2015高三数学寒假作业(一)

合集下载

高三寒假作业 上篇

高三寒假作业 上篇

假期是快乐的,玩耍时快乐,学习是快乐的,进步是快乐的,有玩有学,又学又玩最快乐!高中数学知识总结(上篇)一、集合与逻辑1、区分集合中元素的形式:如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如(1)设集合{|3}M x y x ==+,集合N ={}2|1,y y x x M =+∈,则M N = ___(答:[1,)+∞);(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈ ,{|(2,3)(4,5)N a a λ==+ ,}R λ∈,则=N M _____(答:)}2,2{(--)2、条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

(答:a ≤0)3、补集思想常运用于解决否定型或正面较复杂的有关问题。

如已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-)4、注意命题p q ⇒的否定与它的否命题的区别:命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝命题“p 或q ”的否定是“┐P 且┐Q ”,“p 且q ”的否定是“┐P 或┐Q ”注意:如 “若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”否定是“若a 和b 都是偶数,则b a +是奇数二、函数与导数1、对勾函数x ax y +=是奇函数,上为增函数,,在区间时)0(),0(,0∞+-∞<a ;递减,在时)0,[],0(,0a a a ->递增,在),a [],a (+∞--∞2、单调性①定义法;②导数法. 如:已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是____(答:(,3]-∞));注意①:0)(>'x f 能推出)(x f 为增函数,但反之不一定。

2015年.2高三文科数学寒假作业

2015年.2高三文科数学寒假作业

2015年2月高三文数寒假作业一三角函数1、【2014高考辽宁卷文第11题】将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增2、【2014高考全国1卷文第7题】在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③3、【2014高考全国1卷文第2题】若,则()A. B. C. D.4、【2014高考四川卷文第8题】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC等于()A.B.C.D.5、【2014高考大纲卷文第2题】已知角的终边经过点(-4,3),则cos=()A. B. C. - D. -6、【2014高考安徽卷文第7题】若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是()A. B. C. D.7、【2014高考广东卷文第7题】在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8、【2014高考江西卷文第5题】在中,内角A,B,C所对应的边分别为,若,则的值为()9、【2014高考山东卷文第12题】函数的最小正周期为 .10、【2014高考陕西卷文第13题】设,向量,若,则______.11、【2014高考江苏卷第5题】已知函数与函数,它们的图像有一个横坐标为的交点,则的值是 .12、【2014高考江苏卷第14题】若的内角满足,则的最小值是 .13、【2014高考福建卷文第18题】已知函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.14、【2014高考广东卷文第16题】已知函数,,且. (1)求的值;(2)若,,求.15、【2014高考辽宁文第18题】在中,内角A,B,C的对边a,b,c,且,已知,,,求:(1)a和c的值;(2)的值.16、【2014高考山东文第17题】△中,角所对的边分别为,已知=3,=,,(1)求得值;(2)求△的面积.17、【2014高考陕西文第16题】的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,且,求的值.18、【2014高考浙江文第18题】在中,内角,,所对的边分别为,已知(1)求角的大小;(2)已知,的面积为6,求边长的值.19、【2014高考重庆文第18题】在中,内角所对的边分别为,且(Ⅰ)若,求的值;(Ⅱ)若,且的面积,求和的值20、【2014高考上海文第21题】如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.(1)设计中是铅垂方向,若要求,问的长至多为多少(结果精确到0.01米)?(2)施工完成后.与铅垂方向有偏差,现在实测得求的长(结果精确到0.01米)?寒假作业二 数列1 .(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模))已知数列{}n a 满足1112,n n n a a a a +-==,n S 是其前n 项和,则2013S =( )A .20112B .20132C .20152D .201722.(2013年红河州高中毕业生复习统一检测)在等差数列{}n a 中,若1a 、0161022013=+-x x a 为方程的两根,则a 2+a 1007+a 2012=( )A .10B .15C .20D .403 .(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考)已知数列{n a }满足)(log log 1133++∈=+N n a a n n ,且 2469a a a ++=,则15793log ()a a a ++的值是[来源:学,科,网]( )A .15B .15-C .5D .5-[来源:学科网]4.(河南省开封市2013届高三第四次模拟)已知数列{n a }满足n n n n a a a S b a a a n a a a +++===≥-=-+ 2121111,,),2(设,则下列结论正确的是( )A .a S b a a 50,100100=-=B .)(50,100100b a S b a a -=-=C .a S b a 50,100100=-=D .a b S a a -==100100,[来源:5.(山西省太原市第五中学2013届高三4月月考)数列{}n a 的首项为3,{}n b 为等差数列且*1()n n n b a a n N +=-∈, 若3102,12b b =-=,则8a =( )A .0B .3C .8D .116 .(山西省山大附中2013届高三4月月考)已知函数)(x f 是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,1007>a ,则)()()()()(20132012321a f a f a f a f a f +++++ 的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负7.(山西省太原市第五中学2013届高三4月月考)在等比数列{}n a 中,若t s r ,,是互不相等的正整数,则 有等式1=⋅⋅---r t s t s r s r t a a a 成立.类比上述性质,相应地,在等差数列{}n b 中,若t s r ,,是互不相等的正整数,则有等式________成立.8.(河北省衡水中学2013届高三第八次模拟考试)已知数列{n a )满足1111,(2)2(1)n n n n a a a a a n n n --=-=≥-,则该数列的通项公式n a =______ 9.(2013年红河州高中毕业生复习统一检测)若数列}{n a 的前n 项和为n S ,31=a ,点()1,+n n S S 在直线x y 3=上(+∈N n ),则n a =__________10. (吉林省长春市2014届高三毕业班第二次调研)已知数列{}n a 中,11=a ,2n n a n a =-,112+=+n n a a ,则+++321a a a ……100a += .11.