2019学年高中数学 第一章 集合 1.2.1 集合之间的关系情境导学素材 新人教B版必修1
高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案
【新教材】1.2 集合的基本关系学案(人教A版)1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.一、预习导入阅读课本7-8页,填写。
1.集合与集合的关系(1)一般地,对于两个集合A,B,如果集合A中_____________元素都是集合B中的元素,我们就说这两个集合有_____________关系,称集合A为B的______.记作:A_________ B(或B _________ A)读作:A包含于B(或B包含A).图示:(2)如果两个集合所含的元素完全相同(A______ B且B ______ A),那么我们称这两个集合相等.记作:A ______B读作:A等于B.图示:2. 真子集A ,存在元素x______ B且x______ A,则称集合A是集合B的真子集。
若集合B记作:A ______B (或B ______A ) 读作:A 真包含于B (或B 真包含A )3.空集__________________的集合称为空集,记作:∅. 规定:空集是任何集合的子集。
4.常用结论(1)A __________ A (类比a a ≤)(2)空集是__________的子集,是_____________的真子集。
(3)若,,A B B C ⊆⊆则A __________ C (类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为________个,其真子集数为________个,特别地,空集的子集个数为________,真子集个数为________。
1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( ) (2)任何一个集合都有子集. ( ) (3)若A =B ,则A ⊆B . ( ) (4)空集是任何集合的真子集. ( ) 2.用适当的符号填空(1) a______{a,b,c} (2) 0_______{x|x 2=0} (3) ∅________{x ∈R|x 2+1=0} (4) {0,1}_____N(5) {∅}_____{x|x 2=x} (6){2,1}____{x|x 2−3x +2=0} 3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M={-1,0,1}和N={x|x 2+x=0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}. (1)若a=-1,试判断集合A,B 之间是否存在子集关系; (2)若A ⊇B,求实数a 的取值范围.变式1. [变条件] 【例3】(2)中,是否存在实数a,使得A ⊆B?若存在,求出实数a 的取值范围;若不存在,试说明理由.变式2. [变条件] 若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A ⊇B,求实数a 的取值范围.1.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( )A .2B .-1C .2或-1D .42.已知集合A ={x|-1-x<0},则下列各式正确的是( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A3.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C.4 D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是( ) A.A⊆B B.A=BC.A B D.A B5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是( ) A.1 B.-1C.0,1 D.-1,0,1=1},则A,B的关系是________.6.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx7.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.8.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)=(4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2. 例2【答案】B【解析】∵N={x|x 2+x=0}={x|x=0或x=-1}={0,-1},∴N ⫋M,故选B. 例3【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B 是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a 所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}. 如图在数轴上标出集合A,B.由图可知,B ⫋A. (2)由已知A ⊇B.①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合, 由图可得{2a -3≥-5,a -2≤2,解得-1≤a≤4.又因为a<1,所以实数a 的取值范围为-1≤a<1 变式1.【答案】见解析【解析】因为A={x|-5<x<2},所以若A ⊆B,则B 一定不是空集.此时有{2a -3≤-5,a -2≥2,即{a ≤-1,a ≥4,显然实数a 不存在.变式2.【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得a ≥52 或a ≤-3.又因为a<1,所以a ≤-3.综上,实数a 的取值范围为a ≥1或a ≤-3. 当堂检测1-5.CDADD 6.B A 7.m≥38.【答案】见解析【解析】∵B ⊆A ,∴B 的可能情况有B ≠∅和B =∅两种. ①当B =∅时,由a>2a -1,得a<1. ②当B≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧a>3,a≤2a-1或⎩⎪⎨⎪⎧2a -1<-2,a≤2a-1成立,解得a>3;综上可知,实数a 的取值范围是{a|a<1或a>3}.。
高中数学_集合间的基本关系教学设计学情分析教材分析课后反思
