2018届二轮(文)专题十八不等式选讲专题卷(全国通用)

合集下载

2018届高考数学二轮复习第六章 不等式专题(共4个专题)

2018届高考数学二轮复习第六章 不等式专题(共4个专题)

专题1 不等关系与不等式专题[基础达标](15分钟40分)一、选择题(每小题5分,共30分)1a>b成立的充分不必要条件是()A.|a|>|b|B.1a >1bC.a2>b2D.lg a>lg bD【解析】当a=-1,b=0时,满足|a|>|b|,但不满足a>b,所以|a|>|b|不是a>b的充分条件,排除A;当a=2,b=3时,满足1a >1b,但不满足a>b,所以1a>1b不是a>b的充分条件,排除B;当a=-1,b=0时,满足a2>b2,但不满足a>b,所以a2>b2不是a>b的充分条件,排除C;因为lg a>lg b⇔a>b>0,所以lg a>lg b 是a>b成立的充分不必要条件.2.如果a<b<0,那么下列不等式成立的是()A.-1a <-1bB.ab<b2C.-ab<-a2D.|a|<|b|A【解析】利用作差法逐一判断.因为1b −1a=a-bab<0,所以-1a<-1b,A正确;因为ab-b2=b(a-b)>0,所以ab>b2,B错误;因为ab-a2=a(b-a)<0,所以-ab>-a2,C错误;a<b<0,所以|a|>|b|,D错误.3.若0<m<n,则下列结论正确的是()A.2m>2nB.12m<12nC.lo g1m>lo g1nD.log2m>log2nC【解析】函数y=2x和y=log2x均是增函数,又n>m>0,∴2m<2n,log2m<log2n;函数y=lo g12x,y=12x均是减函数,又n>m>0,∴lo g12m>lo g12n,12m>12n.4.命题“∀x∈[1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件是() A.a≥4 B.a≤4 C.a≥3 D.a≤3C【解析】不等式x2-a≤0,∀x∈[1,2]恒成立⇔a≥(x2)max=4,x∈[1,2],所以所求的一个必要不充分条件是a≥3.5.设a>b>1,c<0,给出下列四个结论:①a c>1;②a c<b c;③log b(a-c)>log a(b-c);④b b-c>a a-c.其中所有的正确结论的序号是() A.①②B.②③C.①②③D.②③④B【解析】因为a>1,所以指数函数y=a x递增,又c<0,所以a c<1,①错误,排除A和C;而B和D中都有②和③,所以只要判断④是否正确.又b b-c<b a-c<a a-c,所以④错误,排除D.6f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,以a为横坐标,b为纵坐标,则f(-2)的取值范围是() A.[5,8] B.[7,10] C.[5,10] D.[5,12]C【解析】由题意可得1≤a-b≤2,2≤a+b≤4,又f(-2)=4a-2b=3(a-b)+(a+b),由不等式的基本性质可得f(-2)的取值范围是[5,10].二、填空题(每小题5分,共10分)7.已知x∈R,m=(x+1) x2+x2+1,n= x+12(x2+x+1),则m,n的大小关系为.m>n【解析】因为m-n=(x+1) x2+x2+1− x+1 2(x2+x+1)=x3+12x2+x+x2+x2+1- x3+x2+x+12x2+12x+12=12>0,所以m>n.8.设实数x,y满足3≤xy2≤8,4≤x 2y ≤9,则x3y4的最大值是.27【解析】根据不等式的基本性质求解.x 2y 2∈[16,81],1xy2∈18,13,则x3 y =x2y2·1xy∈[2,27],x3y的最大值是27.[高考冲关](15分钟25分)1.(5分p:若a>b,则a2>b2,q:“x≤1”是“x2+2x-3≤0”的必要不充分条件,则下列命题是真命题的是() A.p∧q B.(p)∧qC.(p)∧(q)D.p∧(q)B【解析】取a=-1,b=-2,可知命题p是假命题.x2+2x-3≤0⇔-3≤x≤1,由x≤1不能得知-3≤x≤1;反过来,由-3≤x≤1可得x≤1,因此“x≤1”是“x2+2x-3≤0”的必要不充分条件,命题q是真命题,故(p)∧q是真命题.2.(5分)若a>b>0,则下列不等式中总成立的是()A.a+1b >b+1aB.a+1a>b+1bC.ba >b+1a+1D.2a+ba+2b>abA【解析】a+1b -b-1a=(a-b)+1b-1a=(a-b)+a-bab=(a-b)1+1ab,其中a-b>0,ab>0,故a+1b -b-1a>0,故A正确;令a=2,b=12,则a+1a=b+1b,故B错误;又b a −b+1a+1=b-aa(a+1)<0,所以ba<b+1a+1,故C错误;2a+ba+2b−ab=b2-a2b(a+2b)<0,故D错误.3.(5分y=a x(a>0,a≠1)与y=x b的图象如图,则下列不等式一定成立的是()A.b a>0B.a+b>0C.a b>1D.log a2>bD【解析】由函数图象可知a>1,b<0,所以a b<1,排除C;A,B项中的不等式不一定成立;log a2>0>b,故D项中的不等式一定成立.4.(5分)若a=1816,b=1618,则a,b的大小关系为.a<b【解析】因为ab =181616=9816216=8216,且0<82<1,所以8216<1,又a>0,b>0,则a<b.5.(5分)设a,b为正实数,现有下列命题:①若a2-b2=1,则a-b<1;②若1b −1a=1,则a-b<1;③若|a−|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有.(写出所有真命题的编号)①④【解析】由a2-b2=1得(a-b)(a+b)=1,又由已知得a+b>a-b,故a-b<1,所以①是真命题;当a=2,b=23时,有1b−1a=1,此时a-b>1,所以②是假命题;当a=9,b=4时,|a−|=1,|a-b|=5>1,所以③是假命题;对于④,假设|a-b|≥1,不妨设a>b,则a≥b+1,因为|a3-b3|=|a-b|·|a2+ab+b2|,则a2+ab+b2>a2+b2≥(b+1)2+b2>1,则|a3-b3|=|a-b||a2+ab+b2|>1,与已知矛盾,则|a-b|<1,所以④是真命题.专题2 二元一次不等式(组)与简单的线性规划问题专题[基础达标](25分钟50分)一、选择题(每小题5分,共25分)1x,y满足约束条件x-y≥0,x+y-4≤0,y≥1,则z=-2x+y的最大值是() A.-1 B.-2 C.-5 D.1A【解析】约束条件对应的区域是一个三角形,当z=-2x+y经过点(1,1)时取得最大值-1.2x,y满足约束条件x-y+2≥0,y+2≥0,x+y+2≤0,则y+1x-1的取值范围为()A.-13,15B.-13,1C.-∞,-13∪15,+∞D.-∞,-13∪[1,+∞)B【解析】约束条件对应的平面区域是以点(-2,0),(-4,-2)和(0,-2)为顶点的三角形,当目标函数y+1x-1经过点(-2,0)时取得最小值-13,经过点(0,-2)时取得最大值1,则y+1x-1的取值范围是-13,1.3x,y满足不等式组x+y-6≤0,2x-y-1≤0,3x-y-2≥0,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围是() A.[-2,1] B.[-1,2] C.[-3,-2] D.[-3,1]A【解析】不等式组对应的平面区域是以点(1,1),(2,4)和73,113为顶点的三角形,且目标函数y=-ax+z经过点(2,4)时z取得最大值,经过点(1,1)时z 取得最小值,则-1≤-a≤2,即-2≤a≤1.4.若x,y满足kx+y≤4,2y-x≤4,x≥0,y≥0,且z=5y-x的最小值为-8,则k的值为()A.-12B.12C.-2D.2B【解析】直线kx+y=4恒过定点(0,4),画图可知k>0,且不等式组对应的平面区域是以点(0,0),(0,2),42k+1,4k+42k+1和4k,0为顶点的四边形(包含边界),z=5y-x在点4k ,0处取得最小值-8,则-4k=-8,解得k=12.5.在平面直角坐标系中,若点P(x,y)满足x-4y+4≤0,2x+y-10≤0,5x-2y+2≥0,则当xy取得最大值时,点P的坐标是()A.(4,2)B.(2,2)C.(2,6)D.52,5D【解析】不等式组对应的平面区域是以点(0,1),(2,6)和(4,2)为顶点的三角形(包含边界),当xy取得最大值时,点(x,y)必在线段2x+y-10=0,x∈[2,4]上,所以xy=x(10-2x)=-2x2+10x,x∈[2,4],当x=52时,xy取得最大值,此时点P52,5.二、填空题(每小题5分,共25分)6y≤x,x+y≤8,y≥a表示的平面区域的面积为25,点P(x,y)在所给平面区域内,则z=2x+y的最大值为.17【解析】不等式组对应的平面区域是以点(a,a),(8-a,a),(4,4)(a<4)为顶点的三角形,则该三角形的面积为12(8-2a)·(4-a)=25,解得a=-1(舍去9).目标函数经过点(9,-1)时,z取得最大值17.7.若实数x,y满足x≤2,y≤2,x+y≥2,则目标函数z=yx+1的最大值是.2【解析】不等式组对应的平面区域是以点(2,0),(0,2)和(2,2)为顶点的三角形(包含边界),当目标函数z=yx+1经过点(0,2)时取得最大值2.8x,y满足约束条件x≤4-2y,x≥0,y≥0,那么x2+y2-10x-6y的最小值为.-1215【解析】约束条件对应的平面区域是以点(0,0),(0,2)和(4,0)为顶点的三角形,目标函数可变形为(x-5)2+(y-3)2-34,其中(x-5)2+(y-3)2的几何意义是可行域上的点(x,y)与点(5,3)的距离的平方,最小值为点(5,3)到直线x+2y-4=0的距离的平方,即为52=495,则x2+y2-10x-6y=(x-5)2+(y-3)2-34的最小值为49 5-34=-1215.9.在平面直角坐标系xOy中,记不等式组y-3≥0,2x+y-7≤0,x-2y+6≥0表示的平面区域为D.若对数函数y=log a x(a>1)的图象与D有公共点,则a的取值范围是.(1, 23] 【解析】作出不等式组对应的平面区域,如图阴影部分所示(包含边界),若a>1,当对数函数图象经过点A 时,满足条件,此时y -3=0,2x +y -7=0,解得 x =2,y =3,即A (2,3),此时log a 2=3,解得a= 23,∴当1<a< 23时,满足条件.∴实数a 的取值范围是(1, 23].10x ,y 满足 x ≥2,x +y ≤4,2x -y -m ≤0,若目标函数z=3x+y的最大值为10,则z 的最小值为 .-1 【解析】不等式组所表示的平面区域是以点(2,2),(2,4-m ), m +43,8-m 3 (m>2)为顶点围成的三角形(包括边界),当目标函数y=-3x+z 经过点 m +43,8-m3时z 取得最大值,则m+4+8-m3=10,解得m=5,则z min =-1.[高考冲关] (15分钟 30分)1.(5分x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( )A .a ≥43 B .0<a ≤1 C .1≤a ≤43D .0<a ≤1 或a ≥43D【解析】不等式中前面3个不等式表示的平面区域是以点(0,0),(1,0)和23,23为顶点的三角形,由图可得当0<a≤1或a≥43时,上述三角形位于直线x+y=a 下方的区域仍然是三角形.2.(5分)已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个根为x1,x2,且0<x1<1,x2>1,则ba的取值范围是()A.-1,-12B.-1,-12C.-2,-12D.-2,-12D【解析】令f(x)=x2+(1+a)x+a+b+1,则f(0)=a+b+1>0,f(1)=2a+b+3<0,则点P(a,b)对应的平面区域如图阴影部分所示(不含边界),当(a,b)取点(-2,1)时,ba取得最大值-12,当过原点的直线与2a+b+3=0平行时,不经过可行域上的点,所以-2<ba <-12.3.(5分)若变量x,y满足x+y≤4,2x-y+4≥0,x-2y-4≤0,则xy的取值范围是()A.[-2,16]B.(-∞,-2]∪[16,+∞)C.[16,+∞)D.[-2,0]∪[16,+∞)A【解析】作出不等式组对应的平面区域如图中阴影部分所示(包含边界),当z>0时,y=zx与区域有公共点,且与边界x+y=4相切时,z=4,经过点(-4,-4)时,z=16,此时0<z≤16;当z=0时与区域有公共点;当z<0时,与边界2x-y+4=0,x-2y-4=0相切时,z=-2,此时-2≤z<0.综上可得z=xy的取值范围是[-2,16].4.(5分)已知变量x,y满足约束条件x+y≤1,x-y≤1,x≥a,若yx-2≤12恒成立,则实数a的取值范围为.[0,1]【解析】要使不等式组对应的平面区域存在,则a≤1,此时不等式组对应的区域是以点(a,a-1),(a,1-a),(1,0)为顶点的三角形(包含边界),则1-a a-2≤yx-2≤a-1a-2,由yx-2≤12,得a-1a-2≤12,则a≥0,故实数a的取值范围是[0,1].5.(5分m>1,已知在约束条件y≥x,y≤mx,x+y≤1下,目标函数z=x2+y2的最大值为23,则实数m的值为.2+3【解析】m>1,由题意可知,约束条件对应的平面区域是以点(0,0),1 2,12和11+m,m1+m为顶点的三角形(包含边界),且当目标函数z=x2+y2经过点11+m ,m1+m时取得最大值23,所以11+m2+m1+m2=23,化简得m2-4m+1=0,m>1,解得m=2+3.6.(5分P(x,y)的坐标满足3x-y<0,x-3y+2<0,y≥0,3x22的取值范围为.-3,3【解析】作出不等式组所表示的平面区域,如图,其中B(-2,0),C(1,3),A32,12,设P(x,y)为区域内一个动点,向量OA,OP的夹角为θπ6=∠AOC<θ≤∠AOB=5π6,则cos θ=OA·OP|OA||OP|=32x+12yx2+y2=12×3xx2+y2,又-32≤cosθ<32,则3x22=2cos θ∈[-3,3).专题3 基本不等式及其应用专题[基础达标](20分钟45分)一、选择题(每小题5分,共20分)1.已知a,b∈R*且a+b=1,则ab的最大值等于()A.1B.14C.12D.22B【解析】由于a,b∈R*,则1=a+b≥2ab,得ab≤14,当且仅当a=b=12时等号成立.2.