1N6373-D

合集下载

常用场效应管型号参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表场效应管管脚识别场效应管的检测和使用场效应管的检测和使用一、用指针式万用表对场效应管进行判别1用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极;具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值;当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S;因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G;也可以将万用表的黑表笔红表笔也行任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值;当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极;若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极;若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止;2用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏;具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围在手册中可知,各种不同型号的管,其电阻值是各不相同的,如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极;然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的;要注意,若两个栅极在管内断极,可用元件代换法进行检测;3用感应信号输人法估测场效应管的放大能力具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值;然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上;这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动;如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的;根据上述方法,我们用万用表的R×100档,测结型场效应管3DJ2F;先将管的G极开路,测得漏源电阻RDS为600Ω,用手捏住G极后,表针向左摆动,指示的电阻RDS为12kΩ,表针摆动的幅度较大,说明该管是好的,并有较大的放大能力;运用这种方法时要说明几点:首先,在测试场效应管用手捏住栅极时,万用表针可能向右摆动电阻值减小,也可能向左摆动电阻值增加;这是由于人体感应的交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同或者工作在饱和区或者在不饱和区所致,试验表明,多数管的RDS增大,即表针向左摆动;少数管的RDS 减小,使表针向右摆动;但无论表针摆动方向如何,只要表针摆动幅度较大,就说明管有较大的放大能力;第二,此方法对MOS场效应管也适用;但要注意,MOS场效应管的输人电阻高,栅极G允许的感应电压不应过高,所以不要直接用手去捏栅极,必须用于握螺丝刀的绝缘柄,用金属杆去碰触栅极,以防止人体感应电荷直接加到栅极,引起栅极击穿;第三,每次测量完毕,应当G-S极间短路一下;这是因为G-S结电容上会充有少量电荷,建立起VGS电压,造成再进行测量时表针可能不动,只有将G-S极间电荷短路放掉才行;4用测电阻法判别无标志的场效应管首先用测量电阻的方法找出两个有电阻值的管脚,也就是源极S和漏极D,余下两个脚为第一栅极G1和第二栅极G2;把先用两表笔测的源极S与漏极D之间的电阻值记下来,对调表笔再测量一次,把其测得电阻值记下来,两次测得阻值较大的一次,黑表笔所接的电极为漏极D;红表笔所接的为源极S;用这种方法判别出来的S、D极,还可以用估测其管的放大能力的方法进行验证,即放大能力大的黑表笔所接的是D极;红表笔所接地是8极,两种方法检测结果均应一样;当确定了漏极D、源极S的位置后,按D、S的对应位置装人电路,一般G1、G2也会依次对准位置,这就确定了两个栅极G1、G2的位置,从而就确定了D、S、G1、G2管脚的顺序;5用测反向电阻值的变化判断跨导的大小对VMOSN沟道增强型场效应管测量跨导性能时,可用红表笔接源极S、黑表笔接漏极D,这就相当于在源、漏极之间加了一个反向电压;此时栅极是开路的,管的反向电阻值是很不稳定的;将万用表的欧姆档选在R×10kΩ的高阻档,此时表内电压较高;当用手接触栅极G时,会发现管的反向电阻值有明显地变化,其变化越大,说明管的跨导值越高;如果被测管的跨导很小,用此法测时,反向阻值变化不大;二、.场效应管的使用注意事项1为了安全使用场效应管,在线路的设计中不能超过管的耗散功率,最大漏源电压、最大栅源电压和最大电流等参数的极限值;2各类型场效应管在使用时,都要严格按要求的偏置接人电路中,要遵守场效应管偏置的极性;如结型场效应管栅源漏之间是PN结,N沟道管栅极不能加正偏压;P沟道管栅极不能加负偏压,等等; 3MOS场效应管由于输人阻抗极高,所以在运输、贮藏中必须将引出脚短路,要用金属屏蔽包装,以防止外来感应电势将栅极击穿;尤其要注意,不能将MOS场效应管放人塑料盒子内,保存时最好放在金属盒内,同时也要注意管的防潮;4为了防止场效应管栅极感应击穿,要求一切测试仪器、工作台、电烙铁、线路本身都必须有良好的接地;管脚在焊接时,先焊源极;在连入电路之前,管的全部引线端保持互相短接状态,焊接完后才把短接材料去掉;从元器件架上取下管时,应以适当的方式确保人体接地如采用接地环等;当然,如果能采用先进的气热型电烙铁,焊接场效应管是比较方便的,并且确保安全;在未关断电源时,绝对不可以把管插人电路或从电路中拔出;以上安全措施在使用场效应管时必须注意;5在安装场效应管时,注意安装的位置要尽量避免靠近发热元件;为了防管件振动,有必要将管壳体紧固起来;管脚引线在弯曲时,应当大于根部尺寸5毫米处进行,以防止弯断管脚和引起漏气等;对于功率型场效应管,要有良好的散热条件;因为功率型场效应管在高负荷条件下运用,必须设计足够的散热器,确保壳体温度不超过额定值,使器件长期稳定可靠地工作;总之,确保场效应管安全使用,要注意的事项是多种多样,采取的安全措施也是各种各样,广大的专业技术人员,特别是广大的电子爱好者,都要根据自己的实际情况出发,采取切实可行的办法,安全有效地用好场效应管;常用场效应管型号参数表型号参数IRF530NMOS100V14A79W IRFP9530 PMOS100V12A75WIRF540 NMOS100V28A150W IRFP9540 PMOS60V18A100WIRF630 NMOS200V9A75WIRFP9630 PMOS200V6.5A75WIRF640 NMOS200V18A125WIRF720 NMOS400V3.3A50WIRF730 NMOS400V5.5A75WIRF740 NMOS400V10A125WIRF830NMOS500V4.5A75WIRF840NMOS500V8A125W场效应管分类型号耐压电流封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETEMOS FET 2N7002 60V,0.2A SOT-23 DISCRETEMOS FET IRF510A 100V,5.6A TO-220 DISCRETEMOS FET IRF520A 100V,9.2A TO-220 DISCRETEDISCRETEMOS FET IRF540A 100V,28A TO-220 DISCRETEMOS FET IRF610A 200V,3.3A TO-220 DISCRETEMOS FET IRF620A 200V,5A TO-220 DISCRETEMOS FET IRF630A 200V,9A TO-220 DISCRETEMOS FET IRF634A 250V,8.1A TO-220 DISCRETEMOS FET IRF640A 200V,18A TO-220 DISCRETEMOS FET IRF644A 250V,14A TO-220 DISCRETEMOS FET IRF650A 200V,28A TO-220 DISCRETEMOS FET IRF654A 250V,21A TO-220 DISCRETEMOS FET IRF720A 400V,3.3A TO-220 DISCRETEDISCRETEMOS FET IRF740A 400V,10A TO-220 DISCRETEMOS FET IRF750A 400V,15A TO-220 DISCRETEMOS FET