学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,在本节的学习中学生可能会对集合的基本关系会有所混淆,通过不断的练习巩固来达到标准要求。
高中学生虽有好奇,好表现的因素,厌烦空洞的说教所以一定要用生动活泼的方式讲解知识学生对于新的知识的接受能力参差不齐,要采用分类教学的方法,各个辅导,重点内容,多练,多复习,巩固所学知识。
整个教学效果还是很乐观,学生反映迅速。
教学反思集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。
这一节课,首先复习结合的含义与表示再利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。
讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。
通过反例深刻理解概念中关键字并记住。
同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。
上课时还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。
学生大多举的是方程无解的例子。
有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。
最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。
通过本节课教学,有以下想法:我们要重视学生学习兴趣的引导,要在课堂上给学生更多的时间考虑问题,充分发挥学生的主动积极性。
本节内容是选自新人教 A 版高中数学必修 1 第 1 章第 1 节第 2 部分的内容。
在此之前,学生已经接触过集合的一些基本概念,本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用。
高中数学第一章集合1.2子集全集补集素材苏教版必修1
子集、全集、补集1.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B 的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:读作:A包含于B或B包含A当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.性质:①(任何一个集合是它本身的子集)②(空集是任何集合的子集)(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A =B。
例:,可见,集合,是指A、B的所有元素完全相同.(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:(或),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.【提问】(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)判断下列写法是否正确① A ② A ③④A A性质:(1)空集是任何非空集合的真子集。
若 A ,且A≠,则A;(2)如果,,则.例1 写出集合的所有子集,并指出其中哪些是它的真子集.解:集合的所有的子集是,,,,其中,,是的真子集.(二)全集与补集1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即.A在S中的补集可用右图中阴影部分表示.性质:S(S A)=A如:(1)若S={1,2,3,4,5,6},A={1,3,5},则S A={2,4,6};(2)若A={0},则N A=N*;(3)R Q是无理数集。
2.全集:如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.注:是对于给定的全集而言的,当全集不同时,补集也会不同.例如:若,当时,;当时,则.。
(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档
§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。
3.集合之间的关系
课内探究
(一)基础知识探究:集合之间的关系
1.子集的定义及符号。 如果集合A中的任意一个元素都是集合B中的元素, 那么集合A叫做集合B的子集,记作 A B 或 B A 读作“A包含于B”或“B包含A”。 2.真子集的定义及符号。 如果集合A是集合B的子集,并且B中至少有一个元素 不属于A,那么集合A叫做集合B的真子集。( 或
一般地,设A={x︳p(x)},B={x︳q(x)}.如果 A B,则x A x B 。于是x具有性质p(x) x具有性质q(x),即 p( x) q( x). 反之,如果
p( x) q( x). 则A一定是B的子集。
【归纳总结】 1.集合与集合之间的关系:子集,真子集,集合相等 2. 元素个数为n的集合的子集个数为:2 n ,真子集个数为
)
3.集合相等的定义及符号.
一般地,如果集合A的每一个元素都是集合B的元素, 反过来,集合B的每一个元素也都是集合A的元素, 那么我们就说集合A等于集合B,记作A=B. 4.维恩图 的定义. 我们常用平面内一条封闭曲线的内部表示一个集合, 这种图形通常叫做维恩(Venn)图。
• 5.空集有什么特殊性质? 空集是任意一个集合的子集,是任何非空 集合的真子集。 6.集合关系与其特征性质之间有什么关系?
课堂评价
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
点评 小组
要求
1、点评人员:点评人要声 音洪亮,语言清晰;先点评 书写、对错,再点评思路; 最后点评规律方法并能拓展 (用彩笔补充) 2、其它同学:认真倾听、 积极思考,重点内容记好笔 记。有不明白或有补充的要
课后练习 A,3
例1
3组
2组 5组 6组
人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语说课教学课件复习
栏目 导引
第一章 集合与常用逻辑用语
3.集合相等的概念 一般地,如果集合 A 的___任__何__一__个__元__素_____都是集合 B 的元素, 同时集合 B 的___任__何__一__个__元__素_____都是集合 A 的元素,那么集 合 A 与集合 B 相等,记作_A__=__B_,也就是说,若_A__⊆_B__,且 _B__⊆_A__,则 A=B.