(黑龙江省大庆市2013届高三第二次模拟)已知函数()f x 是定义在R 上不恒为0的函数,且对于任意的实数,a b 满足(2)2f =,()()()f ab af b bf a =+,)(2)2(*N n f a n n n ∈=,)()2(*N n nf b n n ∈=,给出下列命题:①(0)(1)f f =;②()f x 为奇函数;③数列{}n a 为等差数列;④数列{}n b 为等比数列.其中正确的命题是___________.(写出所有正确命题的序号) 12. (2014年长春市高中毕业班第一次调研】已知数列,圆,圆,若圆C 2平分圆C 1的周长,则的所有项的和为 .13. (2014年长春市高中毕业班第一次调研)设等差数列{}n a 的前n 项和为n S , 且1523,27a S S =-=,(1).求数列{}n a 的通项公式;(2).若12,22(1),n n n S a S +++成等比数列,求正整数n 的值 .14.(黑龙江省哈六中2013届高三第二次模拟考试数学(理)试题 word 版 )已知等比数列{}n a 是递增数列,,3252=a a 1243=+a a ,数列{}n b 满足11=b ,且n n n a b b 221+=+(+∈N n )(1)证明:数列⎭⎬⎫⎩⎨⎧n n a b 是等差数列; (2)若对任意+∈N n ,不等式n n b b n λ≥++1)2(总成立,求实数λ的最大值.15.(山西省康杰中学2013届高三第二次模拟数学(理)试题)已知数列{}n a 的前n 项和n S ,满足*2(1)()n n n S a n N =+-∈.(Ⅰ)求数列{}n a 的前三项123,,a a a ; (Ⅱ)求证:数列2(1)3n n a ⎧⎫+-⎨⎬⎩⎭为等比数列,并求出{}n a 的通项公式.16.(吉林省吉林市2013届高三三模(期末)试题 )设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点 (,)n n S ,均在函数2x y r =+的图像上.(Ⅰ)求r 的值; (Ⅱ)记n n a a a b 2log 2log 2log 22212+++= 求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和n T .17.(河南省六市2013届高三第二次联考数学)在公差不为0的等差数列{}n a 中,148,,a a a 成等比数列.(1)已知数列{}n a 的前10项和为45,求数列{}n a 的通项公式;(2)若11n n n b a a +=,且数列{}n b 的前n 项和为n T ,若1199nT n =-+,求数列{}n a 的公差.18.(2013年高考广东卷(文))设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.19.(河南省开封市2013届高三第四次模拟)已知公差不为0的等差数列{na }的首项42111,1,1,2a a a a 且=成等比数列. (I)求数列{na }的通项公式;(Ⅱ)若数列}{n b 满足n n n a b b b b =++++-13221222 ,求数列{n nb }的前行项和n T .20.(2013年高考湖南(文))设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.寒假作业三 立体几何专题填空题:1.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .2.给出下列命题:(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,所有真命题的序号为__________.3.已知直线 ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒ ⊥m ;②α⊥β⇒ ∥m ;③ ∥m ⇒α⊥β;④ ⊥m ⇒α∥β 其中正确命题序号是 .4. 设l ,m 表示直线,α表示平面,m 是α内任意一条直线.则“l m ⊥”是“l α⊥”成立的条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个)5 .一个正三棱柱的三视图如右图所示,其俯视图为正三角形,则该三棱柱的体积是 ( )cm 3.6.如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的外接球的体积为_______.7.一个所有棱长均为1的正四棱锥的顶点与底面的四个顶点均在某个球的球面上,则此球的体积为( )A .23π B .23π C .2πD .68π 8. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA = 4,则PC 与底面ABCD 所成角的正切值为 . m 简答题:1.(2014广东)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF (2) 求三棱锥M-CDE 的体积2.(2014湖北)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .第20题图3. 已知在四棱锥P ABCD -中,//AD BC ,AD CD ⊥,22PA PD AD BC CD ====, ,E F 分别是,AD PC 的中点. (1) 求证AD PBE ⊥平面; (2) 求证//PA BEF 平面;(3) 若PB AD =,求二面角F BE C --的大小.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (I )在CD 上找一点F ,使//AD 平面EFB ;(II )求点C 到平面ABD 的距离.5. 如图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB BC AD ⊥,∥,AC 与BD交于点O ,3=PA ,6,32,2===BC AB AD . (Ⅰ)证明:⊥BD 平面PAC ;(Ⅱ)求直线PO 与平面PAB 所成的角的正弦值ACD图2EBACD图1EABCDPO(第5题图)6. 如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点. (1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.7.如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB ,1==CD AD .(1)求证:;1AA BD ⊥(2)若E 为棱BC 的中点,求证://AE 平面11D DCC .8.CD 是正△ABC 的边AB 上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A-DC-B ,如图所示.(Ⅰ)试判断折叠后直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)若AC=2,求棱锥E-DFC 的体积;(Ⅲ)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出ACAP的值;如果不存在,请说明理由.9.如图,在四棱锥P ABCD-中,底面ABCD为矩形,PA PDC⊥平面.(1)求证90PDC∠=︒,并指出异面直线PA与CD所成角的大小;(2)在棱PD上是否存在一点E,使得//PB EAC平面?如果存在,求出此时三棱锥E PBC-与四棱锥P ABCD-的体积比;如果不存在,请说明理由.10. 如图,在四棱锥P ABCD-中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD 上一点,222AD AB AP===,2PE DE=.(I)若F为PE的中点,求证BF平面ACE;(II)求三棱锥P ACE-的体积.寒假作业四 极坐标与参数方程1、在极坐标系中,曲线1C 和2C 的方程分别为22cos sin ρθθ=和cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.2、在平面直角坐标系xoy 中,已知直线l 的参数方程212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l与抛物线24y x =相交于AB 两点,求线段AB 的长.3、.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cosφy =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+|PD|2的取值范围。

