by several orders of magnitude.5ConclusionsIn summary,using the Thomas-Fermi theory,we have shown that a weakly interacting fermionic gas atfinite temperature yields a mass distribution that successfully describes both the center and the halo of the Galaxy.For a fermion mass m≃15keV,a reasonable fit to the rotation curve is achieved with the temperature T=3.75meV and the degen-eracy parameter at the centerη0=28.With the same parameters,we obtain the mass M50=5.04×1011M⊙and M200=2.04×1012M⊙within50and200kpc,respectively. These values agree quite well with the mass estimates based on the motions of satellite galaxies and globular clusters[30].Moreover,the mass of M c≃2.27×106M⊙,enclosed within18mpc,agrees reasonably well with the observations of the compact dark object at the center of the Galaxy.We thus conclude that both the Galactic halo and center could be made of the same fermions.An observational consequence of this unified scenario of fermion ball and fermion halo atfinite temperature could be the direct observation of the radiative decay of the fermion (assumed here to be a sterile neutrino)into a standard neutrino,i.e.,f→νγ.The X-ray luminosity of the compact dark object is most easily observed.If the lifetime for the decay f→νγis0.82×1019yr,the luminosity of a M c=2.6×106M⊙fermion ball would be0.9×1034erg s−1.This is consistent with the upper limit of the X-ray luminosity of∼(0.5 -0.9)×1034erg s−1of the source with radius0.5′′≃23light-days,whose center nearly coincides with Sgr A∗,as seen by the Chandra satellite in the2to7keV band[36].The lifetime is proportional to sin−2θ,θbeing the unknown mixing angle of the sterile with active neutrinos.With a lifetime of0.82×1019yr we obtain an acceptable value for the9mixing angle squared ofθ2=1.4×10−11.The X-rays originating from such a radiative decay would contribute about two orders of magnitude less than the observed diffuse X-ray background at this wavelength if the sterile neutrino is the dark matter particle of the Universe.The signal observed at the Galactic center would be a sharp X-ray line at ∼7.5keV for g=2and∼6.3keV for g=4.This line could be misinterpreted as the Fe Kαline at6.67keV.Scattering with baryonic matter within the Galactic center could distribute the energy more evenly in the2to7keV band.The X-ray luminosity would be tracing the fermion matter distribution,and it could thus be an important test of the fermion ball scenario.Of course the angular resolution would need to be∼<0.1′′and the sensitivity would have to extend beyond7keV.ACKNOWLEDGEMENTSThis research is in part supported by the Foundation of Fundamental Research(FFR) grant number PHY99-01241and the Research Committee of the University of Cape Town. The work of N.B.is supported in part by the Ministry of Science and Technology of the Republic of Croatia under Contract No.00980102.References[1]M.A.Markov,Phys.Lett.10,122(1964).[2]G.Marx and A.S.Szalay,in Neutrino’72,1,191(Technoinform,Budapest,1972);R.Cowsik and J.McClelland,Astrophys.J.180,7(1973);R.Ruffini,Lett.Nuovo Cim.29,161(1980).[3]R.D.Viollier,D.Trautmann and G.B.Tupper,Phys.Lett.B306,79(1993);R.D.Viollier,Prog.Part.Nucl.Phys.32,51(1994).[4]N.Bili´c,D.Tsiklauri and R.D.Viollier,Prog.Part.Nucl.Phys.40,17(1998);N.Bili´c and R.D.Viollier,Nucl.Phys.(Proc.Suppl.)B66,256(1998).[5]N.Bili´c,F.Munyaneza and R.D.Viollier,Phys.Rev.D59,024003(1999).[6]D.Tsiklauri and R.D.Viollier,Astropart.Phys.12,199(1999);F.Munyaneza andR.D.Viollier,astro-ph/9907318.[7]F.Munyaneza,D.Tsiklauri and R.D.Viollier,Astrophys.J.509,L105(1998);ibid.526,744(1999);F.Munyaneza and R.D.Viollier,astro-ph/0103466,Astrophys.J.563,0000(2001).[8]L.C.Ho and J.Kormendy,astro-ph/0003267;astro-ph/0003268.10[9]P.Bode,J.P.Ostriker,and N.Turok,Astrophys.J.556,93(2001),astro-ph/0010389.[10]F.Macchetto et al.,Astrophys.J.489,579(1997).