栏目 导引
第一章 集合与常用逻辑用语
(1)求集合子集、真子集个数的 3 个步骤
栏目 导引
第一章 集合与常用逻辑用语
(2)与子集、真子集个数有关的 4 个结论 假设集合 A 中含有 n 个元素,则有 ①A 的子集的个数有 2n 个; ②A 的非空子集的个数有 2n-1 个; ③A 的真子集的个数有 2n-1 个; ④A 的非空真子集的个数有 2n-2 个.
栏目 导引
第一章 集合与常用逻辑用语
若集合 A {1,2,3},且 A 中至少含有一个 奇数,则这样的集合有________个. 解析:若 A 中含有一个奇数,则 A 可能为{1},{3},{1,2}, {3,2}; 若 A 中含有两个奇数, 则 A={1,3}. 答案:5
栏目 导引
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
4.真子集的概念 文字语言
如果集合 A⊆B,但存在元 素___x_∈__B_,__且___x_∉_A____, 就称集合 A 是 B 的真子集
符号语言
A______B (或 B A)
图形语言
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 (1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A=B,则 A⊆B, 且 B⊆A. (2)若两集合相等,则两集合所含元素完全相同,与元素排列顺 序无关. (3)在真子集的定义中,A B 首先要满足 A⊆B,其次至少有一 个 x∈B,但 x∉A.
人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语研讨说课复习课件
课件
子集、真子集、集合等相关概念
定义
符号
子集 集合A中的任一元素都是 A⊆B或B⊇A
集合B中的元素,且有
A=B的可能
A/B
图形 AB
真子集
已知A是B的子集,但A与 B不相等
A⊂B或B⊃A
Байду номын сангаас
AB
集合相等 集合A中的任一元素都是
A=B
集合B中的元素,且集合
B中的任一元素都是集合
A/B
栏目 导引
第一章 集合与常用逻辑用语
2.子集的概念
文字语言
符号语言
一般地,对于两个集合 A,B, 如果集合 A 中___任__意__一__个___ A___⊆___B 元素都是集合 B 中的元素, (或 B⊇A)
就称集合 A 为集合 B 的子集
图形语言
■名师点拨 “集合 A 是集合 B 的子集”可以表述为:若 x∈A,则 x∈B.
并集
一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与
B的并集,记作AUB,读作“A并B”,即AUB={x|x∈A或x∈B}
用图形表示为
AUB
A
B
A
B
这样,在问题(1)(2)中,集合A与B的并集是C,即AUB=C.
并集
设集合A={x|-1<x<2},集合B={x|l<x<5},求AUB. 用数轴表示为
栏目 导引
第一章 集合与常用逻辑用语
3.集合相等的概念 一般地,如果集合 A 的___任__何__一__个__元__素_____都是集合 B 的元素, 同时集合 B 的___任__何__一__个__元__素_____都是集合 A 的元素,那么集 合 A 与集合 B 相等,记作_A__=__B_,也就是说,若_A__⊆_B__,且 _B__⊆_A__,则 A=B.
高中数学人教A版(2019)必修第一册素材:1.2集合间的基本关系
1.写出集合{a,b,c}的所有子集.
2.用适当的符号填空:
(1)a
{a ,b c, ;} (2)0
x∣x2 0 ; (3)
xR∣x2 1 0 ;
(4){0,1}
N ; (5){0}
x∣ x2 x ; (6){2,1}
x∣x2 3x 2 0 .
3.判断下列两个集合之间的关系: (1)A={x|x<0},B={x|x<1}; (2)A={x|x=3k,k∈N},B={x|x=6z,z∈N); (3)A={x∈N+|x是4与10的公倍数},B={x|x=20m,m∈N+}.
例 1 写出集合{a,b}的所有子集,并指出哪些是它的真子集. 解:集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}. 例 2 判断下列各题中集合 A 是否为集合 B 的子集,并说明理由: (1)A={1,2,3},B={x|x 是 8 的约数); (2)A={x|x 是长方形),B={x|x 是两条对角线相等的平行四边形)。 解:(1)因为 3 不是 8 的约数,所以集合 A 不是集合 B 的子集. (2)因为若 x 是长方形,则 x 一定是两条对角线相等的平行四边形,所以集合 A 是集合 B 的子集.