2015.2高中三年级文科数学寒假作业

2015.2高中三年级文科数学寒假作业

2015年2月高三文数寒假作业一三角函数1、【2014高考辽宁卷文第11题】将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增2、【2014高考全国1卷文第7题】在函数①,②,③,④中,最小正周期为的所有函数为()A.①②③B. ①③④C. ②④D. ①③3、【2014高考全国1卷文第2题】若,则()A. B. C. D.4、【2014高考四川卷文第8题】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC等于()A.B.C.D.5、【2014高考大纲卷文第2题】已知角的终边经过点(-4,3),则cos=()A. B. C. - D. -6、【2014高考安徽卷文第7题】若将函数的图像向右平移个单位,所得图像关于轴对称,则的最小正值是()A. B. C. D.7、【2014高考广东卷文第7题】在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8、【2014高考江西卷文第5题】在中,内角A,B,C所对应的边分别为,若,则的值为()9、【2014高考山东卷文第12题】函数的最小正周期为 .10、【2014高考陕西卷文第13题】设,向量,若,则______.11、【2014高考江苏卷第5题】已知函数与函数,它们的图像有一个横坐标为的交点,则的值是 .12、【2014高考江苏卷第14题】若的内角满足,则的最小值是 .13、【2014高考福建卷文第18题】已知函数.(1)求的值;(2)求函数的最小正周期及单调递增区间.14、【2014高考广东卷文第16题】已知函数,,且. (1)求的值;(2)若,,求.15、【2014高考辽宁文第18题】在中,内角A,B,C的对边a,b,c,且,已知,,,求:(1)a和c的值;(2)的值.16、【2014高考山东文第17题】△中,角所对的边分别为,已知=3,=,,(1)求得值;(2)求△的面积.17、【2014高考陕西文第16题】的内角所对的边分别为.(1)若成等差数列,证明:;(2)若成等比数列,且,求的值.18、【2014高考浙江文第18题】在中,内角,,所对的边分别为,已知(1)求角的大小;(2)已知,的面积为6,求边长的值.19、【2014高考重庆文第18题】在中,内角所对的边分别为,且(Ⅰ)若,求的值;(Ⅱ)若,且的面积,求和的值20、【2014高考上海文第21题】如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.(1)设计中是铅垂方向,若要求,问的长至多为多少(结果精确到0.01米)?(2)施工完成后.与铅垂方向有偏差,现在实测得求的长(结果精确到0.01米)?寒假作业二 数列1 .(河南省三市(平顶山、许昌、新乡)2013届高三第三次调研(三模))已知数列{}n a 满足1112,n n n a a a a +-==,n S 是其前n 项和,则2013S =( )A .20112B .20132C .20152D .201722.(2013年红河州高中毕业生复习统一检测)在等差数列{}n a 中,若1a 、0161022013=+-x x a 为方程的两根,则a 2+a 1007+a 2012=( )A .10B .15C .20D .40 3 .(山西省临汾一中、忻州一中、康杰中学、长治二中2013届高三第四次四校联考)已知数列{n a }满足)(log log 1133++∈=+N n a a n n ,且 2469a a a ++=,则15793log ()a a a ++的值是[来源:学,科,网]( )A .15B .15-C .5D .5-[来源:学科网]4.(河南省开封市2013届高三第四次模拟)已知数列{n a }满足n n n n a a a S b a a a n a a a +++===≥-=-+Λ2121111,,),2(设,则下列结论正确的是( )A .a S b a a 50,100100=-=B .)(50,100100b a S b a a -=-=C .a S b a 50,100100=-=D .a b S a a -==100100,[来源:5.(山西省太原市第五中学2013届高三4月月考)数列{}n a 的首项为3,{}n b 为等差数列且*1()n n n b a a n N +=-∈, 若3102,12b b =-=,则8a =( )A .0B .3C .8D .116 .(山西省山大附中2013届高三4月月考)已知函数)(x f 是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,01007>a ,则)()()()()(20132012321a f a f a f a f a f +++++Λ的值( )A .恒为正数B .恒为负数C .恒为0D .可正可负7.(山西省太原市第五中学2013届高三4月月考)在等比数列{}n a 中,若t s r ,,是互不相等的正整数,则 有等式1=⋅⋅---r t s t s r s r t a a a 成立.类比上述性质,相应地,在等差数列{}n b 中,若t s r ,,是互不相等的正整数,则有等式________成立.8.(河北省衡水中学2013届高三第八次模拟考试)已知数列{n a )满足1111,(2)2(1)n n n n a a a a a n n n --=-=≥-,则该数列的通项公式n a =______ 9.(2013年红河州高中毕业生复习统一检测)若数列}{n a 的前n 项和为n S ,31=a ,点()1,+n n S S 在直线x y 3=上(+∈N n ),则n a =__________10. (吉林省长春市2014届高三毕业班第二次调研)已知数列{}n a 中,11=a ,2n n a n a =-,112+=+n n a a ,则+++321a a a ……100a += .11.(黑龙江省大庆市2013届高三第二次模拟)已知函数()f x 是定义在R 上不恒为0的函数,且对于任意的实数,a b 满足(2)2f =,()()()f ab af b bf a =+,)(2)2(*N n f a n n n ∈=,)()2(*N n nf b n n ∈=,给出下列命题:①(0)(1)f f =;②()f x 为奇函数;③数列{}n a 为等差数列;④数列{}n b 为等比数列.其中正确的命题是___________.(写出所有正确命题的序号) 12. (2014年长春市高中毕业班第一次调研】已知数列,圆,圆,若圆C 2平分圆C 1的周长,则的所有项的和为 .13. (2014年长春市高中毕业班第一次调研)设等差数列{}n a 的前n 项和为n S , 且1523,27a S S =-=,(1).求数列{}n a 的通项公式;(2).若12,22(1),n n n S a S +++成等比数列,求正整数n 的值 .14.(黑龙江省哈六中2013届高三第二次模拟考试数学(理)试题 word 版 )已知等比数列{}n a 是递增数列,,3252=a a 1243=+a a ,数列{}n b 满足11=b ,且n n n a b b 221+=+(+∈N n )(1)证明:数列⎭⎬⎫⎩⎨⎧n n a b 是等差数列; (2)若对任意+∈N n ,不等式n n b b n λ≥++1)2(总成立,求实数λ的最大值.15.(山西省康杰中学2013届高三第二次模拟数学(理)试题)已知数列{}n a 的前n 项和n S ,满足*2(1)()n n n S a n N =+-∈.(Ⅰ)求数列{}n a 的前三项123,,a a a ; (Ⅱ)求证:数列2(1)3n n a ⎧⎫+-⎨⎬⎩⎭为等比数列,并求出{}n a 的通项公式.16.(吉林省吉林市2013届高三三模(期末)试题 )设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点 (,)n n S ,均在函数2x y r =+的图像上.(Ⅰ)求r 的值; (Ⅱ)记n n a a a b 2log 2log 2log 22212+++=Λ求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和n T .17.(河南省六市2013届高三第二次联考数学)在公差不为0的等差数列{}n a 中,148,,a a a 成等比数列.(1)已知数列{}n a 的前10项和为45,求数列{}n a 的通项公式;(2)若11n n n b a a +=,且数列{}n b 的前n 项和为n T ,若1199nT n =-+,求数列{}n a 的公差.18.(2013年高考广东卷(文))设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L .19.(河南省开封市2013届高三第四次模拟)已知公差不为0的等差数列{na }的首项42111,1,1,2a a a a 且=成等比数列. (I)求数列{na }的通项公式;(Ⅱ)若数列}{n b 满足n n n a b b b b =++++-13221222Λ,求数列{n nb }的前行项和n T .20.(2013年高考湖南(文))设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.寒假作业三 立体几何专题填空题:1.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .2.给出下列命题:(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,所有真命题的序号为__________.3.已知直线λ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒λ⊥m ;②α⊥β⇒λ∥m ;③λ∥m ⇒α⊥β;④λ⊥m ⇒α∥β 其中正确命题序号是 .4. 设l ,m 表示直线,α表示平面,m 是α内任意一条直线.则“l m ⊥”是“l α⊥”成立的 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选填一个) 5 .一个正三棱柱的三视图如右图所示,其俯视图为正三角形,则该三棱柱的体积是( )cm 3.6.如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的外接球的体积为_______.7.一个所有棱长均为1的正四棱锥的顶点与底面的四个顶点均在某个球的球面上,则此球的体积为( )A .23π B .2π C .2πD .6π8. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD 且PA = 4,则PC 与底面ABCD 所成角的正切值为 . m 简答题:1.(2014广东)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF (2) 求三棱锥M-CDE 的体积2.(2014湖北)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .3. 已知在四棱锥P ABCD -中,//AD BC ,AD CD ⊥,22PA PD AD BC CD ====, ,E F 分别是,AD PC 的中点. (1) 求证AD PBE ⊥平面; (2) 求证//PA BEF 平面;第20题图(3) 若PB AD =,求二面角F BE C --的大小.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (I )在CD 上找一点F ,使//AD 平面EFB ;(II )求点C 到平面ABD 的距离.5. 如图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,AD AB BC AD ⊥,∥,AC 与BD交于点O ,3=PA ,6,32,2===BC AB AD . (Ⅰ)证明:⊥BD 平面PAC ;(Ⅱ)求直线PO 与平面PAB 所成的角的正弦值ABCD图2EBACD图1EABCDPO(第5题图)6. 如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点. (1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.7.如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 且3===CA BC AB ,1==CD AD . (1)求证:;1AA BD ⊥(2)若E 为棱BC 的中点,求证://AE 平面11D DCC .8.CD 是正△ABC 的边AB 上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A-DC-B ,如图所示.(Ⅰ)试判断折叠后直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)若AC=2,求棱锥E-DFC 的体积;(Ⅲ)在线段AC 上是否存在一点P ,使BP ⊥DF ?如果存在,求出ACAP的值;如果不存在,请说明理由.9.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA PDC ⊥平面. (1)求证90PDC ∠=︒,并指出异面直线PA 与CD 所成角的大小;(2)在棱PD 上是否存在一点E ,使得//PB EAC 平面?如果存在,求出此时三棱锥E PBC -与四棱锥P ABCD -的体积比;如果不存在,请说明理由.10. 如图,在四棱锥P ABCD -中,侧棱PA ⊥底面ABCD ,底面ABCD 为矩形,E 为PD 上一点,222AD AB AP ===,2PE DE =. (I )若F 为PE 的中点,求证BF P 平面ACE ; (II )求三棱锥P ACE -的体积.寒假作业四 极坐标与参数方程1、在极坐标系中,曲线1C 和2C 的方程分别为22cos sin ρθθ=和cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________.2、在平面直角坐标系xoy 中,已知直线l 的参数方程212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t为参数),直线l 与抛物线24y x =相交于AB 两点,求线段AB 的长.3、.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+|PD|2的取值范围。