IRF820A 500V,2.5A TO-220 DISCRETEMOS FET IRF830A 500V,4.5A TO-220 DISCRETEMOS FET IRF840A 500V,8A TO-220 DISCRETEMOS FET IRF9520 TO-220 DISCRETEMOS FET IRF9540 TO-220 DISCRETEMOS FET IRF9610 TO-220 DISCRETEMOS FET IRF9620 TO-220 DISCRETEMOS FET IRFP150A 100V,43A TO-3P DISCRETEMOS FET IRFP250A 200V,32A TO-3P DISCRETEMOS FET IRFP450A 500V,14A TO-3P DISCRETEMOS FET IRFR024A 60V,15A D-PAK DISCRETEMOS FET IRFR120A 100V,8.4A D-PAK DISCRETEMOS FET IRFR214A 250V,2.2A D-PAK DISCRETEMOS FET IRFR220A 200V,4.6A D-PAK DISCRETEMOS FET IRFR224A 250V,3.8A D-PAK DISCRETEMOS FET IRFR310A 400V,1.7A D-PAK DISCRETEMOS FET IRFR9020TF D-PAK DISCRETEMOS FET IRFS540A 100V,17A TO-220F DISCRETEMOS FET IRFS630A 200V,6.5A TO-220F DISCRETEMOS FET IRFS634A 250V,5.8A TO-220F DISCRETEMOS FET IRFS640A 200V,9.8A TO-220F DISCRETEMOS FET IRFS644A 250V,7.9A TO-220F DISCRETEMOS FET IRFS730A 400V,3.9A TO-220F DISCRETEMOS FET IRFS740A 400V,5.7A TO-220F DISCRETEMOS FET IRFS830A 500V,3.1A TO-220F DISCRETEMOS FET IRFS840A 500V,4.6A TO-220F DISCRETEMOS FET IRFS9Z34 -60V,12A TO-220F DISCRETEMOS FET IRFSZ24A 60V,14A TO-220F DISCRETEMOS FET IRFSZ34A 60V,20A TO-220F DISCRETEMOS FET IRFU110A 100V,4.7A I-PAK DISCRETEMOS FET IRFU120A 100V,8.4A I-PAK DISCRETEMOS FET IRFU220A 200V,4.6A I-PAK DISCRETEMOS FET IRFU230A 200V,7.5A I-PAK DISCRETEMOS FET IRFU410A 500V I-PAK DISCRETEMOS FET IRFU420A 500V,2.3A I-PAK DISCRETEMOS FET IRFZ20A TO-220 DISCRETEMOS FET IRFZ24A 60V,17A TO-220 DISCRETEMOS FET IRFZ30 TO-220 DISCRETEMOS FET IRFZ34A 60V,30A TO-220 DISCRETEMOS FET IRFZ40 TO-220 DISCRETEMOS FET IRFZ44A 60V,50A TO-220 DISCRETEMOS FET IRLS530A 100V,10.7A,Logic TO-220F DISCRETEMOS FET IRLSZ14A 60V,8A,Logic TO-220F DISCRETEMOS FET IRLZ24A 60V,17A,Logic TO-220 DISCRETEMOS FET IRLZ44A 60V,50A,Logic TO-220 DISCRETEMOS FET SFP36N03 30V,36A TO-220 DISCRETEMOS FET SFP65N06 60V,65A TO-220 DISCRETEMOS FET SFP9540 -100V,17A TO-220 DISCRETEMOS FET SFP9634 -250V,5A TO-220 DISCRETEMOS FET SFP9644 -250V,8.6A TO-220 DISCRETEMOS FET SFP9Z34 -60V,18A TO-220 DISCRETEMOS FET SFR9214 -250V,1.53A D-PAK DISCRETEMOS FET SFR9224 -250V,2.5A D-PAK DISCRETEMOS FET SFR9310 -400V,1.5A D-PAK DISCRETEMOS FET SFS9630 -200V,4.4A TO-220F DISCRETEMOS FET SFS9634 -250V,3.4A TO-220F DISCRETEMOS FET SFU9220 -200V,3.1A I-PAK DISCRETEMOS FET SSD2002 25V N/P Dual 8SOP DISCRETEMOS FET SSD2019 20V P-ch Dual 8SOP DISCRETEMOS FET SSD2101 30V N-ch Single 8SOP DISCRETEMOS FET SSH10N80A 800V,10A TO-3P DISCRETEMOS FET SSH10N90A 900V,10A TO-3P DISCRETEMOS FET SSH5N90A 900V,5A TO-3P DISCRETEMOS FET SSH60N10 TO-3P DISCRETEMOS FET SSH6N80A 800V,6A TO-3P DISCRETEMOS FET SSH70N10A 100V,70A TO-3P DISCRETEMOS FET SSH7N90A 900V,7A TO-3P DISCRETEMOS FET SSH9N80A 800V,9A TO-3P DISCRETEMOS FET SSP10N60A 600V,9A TO-220 DISCRETEMOS FET SSP1N60A 600V,1A TO-220 DISCRETEMOS FET SSP2N90A 900V,2A TO-220 DISCRETEMOS FET SSP35N03 30V,35A TO-220 DISCRETEMOS FET SSP3N90A 900V,3A TO-220 DISCRETEMOS FET SSP4N60A 600V,4A TO-220 DISCRETEMOS FET SSP4N60AS 600V,4A TO-220 DISCRETEMOS FET SSP4N90AS 900V,4.5A TO-220 DISCRETEMOS FET SSP5N90A 900V,5A TO-220 DISCRETEMOS FET SSP60N06 60V,60A TO-220 DISCRETEMOS FET SSP6N60A 600V,6A TO-220 DISCRETEMOS FET SSP70N10A 100V,55A TO-220 DISCRETEMOS FET SSP7N60A 600V,7A TO-220 DISCRETEMOS FET SSP7N80A 800V,7A TO-220 DISCRETEMOS FET SSP80N06A 60V,80A TO-220 DISCRETEMOS FET SSR1N60A 600V,0.9A D-PAK DISCRETEMOS FET SSR2N60A 600V,1.8A D-PAK DISCRETEMOS FET SSR3055A 60V,8A D-PAK DISCRETEMOS FET SSS10N60A 600V,5.1A TO-220F DISCRETEMOS FET SSS2N60A 600V,1.3A TO-220F DISCRETEMOS FET SSS3N80A 800V,2A TO-220F DISCRETEMOS FET SSS3N90A 900V,2A TO-220F DISCRETEMOS FET SSS4N60A 600V,3.5A TO-220F/P DISCRETEMOS FET SSS4N60AS 600V,2.3A TO-220F/P DISCRETEMOS FET SSS4N60AS 600V,2.3A TO-220F DISCRETEMOS FET SSS4N90AS 900V,2.8A TO-220F DISCRETEMOS FET SSS5N80A 800V,3A TO-220F DISCRETEMOS FET SSS6N60A 600V, TO-220F/P。