(3)C={0};
(4)D={x∈Z|3<x<30).
4.在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合
D
(
x,
y∣) 2xx4
y y
1 5
表示什么?集合C,D之间有什么关系? 5.(1)设a,b∈R,P={1,a},Q={-1,-6}.若P=Q,求a-b的值; (2)已知集合A={x |0<x<a},B={x | 1<x<2),若 B A ,求实数a的取值范围.
高中数学 第一章 集合 1.2 集合之间的关系与运算 1.2.1 集合之间的关系教学素材 新人教B版
高中数学第一章集合1.2 集合之间的关系与运算1.2.1 集合之间的关系教学素材新人教B版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合1.2 集合之间的关系与运算1.2.1 集合之间的关系教学素材新人教B版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合1.2 集合之间的关系与运算1.2.1 集合之间的关系教学素材新人教B版必修1的全部内容。
1.2。
1 集合之间的关系教学建议1。
对于本节的学习教师要注意引导学生通过具体实例讨论、探究集合之间的“包含”与“不包含”的区别,通过创设情景引导学生分析,使学生能初步识别给定集合的子集,并将“包含”关系进一步细化,分为“真包含”和“相等"两种关系.2。
掌握包含与相等的有关术语、符号(⊆、⊇、、、、、=),并会使用它们表达集合之间的关系.在刚开始接触子集与真子集的符号时,要提醒学生注意这些符号的方向不要搞错.例如,A ⊆B 与B ⊇A 是同义的,A ⊆B 与A ⊇B 是不同的。
通过使用集合语言,感受集合语言在描述客观现实和数学问题中的意义,学习用数学的思维方式去认识世界、尝试解决问题,逐步培养学生实事求是、扎实严谨的科学态度.3。
让学生尝试用韦恩图表示两个集合间的关系,并逐步形成用集合的观点去认识问题、思考问题的思维方式.学会分类写出给定集合的所有子集的解题技巧,并通过对教材“探索与研究”中习题的探究,找出集合中元素的个数与它的所有子集个数的关系规律。
例如,对于含有n 个元素的集合有2n 个子集;有2n —1个真子集(或非空子集);有2n-2个非空真子集.备用习题1。
人教版高中数学必修一《集合间的基本关系》导学案
《1.1.2集合间的基本关系》导学案年级______________科目______________课型_______________主备人____________审核人____________教学时间____________学习目标:1.了解集合之间包含与相等的含义,能识别给定集合的子集。
2.理解子集.真子集的概念。
3.能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用.课堂导学:1. 复习巩固:(1)若 x N ∈ ,则{}25,,4x x x -中的元素x 必须满足什么条件?(2)含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,求34a b -的值。
2.课前预习:(1)提问:两个实数之间有大小关系,类比:两个集合之间是否具备类似的关系?(2) 几个主要概念:子集:集合相等:真子集:空集:(3)若A={}1,2,3,B={}1,2,3,4,5,则A________B.(4) 已知{}P 2=,Q={}0,2,4,下列式子中不正确的是( ).A. P Q ⊂B. P Q ⊆C. 2P ∈D. 2P ⊂(5) 已知集合{}2M y y x 2x 1,x R ==--∈,{}P x 2x 4,x R =-≤≤∈,则M 、P 之间的关系是_____________.(6) 集合{}1,3的子集共有________个,真子集有_________个,非空真子集分别为__________.(7) 用适当的符号填空: {}a ____a,b,c {}20______x x 0= {}2______x R x 10∅∈+= {}0,1_____N {}{}20______x x x = {}{}22,1_____x x 3x 20-+=2. 