2012高三数学寒假作业(1)

2012高三数学寒假作业(1)

高三数学寒假作业(1)命题人: 李云鹏 复核人: 庄炳灵一.选择题(每题5分,共12小题,满分60分,每小题只有一个选项正确。

) 1.若集合M={y| y=x-3},P={y| y=33-x }, 则M∩P=( )A .{y| y>1}B .{y| y≥1}C .{y| y>0}D .{y| y≥0}2.将直线l :x +2y -1=0向左平移3个单位,再向上平移2个单位后得到直线l ´,则直线l 与l ´之间的距离为( )A .557 B .55C .51D .573.设命题甲:0122>++ax ax 的解集是实数集R;命题乙:10<<a ,则命题甲是命题乙成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D .4个5.若抛物线2pxy2=的焦点与椭圆12y6x22=+的右焦点重合,则p 的值为( )A.-2B.2C.-4D.4 6.已知直线m 与平面α相交一点P ,则在平面α内( )A .存在直线与直线m 平行,也存在直线与直线m 垂直B .存在直线与直线m 平行,但不一定存在直线与直线m 垂直C .不存在直线与直线m 平行,但必存在直线与直线m 垂直D .不一定存在直线与直线m 平行,也不一定存在直线与直线m 垂直7、在平行四边形A B C D 中,A C 与B D 交于点O E ,是线段O D 的中点,A E 的延长线与C D 交于点F .若AC = a ,BD = b ,则AF = ( )A .1142+ a bB .2133+a bC .1124+a bD .1233+a b8.已知等差数列{a n }中,a 1、a 3、a 9成等比数列,则1042931a a a a a a ++++=( )A.-56B.54C.1316D. 569.在△ABC 中,已知tanA +tanB =3tanA ·tanB -3,且sinBcosB =43,则△ABC 是( )A.正三角形B.直角三角形C.正三角形或直角三角形D.直角三角形或等腰三角形共线且,若项和为的前、若等差数列C B A OC a OA a OB S n a n n ,,,}{102001+=(不过原点),则=200S ( )100、A 101、B 200、C 201、D11.在R上定义运算⊗:)1(y x y x -=⊗.若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )(A)11<<-a(B)20<<a(C)2321<<-a(D)2123<<-a12、过双曲线22221(0,0)xy a b ab-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12A B B C=,则双曲线的离心率是 ( )A二、填空题(本大题共4小题,每小题4分,共16分)13.已知),(y x P 满足约束条件⎪⎩⎪⎨⎧≥-≤--≤-+010103x y x y x ,则y x 2-的最大值是__________14. 已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则)34()34(-+f f 的值为_______ 15.圆锥底面半径为1,其母线与底面所成的角为60°,则它的侧面积为_________________. 16、已知函数bax x x f +-=2)(2(R x ∈),给出下列命题,其中正确命题的序号是_____。

2015届高三数学寒假作业本答案

2015届高三数学寒假作业本答案

2015届高三数学寒假作业本答案无忧考网为大家整理的2015届高三数学寒假作业本答案文章,供大家学习参考!更多最新信息请点击高三考试网一、选择题,每小题只有一项是正确的。

1.已知集合,则( RA)∩B = ( )A. B. C. D.2.R上的奇函数满足,当时,,则A. B. C. D.3.如果对于正数有,那么 ( )A.1B.10C.D.4.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列,则q=()A. 1或�B. 1C. �D. �25.已知2弧度的圆心角所对的弦长为2,那么,这个圆心角所对的弧长是 ()A.2B.sin 2C.2sin 1D.2sin 16.将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是()A. y=sin(2x� )B. y=sin(2x� )C. y=sin( x� )D. y=sin( x� )7.如图,菱形的边长为, , 为的中点,若为菱形内任意一点(含边界),则的值为A. B. C. D.98.设是正数,且,,,则A. B.C. D.9.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的值为( )A. B. C. D.二、填空题10.若某程序框图如图所示,则该程序运行后输出的值是.11.已知α,β为平面,m,n为直线,下列命题:①若m∥n,n∥α,则m∥α; ②若m⊥α,m⊥β,则α∥β;③若α∩β=n,m∥α, m∥β,则m∥n; ④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的有▲ .(填写所有正确命题的序号)12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=2A,cosA= ,b=5,则△ABC的面积为.13.(5分)(2011•陕西)设f(x)= 若f(f(1))=1,则a=.三、计算题14.(本题满分14分)本大题共有2小题,第1小题7分,第2小题7分。

高三数学寒假作业(完整答案)

高三数学寒假作业(完整答案)