3DD13003

3DD13003

D13003
2004.01
单位 mm
4/6
产品外型尺寸
D13003
2004.01
单位 mm
5/6
注意事项
D13003
1. 吉林华微电子股份有限公司的产品销售分为直销和销售代理 无论哪种方式 订货时请与公司核实
2. 购买时请认清公司商标 如有疑问请与公司本部联系 3. 在电路设计时请不要超过器件的绝对最大额定值 否则会影响整机的可靠性 4. 如需要安装散热片时 请将器件安装在平整的散热片上 5. 为了生产出与用户需求相匹配的产品 当有其他要求或建议时请以传真或电
2004.01
6/6
基极 发射极饱和压降 VBE(sat) IC=1A, IB=0.2A
下降时间
VCC=24V IC=2A,
tf
IB1=-IB2=0.4A
贮存时间
ts
VCC=24V IC=1A,
IB1=-IB2=0.2A
特征频率
fT
VCE=10V, Ic=0.1A
热特性
项目 结到管壳的热阻 TO-220 结到管壳的热阻 TO-126
-55~+150
单位 V V V A W W
2004.01
1/6
D13003
电特性 (Tc=25 )
项目
符号测试条件Fra bibliotek集电极 发射极维持电压 VCEO(SUS) Ic=10mA,IB=0
集电极 基极击穿电压 V(BR)CBO Ic=1mA,IB=0
发射极 基极击穿电压 V(BR)EBO IE=1mA,Ic=0
话的方式与公司本部联系 6. 本说明书如有版本变更不另外告知
联系方式
吉林华微电子股份有限公司