教学过程:例1 考察下列各组集合,并指明两集合的关系:(1) A Z,B N == (2) A={}长方形,B={}平行四边形 (3) A={}3x 20-+=2x x ,B={}1,2例2.考察下列集合,并指出集合中的元素是什么? (1) A={}(x,y)x y 2+= (2) B={}2x x 10,x R +=∈练习:利用韦恩图填空:(1) A______A (2) 若A B,B C,A ____C ⊆⊆则 (3) A B,B A ______A B ⊆⊆=例3. (1) 写出集合{}a,b 的所有子集(2)写出集合{}a,b,c 的所有子集(3)写出集合{}a,b,c,d 的所有子集归纳:若集合A 中有n 个元素,则它有________个子集,___________个真子集,__________个非空子集。
高中数学 第一章 集合 1.2 集合的基本关系 含参数的两个无限集的判定方法素材 北师大版必修1
含参数的两个无限集的判定方法对于含有整数字母的两个无限集,要判定它们之间的关系,若能从不同角度多思多想,激活思维的源泉,往往能获得多种不同的解题途径.下面仅以一道集合题归纳此类问题的求解策略,以供参考.题目:已知集合A={x∣x=k+21,k∈Z},B={x∣x= 21k ,k∈Z},则 ( ) A .A=B B .AB C .BA D .A∩B=φ 一、列举法 用列举法把两个集合表示出来,再比较两个集合元素的异同,从而找出两集合的关系,此法比较直观. 解法1: 对于集合A, 取k= …,0, 1, 2, 3, …, 得A={…,21, 23, 25, 27, …}, 对于集合B, 取k= …, 0, 1, 2, 3, 4, 5, 6, 7, …, 得B={…, 0, 21, 1, 23, 2, 25,3, 27, …}, 易看出,A 中的元素在B 中都有,而B 中的元素如1∉A ,∴A B ,故选B.二、通分法对于分子结构的两个集合的式子,可以通过通分(各表达式分母相同)的方法,消除结构差异,化为形式相近的式子,然后根据整数的分类关系来判断两个集合的关系. 解法2:将集合A 变形得,A={x∣x=212+k ,k∈Z},B={x∣x= 2k ,k∈Z},而2k+1表示所有奇数,k 表示所有整数,可得AB ,故选B. 三、特殊化法通过取特殊值否定其中的三个答案,剩下一个即为正确答案。
用这种方法解具有一般性结论的选择题,往往能收到事半功倍的效果.解法3:由0∈B,而0∉A ,故排除A 、C.又21∈A,且21∈B,再排除D ,故选B. 四、定义法利用有关定义法解题,往往是解决数学问题的有效途径.解法4: 设οx ∈A,则οx = οk +21=2212οοm k =+ (οm =2οk +1, 由οk ∈Z, 知2οk +1=οm ∈Z, 从而οx ∈B,得 A ⊆B.又 0∈B, 0∉A ,则 A B ,故选B.小结:这一道题的四种解法很好地锻炼了学生的思维,开拓了学生的视野,激发了学生的学习兴趣,培养了学生的创新精神和实践能力.。
新人教A版必修1高中数学1.1.2集合间的基本关系导学案
高中数学 1.1.2集合间的基本关系导学案新人教A版必修1 学习目标:1、理解集合之间包含与相等的含义。
2、掌握子集、真子集的概念。
3、了解空集的含义及性质。
4、了解集合的韦恩图表示。
学习难点:子集、真子集、空集概念的应用。
学习过程:观察下面几个例子,你能发现两个集合间的关系吗?1、A={1,2,3},B={1,2,3,4,5}2、设A为开滦二中高一(1)班全体女生组成的集合,B为这个班全体学生组成的集合3、设C={x x是两条边相等的三角形},D={x x是等腰三角形}一、子集的概念:,用符号表示为:,读作:。
用韦恩图表示为:子集的性质:1、2、二、集合相等的概念:。
真子集的概念:,用符号表示为。
三、空集及其性质:。
性质:1、2、例题1、用适当的符号填空:(1)a {a,b,c} (2) o {02=x}x(3) φ {x∈R2x+1=0}(4){0,1} N (5) {0} {x x2=x}(6) {2,1} {x x2-3x+2=0}例题2、写出下列集合的所有子集:(1){a}: (2) {a,b}: (3) {a,b,c}: .例题3、判断下列两个集合之间的关系:(1)A={1,2,4} , B={x x是8的约数};(2)A={x x=3k,k∈N}, B={x x=6z,z N∈}(3)A={x x是4与10的公倍数,x∈N},+}.B={x x=20m,m∈N+例题4、已知:{1,2}⊆A}4,3,2,1{⊂,试写出集合A.例题5、设集合M={x x=2n+1,n∈Z},N={y y=4k±1,k∈Z},则M与N的关系是()A.M⊆NB.M⊇NC.M=ND.M⊂N且M⊃N例题6、已知集合A={x0<x<9},集合B={x1<x<a}, 若非空集合B⊆A,求实数a的取值范围。