高三数学寒假作业—数列答案一、选择题:1.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=()A .5B .8C .10D .14解析 解法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.解法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 答案 B2.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63 D .64解析 在等比数列{a n }中,S 2,S 4-S 2,S 6-S 4也成等比数列,故(S 4-S 2)2=S 2(S 6-S 4),则(15-3)2=3(S 6-15),解得S 6=63. 答案 C3.设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k +2-S k =36,则k 的值为( ) A .8 B .7 C .6 D .5解析 设等差数列的公差为d ,由等差数列的性质可得2d =a 3-a 1=4,得d =2,所以a n =1+2(n -1)=2n -1.S k +2-S k =a k +2+a k +1=2(k +2)-1+2(k +1)-1=4k +4=36,解得k =8.4.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+a 5+…+a 2n -1),a 1a 2a 3=27,则a 6=( )A .27B .81C .243D .729 解析 设数列{a n }的公比为q ,∵S 2n =4×a 1-q 2n1-q2=a 1-q 2n1-q,∴q =3,又a 1a 2a 3=27,∴a 32=27,∴a 2=3,∴a 6=a 2q 4=35=243,故选C. 答案 C5.已知数列{a n }满足a 1=1,a 2=3,a n +1·a n -1=a n (n ≥2),则a 2 013的值等于( ) A .3 B .1 C.13 D .32 013解析 由已知得a n +1=a n a n -1,a n +3=a n +2a n +1=a n +1a n ×1a n +1=1a n ,故a n +6=1a n +3=a n , 于是,该数列是周期为6的数列,a 2 013=a 3=a 2a 1=3. 答案 A6.已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15等于( )A .201B .210C .211D .212解析 由S n +1+S n -1=2(S n +S 1),得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起构成等差数列,S 15=1+2+4+6+8+…+28=211. 答案 C7.在等比数列{a n }中,a 1+a n =34,a 2a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6 D .7解析 在等比数列中,a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1-qn1-q=a 1-qa n 1-q =2-32q 1-q=62,解得q =2,又a n =a 1q n -1,所以2×2n -1=2n=32,解得n =5.同理当a 1=32,a n =2时,由S n =62解得q =12,由a n=a 1qn -1=32×⎝ ⎛⎭⎪⎫12n -1=2,得⎝ ⎛⎭⎪⎫12n -1=116=⎝ ⎛⎭⎪⎫124,即n -1=4,n =5,综上项数n 等于5,选B.答案 B8.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12. 答案 C9.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0 D .S m <0,且S m +1<0解析 由题意,得:-a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0.显然,易得S m =a 1+a m2·m >0,S m +1=a 1+a m +12·(m +1)<0.答案 A10.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 2 014=-1,S 2 014=2 B .a 2 014=-3,S 2 014=5 C .a 2 014=-3,S 2 014=2D .a 2 014=-1,S 2 014=5解析 由已知数列{a n }满足a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,a n +2=-a n -1(n ≥2),a n +3=-a n ,a n +6=a n ,又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以当k ∈N时,a k +1+a k +2+a k +3+a k +4+a k +5+a k +6=a 1+a 2+a 3+a 4+a 5+a 6=0,a 2 014=a 4=-1,S 2 014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5.答案 D10(理)已知定义在R 上的函数f(x)和g(x)满足g(x)≠0,f'(x)·g(x)<f(x)·g'(x),f(x)=a x ·g(x),+=.令a n =,则使数列{a n }的前n 项和S n 超过的最小自然数n 的值为二、填空题:13.(2014·江西卷)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值范围________.解析 当且仅当n =8时,S n 取得最大值,说明⎩⎪⎨⎪⎧a 8>0,a 9<0.∴⎩⎪⎨⎪⎧7+7d >0,7+8d <0.∴-1<d <-78.答案 ⎝⎛⎭⎪⎫-1,-78 12.已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析 因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点.而(1)(1)f g (-1)(-1)f g 52()()f n g n 1516等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10. 答案 1011.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________;(2)S 1+S 2+…+S 100=________. 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2),∴a n =(-1)na n -(-1)n -1a n -1+12n (n ≥2).当n 为偶数时,a n -1=-12n (n ≥2),当n 为奇数时,2a n +a n -1=12n (n ≥2),∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128,…, a 2=12,a 4=12,a 6=12,a 8=12,….∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝ ⎛⎭⎪⎫12+122+123+…+12100=⎝ ⎛⎭⎪⎫12+123+…+1299-⎝ ⎛⎭⎪⎫12+122+…+12100=13⎝ ⎛⎭⎪⎫12100-1.答案 (1)-116 (2)13⎝ ⎛⎭⎪⎫12100-114.已知对于任意的自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴相交于A n ,B n 两点,则|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=________.解析 令(n 2+n )x 2-(2n +1)x +1=0,则x 1+x 2=2n +1n 2+n ,x 1x 2=1n 2+n ,由题意得|A n B n |=|x 2-x 1|,所以|A n B n |=x 1+x 22-4x 1x 2=⎝ ⎛⎭⎪⎫2n+1n 2+n 2-4·1n 2+n =1n 2+n =1n -1n +1,因此|A 1B 1|+|A 2B 2|+…+|A 2 014B 2 014|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 014-12 015=1-12 015=2 0142 015. 答案2 0142 01515.(文) 设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.解析 由题意可知,数列{c n }的前n 项和为S n =n c 1+c n2,前2n 项和为S 2n =2nc 1+c 2n2,所以S 2nS n =2nc 1+c 2n2n c 1+c n2=2+2nd 4+nd -d =2+21+4-d nd.因为数列{c n }是“和等比数列”,即S 2nS n为非零常数,所以d =4. 答案 415.(理)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 设正项等比数列{a n }的首项为a 1,公比为q (q >0),则由a 5=12得a 6+a 7=a 5q +a 5q 2=12(q +q 2)=3,即q +q 2=6,解得q =2,代入a 5=a 1q 4=a 124=12⇒a 1=125,式子a 1+a 2+…+a n >a 1a 2…a n 变为a 1-qn1-q>答案 12三、解答题:.16.(2014·北京卷)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20且{b n -a n }是等比数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q , 由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2. 所以b n -a n =(b 1-a 1)q n -1=2n -1,从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1.所以,数列{b n }的前n 项和为32n (n +1)+2n-1.17.(2014·安徽卷)数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *. (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n·a n ,求数列{b n }的前n 项和S n . 解 (1)证明:由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1,所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)由(1)得a n n=1+(n -1)·1=n , 所以a n =n 2,从而b n =n ·3nS n =1×31+2×32+3×33+…+n ·3n ①3S n =1×32+2×33+3×34+…+(n -1)·3n +n ·3n +1②①-②得:-2S n =31+32+33+…+3n -n ·3n +1=-3n1-3-n ·3n +1=-2nn +1-32所以S n =n -n +1+3418.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式a n ;(2)令b n =a n log 12 a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小的正整数n .解 (1)设{a n }的公比为q ,由已知, 得⎩⎪⎨⎪⎧a 2+a 3+a 4=28,a 3+=a 2+a 4,∴⎩⎪⎨⎪⎧a 3=8,a 2+a 4=20,即⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=32q =12(舍去)∴a n =a 1qn -1=2n.(2)b n =2nlog 122n=-n ·2n , 设T n =1×2+2×22+3×23+…+n ×2n,① 则2T n =1×22+2×23+…+(n -1)×2n +n ×2n +1,②①-②得-T n =(2+22+…+2n )-n ×2n +1=-(n -1)·2n +1-2,∴S n =-T n =-(n -1)×2n +1-2.由S n +n ·2n +1>50,得-(n -1)·2n +1-2+n ·2n +1>50,则2n>26,故满足不等式的最小的正整数n =5.19.(2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意,得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1).当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)20.已知数列{a n }满足a 1=1,a 1+a 2+…+a n -1-a n =-1(n ≥2且n ∈N *). (1)求数列{a n }的通项公式a n ; (2)令d n =1+log aa 2n +1+a 2n +25(a >0,a ≠1),记数列{d n }的前n 项和为S n ,若S 2nS n恒为一个与n 无关的常数λ,试求常数a 和λ.解 (1)由题知a 1+a 2+…+a n -1-a n =-1(n ∈N *),① 所以a 1+a 2+…+a n -a n +1=-1,② 由①-②得:a n +1-2a n =0,即a n +1a n=2(n ≥2). 当n =2时,a 1-a 2=-1, 因为a 1=1,所以a 2=2,a 2a 1=2,所以,数列{a n }是首项为1,公比为2的等比数列. 故a n =2n -1(n ∈N *).(2)因为a n =2n -1,所以d n =1+log aa 2n +1+a 2n +25=1+2n log a 2.因为d n +1-d n =2log a 2,所以{d n }是以d 1=1+2log a 2为首项,以2log a 2为公差的等差数列,所以S 2nS n=2n +2log a +2n n -2×2log a 2n+2log a+nn -2×2log a 2=2+n +a21+n +a 2=λ ⇒(λ-4)n log a 2+(λ-2)(1+log a 2)=0, 因为S 2nS n恒为一个与n 无关的常数λ, 所以⎩⎪⎨⎪⎧λ-a2=0,λ-+log a=0,解得λ=4,a =12.21.(文)数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解(1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.21.(理)(2014·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值; (3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.解 (1)证明:由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”. (2)由已知,得S 2=2a 1+d =2+d . 因为{a n }是“H 数列”, 所以存在正整数m ,使得S 2=a m , 即2+d =1+(m -1)d ,于是(m -2)d =1. 因为d <0,所以m -2<0,故m =1.从而d =-1. 当d =-1时,a n =2-n ,S n =n-n 2是小于2的整数,n ∈N *.于是对任意的正整数n ,总存在正整数m =2-S n =2-n-n2,使得S n =2-m =a m , 所以{a n }是“H 数列”.因此d 的值为-1. (3)证明:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1), 则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”. 设{b n }的前n 项和为T n ,则T n =n n +2a 1(n ∈N *).于是对任意的正整数n ,总存在正整数m =n n +2,使得T n =b m ,所以{b n }是“H 数列”. 同理可证{c n }也是“H 数列”. 所以,对任意的等差数列{a n },总存在两个“H 数列”{ b n }和{c n },使得a n =b n +c n (n ∈N *)成立.。