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则() A.a<v<ab B.v=abC.<v<a+b2D.v=a+b2A【解析】设甲、乙两地相距S,则平均速度v=2S S+S =2aba+b,又∵a<b,∴v=2aba+b >2abb+b=a.∵a+b>2ab,∴2aba+b−2ab<0,即v<ab,∴a<v<ab.3mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则1m +3n的最小值为()A. 4B. 12C. 16D. 6D【解析】直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则直线过圆心,即3m+n=2,则1 m +3n=1m+3n3m2+n2=3+n2m+9m2n≥3+2n2m·9m2n=6,当且仅当n2m=9m2n,m=13,n=1时取等号,则1m +3n的最小值为6.4x,y满足x+4y=4,则x+28y+4xy的最小值为()A.852B.24C.20D.18D【解析】由题意可得x=4-4y>0,y>0,则0<y<1.令2+6y=t,t∈(2,8),则y=t-26,所以x+28y+4xy=8+24y(4-4y)y=2+6y(1-y)y=t8-t6×t-26=36t10t-t-16=3610- t+16t≥3610-8=18,当且仅当t=4时取等号,则x+28y+4xy的最小值为18.二、填空题(每小题5分,共25分)5.当x>1时,函数y=x+1x-1的最小值是.3【解析】因为x>1,y=x+1x-1=(x-1)+1x-1+1≥2(x-1)·1x-1+1=3,当且仅当x-1=1x-1,且x>1,即x=2时等号成立,故函数y的最小值为3.6.实数x,y满足x+2y=2,则3x+9y的最小值是.6【解析】利用基本不等式可得3x+9y=3x+32y≥23x·32y=23x+2y,∵x+2y=2,∴3x+9y≥2x+2y=22=6,当且仅当3x=32y,即x=1,y=12时,取等号,即3x+9y 的最小值为6.7P,Q分别是曲线y=x+4x与直线4x+y=0上的动点,则线段PQ长的最小值为.717 17【解析】由y=x+4x可得y=1+4x,若PQ长取最小值,则点P在与直线4x+y=0平行的切线上,且PQ垂直于直线4x+y=0,由y'=-4x=-4,解得x=1或-1.当x=1时,点P(1,5),则点P到直线4x+y=0的距离为17=91717,即此时PQ=91717;当x=-1时,P(-1,-3),则点P到直线4x+y=0的距离为17=71717,即此时PQ=71717<91717,则线段PQ长的最小值为71717.8(a,b)在直线2x+3y-1=0上,则代数式2a +3b的最小值为.25【解析】由题意可得2a+3b=1,a>0,b>0,则2a +3b=2a+3b(2a+3b)=13+6ba+6a b ≥13+26ba·6ab=25,当且仅当a=b=15时取等号,所以代数式2a+3b的最小值为25.9.若不等式1x +41-x≥a对任意的x∈(0,1)恒成立,则a的最大值是.9【解析】由x∈(0,1),得1-x>0,1x +41-x=x+1-xx+4(x+1-x)1-x=5+1-xx+4x 1-x ≥5+21-xx×4x1-x=5+4=9,当且仅当1-xx=4x1-x,即x=13时,取等号,所以1x+41-x的最小值为9,所以a≤9,所以a的最大值为9.[高考冲关](15分钟30分)1.(5分f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的“上确界”,若a,b∈R*且a+b=1,则-12a −2b的“上确界”为()A.-92B.92C.14D.-4A【解析】因为12a +2b=12a+2b(a+b)=52+b2a+2ab≥52+2b2a·2ab=92,当且仅当b=2a=23时取等号,所以-12a−2b≤-92,即-12a−2b的“上确界”为-92.2.(5分S n为正项等比数列{a n}的前n项和,若S12-S6 S6-7·S6-S3S3-8=0,且正整数m,n满足a1a m a2n=2a53,则1m+8n的最小值是()A.75B.53C.95D.157B【解析】设等比数列{a n}的公比为q(q>0),则S12-S6S6=q6,S6-S3S3=q3,q6-7q3-8=0,解得q=2(舍负),则a1a m a2n=a13×2m+ 2n-2=2a53=a13×213,化简得m+2n=15,则1 m +8n=1151m+8n(m+2n)=11517+2nm+8mn≥11517+22nm·8mn=53,当且仅当m=3,n=6时取等号,所以1m +8n的最小值是53.3.(5分)若a>0,b>0,且1a +1b=ab,则a3+b3的最小值为.42【解析】因为a>0,b>0,所以1a +1b=ab≥ab,则ab≥2,所以a3+b3=(a+b)(a2-ab+b2)≥2ab·(2ab-ab)=2(ab)3≥2(2)3=42,当且仅当a=b 时取等号,即a3+b3的最小值为42.4.(5分)已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC 面积S的最大值为.36 17【解析】由S=a2-(b-c)2得b2+c2-a2+S=2bc,则2bc cos A+12bc sin A=2bc,所以cos A=1-14sin A,代入cos2A+sin2A=1中解得sin A=817.又b+c=6≥2bc,则bc≤9,当且仅当b=c=3时取等号,所以△ABC面积S的最大值为12bc sin A≤12×9×817=3617.5.(5分x,y均为正数,且方程(x2+xy+y2)·a=x2-xy+y2成立,则a的取值范围是.1 3,1【解析】由(x2+xy+y2)·a=x2-xy+y2可得a=x2-xy+y2x+xy+y=1-2xyx+xy+y=1-2x+1+y,又x,y均为正数,所以xy +yx+1≥2+1=3,0<2xy+yx+1≤23,13≤1-2xy+yx+1<1,则a的取值范围是13,1.6.(5分2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则1a+1+2b的最小值为.3+222【解析】曲线y=cos πx+1(0<x<1)的对称中心12,1在直线2ax+by-1=0上,则a+b=1,1a+1+2b=121a+1+2b[(a+1)+b]=123+ba+1+2(a+1)b≥1 23+2ba+1·2(a+1)b=3+222,当且仅当ba+1=2(a+1)b时取等号,则1a+1+2b的最小值为3+222.专题4 一元二次不等式及其解法专题[基础达标](25分钟50分)一、选择题(每小题5分,共20分)1.若不等式x2+px+4≤0恰好有一个解,则实数p的值为()A.4B.-4C.±4D.以上都不对C【解析】由已知可得方程x2+px+4=0有两个相等的实数根,所以Δ=p2-16=0,解得p=±4.2.若不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为() A.(-3,0) B.[-3,0) C.[-3,0] D.(-3,0]D【解析】当k=0时,显然成立;当k≠0时,即一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k<0,k2-4×2k×-38<0,解得-3<k<0.综上,满足不等式2kx2+kx-38<0对一切实数x都成立的k的取值范围是(-3,0].3x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为()A.-235,+∞B.-235,1C.(1+∞)D.(-∞,-1)A【解析】令f(x)=x2+ax-2,则f(0)=-2.①若顶点横坐标x=-a2≤0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,则应满足f(5)>0,解得a>-235,即此时a≥0;②若顶点横坐标x=-a2>0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,也应满足f(5)>0,解得a>-235,即此时-235<a<0.综上可知,实数a的取值范围是-235,+∞.4p:∃x∈R,(m+1)(x2+1)≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m应满足()A.m≥2B.m≤-2或m>-1C.m≤-2或m≥2D.-1<m≤2B【解析】若命题p:∃x∈R,(m+1)(x2+1)≤0是真命题,则m+1≤0,m≤-1;若命题q:∀x∈R,x2+mx+1>0恒成立是真命题,则Δ=m2-4<0,即-2<m<2,所以若p∧q为真命题,则-2<m≤-1,所以p∧q为假命题时实数m应满足m≤-2或m>-1.二、填空题(每小题5分,共20分)5x的不等式x2-ax-4>0在x∈[-2,1]时无解,则实数a 的取值范围是.[-3,0]【解析】不等式x2-ax-4>0,x∈[-2,1]无解,即x2-ax-4≤0,x∈[-2,1]恒成立,则4+2a-4≤0,1-a-4≤0,解得-3≤a≤0.6.已知不等式组x2-4x+3<0,x2-6x+8<0的解集是不等式2x2-9x+a<0的解集的子集,则实数a的取值范围是.(-∞,9]【解析】不等式组x2-4x+3<0,x2-6x+8<0的解集是{x|2<x<3},设f(x)=2x2-9x+a,则由题意得f(2)≤0,f(3)≤0,解得a≤9.7.若关于x的不等式a≤34x2-3x+4≤b的解集恰好是[a,b],则a+b=.4【解析】二次函数y=34x2-3x+4的顶点坐标为(2,1),开口向上.若a>1,则由图象可知原不等式的解集是两个区间的并集,不合题意,故a≤1,此时a≤34x2-3x+4的解集为R,所以原不等式的解集即为34x2-3x+4≤b的解集,所以a,b为方程34x2-3x+4=b的两个不同根,则a+b=4.8.若对任意实数p∈[-1,1],不等式px2+(p-3)x-3>0成立,则实数x的取值范围为.(-3,-1)【解析】不等式可变形为(x2+x)p-3x-3>0,令f(p)=(x2+x)p-3x-3,p∈[-1,1].原不等式成立等价于f(p)>0,p∈[-1,1],即f(-1)>0,f(1)>0,即-x2-x-3x-3>0,x2+x-3x-3>0,解得-3<x<-1.三、解答题(共10分)9.(10分)若不等式ax2+5x-2>0的解集是 x|12<x<2.(1)求实数a的值;(2)求不等式ax2-5x+a2-1>0的解集.【解析】(1)由题意知a<0,且方程ax2+5x-2=0的两个根为12,2,则-5a=12+2,解得a=-2.(2)由(1)知a=-2,则ax2-5x+a2-1>0即为-2x2-5x+3>0,即为2x2+5x-3<0,解得-3<x<12,即不等式ax2-5x+a2-1>0的解集为-3,12.[高考冲关](15分钟30分)1.(5分f(x)=x2+2x(x<0),-x2(x≥0),若f(f(a))≤3,则实数a的取值范围是()A.(-∞,-3]B.[-3,+∞)C.[-3,3]D.(-∞,3]D【解析】令f(a)=t,则f(t)≤3⇔t<0,t2+2t≤3或t≥0,-t2≤3,解得t≥-3,则f(a)≥-3⇔a<0,a2+2a≥-3或a≥0,-a2≥-3,解得a<0或0≤a≤3,则实数a的取值范围是(-∞,3].2.(5分a>0,b>0,函数f(x)=ax2+b满足:对任意实数x,y,有f(xy)+f(x+y)≥f(x)f(y),则实数a的取值范围是() A. (0,1] B. (0,1) C. (0,2) D. (0,2]B【解析】令y=0,得f(0)+f(x)≥f(x)f(0),即a(1-b)x2+2b-b2≥0对任意实数x恒成立,所以有b=1或1-b>0,2b-b2≥0,所以b的范围是(0,1].再令y=-x,得f(-x2)+f(0)≥f(x)f(-x),即为a(a-1)x4+2abx2+b2-2b≤0对任意实数x恒成立,当a=1时,x2≤2-b2不恒成立,所以a(a-1)<0,解得0<a<1.3.(5分x的不等式a cos 2x+cos x≥-1恒成立,则实数a 的取值范围是.0,2+24【解析】原不等式即为a(2cos2x-1)+cos x≥-1,令cos x=t,t∈[-1,1],则2at2+t+1-a≥0,t∈[-1,1]恒成立.令f(t)=2at2+t+1-a,t∈[-1,1],由f(-1)=2a-1+1-a=a≥0,当a=0时,f(t)=t+1≥0,t∈[-1,1]恒成立,则a=0适合.当a>0时,对称轴t=-14a <0,当t=-14a≤-1,即0<a≤14时,f(t)min=f(-1)=a≥0,所以0<a≤14;当-1<-14a<0,即a>14时,f(t)min=f-14a=-18a+1-a≥0,解得2-24≤a≤2+24,所以14<a≤2+24.综上可得实数a的取值范围是0,2+24.4.(5分f(x)=ax2+x-b(a,b均为正数),不等式f(x)>0的解集记为P,集合Q={x|-2-t<x<-2+t}.若对于任意正数t,P∩Q≠⌀,则1a −1b的最大值是.12【解析】因为集合Q实质上是包含-2的一个区间,在该区间上存在实数满足f(x)>0,则f(-2)=4a-2-b≥0,0<b≤4a-2 a>12.所以1a−1b≤1a−14a-2a>12,令g(a)=1a −14a-2a>12,则g'(a)=-4(a-1)(3a-1)a2(4a-2)2,由g'(a)=0得a=1舍去13,且a∈1 2,1时,g'(a)>0,g(a)递增,a∈(1,+∞)时,g'(a)<0,g(a)递减,则g(a)≤g(1)=12,故1a −1b≤12,即1a−1b的最大值是12.5.(10分)若不等式mx2-2x+1-m<0对满足-2≤m≤2的所有m都成立,求实数x的取值范围.【解析】已知不等式可以化为(x2-1)m+1-2x<0.设f(m)=(x2-1)m+1-2x,这是一个关于m的一次函数(或常数函数),要使f(m)<0在-2≤m≤2时恒成立,其等价条件是f(2)=2(x2-1)+1-2x<0,f(-2)=-2(x2-1)+1-2x<0,整理得2x2-2x-1<0,2x2+2x-3>0,解得-1+72<x<1+32,所以实数x的取值范围是-1+72,1+32.。