[11]J.R.Oppenheimer and G.M.Volkoff,Phys.Rev.55,374(1939).[12]A.Eckart and R.Genzel,Mon.Not.R.Astron.Soc.284,576(1997);A.M.Ghez,B.L.Klein,M.Morris and E.E.Becklin,Astrophys.J.509,678(1998).[13]R.Mahadevan,Nature394,651(1998).[14]E.W.Kolb and M.S.Turner,The Early Universe(Addison-Wesley,San Francisco,1989).[15]S.Fukuda et al.,Phys.Rev.Lett.85,3999(2000).[16]D.E.Groom et al.,Review of Particle Physics,Eur.Phys.J.C15,1(2000).[17]X.Shi and G.M.Fuller,Phys.Rev.Lett.82,2832(1999);K.Abazajian,G.M.Fuller,and M.Patel,Phys.Rev.D64,023501(2001),astro-ph/0101524;G.B.Tupper,R.J.Lindebaum,and R.D.Viollier,Mod.Phys.Lett.A15,1221(2000).[18]T.Goto and M.Yamaguchi,Phys.Lett.B276,123(1992);L.Covi,J.E.Kim,andL.Roszkowski,Phys.Rev.Lett.82,4180(1999),hep-ph/9905212;L.Covi,H.-B.Kim,J.E.Kim,and L.Roszkowski,hep-ph/0101009.[19]M.Dine and A.E.Nelson,Phys.Rev.D48,1277(1993),hep-ph/9303230;M.Dine,A.E.Nelson and Y.Shirman,Phys.Rev.D51,1362(1995),hep-ph/9408384;M.Dine,A.E.Nelson,Y.Nir and Y.Shirman,Phys.Rev.D53,2658(1996),hep-ph/9507378;D.H.Lyth,Phys.Lett.B488,417(2000),hep-ph/9911257.[20]H.Murayama,Phys.Rev.Lett.79,18(1997),hep-ph/9705271;S.Dimopoulos,G.Dvali,R.Rattazzi and G.F.Giudice,Nucl.Phys.B510,12(1998),hep-ph/9705307;E.A.Baltz and H.Murayama,astro-ph/0108172.[21]S.Cole and cey,Mon.Not.R.Astron.Soc.281,716(1996)and referencestherein.[22]N.Bili´c and R.D.Viollier,Phys.Lett.B408,75(1997).[23]N.Bili´c and R.D.Viollier,Gen.Rel.Grav.31,1105(1999);Eur.Phys.J.B11,173(1999).[24]W.Thirring,Z.Physik235,339(1970);P.Hertel,H.Narnhofer and W.Thirring,Comm.Math.Phys.28,159(1972);J.Messer,J.Math.Phys.22,2910(1981). [25]D.Lynden-Bell,Mon.Not.R.Astron.Soc.136,101(1967).11[26]J.Binney and S.Tremaine,Galactic Dynamics(Princeton University Press,Prince-ton,New Jersey,1987),and references cited therein.[27]T.Padmanabhan,Structure formation in the Universe(Cambridge University Press,Cambridge,1993).[28]J.Ehlers,in Relativity,Astrophysics and Cosmology,edited by W.Israel(D.ReidelPublishing Company,Dordrecht/Boston1973).[29]P.-H.Chavanis and J.Sommeria,Mon.Not.R.Astron.Soc.296,569(1998).[30]M.I.Wilkinson and N.W.Evans,Mon.Not.R.Astron.Soc.310,645(1999).[31]P.J.Young,Astrophys.J.81,807(1976);G.de Vaucouleurs and W.D.Pence,As-trophys.J.83,1163(1978).[32]P.D.Sackett,Astrophys.J.483,103(1997).[33]M.Persic,P.Salucci,and F.Stell,Mon.Not.R.Astron.Soc.281,27(1986).[34]R.P.Olling and M.R.Merrifield,Mon.Not.R.Astron.Soc.311,361(2000).[35]W.Y.Chau,ke,J.Stone,Astrophys.J.281,560(1984).[36]F.K.Baganoffet al.,astro-ph/0102151.12Figure1:Right ascension of S0-1versus time for various|z|and v x=340km s−1, v y=−1190km s−1and v z=0in1995.4.Figure2:Declination of S0-1versus time for various|z|and v x=340km s−1,v y=−1190 km s−1and v z=0in1995.4.Figure3:The z−v z phase-space thatfits the S0-1data.Figure4:Examples of typical orbits of S0-1.Figure5:Number of particles versus central degeneracy parameter for m/T=4×106 (solid),3.5×106(short dashs),4.5×106(long dashs),and5×106(dot-dashed line). Figure6:The density profile of the halo for a central degeneracy parameterη0=0 (dotted line)and for the sixη0-values discussed in the text.Configurations with negative η0((1)-(3))are depicted by the dashed and those with positiveη0((1’)-(3’))by the solid line.Figure7:Mass of the halo M h(r)enclosed within a radius r for various central degeneracy parametersη0as in Fig.6.Figure8:Enclosed mass of halo plus bulge versus radius forη0=24(dashed),28(solid), and32(dot-dashed line).Figure9:Fit to the rotation curve of the Galaxy.The data points are from[34]for R0=8.5kpc andΘ0=220km/s.Figure10:Energy(shifted by12×10−8m)versus temperature(shifted by−24×10−8m), both in units of10−10m,forfixed N=2×1012M⊙/m13。
博士生发一篇information fusion