高三数学寒假作业(1)及答案

高三数学寒假作业(1)及答案

一、选择题:本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{|22}A x x =-<<,2{|20}B x x x =-≤,则A B = ( )A .(0,2)B .(0,2]C .[0,2)D .[0,2]2.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员中位数分别是( ) A .19、13 B .13、19 C .20、18 D .18、203.已知向量)1,(),21,8(x x ==,其中1>x ,若)2(+∥,则x 的值为 ( ) A .0 B .2C .4D .84.已知函数2log (0)()2(0)xx x f x x >⎧=⎨≤⎩,若1()2f a =,则实数a = ( ) A .1-BC .1-D .1或5.直线20ax y a -+=与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定6.在区间[0,1]上任取两个数a 、b ,则方程220x ax b ++=有实根的概率为 ( ) A .18B .14C .12D .347.已知a ∈R ,则“2a >”是“22a a >”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件甲 乙 7 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 0148.曲线y=2x-x 3在横坐标为-1的点处的切线为l ,则点P(3,2)到直线l 的距离为 ( ) A .227B .229 C .2211D .101099.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .26010.设由正数组成的等比数列,公比q =2,且3030212=a a a ……·,则30963a a a a ……··等于A .102B .202C .162 二、填空题:本大题共7个小题,把答案填在题中横线上.11.已知复数i a a a a )6()32(22-++-+表示纯虚数,则实数a 的值等于 12.函数x x y 21-+=的值域是13.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则y x z 42+=的最小值为 . 14.已知αββαtan ,41tan ,31)tan(则==+的值为 。

2015年寒假星火教育高三数学测试卷1(有答案)(文理科通用)

2015年寒假星火教育高三数学测试卷1(有答案)(文理科通用)

2015年高三数学寒假测试卷(1) 姓名: 得分:说明:总分:150分;难度:★★★;时间:30’。

一、选择题(10×5)。

1.复数411i ⎛⎫-- ⎪⎝⎭的值是( ) A .4 B .-4i C .4i D .-4 2.“x ﹥2”是“x ﹥5”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件3.设全集{x N x U *∈=<}6,集合{}{}1,3,3,5A B ==,则()U C A B 等于( ) A .{}4,1 B .{}4,2 C .{}5,2 D .{}5,14.已知实数9,,4m 构成一个等比数列,则椭圆221x y m +=的离心率为( ) A. 630 B. 7 C. 630或7 D. 65或75.阅读右侧程序框图,为使输出的数据为31,则①处应填的数字为( )A .7B .6C .5D .4二、填空题(10×4)。

6.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

7.251()x x -展开式中4x 的系数是 (用数字作答)。

8. 已知双曲线22221(0,0)x y a b a b-=>>的一焦点为F ,若过点F 且倾斜角为060的直线与双曲线有且只有一个交点,则此双曲线离心率等于 ______________。

9. 已知过抛物线C :y=2x 2的焦点F 的直线l 与抛物线C 交于A 、B 两点,则|AB|的最小值为__________.三、解答题(20×3)。

10.已知函数2()sin cos 2x f x x a =+,a 为常数,a R ∈,且2π=x 是方程0)(=x f 的解。

(1)求函数()f x 的最小正周期;(2)当],0[π∈x 时,求函数)(x f 值域。

11如图,已知四棱锥ABCD P -中,底面ABCD 是直角梯形,//AB DC ,45ABC ∠=︒,1DC =,2=AB ,⊥PA 平面ABCD ,1=PA .(1)求证://AB 平面PCD (2)求证:⊥BC 平面PAC12.某运动员射击一次所得环数X 的分布如下: X60-- 7 8 9 10 P 0 0.2 0.3 0.3 0.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ. (1)求该运动员两次都命中7环的概率(2)求ξ的分布列(3)求ξ的数学期望E ξ.A BC D P2015年高三数学寒假测试卷(1)答案一、选择题题 1 2 3 4 5号答 A B B A C案二、填空题6、3 7、108、29、0.5三、解答题10.解:.………………11.解:12.解:。

2015年高三寒假作业(三)

2015年高三寒假作业(三)

2015年高三寒假作业(三)文科数学(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{1,2,3,4,5,6,},{2,3,5},{4,5},U M N ===则集合{1,6}=( ) A .MNB .M NC .()U C M ND .()U C MN2.i 是虚数单位,复数31ii -=( ) A.-1-iB. 1 -iC. -1+iD. 1+i3.设等比数列{n a }的公比q =2,前n 项和为Sn ,则43S a 的值为 ( ) A .154B .152C .74D .724.已知实数x ,y 满足条件20030x y x y -+≥⎧⎪≤≤⎨⎪≥⎩,则目标函数z=2x -y ( )A .有最小值0.有最大值6B .有最小值-2,有最大值3C .有最小值3.有最大值6D .有最小值-2,有最大值65.三棱椎A —BCD 的三视图为如图所示的三个直角三角形,则三棱锥A —BCD 的表面积为( ) A.2+.4+ C.6.执行如图1所示的程序框图,若输入n 的值为3,则输出S 的值是( )A .1B .2C .4D .7班级___________姓名_____________做题时间_______________家长签名______________图 17.已知三个互不重合的平面,,,a βγ且,,a a a b c βγβγ===,给出下列命题:①若,,a b a c ⊥⊥则b c ⊥② 若a b P =,则a c P =; ③若,,a b a c ⊥⊥则a γ⊥;④若a ∥b ,则a ∥c .其中正确命题个数为A .1个B.2个C .3个D.4个8.已知F 1、F 2为双曲线C :x 2 – y 2 =1的左、右焦点,点P 在C 上,1260F PF ∠=︒,则 1||PF ·2||PF =( )A .2B .4C D9.已知直线ax -by -2=0与曲线y=x 3在点P(1,1)处的切线互相垂直,则ab的 值为A .13B .23C .23-D .13-10.有四个关于三角函数的命题:( )22121:,sin cos :,sin()sin sin 222x x p x R p x R x y x y ∃∈+=∃∈-=-34[0,sin :sin cos 2p x x p x y x y ππ=∀∈==⇒+=其中假命题的是 ( ) A .14,p pB .24,p pC .13,p pD .12,p p11.茌发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天 甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大予0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.偶函数()f x 满足(2)(2)f x f x -=+,且在[0,2]x ∈时,()2cos ,4f x x π=则关于x 的方程1()()2x f x =在 [2,6]x ∈- 上解的个数是 ( )A .1B .2C .3D . 4二、填空题:本文题共4小题,每小题5分。