2018届高考数学二轮不等式选讲专题卷(全国通用)(6)

2018届高考数学二轮不等式选讲专题卷(全国通用)(6)

不等式选讲1.已知f (x )为R 上的减函数,则满足f (||)<f (1)的实数x 的取值范围是( ) A .(﹣1,1) B .(0,1) C .(﹣1,0)∪(0,1) D .(﹣∞,﹣1)∪(1,+∞) 【答案】C 【解析】由已知得解得﹣1<x <0或0<x <1,故选C 2.(2013•南开区一模)已知A={x||2x ﹣1|<5},B={x|x 2﹣5x+4<0},C=(1,3),则“x ∈A∩B”是“x ∈C”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 【答案】C 【解析】试题分析:解一元二次不等式求得A 和B ,可得 A∩B=C ,故由“x ∈A∩B”,可得“x ∈C”,而且由“x ∈C”可得“x ∈A∩B”,从而得“x ∈A∩B”是“x ∈C”的充要条件.解:∵已知A={x||2x ﹣1|<5}={x|﹣5<2x ﹣1<5 }=(﹣2,3), B={x|x 2﹣5x+4<0}={x|(x ﹣1)(x ﹣4)<0}=(1,4),C=(1,3), ∴A∩B=(1,3),即A∩B=C .故由“x ∈A∩B”,可得“x ∈C”,而且由“x ∈C”可得“x ∈A∩B”, “x ∈A∩B”是“x ∈C”的充要条件, 故选C .点评:本题主要考查绝对值不等式的解法,充分条件、必要条件、充要条件的定义,属于中档题.3.已知函数()|1|f x x =-,2()65g x x x =-+-(x R ∈). (1)若()()g x f x ≥,求x 的取值范围; (2)求()g x ()f x -的最大值.【答案】(1)[]1,4(2)94【解析】 试题分析:(1)解含绝对值不等式的一般方法为,根据绝对值定义,转化为不等式组,分别求解,最后求并集:当1x ≥时,2651x x x -+-≥-,[]1,4x ∈;当1x <时,2651x x x -+-≥-,x ∈∅,所以x 的取值范围是[]1,4.(2)求含绝对值函数最值,先根据绝对值定义,转化为分段函数,分段求最值,最后比较最值大小得函数最值:当1x ≥时,()g x 22()65(1)54f x x x x x x -=-+---=-+-2599()244x =--+≤;当1x <时,()g x 22()65(1)760f x x x x x x -=-+-+-=-+-<,所以当52x =时,()()g x f x -取到最大值为94试题解析:(1)当1x ≥时,()1f x x =-,由()()g x f x ≥,得2651x x x -+-≥-,整理得(1)(4)0x x --≤,所以[]1,4x ∈;当1x <时,()1f x x =-,由()()g x f x ≥,得2651x x x -+-≥-,整理得(1)(6)0x x --≤,所以[]1,6x ∈,由1,16x x <⎧⎨≤≤⎩,得x ∈∅, 综上x 的取值范围是[]1,4.(2)由(1)知,()()g x f x -的最大值必在[]1,4上取到,所以22599()()65(1)()244g x f x x x x x -=-+---=--+≤, 所以当52x =时,()()g x f x -取到最大值为94考点:解含绝对值不等式,含绝对值函数最值【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向. 4.已知正数a, b, c 满足a+b <2c .求证:c a c << 【答案】见解析。

2018届高考理科数学二轮专题复习讲义 不等式选讲

2018届高考理科数学二轮专题复习讲义 不等式选讲

专题八 选修系列第2讲 不等式选讲考情考向分析本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点分类突破热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a .(2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R.(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6.当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅; 当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4. 综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎡⎦⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)证明 由柯西不等式,有 (-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值.解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1, 解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc +3abc ≥23abc·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4,即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。

2018届高考数学二轮不等式选讲专题卷文(全国通用)

2018届高考数学二轮不等式选讲专题卷文(全国通用)