例题7、已知集合A={x,xy,x-y}, 集合B={0,x,y}, 且A=B,求实数x、y的值。
高中数学第一章集合1.2集合的基本关系素材北师大版必修1
1.2 集合的基本关系抓住元素是关键集合是元素的总体,所以认识集合的关键是先认清元素,特别是用描述法表示的集合,这一点尤为重要.因此大家在学习过程中要注意养成先看元素再定集合的习惯.本文就探讨一下元素在解答集合问题中的重要性.一、集合的辨别例1 已知{}1|+==x y x A ,{}1|+==x y y B ,则=B A .解析:集合A 中的元素为x ,由x 易知0≥x ,∴}0|{≥=x x A ;集合B 的元素是y ,由0≥x 得1≥y ,∴}1|{≥=y y B .∴}1|{}1|{}0|{≥=≥≥=x x y y x x B A .评注:虽然集合A 、B 元素的一般符号不同,但它们的本质是相同的,即都是数集,所以它们之间可进行运算,集合B A 元素的一般符号用x 或y 都可以.例2 ①已知集合A ={圆},集合B ={直线},则B A 的元素个数是 . ②已知集合{}是圆上的点P P A |=,集合{}是直线上的点P P B |=,则B A 的元素个数是 .解析:①中的两个集合都是图形的集合,它们的元素一个是圆,一个是直线,二者没有公共元素,所以交集应为空集,答案为0;②中的两个集合都是点集,它们的元素都是点,故B A 是直线和圆的交点组成的集合,根据直线和圆相离、相切和相交的位置关系,答案应为0或1或2.评注:①、②中的集合十分类似,但分析元素后,二者却大相径庭.例3 设集合}|{},31|{A C C B x x A ⊆=≤<-=,则A 、B 之间的关系为( )A .B A ∈ B .B A ⊆C .A B ∈D .A B ⊆解析:集合A 是数集,集合B 元素的一般符号是集合,所以它是集合的集合,是集合A 所有子集组成的集合,其中包括集合A ,所以A 、B 之间的关系为B A ∈.选A . 评注:1、对于有些集合(如集合B )要认清它,只看元素是不够的,还要看竖线后面元素的共同特征,方可确定;2、元素和集合的关系是相对的,集合也可作为元素.二、集合关系的证明例2 已知全集为I ,求证(A I ) (B I )=)(B A I .分析:根据集合相等的定义,要证明(A I ) (B I )=)(B A I ,只需证明(A I ) (B I )⊆)(B A I 且)(B A I ⊆ (A I ) (B I ),再根据子集定义通过元素证明.证明:设∈x (A I ) (B I ),则∈x A I 或∈x B I ,则B x A x ∉∉且,即B A x ∉,所以∈x )(B A I ,因此(A I ) (B I )⊆)(B A I ;又设∈x )(B A I ,则B A x ∉,则B x A x ∉∉且,则∈x A I 或∈x B I ,所以∈x (A I ) (B I ),因此)(B A I ⊆ (A I ) (B I ).评注:1、证明集合之间的关系往往通过论证元素和集合的关系实现;2、还有一个和本题结论类似的结论(A I ) (B I )=)(B A I ,这两个结论合称“德摩根法则”,通过这个法则,我们可以把求两个集合补集的交集或并集问题转化成求它们并集或交集的补集问题,这样处理可简化运算,同学们可在相应问题中尝试使用.。
高中数学 第一章 集合 1.2.1 集合之间的关系课件 b必修1b高一必修1数学课件
12/11/2021
第二十六页,共三十七页。
已知集合 A={x|x2+x-6=0},B={x|mx+1 =0},B A,求 m 的值. 解:A={x|x2+x-6=0}={-3,2}. 因为 B A,所以 B={-3}或 B={2}或 B=∅. 当 B={-3}时,由 m·(-3)+1=0,得 m=13. 当 B={2}时,由 m·2+1=0,得 m=-12. 当 B=∅时,m=0. 综上所述,m=13或 m=-12或 m=0.