高精度VDD监控电路

高精度VDD监控电路

VDD – 1.5


TC1272AL/M/J:VDD > VTH max, ISOURCE = 800 µA
注 1: 生产测试温度条件为 TA = +25°C,过温限制由生产中 QA 测试保证。 2: 对于 TC1272A,为 RESET 输出。
DS21877A_CN 第 2 页
2007 Microchip Technology Inc.


7&$/0-
7&$=567


໡ԡ↨䕗఼䖛▔ࢅ˄P9˅

>97+9''@˄PY ˅
图 3-1:
在 +25°C 时最大瞬态持续时间
与毛刺抑制过激励曲线
图 中 该 曲 线 以 上 范 围 视 为 欠 压 或 掉 电 条 件。在 靠 近 TC1272A的VDD引脚接入一个电容可进一步改善器件的 瞬态脉冲干扰抑制性能。
TA = +25°C

4.50
V
TA = – 40°C 至 +125°C
4.00
4.06
V TC1272A:
TA = +25°C

4.10
V
TA = – 40°C 至 +125°C
3.08
3.11
V TC1272AT:
TA = +25°C

3.15
V
TA = – 40°C 至 +125°C
2.93
2.96
16
14
VDD = 5V
12
10 VDD = 3V
8
6
4 VDD = 1V

AQ6370D光谱仪使用说明

AQ6370D光谱仪使用说明

AQ6370D光谱仪使用说明1、目的验证光接口性能是否满足相关标准要求2、适用范围AQ6370D光谱仪3、职责资产管理部和操作人员共同负责4、组网图或测试环境配置5、测试内容:5.1 开机校准1、打开电源,FC-FC接口的光纤将AQ6370D的光输入连接器与光输出连接器连接起来。

2、用内部参考光源执行对准调节①按SYSTEM OPTICAL ALIGNMENT②按EXECUTE软键,自动执行对准调节。

几分钟后,对准调节结束,仪器返回之前的画面。

3、用内置参考光源进行波长校准①按SYSTEM WL CALIBRATION 软键。

②按BUILT-IN SOURCE 软键。

③按EXECUTE 软键,执行波长校准。

校准结束后,返回之前的画面。

5.2 测试条件设置1、校准完成后,自动扫描,自动调整分辨率,得到波长和功率的大致范围。

①按SWEEP AUTO 软键执行自动测量。

123自动扫描结束后的显示②设置扫描范围,按SPAN键。

③设置参考功率和刻度,按LEVEL键,参考功率设为-3dBm,其他为默认值。

④按SETUP键,设置分辨率为最高精度0.02nm。

⑤设置灵敏度,模式为MID,其他条件均为默认值。

⑥设置完成开始测试,执行REPEA T重复扫描或者SINGLE单次扫5~10次后,按STOP键,分析并记录数据。

5.3 分析光猫上电后,用脚本长发光后直接接到测试拓扑中。

1、DFB-LD、FP-LD光源分析①按ANAL YSIS,显示与测量波形分析相关的软键菜单②按ANAL YSIS 1软键,显示分析功能的选择菜单。

以GPON样机为例,光源类型选择DFB-LD,执行分析,结果显示在数据区域内。

分析:SMSR边模抑制比PEAK WL峰值波长20dB WIDTH带宽CTR WL中心波长注:功率以实际功率计测试为准以EPON样机为例,光源类型选择FP -LD,执行分析。

分析:MEAN WL平均波长PEAK WL峰值波长SPEC WIDTH带宽注意:在分析FP-LD光源时,数据区域内SPEC WIDTH测试的是3dB带宽,与K系数有关,当K=1时,SPEC WIDTH为原始带宽;当K=2时,SPEC WIDTH为修正过后的值,需根据实际需要进行更改。