(六)不等式选讲1.(2017·唐山月考)已知函数f (x )=|x +1|+|mx -1|.(1)若m =1,求f (x )的最小值,并指出此时x 的取值范围;(2)若f (x )≥2x ,求m 的取值范围.解 (1)当m =1时,f (x )=|x +1|+|x -1|≥|(x +1)-(x -1)|=2,当且仅当(x +1)(x -1)≤0时取等号,故f (x )的最小值为2,此时x 的取值范围是[-1,1].(2)当x ≤0时,f (x )≥2x 显然成立,所以此时m ∈R ;当x >0时,由f (x )=x +1+|mx -1|≥2x ,得|mx -1|≥x -1.由y =|mx -1|及y =x -1的图象,可得|m |≥1且1m≤1, 解得m ≥1或m ≤-1.综上所述,m 的取值范围是(-∞,-1]∪[1,+∞).2.已知函数f (x )=|x -2|-|x +1|.(1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x(a >0)的最小值大于函数f (x ),试求实数a 的取值范围. 解 (1)当x >2时,原不等式可化为x -2-x -1>1,此时不成立;当-1≤x ≤2时,原不等式可化为2-x -x -1>1,解得x <0,即-1≤x <0;当x <-1时,原不等式可化为2-x +x +1>1,解得x <-1.综上,原不等式的解集是{x |x <0}.(2)因为g (x )=ax +1x -1≥2a -1, 当且仅当x =a a时等号成立, 所以g (x )min =g ⎝ ⎛⎭⎪⎫a a =2a -1.当x >0时,f (x )=⎩⎪⎨⎪⎧ 1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1).所以2a -1≥1,解得a ≥1.所以实数a 的取值范围为[1,+∞).3.设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0.f (x )≤2可化为-1≤ax ≤3,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a ,易知-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,易知-1a =2,3a =-6,解得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎪⎫-∞,-14上单调递减, 在⎝ ⎛⎭⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增, 则当x =-14时,h (x )取得最小值-72, 由题意知7-3m ≥-72,解得m ≤72. 所以实数m 的取值范围是⎝⎛⎦⎥⎤-∞,72. 4.设f (x )=|x -1|+|x +1|.(1)求f (x )≤x +2的解集;(2)若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,求实数x 的取值范围. 解 (1)由f (x )≤x +2,有⎩⎪⎨⎪⎧ x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧x +2≥0,-1<x <1,1-x +x +1≤x +2 或⎩⎪⎨⎪⎧x +2≥0,x ≥1,x -1+x +1≤x +2,解得0≤x ≤2,所以所求的解集为[0,2].(2)⎪⎪⎪⎪⎪⎪|a +1|-|2a -1||a |=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪⎪⎪2-1a≤⎪⎪⎪⎪⎪⎪1+1a +2-1a =3,当且仅当⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫2-1a ≤0时取等号.由不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3,即⎩⎪⎨⎪⎧ x ≤-1,1-x -x -1≥3或⎩⎪⎨⎪⎧ -1<x <1,1-x +x +1≥3或⎩⎪⎨⎪⎧x ≥1,x -1+x +1≥3, 解得x ≤-32或x ≥32.所以所求x 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.5.不等式|x 2+3x -18|<6-2x 的解集为{x |a <x <b }.(1)求a ,b 的值;(2)已知p ,q ∈(-1,1),且pq =b a ,求u =a 8(p 2-1)+b4(q 2-1)的最小值.解 (1)由|x 2+3x -18|<6-2x ,可得⎩⎪⎨⎪⎧ 6-2x >0,|x 2+3x -18|2<4(x -3)2,即⎩⎪⎨⎪⎧x <3,(x -3)2(x +8)(x +4)<0, 解得-8<x <-4,从而a =-8,b =-4.(2)由(1)知u =-88(p 2-1)+-44(q 2-1)=11-p 2+11-q 2,pq =b a =12,故p 2+q 2≥2pq =1,当且仅当p =q =±22时取等号.而u =11-p 2+11-q 2≥211-p 2·11-q 2=2154-p 2-q 2≥2154-1=4, 或u =11-p 2+11-q 2=2-p 2-q 254-p 2-q 2=1+3454-(p 2+q 2)≥1+3454-1=4.。

[精品]2018高考数学(理科)习题第十八章不等式选讲181和答案

[精品]2018高考数学(理科)习题第十八章不等式选讲181和答案

1.不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B .(-∞,1) C .(1,4) D .(1,5) 答案 A解析 当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.2.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-1,12解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x ≤-2,-x +3,-2<x <12,3x +1,x ≥12.可得最小值为52,根据条件可得a 2+12a +2≤52,即2a 2+a -1≤0,解得-1≤a ≤12.3.若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-53<x <13,则a=________.答案 -3解析 由不等式的解集可知-53,13为不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3⎪⎪⎪⎪⎪⎪13a -2=3,解得a =-3.4.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.点击观看解答视频解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).5.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值. 解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1.(2)-3t +12+t =34-t +t≤32+124-t2+t2]=24-t +t =4,当且仅当4-t 3=t 1,即t =1时等号成立,故(-3t +12+t )max =4.6.已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c=|a +b |+c .当且仅当-a ≤x ≤b 时,等号成立. 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c . 又已知f (x )的最小值为4, 所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16,即14a 2+19b 2+c 2≥87.当且仅当12a 2=13b 3=c 1,即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87. 7.解不等式x +|2x +3|≥2.解原不等式可化为⎩⎪⎨⎪⎧x <-32,-x -3≥2,或⎩⎪⎨⎪⎧x ≥-32,3x +3≥2.解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-5或x ≥-13.8.设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.点击观看解答视频解 (1)证明:∵a >0,∴f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎝⎛⎭⎪⎫x +1a -(x -a )⎪⎪=⎪⎪1a+a ⎪⎪=a +1a≥2a ·1a=2.当且仅当a =1时取等号,∴f (x )≥2.(2)∵f (3)<5,∴⎪⎪⎪⎪⎪⎪1a +3+|a -3|<5,即1a +3+|a -3|<5,∴1a -2<a -3<2-1a ,解得1+52<a <5+212, ∴a 的取值范围是⎝ ⎛⎭⎪⎪⎫1+52,5+212. 9.若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解 (1)由ab =1a +1b≥2ab,得ab ≥2,当a =b =2时,“=”成立.故a 3+b 3≥2a 3b 3≥42,当a =b =2时,“=”成立. ∴a 3+b 3的最小值为4 2. (2)2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.10.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+xf 2(x )≤14.解 (1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+,1-x ,x ∈-∞,当x ≥1时,由f (x )=3x -3≤1,得x ≤43,∴1≤x ≤43.当x <1时,由f (x )=1-x ≤1,得x ≥0, ∴0≤x <1.∴f (x )≤1的解集为M =⎣⎢⎡⎦⎥⎤0,43.(2)证明:由g (x )=16x 2-8x +1≤4,得16⎝⎛⎭⎪⎫x -142≤4,∴-14≤x ≤34.∴N =⎣⎢⎡⎦⎥⎤-14,34,∴M ∩N =⎣⎢⎡⎦⎥⎤0,34.当x ∈M ∩N 时,f (x )=1-x ,∴x 2f (x )+xf 2(x )=xf (x )[x +f (x )]=x ·f (x )=x (1-x )=14-⎝⎛⎭⎪⎫x -122≤14.故要证的不等式成立.。

2018届高考数学二轮不等式专题卷(全国通用)

2018届高考数学二轮不等式专题卷(全国通用)

不等式0221、已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥。

若A B =∅ ,则实数a 的取值范围是 。

)3,2(22、不等式3)61(log 2≤++xx 的解集为 。

答案:{}(331x ∈---+⋃。

23、不等式0212<---x x 的解集为 。

答案:{|11}x x -<<。

24、不等式x x >-|23|的解集是 。

答案:),1()21,(+∞⋃-∞。

25、若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩,则s y x =-的最小值为 。

答案:6-。

26、,0<∃x ,使得不等式t x x --<22成立,则实数t 的取值范围是 。

答案:⎪⎭⎫ ⎝⎛-2,49 27、若关于x 的不等式62<+ax 的解集为()2,1-,则实数a 的值等于 。

答案:—4。

28、如果关于x 的不等式34x x a ---<的解集不是空集,则实数a 的取值范围 是 。

答案:()+∞-,129、若不等式aa x x 4|3||1|+≥-++对任意的实数x 恒成立,则实数a 的取值范 围是 。

答案:}2{)0,(⋃-∞。

30、若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 。

解析:因为12|12|3x x x x ++-≥+-+=,所以12a x x ≥++-存在实数解,有3a ≥,(,3][3,)-∞-+∞ 。

31、当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 。

答案:]5,(-∞。

32、若不等式2229tt a t t +≤≤+在]2,0(∈t 上恒成立,则实数a 的取值范围 是 。

答案:]1,132[。

33、设m 为实数,若22250(,)30{(,)|25}0x y x y x x y x y mx y ⎧⎫-+≥⎧⎪⎪⎪-≥⊆+≤⎨⎨⎬⎪⎪⎪+≥⎩⎩⎭,则m 的取值范围是 。

2018届高考数学二轮不等式选讲专题卷(全国通用)(2)

2018届高考数学二轮不等式选讲专题卷(全国通用)(2)