【推荐下载】2014年-2015学年高三年级数学寒假作业答案参考

【推荐下载】2014年-2015学年高三年级数学寒假作业答案参考
此时,直线PQ斜率为k1=﹣4m,PQ的直线方程为,即y=﹣4mx﹣m.
联立消去y,整理得(32m2+1)x2+16m2x+2m2﹣2=0.
所以,.
于是=(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+(4mx1+m)(4mx2+m)
=
= = .
令t=1+32m2,1
又1
综上,的取值范围为[﹣1,).(15分)
&there4; =
= =
&Байду номын сангаасhere4;m&ge;2012,所以所求m的最小正整数是2012.
tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!精品学习网整理了高三年级数学寒假作业,希望为你我都带来好运,祝大家新年快乐,万事如意!
所以椭圆C的方程为. (6分)
(Ⅱ)当直线AB垂直于x轴时,直线AB方程为x=﹣,此时P(,0)、Q(,0),.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(﹣,m) (m&ne;0),A(x1,y1),B(x2,y2).
由得(x1+x2)+2(y1+y2) =0,
则﹣1+4mk=0,&there4;k= .
2014-2015
高三年级年级数学寒假作业是不是在这欢乐的日子里为你带来了一丝苦闷呢?精品学习网为你提供2014-2015学年高三年级数学寒假作业答案参考,相信这个新年你会异常开心!
一、选择试题
1~5 CADAC 6~9 CDCB

2015届苏州市高三数学寒假作业:2015年2月25日

2015届苏州市高三数学寒假作业:2015年2月25日

2015年2月25日姓名: 学号:1.用半径为2cm 的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为______cm .2.给出下列四个命题,其中正确命题的个数..是 个. ①线段AB 在平面α内,则直线AB 不在α内;②两平面有一个公共点,则一定有无数个公共点; ③三条平行直线共面; ④有三个公共点的两平面重合.3.底面边长为2m ,高为1m 的正三棱锥的全面积为 2m .4.设,αβ为互不重合的平面,,m n 为互不重合的直线,给出下列四个命题:①若,,m n m n αα⊥⊂⊥则; ②若,,m n m αα⊂⊂∥,n β∥β,则α∥β; ③若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; ④若,,//,//m m n n ααββ⊥⊥则. 其中正确命题的序号为 .5.在正三棱柱111ABC ABC -中,12,3AB AA ==,点,M N 在棱11,CC BB 上,且 1CM B N =,则四棱锥A BCMN -的体积为 .6.正三棱锥S ABC -中,30,1,=∠===ASB SA CA BC AB ,过点A作一截面与侧棱,SB SC 分别交于点,E F ,则截面AEF ∆周长的最小值为 .7.已知三棱锥P ABC -的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为P ABC -的体积为 .8.如图,在正方体1111ABCD A B C D -中,点P 在面对角线AC 上运动,给出下列命题:①1D P ∥平面11A BC ; ② 1D P BD ⊥;③平面1PDB ⊥平面11A BC ; ④三棱锥11A BPC -的体积不变.上面命题中,正确命题的序号是 .9.如图,平行四边形ABCD 中,CD BD ⊥,正方形ADEF 所在的平面和平面ABCD 垂直,H 是BE 的中点,G 是,AE DF 的交点.(1)求证://GH 平面CDE ; (2)求证:BD ⊥平面CDE .10.如图,在四棱柱1111D C B A ABCD -中,已知平面⊥C C AA 11平面,ABCD 3===CA BC AB , 1==CD AD .(1)求证:;1AA BD ⊥(2)若E 为棱BC 的中点,求证://AE 平面11D DCC .11.如图(1)在等腰ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD ∆沿CD 翻折,使得平面ACD ⊥平面BCD (如图(2)) .(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥;(3)设三棱锥A BCD -的体积为1V ,多面体ABFED 的体积为2V ,求12:V V 的值.1A E C DBA1D 1B 1C。

2015高三数学寒假作业试题练习

2015高三数学寒假作业试题练习

精心整理
2015高三数学寒假作业试题练习
为大家整理的2015高三数学寒假作业试题练习文章,供大家学习参考!更多最新信息请点击高三考试网
1A.p B.p C.非D.非2、,则A.1 3、当时,令为与中的较大者,设a 、b 分别是f(x)的值和最小值,则a+b 等于
A.0
B.
C.1-
D.
4、若直线过圆的圆心,则ab的值是
A. B. C.1 D.2
5、正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为
A.
6A 在x
C.
7
8、
5个单位长,则a的取值范围是__________
9、已知是不同的直线,是不重合的平面,给出下列命题:
(1)若,则平行于平面内的任意一条直线
上面命题中,真命题的序号是__________(写出所有真命题的序号)
10、已知向量,令求函数的值、最小正周期,并写出在[0,]上的单调区间。

11、已知函数
(1)若在区间[1,+]上是增函数,求实数a的取值范围。

(2)
(3)
恰有
12、N、D
(1)
(2)
(3)。

2015届苏州市高三数学寒假作业:2015年2月10日

2015届苏州市高三数学寒假作业:2015年2月10日

2015年2月10日姓名____________学号_______一、填空题1.曲线32242y x x x =--+在点(1,3)-处的切线方程是 .2.函数()1ln =+-f x x x 的单调减区间为 .3.已知函数x x f x f sin cos )4()(+'=π,则=)4(πf . 4.若点P 是曲线()=x f x e 上任意一点,则点P 到直线2-=x y 的最小距离为 .5.已知函数()ln 1=-+x f x a x x 在()0,+∞上是增函数,则a 的取值范围为 . 6.函数3()3f x x x=-+在区间(,3)+a a 上有极小值无极大值,则实数a 的取值范围是 . 7. 定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x xe f x e >+(其中e 为自然对数的底数)的解集为 .8.已知函数(),[,]=+∈x f x e a x m n 的值域为[2,2]m n ,则a 的取值范围是___________.二、解答题9. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求,a b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.10.如图所示,某人想制造一个支架,它由四根金属杆,,,PH HA HB HC 构成,其底端三点,,A B C 均匀地固定在半径为3m 的圆O 上(圆O 在地面上),,,P H O 三点相异且共线,PO 与地面垂直.(1)试将L 表示为θ的函数,并注明定义域;(2)当θ的正弦值是多少时,用料最省?11.已知函数()1x a f x x e=-+ (a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.B。