博士生发一篇information fusion Information Fusion: Enhancing Decision-Making through the Integration of Data and KnowledgeIntroduction:Information fusion, also known as data fusion or knowledge fusion, is a rapidly evolving field in the realm of decision-making. It involves the integration and analysis of data and knowledge from various sources to generate meaningful and accurate information. In this article, we will delve into the concept of information fusion, explore its key components, discuss its application in different domains, and highlight its significance in enhancingdecision-making processes.1. What is Information Fusion?Information fusion is the process of combining data and knowledge from multiple sources to provide a comprehensive and accurate representation of reality. The goal is to overcome the limitations inherent in individual sources and derive improved insights and predictions. By assimilating diverse information,information fusion enhances situational awareness, reduces uncertainty, and enables intelligent decision-making.2. Key Components of Information Fusion:a. Data Sources: Information fusion relies on various data sources, which can include sensors, databases, social media feeds, and expert opinions. These sources provide different types of data, such as text, images, audio, and numerical measurements.b. Data Processing: Once data is collected, it needs to be processed to extract relevant features and patterns. This step involves data cleaning, transformation, normalization, and aggregation to ensure compatibility and consistency.c. Information Extraction: Extracting relevant information is a crucial step in information fusion. This includes identifying and capturing the crucial aspects of the data, filtering out noise, and transforming data into knowledge.d. Knowledge Representation: The extracted information needs to be represented in a meaningful way for integration and analysis.Common methods include ontologies, semantic networks, and knowledge graphs.e. Fusion Algorithms: To integrate the information from various sources, fusion algorithms are employed. These algorithms can be rule-based, model-based, or data-driven, and they combine multiple pieces of information to generate a unified and coherent representation.f. Decision-Making Processes: The ultimate goal of information fusion is to enhance decision-making. This requires the fusion of information with domain knowledge and decision models to generate insights, predictions, and recommendations.3. Applications of Information Fusion:a. Defense and Security: Information fusion plays a critical role in defense and security applications, where it improves intelligence analysis, surveillance, threat detection, and situational awareness. By integrating information from multiple sources, such as radars, satellites, drones, and human intelligence, it enables effective decision-making in complex and dynamic situations.b. Health Monitoring: In healthcare, information fusion is used to monitor patient health, combine data from different medical devices, and provide real-time decision support to medical professionals. By fusing data from wearables, electronic medical records, and physiological sensors, it enables early detection of health anomalies and improves patient care.c. Smart Cities: Information fusion offers enormous potential for the development of smart cities. By integrating data from multiple urban systems, such as transportation, energy, and public safety, it enables efficient resource allocation, traffic management, and emergency response. This improves the overall quality of life for citizens.d. Financial Markets: In the financial sector, information fusion helps in the analysis of large-scale and diverse datasets. By integrating data from various sources, such as stock exchanges, news feeds, and social media mentions, it enables better prediction of market trends, risk assessment, and investmentdecision-making.4. Significance