不等式选讲1.设函数|34|,2()2,21x x f x x x-≤⎧⎪=-⎨>⎪-⎩则不等式()1f x ≥的解集是(A )5[1,]3 (B )5[,3]3(C )5(,1)[,)3-∞+∞ (D )5(,1][,3]3-∞【答案】D【解析】2.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为 ( ) A .)3,0( B .)2,3( C .)4,3( D .)4,2( 【答案】C【解析】试题分析:由22x -<解得04x <<,由22l o g(1)1x ->可得212x ->,解得x >或x <)4,3(,故选C . 考点:解不等式组.3.选修4-5:不等式选讲已知函数()2f x x a =+ 1x a +--.(Ⅰ)证明: ()34f x ≥; (Ⅱ)若()413f <,求a 的取值范围. 【答案】(Ⅰ)见解析; (Ⅱ)()2,3-.【解析】试题分析:(Ⅰ)利用绝对值三角不等式得到2211x a x a a a ++--≥++,进而证明2314a a ++≥即可; (Ⅱ)讨论去绝对值求解即可. 试题解析:(Ⅰ)()21f x x a x a =++-- ()()21x ax a ≥+--- 21aa =++2133244a ⎛⎫=++≥ ⎪⎝⎭(Ⅱ)因为()2443f a a =++- 221,3{7,3a a a a a a ++≥=-+<,所以()413f <⇔ 23{113a a a ≥++<,或23{713a a a <-+<, 解之得23a -<<,即a 的取值范围是()2,3-.4.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(文)对于曲线:(,)0C f x y =,若存在非负实数M 和m ,使得曲线C 上任意一点(,)P x y ,||m OP M ≤≤恒成立(其中O 为坐标原点),则称曲线C 为有界曲线,且称M 的最小值0M 为曲线C 的外确界,m 的最大值0m 为曲线C 的内确界. (1)写出曲线1(04)x y x +=<<的外确界0M 与内确界0m ;(2)曲线24y x =与曲线22(1)4x y -+=是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;(3)已知曲线C 上任意一点(,)P x y 到定点12(1,0),(1,0)F F -的距离之积为常数(0)a a >,求曲线C 的外确界与内确界.【答案】(1) 05M = 0m = (2) 03M =,01m = (3) 外确界0M =确界0m【解析】试题分析:(1)根据信息外确界与内确界,即原点到曲线的最大值与最小值,曲线1(04)x y x +=<<的外确界0M 与内确界0m ,即原点到直线1(04)x y x +=<<的最大值与最小值,易得答案;(2)看曲线24y x =与曲线22(1)4x y -+=是否为有界曲线,即看此曲线上的点与原点的距离是否即有最大值又有最小值;(3)根据曲线C 上任意一点(,)P x y 到定点12(1,0),(1,0)F F -的距离之积为常数(0)a a >,求出曲线C 的方程,求外确界与内确界时,注意分类讨论的思想.试题解析:(1)曲线1(04)x y x +=<<的外确界05M =与内确界0m =. 4分(2)对于曲线24y x =,设(,)P x y 为曲线上任意一点||0)OP x ===≥ ||[0,)OP ∴∈+∞∴曲线24y x =不是有界曲线. 7分对于曲线22(1)4x y -+=||13)OP x ===-≤≤ ||[1,3]OP ∴∈∴曲线22(1)4x y -+=是有界曲线.外确界03M =与内确界01m = 10分(3a = 12分a ==22222(1)4x y x a ∴++-= 22(1)y x ∴=+220,1y x ≥≥+ 2222(1)4x x a ∴+≤+ 222(1)x a ∴-≤ 211a x a ∴-≤≤+||OP ==14分若01a <<,则≤≤,外确界0M =0m =分若1a ≥,201x a ≤≤+,≤≤,外确界0M =内确界0m =综合得:外确界0M =0m = 18分.考点:曲线外确界与内确界的求法.5.选修4-5:不等式选讲 已知函数()Ra a x x x f ∈++-=,22.(1)当1=a 时,解不等式()5≥x f ; (2)若存在0x 满足()3200<-+x x f ,求a 的取值范围.【答案】(1){34|-≤x x 或}2≥x (2)71a -<<- 【解析】 试题分析:(1)当a=1时,根据绝对值不等式的解法即可解不等式f (x )≥5;(2)求出f (x )+|x-2|的最小值,根据不等式的关系转化为(f (x )+|x-2|)min <3即可求a 的取值范围试题解析:(1)当1=a 时,122)(++-=x x x f .由5)(≥x f 得5122≥++-x x .当2≥x 时,不等式等价于5122≥++-x x ,解得2≥x ,所以2≥x ; 当221<<-x 时,不等式等价于5122≥++-x x ,即2≥x ,所以x ∈∅; 当21-≤x 时,不等式等价于5122≥---x x ,解得34-≤x ,所以34-≤x . 所以原不等式的解集为{34|-≤x x 或}2≥x . (2)4)42(22422222)(+=--+≥++-=++-=-+a x a x a x x a x x x x f .因为原命题等价于min (()|2|)3f x x +-<, 所以43a +<,所以71a -<<-考点:分段函数的应用;绝对值不等式的解法 6.设函数()231f x x x =++-. (1)解不等式()4f x >;(2)若存在0312x ⎡⎤∈-⎢⎥⎣⎦,,使不等式()01a f x +>成立,求实数a 的取值范围.【答案】(1) {|20}x x x -或;(2) 32⎛⎫+∞ ⎪⎝⎭,. 【解析】试题分析:(1)结合函数的解析式分类讨论可得不等式的解集为{|20}x x x -或 (2)原问题等价于()m i n 1a f x +>,结合(1)中的结论可得32x =-时, ()min 52f x =,则实数a 的取值范围为32⎛⎫+∞ ⎪⎝⎭, 试题解析:(1)由题得, ()33223{4 1 2321x x f x x x x x --<-=+-≤≤+>,,,,则有3{ 2324x x <---<或31{ 244x x -≤≤+>或1{ 324x x >+> 解得2x <-或01x <≤或1x >,综上所述,不等式()4f x >的解集为{|20}x x x -或(2)存在0312x ⎡⎤∈-⎢⎥⎣⎦,,使不等式()01a f x +>成立等价于()min 1a f x +> 由(1)知, 312x ⎡⎤∈-⎢⎥⎣⎦,时, ()4f x x =+,∴32x =-时, ()min 52f x =, 故512a +>,即32a >∴实数a 的取值范围为32⎛⎫+∞ ⎪⎝⎭, 7.[选修4—5:不等式选讲] 已知()()f x x a a R =+∈.(1)若()23f x x ≥+的解集为[]3,1--,求a 的值;(2)若x R ∀∈不等式()22f x x a a a +-≥-恒成立,求实数a 的范围.【答案】(1)0 ;(2)04a ≤≤.【解析】试题分析:(1)若()23f x x ≥+化为()22312290x a x a +-+-≤,可得3,-1是方程 ()22312290x a x a +-+-= 的两根,根据韦达定理可得结果;(2)()()()2f x x a x a x a a +-≥+--=,要不等式()22f x x a a a +-≥-恒成立只需222a a a ≥-,解绝对值不等式即可得结果. 试题解析:()23f x x ≥+即23x a x +≥+,平方整理得:()22312290x a x a +-+-≤,所以-3,-1是方程 ()22312290x a x a +-+-= 的两根,由根与系数的关系得到212243{ 933aa -=---=,解得0a =.(2)因为()()()2f x x a x a x a a +-≥+--= 所以要不等式()22f x x a a a +-≥-恒成立只需222a a a ≥-当0a ≥时, 222a a a ≥-解得04a ≤≤当0a <时, 222a a a -≥-此时满足条件的a 不存在综上可得实数a 的范围是04a ≤≤.【方法点晴】本题主要考查绝对值不等式的解法、绝对值不等式求最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.本题(2)是利用方法 ① 求得a 的范围的.8.设不等式-2<|x-1|-|x+2|<0的解集为M ,a,b∈M . (Ⅰ)证明:|36a b +|<14; (Ⅱ)比较|1-4ab|与2|a-b|的大小,并说明理由. 【答案】(Ⅰ)证明见解析;(Ⅱ)答案见解析. 【解析】试题分析:(1)首先求得集合M ,然后结合绝对值不等式的性质即可证得题中的结论; (2)利用平方做差的方法可证得|1-4ab |>2|a -b |. 试题解析:(Ⅰ)证明:记f (x ) =|x -1|-|x +2|,则f (x )= 3{-2 1 ,3,x --, 2211.x x x ≤--<<≥,所以解得-12<x <12,故M =(-12,12). 所以,|36a b +|≤13|a |+16|b |<13×12+16×12=14.(Ⅱ)由(Ⅰ)得0≤a 2<14,0≤b 2<14.|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=4(a 2-1)(b 2-1)>0. 所以,|1-4ab |>2|a -b |.视频9.已知函数()1f x x x a =-+-.(1)当1a =-时,求不等式()3f x ≥的解集; (2)如果(),2x R f x ∀∈≥,求a 的取值范围.【答案】(1)33|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或;(2)1a ≤-或3a ≥. 【解析】 试题分析:(1)这是含绝对值的不等式,首先由绝对值的定义去掉绝对值符号,化函数()f x 为分段函数形式,再解不等式()3f x ≥,当然要分类求解;(2)如果(),2x R f x ∀∈≥,说明()f x 的最小值2≥,而由绝对值的性质,知()11f x x a x a ≥-+-=-,即最小值为1a -,因此只要解不等式12a -≥即可.试题解析:(1)当1a =-时,()2,12,112,1x x f x x x x -<-⎧⎪-≤≤⎨⎪>⎩,()1323x f x x <-⎧≥⇔⎨-≥⎩或1123x -≤≤⎧⎨≤⎩或13232x x x >⎧⇔≤-⎨≥⎩或∅或32x ≥,所以,原不等式的解集为33|22x x x ⎧⎫≤-≥⎨⎬⎩⎭或 (2)()11f x x a x a ≥-+-=-,由题意知121a a -≥⇒≤-或3a ≥ 考点:解含绝对值的不等式,不等式恒成立. 10.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若222,,,2a c abc R b k +∈+=,求()b a c +的最大值. 【答案】(1)2=k ;(2)2. 【解析】试题分析:(1)对函数()x f 零点分段写出解析式,画出函数图象,可知在1-=x 时取到最大值2;(2)()()42222222222222=+++=++⇔=++c b b a c b a b c a ,分别根据重要不等式放缩,可求得最大值.试题解析:解:(1)由于()()()()3,131,113,1x x f x x x x x --≥⎧⎪=---<<⎨⎪+≤⎩,所以()()max 12k f x f ==-=..........5分 (2)由已知22222a cb ++=,有()()22224a b bc +++=,因为222a b ab +≥(当a b =取等号),222b c bc +≥(当b c =取等号), 所以()()()222242a b b c ab bc +++=≥+,即2ab bc +≤,故()max 2b a c +=⎡⎤⎣⎦...............................10分 考点:1.分段函数的最值;2.基本不等式. 11.选修4-5:不等式选讲设函数()2(0)f x x a x a a =-+-<. (1)证明: ()16f x f x ⎛⎫+-≥ ⎪⎝⎭; (2)若不等式()12f x <的解集为非空集,求a 的取值范围. 【答案】(1)详见解析;(2)(-1,0) 【解析】试题分析:(1)()1f x f x ⎛⎫+-⎪⎝⎭1226||x x x x =+++≥(当且仅当1x =±时取等号);(2)作出函数()()23,2{(), 2232()a x x a af x x a x a x a x x a x a-≤=-+-=-<≤->的图象,由图像可求出结果.试题解析:解:(1)()()1122f x f x a x a a a x x x ⎛⎫⎛⎫+-=-+-+--+-- ⎪ ⎪⎝⎭⎝⎭()()121222x a a x a a x a a x a a x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+--+-+--≥----+---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212226||x x x x x x x x =+++=+++≥(当且仅当1x =±时取等号) (2)函数()()23,2{(), 2232()a x x a af x x a x a x a x x a x a-≤=-+-=-<≤->的图象如图所示. 当2a x =时, min 2a y =-,依题意: 122a -<,解得1a >-, ∴a 的取值范围是(-1,0).考点:1.绝对值不等式;2.基本不等式. 12.选修4-5:不等式选讲已知,,a b c R ∈,且1ab bc ac ++=.(1)求证:a b c ++≥;(2)若x R ∃∈,使得对一切实数,,a b c 不等式()211m x x a b c +-++≤++恒成立,求m 的取值范围. 【答案】(1)证明见解析;(2)1m ≤. 【解析】试题分析:(1)利用三个数和的完全平方公式,有()2222222a b c a b c ab bc ac ++=+++++3333ab bc ac ≥++=,故a b c ++≥(2)恒成立问题转化为()()2minmin 11m x x a b c +-++≤++.由(1)知()2min3a b c ++=,利用绝对值不等式,有()()11112x x x x -++≥--+=,故23m +≤,1m ≤.试题解析: (1)()22222223333a b c a b c ab bc ac ab bc ac ++=+++++≥++=,所以a b c ++≥当且仅当a b c ==时等号成立.(2)由题意得()()2minmin11m x x a b c +-++≤++,由(1)知()2min3a b c ++=,又()()11112,23,x x x x m m -++≥--+=∴+≤的取值范围为:1m ≤. 考点:不等式选讲.13..(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评分.) A.(不等式选讲选做题)不等式112≤++x x 的实数解集为_________ B.(坐标系与参数方程选讲选做题)若ABC ∆的底边,2,10A B BC ∠=∠=以B 点为极点,BC 为极轴,则顶点A 的极坐标方程为________________.【答案】⎭⎬⎫⎩⎨⎧-≤23|x x ;10cos 20+=θρ或2sin 40302θρ-=或102cos 402-=θρ【解析】略14.已知函数R m x m x f ∈--=|,2|)(,当不等式0)2(≥+x f 的解集为[]2,2-时, 实数m 的值为 . 【答案】2【解析】因为0)2(≥+x f 即||0,,0m x m x m m -≥∴-≤≤>,所以m=2.15.当时,对任意实数都成立,则实数的取值范围是_________.【答案】【解析】当时,不等式显然成立;当时,而,∴,即当时,,∴故答案为:.。

2018届高三数学二轮复习课件:专题八选修系列8.2不等式选讲

2018届高三数学二轮复习课件:专题八选修系列8.2不等式选讲

二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
解析: (1)当 a=1 时,不等式 f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0.① 当 x<-1 时,①式化为 x2-3x-4≤0,无解; 当-1≤x≤1 时,①式化为 x2-x-2≤0,从而-1≤x≤1; 当 x>1 时,①式化为 x2+x-4≤0, -1+ 17 从而 1<x≤ 2 .
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(2)因为(a+b)3=a3+3a2b+3ab2+b3 3a+b2 =2+3ab(a+b)≤2+ 4 (a+b) 3a+b3 =2+ 4 , 所以(a+b)3≤8,因此 a+b≤2.
二轮数 学· 理
第一部分 专题突破——破译命 题密码
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
a-3-2xx≤-3 (2)由题知 f(x)=a+3-3<x<a, 2x+3-ax≥a 当 a+3≥6 时,不等式 f(x)≥6 的解集为 R,不合题意;
x≤-3 当 a+3<6 时,不等式 f(x)≥6 的解为 a-3-2x≥6 x≥a 或 2x+3-a≥6
-1+ 所以 f(x)≥g(x)的解集为 x-1≤x≤ 2
17
.
二轮数 学· 理
第一部分 专题突破——破译命 题密码
高考· 题型突破 高考· 专题集 训
(2)当 x∈[-1,1]时,g(x)=2, 所以 f(x)≥g(x)的解集包含[-1,1]等价于当 x∈[-1,1]时,f(x)≥2. 又 f(x)在[-1,1]的最小值必为 f(-1)与 f(1)之一, 所以 f(-1)≥2 且 f(1)≥2,得-1≤a≤1. 所以 a 的取值范围为[-1,1].