1N6375中文资料

1N6375中文资料

1N6373 - 1N6381 Series (ICTE-5 - ICTE-36, MPTE-5 - MPTE-45) 1500 Watt Peak Power Mosorb™ Zener TransientVoltage Suppressors Unidirectional*Mosorb devices are designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor’s exclusive, cost-effective, highly reliable Surmetic™ axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.Specification Features:•Working Peak Reverse V oltage Range – 5 V to 45 V•Peak Power – 1500 Watts @ 1 ms•ESD Rating of Class 3 (>16 KV) per Human Body Model •Maximum Clamp V oltage @ Peak Pulse Current•Low Leakage < 5 m A Above 10 V•Response Time is Typically < 1 nsMechanical Characteristics:CASE:V oid-free, transfer-molded, thermosetting plasticFINISH:All external surfaces are corrosion resistant and leads are readily solderableMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from the case for 10 secondsPOLARITY:Cathode indicated by polarity bandMOUNTING POSITION:AnyMAXIMUM RATINGSfor Bidirectional DevicesAXIAL LEADCASE 41APLASTICL = Assembly LocationMPTE–xx = ON Device CodeICTE–xx = ON Device Code1N63xx = JEDEC Device CodeYY = YearWW = Work WeekDevice Package ShippingORDERING INFORMATIONMPTE–xx Axial Lead500 Units/Box MPTE–xxRL4Axial Lead1500/T ape & Reel ICTE–xx Axial Lead500 Units/Box ICTE–xxRL4Axial Lead1500/T ape & ReelNOTES:LICTE–xxYYWW1N63xx Axial Lead500 Units/Box1N63xxRL4*Axial Lead1500/T ape & ReelLMPTE–xx1N63xxYYWW1.Nonrepetitive current pulse per Figure 5 and der-ated above T A = 25°C per Figure 2.2.1/2 sine wave (or equivalent square wave), PW =8.3 ms, duty cycle = 4 pulses per minute maxi-mum.*1N6378 Not Available in 1500/Tape & ReelUni–Directional TVSELECTRICAL CHARACTERISTICS (T A = 25°C unlessotherwise noted, V= 3.5 V Max. @ I (Note 3.) = 100 A)ELECTRICAL CHARACTERISTICS (T= 25°C unless otherwise noted, V = 3.5 V Max. @ I (Note 3.) = 100 A)NOTES:3.Square waveform, PW = 8.3 ms, Non–repetitive duty cycle.4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V RWM ), which should be equal to or greater than the dc or continuous peak operating voltage level.5.V BR measured at pulse test current I T at an ambient temperature of 25°C and minimum voltage in V BR is to be controlled.6.Surge current waveform per Figure 5 and derate per Figures 1 and 2.*Not Available in the 1500/Tape & ReelFigure 1. Pulse Rating Curve 1008060402000255075100125150175200P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°T A , AMBIENT TEMPERATURE (°C)Figure 2. Pulse Derating CurveP D , S T E A D Y S T A T E P O W E R D I S S I P A T I O N (W A T T S )T L , LEAD TEMPERATURE (°C)t, TIME (ms)100101t P , PULSE WIDTHP P K, P E A K P O W E R (k W )Figure 3. Capacitance versus Breakdown VoltageFigure 4. Steady State Power Derating Figure 5. Pulse Waveform1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,CV BR , BREAKDOWN VOLTAGE (VOLTS)C , C A P A C I T A N C E (p F )1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,C1.5KE6.8CA through 1.5KE200CAFigure 6. Dynamic Impedance1000500200100D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)I T , T E S T C U R R E N T (A M P S )Figure 7. Typical Derating Factor for Duty CycleD E R A T I N G F A C T O R10.70.50.30.050.10.010.020.030.07D, DUTY CYCLE (%)APPLICATION NOTESRESPONSE TIMEIn most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot. Some input impedance represented by Z in is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.DUTY CYCLE DERATINGThe data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 m s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.TYPICAL PROTECTION CIRCUITVFigure 8. Figure 9.OUTLINE DIMENSIONS1500 Watt MosorbTransient Voltage Suppressors – Axial LeadedMOSORB CASE 41A–04ISSUE DDIMA MIN MAX MIN MAX MILLIMETERS0.3350.3748.509.50INCHES B 0.1890.209 4.80 5.30D 0.0380.0420.96 1.06K 1.000---25.40---P---0.050--- 1.27NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P.4.041A-01 THRU 041A-03 OBSOLETE, NEW STANDARD 041A-04.NotesMosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。

常用场效应管型号参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表场效应管管脚识别场效应管的检测和使用场效应管的检测和使用一、用指针式万用表对场效应管进行判别(1)用测电阻法判别结型场效应管的电极根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。