12/11/2021
第三十四页,共三十七页。
本部分 内容讲解结 (bù fen) 束
按ESC键退出(tuìchū)全屏播 放
12/11/2021
第三十五页,共三十七页。
12/11/2021
第三十六页,共三十七页。
内容(nèiróng)总结
第一章 集 合。第一章 集 合。1.2.1 集合(jíhé)之间的关系。按ESC键退出全屏播放
【答案】 1<m≤4
12/11/2021
第二十页,共三十七页。
1 . 本 例 若 将 集 合 “B = {x|1<x<m}(m>1)” 改 为 “B = {x|1<x<m}”,其他条件不变,则实数 m 的取值范围又是什 么?
12/11/2021
第二十一页,共三十七页。
解:若 m≤1,则 B=∅,满足 B⊆A. 若 m>1,则由例题解析可知 1<m≤4. 综上可知 m≤4.
空集是任何集合的子集,即∅⊆A,因此只要是与子集有关的 问题,就要注意空集的情形,这是解题过程中最容易出错的 地方.
12/11/2021
第三十页,共三十七页。
1.下列关系中正确的个数为( )
高中数学第一章集合1.2.1集合之间的关系课件
∴B A,故选 B.
答案:B
知识点三 子集个数的确定
3.集合 A={x|0≤x<3,x∈N}的真子集的个数为( )
A.4
B.7
C.8
D.16
解析:A={x|0≤x<3,x∈N}={0,1,2}.
A 中含有 3 个元素,所以真子集有 7 个,故选 B.
答案:B
知识点四 集合相等 4.若{a,0,1}=c,1b,-1,则 a=________,b=________, c=________. 解析:由集合相等知:
∴ba= =1-,1.
∴a-b=-2.
答案:-2
类型 3 有限集合的子集的确定
已知集合 A={x|x-2≤0,x∈N},B={x| x≤2,x
∈Z},则满足条件 A⊆C⊆B 的集合 C 的个数为( )
A.5
B.4
C.3
D.2
【解析】 A={x|x-2≤0,x∈N}={0,1,2},B={x| x≤2,
(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合 中含有字母参数时,初学者会想当然认为是非空集合而丢解, 因此分类讨论思想是必须的.
=________.
集合{1,a+b,a}=0,ba,b,则 a-b
解析:∵由题可知 a≠0,b≠0,
a+b=0,
∴ba= +1b, =0
或b=a, ba=1,
={1,2,3,5,9},C={0,2,3,5,8,9},则满足上述条件的集合 A 的个
数为( )
A.15
B.16
C.7
D.8
解析:B 与 C 中的公共元素为 2,3,5,9 共 4 个,所以集合 A
是集合{2,3,5,9}的子集,所以符合条件的集合 A 共有 16 个.
2019高中数学 第一章 集合 1.2.1 集合之间的关系情境导学素材 新人教B版必修1
初高中精品文档
欢迎使用下载! 1.2.1 集合之间的关系
【情境导学】
银河系是地球和太阳所属的星系.因其主体部分投影在天球上的亮带被我国称为银河而得名.银河系约有2 000多亿个恒星.银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,鼓起处为银心,是恒星密集区,故望去白茫茫的一片.银河系俯视像一个巨大的漩涡,这个漩涡由四个旋臂组成.而我们的地球所属的太阳系位于其中一个旋臂(猎户座臂),距离银河系中心约2.3万光年
.
如果我们把银河系所包含的所有行星和恒星所构成的集合叫集合A,把太阳系包含的行星和恒星所构成的集合叫集合B.那么集合A 与集合B 有怎样的关系?