2015届苏州市高三数学寒假作业:2015年2月23日

2015届苏州市高三数学寒假作业:2015年2月23日

2015年2月23日姓名__________学号____________一、填空题1.抛物线y 2=x 的焦点坐标为 .2. 已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是 . 3.双曲线191622=-y x 的两条渐近线的方程为 . 4.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是 . 5.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 .6.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是 .7.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.8.已知椭圆22221(0)x y a b a b+=>>的离心率2e =,A 、B 是椭圆的左、右顶点,P 是椭圆上不同于A 、B 的一点,直线PA 、PB 斜倾角分别为α、β,则cos()cos()αβαβ-+= .二.解答题9. 已知椭圆的长轴是短轴的3倍,且过点(3,0)A,并且以坐标轴为对称轴,求椭圆的标准方程.10.椭圆中心是坐标原点,长轴在x轴上,离心率e3(0,)2P到这个椭圆上的点的最,求这个椭圆的方程,并椭圆上到点P的点的坐标.11.已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015高三数学寒假作业(一)
一、选择题,每小题只有一项是正确的。

1.满足条件{1,2}{1,2,3}M =的所有集合M 的个数是
A.1
B. 2
C. 3
D. 4
2.下列说法正确的是 ( )
A. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ”
B. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件
C. “p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件
D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题
3.设函数
()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是( ) A. ()f x 是偶函数
B. ()f x 最小正周期为π
C. ()f x 图象关于点(,0)6π-
对称 D. ()f x 在区间7[,]312
ππ上是增函数 4.实数5lg 24lg 81log 22723log 32
2++∙- 的值为( )
5.函数()sin ,[,],22
f x x x x =∈-12()()f x f x >若,则下列不等式一定成立的是( ) A .021>+x x B .2221x x >
C . 21x x >
D .2
221x x <
6.已知等比数列{}n a 的首项,11=a 公比2=q ,则 =+++1122212log log log a a a ( )
A. 55
B. 35
C. 50
D. 46
7.在等差数列{}n a 中,12012a =-,其前n 项和为12102012,2,n S a a S -=若则的值等于
A.2010-
B.2011-
C.2012-
D.2013-
8.在△ ABC 中,角 A 、B 、C 的对边分别为 a 、b 、c ,如果 cos(2)2sin sin 0B C A B ++<,那么三边长a 、b 、
c 之间满足的关系是( )
A .22ab c >
B .222a b c +<
C .22bc a >
D .222b c a +<
9.若点(4,2)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( )
A .2100x y +-=
B .20x y -=
C .280x y +-=
D .260x y --= 二、填空题
10.已知复数(2)x yi -+ (,x y R ∈)则y x
的最大值是 . 11.一根绳子长为6米,绳上有5个节点将绳子6等分,现从5个节点中随机选一个将绳子剪断,则所得的两段绳长均不小于2米的概率为 .
12.曲线
32y x x =-在点(1,-1)处的切线方程是______________. 13.已知函数11()||||f x x x x x
=+--,关于x 的方程2()()0f x a f x b ++=(,a b R ∈)恰有6个不同实数解,则a 的取值范围是 .
三、计算题
14.(本小题满分14分)
设对于任意的实数,x y ,函数()f x ,()g x 满足1(1)()3
f x f x +=
,且(0)3f = ()()2g x y g x y +=+,(5)13g =,*n N ∈ (Ⅰ)求数列{()}f n 和{()}g n 的通项公式; (Ⅱ)设[()]2
n n c g f n =,求数列{}n c 的前n 项和n S (Ⅲ)已知123lim 03n n n -→∞+=,设()3n F n S n =-,是否存在整数m 和M 。

使得对任意正整数n ,不等式()m F n M <<恒成立?若存在,分别求出m 和M 的集合,并求出M m -的最小值;若不存在,请说明理由.
15.已知点A (4,0)、B (0,4)、C (ααsin 3,cos 3)
(1)若),0(πα∈α的大小;
(2)⊥,求α
ααtan 12sin sin 22++的值. 16.(本小题满分12分)已知椭圆22
124
x y +=的两个焦点分别是12,F F ,P 是椭圆在第一象限的点,且满足
121
PF PF
⋅=,过点P作倾斜角互补的两条直,
PA PB,分别交椭圆于,A B两点.(Ⅰ)求点P的坐标;
(Ⅱ)求直线AB的斜率;
高三数学寒假作业(一)参考答案
一、选择题
1~5 DBDDB 6~9 ACBC
二、填空题 10.3 11.35
12.x-y-2=0
13. (-4,-2)
三、计算题
14.
(Ⅰ)取x n =,得1(1)()3f n f n +=,取0x =,1(1)(0)13
f f ==
故数列{()}f n 是首项是1,公比为13的等比数列,所以11()()3n f n -=
取x n =,1y =,得*(1)()2()g n g n n N +=+∈,即(1)()2g n g n +-=,故数列{()}g n 是公差为的等差数列,又(5)13g =,所以()132(5)23g n n n =+-=+ (Ⅱ)1111[()][()]()32233n n n n n c g f n g n --===+ 2321121111112()3()4()(1)()()333333n n n n S c c c n n n --=+++=+++++-++ 2311111112()3()(1)()()333333
n n n S n n n -=++++-++,两式相减得 23111()211111131131()()()()2()2[1()]()21333333323313
n n n n n n n S n n n n n n --=+++++-+=-+=--+-所以191319231[1()]()33()4323443
n n n n n n S n n -+=--+=+-⋅ (Ⅲ)19
231()3()443n n n F n S n -+=-=-⋅,12312511(1)()()()(1)()043433
n n n n n F n F n n -+++-=-=+> 所以()F n 是增函数,那么min ()(1)1F n F ==
由于123lim 03n n n -→∞+=,则9lim ()4n F n →∞=,由于1231()043n n -+>,则9()4F n <,所以91()4
F n ≤< 因此当1m <且9
4M ≥时,()m F n M <<恒成立,所以存在正数0,1,2,
,m =--3,4,5,M =,使得对任意的www. 正整数n ,不等式()m F n M <<恒成立.此时,m 的集合是{0,1,2,}--,M 的集合是{3,4,5,
},min ()3M m -=
15.
试题
解析:(1)由题意可得(3cos 4,3sin ),(3cos ,3sin 4)AC BC αααα=-=-,又AC BC =,
16.
Ⅰ由于1F ,2(0,F ,设(,)P x y ,由121PF PF ⋅=得
22()(,)21x y x y x y -⋅-=+-=,
那么223x y +=,与22124x y +=联立得P
Ⅱ设PB k k =,那么PA k k =-,其中0k >,将直线PB 的方程(1)y k x -代入椭圆22124
x y +=得
222(2)2)20k x k k x k +++--=,
由于P B x x ,而1P x =,那么B x
将直线PA 的方程(1)y k x =--代入椭圆22124
x y +=得222(2)2)20k x k k x k +-++-=,
由于P A x x ,而1P x =,那么A x =
那么A B x x -==2
22248()2222A B A B k k y y k x x k k k k k ---=-++=-⋅+=++,那么A b A b
y y k x x -==-。

相关文档
最新文档