具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。

当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。

因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。

也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。

当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。

若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。

若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

(2)用测电阻法判别场效应管的好坏测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。

具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。

要注意,若两个栅极在管内断极,可用元件代换法进行检测。

AD637中文资料

AD637中文资料

13
12 11 10 9
8 8
The AD637 is a complete high accuracy monolithic rms-to-dc converter that computes the true rms value of any complex waveform. It offers performance that is unprecedented in integrated circuit rms-to-dc converters and comparable to discrete and modular techniques in accuracy, bandwidth and dynamic range. A crest factor compensation scheme in the AD637 permits measurements of signals with crest factors of up to 10 with less than 1% additional error. The circuit’s wide bandwidth permits the measurement of signals up to 600 kHz with inputs of 200 mV rms and up to 8 MHz when the input levels are above 1 V rms. As with previous monolithic rms converters from Analog Devices, the AD637 has an auxiliary dB output available to the user. The logarithm of the rms output signal is brought out to a separate pin allowing direct dB measurement with a useful range of 60 dB. An externally programmed reference current allows the user to select the 0 dB reference voltage to correspond to any level between 0.1 V and 2.0 V rms. A chip select connection on the AD637 permits the user to decrease the supply current from 2.2 mA to 350 µA during periods when the rms function is not in use. This feature facilitates the addition of precision rms measurement to remote or hand-held applications where minimum power consumption is critical. In addition when the AD637 is powered down the output goes to a high impedance state. This allows several AD637s to be tied together to form a wide-band true rms multiplexer. The input circuitry of the AD637 is protected from overload voltages that are in excess of the supply levels. The inputs will not be damaged by input signals if the supply voltages are lost.

最经典MOS管电路工作原理及详解没有之一

最经典MOS管电路工作原理及详解没有之一

实物
最后,3PIN脚的MOS管: (1)SOT-23
3
D
G
S
1
2
PIN1为G极;PIN2为S极;PIN3为D极。
图纸习惯
但请大家特别注意:主板上标示的PIN1与PIN2脚与此刚好颠倒了。
主板图纸上也是如此。 而且,似乎作为一种错误的习惯被保持了下来。
另外一种3PIN脚的MOS管: (2)TO-252
笔记本电脑中用到的隔离MOS管只有两个。 下面我们来分步讨论一下它的原理,为了方便,隔离MOS 管都用二级管代替表示。
19V
Adapter
1V9IVN
隔离
1. 只用适配器时
电路符号
隔离
Q1
BAT 12V Q2
1V2IVN 2. 只用电池时
问题:为什么在不用适配器时,还要用Q1隔离12V呢?
我找到的一种解释是: 人们在使用笔记本电脑时,经常会同时插上适配器和电池。如果遇到 电网停电,笔记本会自动切换到电池12V供电。这个时候适配器虽然不再 供电,但仍相连在笔记本上。 如果没有Q1隔离,12V电压会直接进入适配器内部的输出电路,有可能 烧毁适配器。 这一解释自己没有做过验证,大家可以讨论一下对与错。
笔记本主板上用PMOS做隔离管的最常见,但也有极少 的主板用NMOS来实现。
电路符号 5 做个挑错游戏吧
有没有发现过笔记本电路图上的MOS管也有画错的? 通过前面的学习, 我们来做个挑错 游戏吧, 看看你能发现多 少错误?
图1
电路符号
两张截图里, 你发现了几处错误?
答案在文档最后面。
图2
实物
实物篇
它一般会在芯片的左下角。
第2步: 请确定MOS管其他脚
方法:从PIN1开始,逆时针方向依次为2,3, …..6,7,8脚。

AD637

AD637

功能框图REV的。

éADI公司提供的信息被认为是准确和可靠。

但是,没有责任承担ADI公司,因为其使用,也为专利或其它第三方权利的任何侵犯这可能是由于它的使用。

没有获发牌照以暗示或否则任何专利或专利权的模拟设备。

一种高精度,宽带的RMS - DC转换器AD637该AD637提供两种精度等级(十,K)的商业(0 ° C至+70 ° C)温度范围应用; 2准确度等级(甲,乙),工业(-40 ° C至+85 ° C)应用; 和1(第)额定工作于-55 ° C至+125 ° C温度范围。