2018届高考数学二轮复习 第一部分 专题八 选修系列 1.8.2 不等式选讲限时规范训练 理

2018届高考数学二轮复习 第一部分 专题八 选修系列 1.8.2 不等式选讲限时规范训练 理

限时规范训练 不等式选讲限时30分钟,实际用时 分值40分,实际得分解答题(本题共4小题,每小题10分,共40分)1.(2017·吉林长春调研)设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14. 解:(1)f (x )=⎩⎪⎨⎪⎧ 3x -3,x ∈[1,+,1-x ,x -∞,当x ≥1时,由f (x )=3x -3≤1得x ≤43, 故1≤x ≤43; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M ={x |0≤x ≤43}. (2)证明:由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4, 解得-14≤x ≤34,因此N ={x |-14≤x ≤324}, 故M ∩N ={x |0≤x ≤34}. 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14. 2.(2017·江南十校联考)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:|13a +16b |<14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.解:(1)证明:设f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-1-2x -1,-1<x <1-3,x ≥1由-2<-2x -1<0,解得-12<x <12,则M =⎝ ⎛⎭⎪⎫-12,12. 所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.3.(2016·高考全国卷Ⅲ)f (x )=|2x -a |+a .(1)当a =2时,求不等式已知函数f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求实数a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ① 当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以实数a 的取值范围是[2,+∞).4.(2017·高考全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解:(1)f (x )=⎩⎪⎨⎪⎧ -3 x <-1,2x -1, -1≤x ≤2,3, x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎪⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.。

最新-2018年高考数学试题分项版解析专题18 不等式(教师版) 理 精品

最新-2018年高考数学试题分项版解析专题18 不等式(教师版) 理 精品

2018年高考试题分项版解析数学(理科)专题18 不等式(教师版)一、选择题:1. (2018年高考广东卷理科5)已知变量x ,y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则z=3x+y 的最大值为( )A.12B.11C.3D.-13. (2012年高考福建卷理科5)下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+4. (2018年高考福建卷理科9)若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23D .25. (2018年高考辽宁卷理科8)设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )(A) 20 (B) 35 (C) 45 (D) 556.(2018年高考辽宁卷理科12)若[0,)x ∈+∞,则下列不等式恒成立的是( ) (A)21xe x x ++ (211)124x x <-+(C)21cos 12x x -…(D)21ln(1)8x x x +-…7.(2018年高考江西卷理科8)某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,508.(2018年高考湖南卷理科8)已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 ( )A . B.9. (2018年高考四川卷理科9)某公司生产甲、乙两种桶装产品。

(通用版)18年高考数学二轮复习专题七选考内容第二讲不等式选讲课件选修4_5

(通用版)18年高考数学二轮复习专题七选考内容第二讲不等式选讲课件选修4_5

[方法技巧] 绝对值不等式的常用解法
(1)基本性质法:对 a∈R+,|x|<a⇔-a<x<a,|x|>a⇔x<- a 或 x>a. (2)平方法:两边平方去掉绝对值符号. (3)零点分区间法: 含有两个或两个以上绝对值符号的不等 式,可用零点分区间法脱去绝对值符号,将其转化为与之等价 的不含绝对值符号的不等式(组)求解. (4)几何法:利用绝对值的几何意义,画出数轴,将绝对值 转化为数轴上两点的距离求解. (5)数形结合法: 在直角坐标系中作出不等式两边所对应的 两个函数的图象,利用函数图象求解.
(2)由 f(x)≥x2-x+m,得 m≤|x+1|-|x-2|-x2+x. 而|x+1|-|x-2|-x +x≤|x|+1+|x|-2-x 5 5 + ≤ , 4 4 3 5 2 且当 x= 时,|x+1|-|x-2|-x +x= . 2 4 故m
5 的取值范围为-∞,4.
2 2
x2-x+|x+1|+|x-1|-4≤0. 当 x<-1 时,①式化为 x2-3x-4≤0,无解;
当-1≤x≤1 时, ①式化为 x2-x-2≤0, 解得-1≤x≤1;
当 x>1 时,①式化为 x2+x-4≤0, -1+ 17 解得 1<x≤ . 2 所以
-1+ f(x)≥g(x)的解集为 x-1≤x≤ 2 17 .
3 2 +|x|=-|x|-2
考点二
[典例 2]
不等式的证明
1 1 f(x)=x-2+x+2,
[典例感悟]
(2016· 全国卷Ⅱ)已知函数
M 为不等式 f(x)<2 的解集. (1)求 M; (2)证明:当 a,b∈M 时,|a+b|<|1+ab|. 1 [解] -2x,x≤- , 2 1 1 (1)f(x)=1,-2<x<2, 1 2x,x≥ . 2

2018届高考数学(全国通用)二轮复习压轴大题精品课件 第2讲 圆锥曲线的热点问题

2018届高考数学(全国通用)二轮复习压轴大题精品课件 第2讲 圆锥曲线的热点问题
4 2
1 1 1 2 2 2 设△AOB 的面积为 S(t),所以 S(t)=2|AB|· d=2 -2t -2 +2≤ 2 , 2 1 当且仅当 t =2时,等号成立.
2 故△AOB 面积的最大值为 2 .
1 2 3 4
解答
1 3.已知抛物线 y =4x,直线 l:y=-2x+b 与抛物线交于 A,B 两点.
c 2 解 由题意知 e=a= 2 ,2c=2,
所以 c=1,a= 2,则 b=1,
x2 2 所以椭圆 E 的方程为 2 +y =1.
1 2 3 4
解答
3 (2)如图,动直线 l:y=k1x- 2 交椭圆 E 于 A,B 两点,C 是椭圆 E 上一 2 点,直线 OC 的斜率为 k2,且 k1k2= 4 .M 是线段 OC 延长线上一点,且 |MC|∶|AB|=2∶3,⊙M 的半径为|MC|,OS,OT 是⊙M 的两条切线,切 点分别为 S,T.求∠SOT 的最大值,并求取得最大值时直线 l 的斜率.
2 则 x2 = 4 y , x 1 1 2=4y2,
12 12 y1-1 y2-1 4x1-1 4x2-1 1 ∴k1+k2= + = + =4(x1+2+x2+2)=-2. x1-2 x2-2 x1-2 x2-2
∴x1+x2=-12,
12 12 y2-y1 4x2-4x1 1 ∴kAB= = =4(x1+x2)=-3. x2-x1 x2-x1
2
(1)若x轴与以AB为直径的圆相切,求该圆的方程;
1
2
3
4
解答
(2)若直线l与y轴负半轴相交,求△AOB(O为坐标原点)面积的最 大值.
1
2
3
4
解答
x2 y2 4.(2017· 山东)在平面直角坐标系 xOy 中,椭圆 E:a2+b2=1(a>b>0)的离 2 心率为 2 ,焦距为 2.