of Information Fusion:a. Enhanced Decision-Making: Information fusion enables decision-makers to obtain comprehensive and accurate information, reducing uncertainty and improving the quality of decisions.b. Improved Situational Awareness: By integrating data from multiple sources, information fusion enhances situational awareness, enabling timely and informed responses to dynamic and complex situations.c. Risk Reduction: By combining information from diverse sources, information fusion improves risk assessment capabilities, enabling proactive and preventive measures.d. Resource Optimization: Information fusion facilitates the efficient utilization of resources by providing a holistic view of the environment and enabling optimization of resource allocation.Conclusion:In conclusion, information fusion is a powerful approach to enhance decision-making by integrating data and knowledge from multiple sources. Its key components, including data sources, processing, extraction, knowledge representation, fusion algorithms, and decision-making processes, together create a comprehensive framework for generating meaningful insights. By applying information fusion in various domains, such as defense, healthcare, smart cities, and financial markets, we can maximize the potential of diverse information sources to achieve improved outcomes.。
弗莱明一代尔模型定义
弗莱明一代尔模型定义
弗莱明一代尔模型(Fleming-Viot model)是一类描述遗传漂变(genetic drift)和自然选择(natural selection)在群体中作用的数
学模型。
该模型由英国数学家弗莱明(Wendy M. L. Fleming)和法国科
学家一代尔(Lucien Michel Marie Viot)于1979年独立提出。
在弗莱明一代尔模型中,群体中遗传类型的变化受到三种因素的影响:突变、自然选择和遗传漂变。
突变会导致新的遗传变异出现,自然选择会
促进某些变异表现型的适应性,而遗传漂变则是由于随机事件的影响导致
某些遗传型的频率发生变化。
弗莱明一代尔模型是一种离散时间、连续空间、基于个体和基于群体
的随机演化模型,可用于研究遗传多样性和基因群体结构的动态演化。
该
模型对于理解遗传漂变、自然选择等基本生态学过程在群体中作用的机制
具有重要意义。
Calabi-Yau Topology of Primordial Fermions
Calabi-Yau Topology of Primordial FermionsEdwin Eugene Klingman【期刊名称】《Journal of Modern Physics》【年(卷),期】2024(15)1【摘要】Quantum field theory creates fermions via abstract operators exciting abstract fields, with a specific field for each type of specific particle. This operator algebra lends itself well to quantum statistics, nevertheless, our physical understanding of this process is nonintuitive at best. In this paper we analyze the creation of fermions from primordial gauge field quantum gravity loops in the context of Calabi-Yau manifold theory. I extend a prior mass-gap treatment based on Yang-Mills gauge theory of higher order self-interaction to include the half-integral spin of fermions.【总页数】27页(P132-158)【作者】Edwin Eugene Klingman【作者单位】Cybernetic Micro Systems, Inc., San Gregorio, CA, USA【正文语种】中文【中图分类】O15【相关文献】1.双参数变形的Fermion相干态和SU(3)电荷、超荷Fermion相干态2.BOSON-FERMION ALGEBRA AND BOSON-FERMION REPRESENTATION OF LIESUPERALGEBRA OSP (1, 2)3.FUZZY TOPOLOGY—LATTICE TOPOLOGY—LATTICELYZED TOPOLOGY4.Nakayama自内射代数的扭Calabi-Yau模5.A road map to higher genus Gromov-Witten invariants of Calabi-Yau quintics因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21:46
WSPC/Trim Size: 9in x 6in for Proceedings
inagaki
arXiv:hep-ph/0308077v1 7 Aug 2003
DYNAMICAL LOW-MASS FERMION GENERATION IN RANDALL-SUNDRUM BACKGROUND ∗
T. INAGAKI Information Media Center, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan E-mail: inagaki@hiroshima-u.ac.jp
It is investigated that a dynamical mechanism to generate a low mass fermion in Randall-Sundrum (RS) background. We consider a five-dimensional four-fermion interaction model with two kinds of bulk fermion fields and take all the mass scale in the five-dimensional spacetime at the Planck scale. Evaluating the effective potential of the induced four-dimensional model, I calculate the dynamically generated fermion mass. It is shown that dynamical symmetry breaking takes place and one of the fermion mass is generated at the electroweak scale in four dimensions.