所有版本,可在密封型,14引脚侧钎焊陶瓷下跌为以及低成本cerdip包。

一16引脚的SOIC封装提供。

产品亮点1。

计算真实的AD637根均方,平均正方形,或任何复杂的绝对值交流(或交流加直流)输入波形并给出了一个等效直流输出电压。

真正的均方根值的波形是一个多有用平均纠正信号,因为它直接关系到权力信号。

一项统计信号均方根值也有关到信号的标准偏差。

2。

晶圆的AD637是激光微调以达到额定性能没有外部修整。

唯一的外部元件需要的是一个电容器的平均时间,订时期。

这个电容值也决定了低频精度,纹波水平和建立时间。

3。

该芯片选择了AD637功能允许用户在断电期间装置的非使用价值下降,从而,减少电池消耗在偏远或手持申请。

4。

芯片上的缓冲放大器可以用作输入或缓冲区或在有源滤波器的配置。

该过滤器可用于减少交流纹波,从而增加了测量精度。

产品说明AD637是一个完整的高精度单片均方根至直流转换器的真有效值计算任何复杂的价值波形。

它提供了综合性能,是前所未有的电路的RMS - DC转换器和可比的离散在准确度和模块化技术,带宽和动态范围。

一个波峰因子在AD637赔偿方案许可证测量与高达10波峰因子信号少于1%的额外误差。

该电路的宽带许可证信号的测量高达600千赫的投入200毫伏RMS和高达8 MHz时,输入电平高于1伏均方根。

1N6374中文资料

1N6374中文资料

1N6373 - 1N6381 Series (ICTE-5 - ICTE-36, MPTE-5 - MPTE-45) 1500 Watt Peak Power Mosorb™ Zener TransientVoltage Suppressors Unidirectional*Mosorb devices are designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor’s exclusive, cost-effective, highly reliable Surmetic™ axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.Specification Features:•Working Peak Reverse V oltage Range – 5 V to 45 V•Peak Power – 1500 Watts @ 1 ms•ESD Rating of Class 3 (>16 KV) per Human Body Model •Maximum Clamp V oltage @ Peak Pulse Current•Low Leakage < 5 m A Above 10 V•Response Time is Typically < 1 nsMechanical Characteristics:CASE:V oid-free, transfer-molded, thermosetting plasticFINISH:All external surfaces are corrosion resistant and leads are readily solderableMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from the case for 10 secondsPOLARITY:Cathode indicated by polarity bandMOUNTING POSITION:AnyMAXIMUM RATINGSfor Bidirectional DevicesAXIAL LEADCASE 41APLASTICL = Assembly LocationMPTE–xx = ON Device CodeICTE–xx = ON Device Code1N63xx = JEDEC Device CodeYY = YearWW = Work WeekDevice Package ShippingORDERING INFORMATIONMPTE–xx Axial Lead500 Units/Box MPTE–xxRL4Axial Lead1500/T ape & Reel ICTE–xx Axial Lead500 Units/Box ICTE–xxRL4Axial Lead1500/T ape & ReelNOTES:LICTE–xxYYWW1N63xx Axial Lead500 Units/Box1N63xxRL4*Axial Lead1500/T ape & ReelLMPTE–xx1N63xxYYWW1.Nonrepetitive current pulse per Figure 5 and der-ated above T A = 25°C per Figure 2.2.1/2 sine wave (or equivalent square wave), PW =8.3 ms, duty cycle = 4 pulses per minute maxi-mum.*1N6378 Not Available in 1500/Tape & ReelUni–Directional TVSELECTRICAL CHARACTERISTICS (T A = 25°C unlessotherwise noted, V= 3.5 V Max. @ I (Note 3.) = 100 A)ELECTRICAL CHARACTERISTICS (T= 25°C unless otherwise noted, V = 3.5 V Max. @ I (Note 3.) = 100 A)NOTES:3.Square waveform, PW = 8.3 ms, Non–repetitive duty cycle.4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V RWM ), which should be equal to or greater than the dc or continuous peak operating voltage level.5.V BR measured at pulse test current I T at an ambient temperature of 25°C and minimum voltage in V BR is to be controlled.6.Surge current waveform per Figure 5 and derate per Figures 1 and 2.*Not Available in the 1500/Tape & ReelFigure 1. Pulse Rating Curve 1008060402000255075100125150175200P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°T A , AMBIENT TEMPERATURE (°C)Figure 2. Pulse Derating CurveP D , S T E A D Y S T A T E P O W E R D I S S I P A T I O N (W A T T S )T L , LEAD TEMPERATURE (°C)t, TIME (ms)100101t P , PULSE WIDTHP P K, P E A K P O W E R (k W )Figure 3. Capacitance versus Breakdown VoltageFigure 4. Steady State Power Derating Figure 5. Pulse Waveform1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,CV BR , BREAKDOWN VOLTAGE (VOLTS)C , C A P A C I T A N C E (p F )1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,C1.5KE6.8CA through 1.5KE200CAFigure 6. Dynamic Impedance1000500200100D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)I T , T E S T C U R R E N T (A M P S )Figure 7. Typical Derating Factor for Duty CycleD E R A T I N G F A C T O R10.70.50.30.050.10.010.020.030.07D, DUTY CYCLE (%)APPLICATION NOTESRESPONSE TIMEIn most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot. Some input impedance represented by Z in is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.DUTY CYCLE DERATINGThe data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 m s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.TYPICAL PROTECTION CIRCUITVFigure 8. Figure 9.OUTLINE DIMENSIONS1500 Watt MosorbTransient Voltage Suppressors – Axial LeadedMOSORB CASE 41A–04ISSUE DDIMA MIN MAX MIN MAX MILLIMETERS0.3350.3748.509.50INCHES B 0.1890.209 4.80 5.30D 0.0380.0420.96 1.06K 1.000---25.40---P---0.050--- 1.27NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P.4.041A-01 THRU 041A-03 OBSOLETE, NEW STANDARD 041A-04.NotesMosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。