提示:显然集合A “大”,集合B “小”,集合B 包含在集合A 中,在数学上我们把集合B 称为集合A 的“子集”.。
【文库精品】高中数学 第一章 集合 1.2.1 集合之间的关系情境导学素材 新人教B版必修1
1 1.2.1 集合之间的关系
【情境导学】
银河系是地球和太阳所属的星系.因其主体部分投影在天球上的亮带被我国称为银河而得名.银河系约有2 000多亿个恒星.银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,鼓起处为银心,是恒星密集区,故望去白茫茫的一片.银河系俯视像一个巨大的漩涡,这个漩涡由四个旋臂组成.而我们的地球所属的太阳系位于其中一个旋臂(猎户座臂),距离银河系中心约2.3万光年
.
如果我们把银河系所包含的所有行星和恒星所构成的集合叫集合A,把太阳系包含的行星和恒星所构成的集合叫集合B.那么集合A 与集合B 有怎样的关系?
提示:显然集合A “大”,集合B “小”,集合B 包含在集合A 中,在数学上我们把集合B 称为集合A 的“子集”.。
高中数学第一章集合1.2.1集合之间的关系课件新人教B版必修10801261
已知集合 M={1,2,3,4,5},N={1,5},则有( )
A.N<M
B.N M
C.N∈M
D.N=M
【解析】 由题意知 N 中任意元素都是 M 中的元素,且 M 中存在不属于 N 的元素,所以 N M.
【答案】 B
第十三页,共35页。
[小组合作型]
(1)下列命题中正确的有________(写出全部正确的序号). 【导学号:60210008】
解得-1≤m<2,
综上得 m≥-1.
第二十五页,共35页。
1.解决此类问题通常先化简所给集合,再用数轴表示所给集合,然后列出 不等式(组),解端点之间的大小关系,求出参数的取值范围.
2.列不等式(组)时要根据具体的题目条件确定不等号中是否含有“等号”. 3.对集合 B 分类讨论是解决此类题目的关键,注意不要忽视对 B=∅的讨论.
第十七页,共35页。
[再练一题] 1.写出满足条件∅ M {0,1,2}的所有集合 M. 【解】 ∵∅ M {0,1,2},∴M 中元素个数为 1 或 2. 当 M 中只有 1 个元素时,可以是{0},{1},{2}; 当 M 中只有 2 个元素时,可以是{0,1},{0,2},{1,2}. ∴所求集合 M 可以是{0},{1},{2},{0,1},{0,2},{1,2},共有 6 个.
第二页,共35页。
[基础·初探]
教材整理 1 子集与真子集
阅读教材 P10~P11“例 1”以上部分内容,完成下列问题.
1.子集与真子集
定义
符号语言 图形语言(Venn 图)
如果集合 A 中的任__意__(_rè_n_y_ì)_一_元素都
个
__A_⊆_B__
高中数学第一章集合集合的概念情境导学素材新人教B版1
高中数学第一章集合1“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
明白“是如此”,确实是讲不出“什么缘故”。
全然缘故依旧无“米”下“锅”。
因此便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就专门难写出像样的文章。
因此,词汇贫乏、内容空泛、千篇一律便成了中学生作文的通病。
要解决那个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积存足够的“米”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1.2.1 集合之间的关系
【情境导学】
银河系是地球和太阳所属的星系.因其主体部分投影在天球上的亮带被我国称为银河而得名.银河系约有2 000多亿个恒星.银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,鼓起处为银心,是恒星密集区,故望去白茫茫的一片.银河系俯视像一个巨大的漩涡,这个漩涡由四个旋臂组成.而我们的地球所属的太阳系位于其中一个旋臂(猎户座臂),距离银河系中心约2.3万光年
.
如果我们把银河系所包含的所有行星和恒星所构成的集合叫集合A,把太阳系包含的行星和恒星所构成的集合叫集合B.那么集合A 与集合B 有怎样的关系?
提示:显然集合A “大”,集合B “小”,集合B 包含在集合A 中,在数学上我们把集合B 称为集合A 的“子集”.。