inagaki
2
Fig. 1 we illustrate an image of a four-dimensional brane embedded in a five-dimensional bulk. The bulk fields are the fields which can propagate in the bulk. The KK excitation modes of the bulk fields appear on the brane and the modes may affect some of low energy phenomena.
1. Introduction To construct a unified theory of the electroweak interaction, strong interaction and gravity it is important to make investigation on the gauge hierarchy problem, how the electroweak scale is realized in the theory at the Planck scale. As in a large extra-dimension model it is possible to solve the gauge hierarchy problem to consider a four-dimensional brane embedded in a higher-dimensional spacetime.1,2 Randall and Sundrum considered a higher-dimensional curved spacetime with negative curvature and found a beautiful solution of the hierarchy problem by using the exponential factor in the metric.3 Here we launched a plan to study a dynamical mechanism to realize the electroweak scale from the Planck scale physics in a model of the brane world proposed by Randall and Sundrum.4,5,6,7 At the beginning, it is considered that only the graviton can propagate in the extra-dimension and all the standard model particles are localized on the four-dimensional brane. However, there is a possibility that some of the standard model particles also propagate in the extra-dimension.8 In
Figure 2.
Randall-Sundrum spacetime
background spacetime is a static solution of the Einstein equation if the cosmological constant in the bulk, Λ, and that on the brane, V1 , V2 , satisfy the relationship, Λ = −V1 = V2 . The spacetime described by the metric, g µν = e−2kr|θ| ηµν dxµ dxν + r2 dθ2 . (2) (1)
∗ The main part of this paper is based on the works in collaboration with K. Fukazawa, Y. Katsuki, T. Muta and K. Ohkura.7
1
February 1, 2008
21:46
WSPC/Trim Size: 9in x 6in for Proceedings
February 1, 2008
21:46
WSPC/Trim Size: 9in x 6in for Proceedings
inagaki
3
2. Four-Fermion Interaction Model in Randall-Sundrum Background Here we briefly review the Randall-Sundrum idea3 and introduce a fourfermion interaction between bulk fermions. 2.1. Randall-Sundrum Background The RS background is a five-dimensional spacetime whose fifth dimension is compactified on an orbifold with S 1 /Z2 symmetry and two Minkowski branes exist at the orbifold fixed points, θ = 0 and π , see Fig. 2. The
February 1, 2008
21:46
WSPC/Trim Size: 9in x 6in for Proceedings
inagaki
4ቤተ መጻሕፍቲ ባይዱ
For k ∼ 11, the electroweak mass scale, MEW , can be realized from only the Planck scale, Mpl , without introducing some large number. M ∼ k ∼ O(Mpl ), Mphys ∼ O(MEW ). (5)
Figure 1.
Image of the brane world.
One of the interesting phenomena is found in a spontaneous electroweak symmetry breaking. The electroweak symmetry can be dynamically broken down due to the fermion and anti-fermion condensation. Many works have been done to see the contribution of the KK modes to dynamical symmetry breaking in models with large extra dimensions.9,10,11,12,13,14,15 Here a theory with bulk fermions is considered in the RS background. We assume the existence of two types of bulk fermion fields which can propagate in a five-dimensional balk. To construct a model where the fermion field naturally develops the electroweak mass scale, a four-fermion interaction is introduced between these bulk fermions. As is known, the four-fermion interaction model is a simple model of dynamical symmetry breaking. It is expected that a negative curvature enhances symmetry breaking.16,17,18,19 Evaluating the induced four-dimensional effective potential, we calculate the mass scale of the fermion in four dimensions. Since we are interested in the bulk standard model particles, the KK excitations of graviton are assumed to have no serious effect on the fermion mass and ignore them.