2018年高考数学(文)二轮复习 专题突破讲义:专题八 系列4选讲专题八 第2讲

2018年高考数学(文)二轮复习 专题突破讲义:专题八 系列4选讲专题八 第2讲

第2讲 不等式选讲本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届辽宁省葫芦岛协作体模拟)设函数f (x )=|x +2|-|x -1|.(1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围.解 (1)∵f (x )=|x +2|-|x -1|=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意.∴当-2<x <1时,由2x +1>1,得0<x <1,当x ≥1时,f (x )=3>1恒成立,得x ≥1.故不等式f (x )>1的解集为(0,+∞).(2)由(1)可知,f (x )的最大值为3,故f (x )+4的最大值为7.若关于x 的不等式f (x )+4≥|1-2m |有解,只需7≥|1-2m |,即-7≤2m -1≤7,求得m 的取值范围为[-3,4].思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017届河北省石家庄二中三模)已知不等式|x -a |+|2x -3|>a 22. (1)已知a =2,求不等式的解集;(2)已知不等式的解集为R ,求a 的取值范围.解 (1)当a =2时,可得|x -2|+|2x -3|>2,当x ≥2时,由3x -5>2,得x >73, 当x <32时,由-3x +5>2,得x <1, 当32≤x <2时,由x -1>2,得x ∈∅, 综上所述,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >73或x <1. (2)∵f (x )=|x -a |+|2x -3|的最小值为f (a )或f ⎝⎛⎭⎫32,∵f (a )=2⎪⎪⎪⎪a -32,f ⎝⎛⎭⎫32=⎪⎪⎪⎪a -32, ∴f (x )min =⎪⎪⎪⎪a -32,令⎪⎪⎪⎪a -32>a 22, 则32-a >a 22或32-a <-a 22, 可得-3<a <1或a ∈∅,综上所述,a 的取值范围是(-3,1).热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1 ≥2⎣⎢⎡⎦⎥⎤a +b +(a +b )22+1=(a +b +1)2≥0, 当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a4+6a2b2+b4≥4ab(a2+b2);(2)求函数f(x)=|2x-a4+(1-6a2b2-b4)|+2|x-(2a3b+2ab3-1)|的最小值.(1)证明a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2=(a2+b2-2ab)2=(a-b)4.因为(a-b)4≥0,所以a4+6a2b2+b4≥4ab(a2+b2).(2)解f(x)=|2x-a4+(1-6a2b2-b4)|+2|x-(2a3b+2ab3-1)|=|2x-a4+(1-6a2b2-b4)|+|2x-2(2a3b+2ab3-1)|≥|[2x-2(2a3b+2ab3-1)]-[2x-a4+(1-6a2b2-b4)]|=|(a-b)4+1|≥1.即f(x)min=1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2017届贵州省贵阳市高三适应性考试)已知函数f (x )=m -|x -1|(m >0),且f (x +1)≥0的解集为[-3,3].(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c=m ,求证:a +2b +3c ≥3. (1)解 因为f (x +1)=m -|x |,所以f (x +1)≥0等价于|x |≤m ,由|x |≤m ,得解集为[-m ,m ](m >0),又由f (x +1)≥0的解集为[-3,3],故m =3.(2)证明 由(1)知1a +12b +13c=3, 又因为a ,b ,c 是正实数,所以a +2b +3c =13(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥13⎝⎛⎭⎫ a ·1a + 2b ·12b + 3c ·13c 2=3. 当且仅当a =1,b =12,c =13时等号成立, 所以a +2b +3c ≥3.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 (2017届江西省重点中学盟校联考)若关于x 的不等式|ax -2|<6的解集为⎩⎨⎧ x ⎪⎪⎭⎬⎫-43<x <83. (1)求a 的值;(2)若b =1,求-at +12+3bt 的最大值.解 (1)依题意知-43和83是方程|ax -2|=6的两个根,则⎩⎨⎧ ⎪⎪⎪⎪-43a -2=6,⎪⎪⎪⎪83a -2=6,∴⎩⎪⎨⎪⎧a =3或a =-6,a =3或a =-32,∴a =3. (2)-3t +12+3t =3(4-t +t ) ≤3(1+1)(4-t +t )=26,当且仅当4-t =t ,即t =2时等号成立. 所以-at +12+3bt 的最大值为2 6.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4, 所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届湖南省郴州市质检)已知函数f (x )=|x +1|+|x -3|,g (x )=a -|x -2|.(1)若关于x 的不等式f (x )<g (x )有解,求实数a 的取值范围;(2)若关于x 的不等式f (x )<g (x )的解集为⎝⎛⎭⎫b ,72,求a +b 的值. 解 (1)当x =2时,g (x )=a -|x -2|取得最大值a ,∵f (x )=|x +1|+|x -3| ≥4,当且仅当-1≤x ≤3,f (x )取得最小值4,又∵关于x 的不等式f (x )<g (x )有解,∴a >4,即实数a 的取值范围是(4,+∞).(2)当x =72时,f (x )=5, 则g ⎝⎛⎭⎫72=-72+a +2=5,解得a =132, ∴当x <2时,g (x )=x +92, 令g (x )=x +92=4,得x =-12∈(-1,3), ∴b =-12,则a +b =6. 2.(2017届辽宁省锦州市质检)已知函数f (x )=|x -a |.(1)若对x ∈[0,4]不等式f (x )≤3恒成立,求实数a 的取值范围;(2)当a =2时,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 解 (1)由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3,∴不等式f (x )≤3的解集M =[a -3,a +3],根据题意知[0,4]⊆M ,∴⎩⎪⎨⎪⎧a -3≤0,a +3≥4,∴1≤a ≤3. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),∴g(x)的最小值为5,因此,若g(x)=f(x)+f(x+5)≥m对x∈R恒成立,则实数m的取值范围是(-∞,5].3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届黑龙江省哈尔滨师范大学附属中学二模)已知x ,y ∈R .(1)若x ,y 满足|x -3y |<12,|x +2y |<16,求证:|x |<310; (2)求证:x 4+16y 4≥2x 3y +8xy 3.证明 (1)∵|5x |=|2(x -3y )+3(x +2y )|≤|2(x -3y )|+|3(x +2y )|<2×12+3×16=32, ∴|x |<310. (2)∵x 4+16y 4-(2x 3y +8xy 3)=x 3(x -2y )-8y 3(x -2y )=(x -2y )(x 3-8y 3)=(x -2y )2(x 2+2xy +4y 2)=(x -2y )2[(x 2+2xy +y 2)+3y 2]≥0,∴x 4+16y 4≥2x 3y +8xy 3.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x =⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1,当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明|x-1|-|x+5|≤|x-1-(x+5)|=6,又∵a,b,c>0,∴1a3+1b3+1c3+3abc≥331a3·1b3·1c3+3abc=3abc+3abc≥23abc·3abc=6,当且仅当a=b=c=1时取等号,∴|x-1|-|x+5|≤1a3+1b3+1c3+3abc.7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和.接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4, 即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94.8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于|x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12,解得x ≥0. 综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a | ≤|x +a -x +1-a | =|a +1-a |=a +1-a , 当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a , 对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a ) =1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。

2018届高三数学(文)二轮复习专题集训:专题八 选修系列8.1 Word版含解析 (15)

2018届高三数学(文)二轮复习专题集训:专题八 选修系列8.1 Word版含解析 (15)

A 级1.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析: 由已知条件可得a 1=1,d ≠0,由a 23=a 2a 6可得(1+2d )2=(1+d )(1+5d ),解得d =-2.所以S 6=6×1+6×5×(-2)2=-24.故选A. 答案: A2.设等差数列{a n }满足a 2=7,a 4=3,S n 是数列{a n }的前n 项和,则使得S n >0成立的最大的自然数n 是( )A .9B .10C .11D .12解析: 由题可得{a n }的公差d =3-74-2=-2,a 1=9,所以a n =-2n +11,可见{a n }是递减数列,且a 5>0>a 6,a 5+a 6=0,于是S 9=2a 52·9>0,S 10=a 5+a 62·10=0,S 11=2a 62·11<0,从而该题选A.答案: A3.已知数列{a n },{b n }均为等差数列,其前n 项和分别为S n 和T n ,若S n T n =2n +2n +3,则a 10b 9的值是( )A.116 B .2 C.2213D .无法确定解析: 等差数列的前n 项和S n =an 2+bn , 故可设S n =(2n +2)·kn ,T n =(n +3)·kn .∴a 10=S 10-S 9=40k ,b 9=T 9-T 8=20k ,∴a 10b 9=2.答案: B4.已知等比数列{a n }的公比为q ,前n 项和为S n ,若点(n ,S n )在函数y =2x +1+m 的图象上,则m =( )A .-2B .2C .-3D .3解析: 易知q ≠1,S n =a 1(1-q n )1-q =a 11-q -a 11-q q n =a 11-q -a 1q (1-q )q n +1,又点(n ,S n )在函数y =2x +1+m 的图象上,所以S n =2n +1+m ,所以q =2,⎩⎪⎨⎪⎧a 11-q=m ,-a1q (1-q )=1,得m =-2.答案: A5.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n 最大的正整数n 的值是( )A .4B .5C .6D .7解析: ∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d2.∴a n =a 1+(n -1)d =⎝⎛⎭⎫n -112d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.故选B. 答案: B6.已知数列{a n }满足2a n +1=a n +a n +2,且a 4+a 5+a 6=15,则a 1+a 2+a 3+…+a 9=________.解析: 因为数列{a n }满足2a n +1=a n +a n +2,故数列{a n }为等差数列,因为a 4+a 5+a 6=15,所以3a 5=15,解得a 5=5,a 1+a 2+a 3+…+a 9=(a 1+a 9)×92=2a 5×92=9a 5=9×5=45.答案: 457.已知数列{a n }的前n 项和为S n ,满足a n +S n =1(n ∈N *),则通项公式a n =________. 解析: 因为a n +S n =1①,所以a 1=12,a n -1+S n -1=1②,①-②可得a n -a n -1+a n=0,即得a n a n -1=12,所以数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝⎛⎭⎫12n -1=12n .答案:12n8.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析: 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案: 2009.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解析: (1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n4.10.已知数列{a n }满足:a n +1-a n =d (n ∈N *),前n 项和记为S n ,a 1=4,S 3=21. (1)求数列{a n }的通项公式;(2)设数列{b n }满足b 1=167,b n +1-b n =2a n ,求数列{b n }的通项公式.解析: (1)由已知数列{a n }为等差数列,公差为d ,则S 3=3×4+3×22d =21,解得d=3,所以数列{a n }的通项公式为a n =3n +1.(2)由(1)得b n +1-b n =23n +1.当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1,所以b n =23n -2+23n -5+…+24+167=24[1-23(n -1)]1-23+167=17×23n +1(n ≥2). 又b 1=167满足b n =17×23n +1,所以∀n ∈N *,b n =17×23n +1.B 级1.(2017·郑州市第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝⎛⎭⎫13,+∞ B .⎣⎡⎭⎫13,+∞ C.⎝⎛⎭⎫23,+∞D .⎣⎡⎭⎫23,+∞ 解析: 依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝⎛⎭⎫1-14n 1-14=23⎝⎛⎭⎫1-14n <23,因此实数t 的取值范围是⎣⎡⎭⎫23,+∞,选D.答案: D2.数列{a n }中,a 1=12,a n +1=na n(n +1)(na n +2)(n ∈N *),则数列{a n }的通项公式a n =________.解析: 由已知可得(n +1)a n +1=na n na n +2,设na n =b n ,则b n +1=b n b n +2,所以1b n +1=2b n+1,可得1b n +1+1=2b n +2=2⎝⎛⎭⎫1b n +1,即⎩⎨⎧⎭⎬⎫1b n +1是公比为2,首项为3的等比数列,故1b n +1=3·(1-2n )1-2=3·2n -3,由此可得1b n =3·2n -4,所以a n =1n (3·2n -4). 答案:1n (3·2n -4)3.已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5. (1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式.解析: (1)由题知⎩⎪⎨⎪⎧2a 1+7d =45a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2,故a n =2n -7(n ∈N *). (2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 易知S n =n 2-6n ,S 3=-9,S 5=-5,所以T 5=-(a 1+a 2+a 3)+a 4+a 5=-S 3+(S 5-S 3)=S 5-2S 3=13. 当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3n 2-6n +18,n ≥4.4.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.解析: (1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). ∵4a 3+a 1=4×54+1=6=4a 2,∴4a n +2+a n =4a n +1对任意n ∈N *都成立,∴a n +2-12a n +1a n +1-12a n =4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(3)由(2)知,a n +1-12a n =⎝⎛⎭⎫12n -1, 即a n +1⎝⎛⎭⎫12n +1-a n ⎝⎛⎭⎫12n =4. ∴数列⎩⎨⎧⎭⎬⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,∴a n⎝⎛⎭⎫12n =2+4(n -1)=4n -2, 即a n =(2n -1)·⎝⎛⎭⎫12n -1, ∴数列{a n }的通项公式为a n =(2n -1)·⎝⎛⎭⎫12n -1.。

2018全国卷2文科数学试卷及问题详解

2018全国卷2文科数学试卷及问题详解

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b -=>>3A .2y x =B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+ B .2i i =+ C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是 A .π4B .π2C .3π4D .π11.已知1F,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1 B .2C D 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018名师原创文科数学专题卷专题十八 不等式选讲考点56:绝对值不等式(1-18题) 考点57:不等式的证明(19-22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1.【来源】2017年二轮专题复习知能提升 考点56 易不等式|x 2-2|<2的解集是( ).A .(-1,1)B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2) 2.【来源】湖南省岳阳县第一中学2018届高三上学期第一次月考不等式|x -5|+|x +3|≥10的解集是 ( ) A. [-5,7] B. [-4,6]C. (-∞,-5]∪[7,+∞)D. (-∞,-4]∪[6,+∞) 3.【来源】晋州一中、鹿泉一中高三第一学期第一次联合考试 考点56 易 不等式0)12(|1|≥-+x x 的解集是( )A .),21[+∞ B .),21[]1,(+∞⋃--∞ C .),21[}1{+∞- D .]21,1[-- 4.【来源】河北省石家庄市自强中学高三数学练习 考点56 易 不等式22x x x x-->的解集是 A .(0,2) B .(,0)-∞ C .(2,)+∞ D .(,0)(0,)-∞+∞ 5.【来源】广东省华南师大附中高三综合检测 考点56 易 不等式02||2<--x x 的解集是( )A .}22|{<<-x xB .}22|{>-<x x x 或C .}11|{<<-x xD .}11|{>-<x x x 或6.【来源】辽宁省东北育才学校高二下学期期中考试 考点56 易 不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)- 7.【来源】江西省上高二中高三第一次月考 考点56 易若关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围为( )A .(1,3)B .(,1)(3,)-∞+∞UC .(,3)(1,)-∞--+∞UD .(3,1)-- 8.【来源】福建省福州市第八中学高三第五次质量检查 考点56 易关于x 的不等式|x-3|+|x-4|<a 的解集不是空集,a 的取值范围是( ) A .0<a <1 B .a >1 C .0<a ≤1 D .a ≥1 9.【来源】辽宁省营口市普通高中高二上学期期末教学质量检测 考点56 中难对于实数x ,若,1n Z n x n ∈≤<+规定[]x n =,则不等式24[]60[]1250x x -+<的解集是 (A) ]13,3[ (B) ]12,4[ (C) )13,3[ (D) )12,4[ 10.【来源】河北武邑中学高二下月考 考点56 中难若实数x 、y 满足tan tan tan tan ,x y x y +>+且3,2y ππ⎛⎫∈ ⎪⎝⎭,则tan tan x y -等于( )A .tan tan x y -B .tan tan y x -C .tan tan x y +D .tan tan x y -11.【来源】辽宁省鞍山市第一中学2017届高三3月月考 考点56 中难已知x y 、满足2213x y +=,则2432u x y x y =+-+--的取值范围为( )A. []1,12B. []0,6C. []0,12D. []1,13 12.【来源】天津静海县一中等高二下期末 考点56 难已知函数()||||(0n m 1)f x mx x n =--<<+,若关于x 的不等式(x)<x f 的解集中的整数恰有3个,则实数m 的取值范围为( ) A.3<m <6 B. 1<m <3 C. 0<m <1 D.-1<m <0第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届山东省平阴县第一中学高三3月模拟考试 考点56 易 在()4,4-上随机取一个数x ,则事件“237x x -++≥成立”发生的概率为__________. 14.【来源】广东省韶关市高三下学期第二次调研考试 考点56中难 设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________. 15.【来源】江西省上饶市高三第二次模拟考试 考点56 中难对于任意实数(0)a a ≠和b 不等式1a b a b a x ++-≥-恒成立,则实数x 的取值范围是_______. 16.【来源】广东省广州市2017届高三3月综合测试 考点56 中难已知函数 若, 则实数的取值范围是_____.三.解答题(共70分)17. (本题满分10分)【2017课标3】 考点56 易 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.18. (本题满分12分)【2017课标1】 考点56 中难已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 19.(本题满分12分)【来源】湖南省娄底市2017届二模 考点57 中难已知函数()21f x x a x a =++--.(Ⅰ)证明: ()34f x ≥; (Ⅱ)若()413f <,求a 的取值范围.20.(本题满分12分)【来源】黑龙江省哈尔滨市第三中学2017届高三二模考试 考点57 中难 (1)已知对于任意非零实数a 和b ,不等式()311a b a b a x x ++-≥-++恒成立,试求实数x 的取值范围;(2)已知不等式211x -<的解集为M ,若,a b M ∈,试比较11ab +与11a b+的大小.(并说明理由)21. (本题满分12分)【2017课标II 】考点57 中难 已知330,0,2a b a b >>+=。

证明: (1)55()()4a b a b ++≥; (2)2a b +≤。

22. (本题满分12分)【来源】黑龙江省哈尔滨市第六中学2017届高三下学期第一次模拟考试 考点57 中难 已知,,a b c 为正实数,且3a b c ++= (Ⅰ)解关于c 的不等式24c a b -≤+;(Ⅱ)证明: 2223c a b a b c++≥参考答案1.【答案】D【解析】由|x 2-2|<2⇔-2<x 2-2<2,∴0<x 2<4,则-2<x <2且x ≠0. 2.【答案】D【解析】方法一:当x ≤-3时,|x -5|+|x +3|=5-x -x -3=2-2x ≥10,∴x ≤-4. 当-3<x <5时,|x -5|+|x +3|=5-x +x +3=8≥10,不合题意,∴无解. 当x ≥5时,|x -5|+|x +3|=x -5+x +3=2x -2≥10,∴x ≥6. 综上可知,不等式的解集为(-∞,-4]∪[6,+∞),故选D.方法二:由绝对值几何意义知,在数轴上-3、5两点距离为8,|x -5|+|x +3|表示到-3、5距离和,当点取-4或6时到-3、5距离和均为10,两点之外都大于10,故x ≤-4或x ≥6, 解集为(-∞,-4]∪[6,+∞). 3.【答案】C【解析】本题考查绝对值的意义,不等式的解法,等价转化.因为|1|0,x +≥所以不等式0)12(|1|≥-+x x 可化为|1|0210,x x +=-≥或解得11;2x x =-≥-或则不等式0)12(|1|≥-+x x 的解集是),21[}1{+∞- .故选C4.【答案】A【解析】本题考查绝对值的含义,不等式的解法,等价转化思想.因为0a ≥时,||;a a =0a <时,||,a a =-则||0;a a a >⇔<所以不等式22||x x x x-->可化为20x x-<,即(2)0x x -<,解得0 2.x <<故选A 5.【答案】A【解析】本题考查二次不等式的解法,不等式的同解变形及转化思想.不等式2||20x x --<可化为2||||20x x --<,即(||1)(||2)0x x +-<,因为||10,x +>所以解得||2,2 2.x x <-<<则故选A 6.【答案】D【解析】本题考查含绝对值不等式的解法 原不等式可化为|52|3|52|9x x -≥⎧⎨-<⎩由|52|3x -≥得523x -≥或523x -≤-,解得1x ≤或4x ≥由|52|9x -<得9529x -<-<,解得27x -<<用数轴表示上述不等式有21x -<≤或47x ≤< 故正确答案为D 7.【答案】B【解析】本题考查不等式的解法,绝对值不等式的性质,不等式与函数的关系,函数最值的求法及函数思想,转化思想,分类讨论的思想.设()|1||2|f x x x =+--.(1)当1x <-时,()(1)23;f x x x =-++-=-(2)当12x -≤<时,()1221,f x x x x =++-=-此时3()3;f x -≤<(3)当2x ≥时,()1(2)3;f x x x =+--=综上:函数()|1||2|f x x x =+--的最小值是-3;关于x 的不等式2124x x a a +--<-有实数解等价于234a a -<-,即2430a a -+>,解得1 3.a a <>或故选B8.【答案】B【解析】本题考查绝对值不等式的性质及转化思想,分析解决问题的能力.因为对任意x R ∈,都有|3||4||(3)(4)|1x x x x -+-≥-+-=恒成立,所以要使不等式|3||4|x x a -+-<的解集表示空集,需使 1.a >故选B9.【答案】C【解析】首先正确理解“对于实数x ,若n ∈Z ,n ≤x <n+1,规定[x]=n ”,是本题的关键所在.即[x]为取整函数.然后由后边的不等式解除[x]的取值范围,然后把不等式的两边取整.即得到答案.解答:解:正确理解“对于实数x ,若n ∈Z ,n ≤x <n+1,规定[x]=n ”,是本题的关键所在. 先解得[]525x 22<<, 因为n ∈Z ,n ≤x <n+1时,[x]=n ,所以3≤x <13,即不等式4[x]2-60[x]+125<0的解集是{x|3≤x <13}. 所以答案为C . 10.【答案】B 【解析】若实数x 、y 满足tan tan tan tan ,x y x y +>+则tan x 与tan y 异号,又3,2y ππ⎛⎫∈ ⎪⎝⎭,故tan 0,tan 0y x ><,则tan tan x y -=tan tan y x -.11.【答案】D【解析】 由题意,令,sin x y αα=,所以()2sin 4x y αααθ+=+=+<, 所以2442x y x y +-=--,因为()22sin 3x y αααβ+=+=+<,所以3232x y x y --=-- 所以()243242373u x y x y x y x y x y =+-+--=----+=-+)()073sin76sin60ααα=-+=-+所以113u≤≤,故选D.12.【答案】B【解析】因⎪⎩⎪⎨⎧+--+--=nxmnxmnxmxf)1()1()1()(nxnxx≥<<≤,0,,,画出函数()||||(0n m1)f x mx x n=--<<+的图象如图,结合图象可以看出当)3,1(∈m时,不等式xxf<)(的整数解恰有三个,故应选B.13.【答案】18【解析】不等式237x x-++≥的解集为{|43}x x x≤-≥或,∴在44-(,)上随机取一个数x,则事件“237x x-++≥成立”发生的概率为431448P-==+.14.【答案】33(,][,)22-∞-+∞【解析】因为不等式max|a1||2a1|f(x)a0|a||a1||2a1||a1||2a1|f(x)3|a||a||x1||x1|3+--≥≠+--+--≥≤∴++-≥对任意的实数成立,因此()解得x取值集合为:33(,][,)22-∞-+∞15.【答案】[1,3]-【解析】依题意可得111b bxa a-≤-++恒成立,等价于1x-小于或等于11b ba a-++的最小值.因为11(1)(1)2b b b ba a a a-++≥-++=.所以12,[1,3]x x -≤∴∈-. 16.【答案】【解析】当 时,,当时,,故17.【答案】(1) {}1x x ≥;(2) 5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)()3<121123>2,x f x x ,x ,x --⎧⎪=--≤≤⎨⎪⎩当<1x -时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤ 当>2x 时,由()1f x ≥解得>2x . 所以()1f x ≥的解集为{}1x x ≥.18.【解析】(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.19.【答案】(Ⅰ)见解析; (Ⅱ)()2,3-.【解析】(Ⅰ)()21f x x a x a =++-- ()()21x ax a ≥+--- 21aa =++2133244a ⎛⎫=++≥ ⎪⎝⎭(Ⅱ)因为()2443f a a =++- 221,3{7,3a a a a a a ++≥=-+<,所以()413f <⇔ 23{113a a a ≥++<,或23{713a a a <-+<, 解之得23a -<<,即a 的取值范围是()2,3-. 20.【答案】(1)[]2,2-(2)详见解析【解析】(Ⅰ)334a b a b a b a b a ++-≥++-=,当且仅当()()30a b a b +-≥时取等号, 只需: ()411a ax x ≥++-,由于0a ≠,只需114x x ++-≤,所以: x 的取值范围为: []2,2-;(Ⅱ)解得: ()0,1M =, ,a M b M ∈∈知:()()11111110a b ab a b ab a b ab ab--+--+--==>,即1111ab a b +>+. 21.【答案】(1)证明略;(2)证明略。

相关文档
最新文档