NSI DTA143ZD-D 双 PNP 偏置电阻器晶体管 用户手册说明书

NSI DTA143ZD-D 双 PNP 偏置电阻器晶体管 用户手册说明书

MUN5133DW1,NSBA143ZDXV6,NSBA143ZDP6Dual PNP Bias Resistor TransistorsR1 = 4.7 k W , R2 = 47 k WPNP Transistors with Monolithic Bias Resistor NetworkThis series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.Features•Simplifies Circuit Design •Reduces Board Space•Reduces Component Count•S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements;AEC-Q101 Qualified and PPAP Capable•These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS CompliantMAXIMUM RATINGS(T A = 25°C, common for Q1 and Q2, unless otherwise noted)RatingSymbol Max Unit Collector−Base Voltage V CBO 50Vdc Collector−Emitter Voltage V CEO 50Vdc Collector Current − Continuous I C 100mAdcInput Forward Voltage V IN(fwd)30Vdc Input Reverse VoltageV IN(rev)5VdcStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.ORDERING INFORMATIONDevicePackage Shipping †MUN5133DW1T1G SOT−3633,000 / Tape & Reel NSBA143ZDXV6T1G,NSVBA143ZDXV6T1G SOT−5634,000 / Tape & Reel NSBA143ZDP6T5GSOT−9638,000 / Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. MARKING DIAGRAMS0K/K =Specific Device Code M =Date Code*G=Pb−Free Package(Note: Microdot may be in either location)*Date Code orientation may vary depending up-on manufacturing location.SOT−363CASE 419BSOT−563CASE 463ASOT−963CASE 527ADPIN CONNECTIONSM10K M G10K M G G K (3)(2)(1)1(4)(5)(6)16THERMAL CHARACTERISTICSCharacteristic Symbol Max Unit MUN5133DW1 (SOT−363) One Junction HeatedTotal Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D1872561.52.0mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA670490°C/WMUN5133DW1 (SOT−363) Both Junction Heated (Note 3)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2503852.03.0mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA493325°C/WThermal Resistance,(Note 1) Junction to Lead(Note 2)R q JL188208°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C NSBA143ZDXV6 (SOT−563) One Junction HeatedTotal Device DissipationT A = 25°C(Note 1)Derate above 25°C(Note 1)P D3572.9mWmW/°CThermal Resistance,Junction to Ambient(Note 1)R q JA350°C/WNSBA143ZDXV6 (SOT−563) Both Junction Heated (Note 3)Total Device DissipationT A = 25°C(Note 1)Derate above 25°C(Note 1)P D5004.0mWmW/°CThermal Resistance,Junction to Ambient(Note 1)R q JA250°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C NSBA143ZDP6 (SOT−963) One Junction HeatedTotal Device DissipationT A = 25°C(Note 4)(Note 5)Derate above 25°C(Note 4)(Note 5)P D2312691.92.2mWmW/°CThermal Resistance,(Note 4) Junction to Ambient(Note 5)R q JA540464°C/WNSBA143ZDP6 (SOT−963) Both Junction Heated (Note 3)Total Device DissipationT A = 25°C(Note 4)(Note 5)Derate above 25°C(Note 4)(Note 5)P D3394082.73.3mWmW/°CThermal Resistance,(Note 4) Junction to Ambient(Note 5)R q JA369306°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C1.FR−4 @ Minimum Pad.2.FR−*******.0InchPad.3.Both junction heated values assume total power is sum of two equally powered channels.4.FR−4 @ 100 mm2, 1 oz. copper traces, still air.5.FR−4 @ 500 mm2, 1 oz. copper traces, still air.ELECTRICAL CHARACTERISTICS (T A = 25°C, common for Q1 and Q2, unless otherwise noted)Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICSCollector−Base Cutoff Current (V CB = 50 V, I E = 0)I CBO−−100nAdcCollector−Emitter Cutoff Current (V CE = 50 V, I B = 0)I CEO−−500nAdcEmitter−Base Cutoff Current (V EB = 6.0 V, I C = 0)I EBO−−0.18mAdcCollector−Base Breakdown Voltage (I C = 10 m A, I E = 0)V(BR)CBO50−−VdcCollector−Emitter Breakdown Voltage (Note 6) (I C = 2.0 mA, I B = 0)V(BR)CEO50−−VdcON CHARACTERISTICSDC Current Gain (Note 6) (I C = 5.0 mA, V CE = 10 V)h FE80140−Collector−Emitter Saturation Voltage (Note 6) (I C = 10 mA, I B = 0.3 mA)V CE(sat)−−0.25VdcInput Voltage (off)(V CE = 5.0 V, I C = 100 m A)V i(off)−0.67−VdcInput Voltage (on)(V CE = 0.2 V, I C = 5.0 mA)V i(on)−0.91−VdcOutput Voltage (on)(V CC = 5.0 V, V B = 2.5 V, R L = 1.0 k W)V OL−−0.2VdcOutput Voltage (off)(V CC = 5.0 V, V B = 0.5 V, R L = 1.0 k W)V OH4.9−−Vdc Input Resistor R1 3.3 4.7 6.1k W Resistor Ratio R1/R20.080.10.146.Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.Figure 1. Derating CurveAMBIENT TEMPERATURE (°C)PD,POWERDISSIPATION(mW)(1) SOT−363; 1.0 x 1.0 inch Pad(2) SOT−563; Minimum Pad(3) SOT−963; 100 mm2, 1 oz. copper traceMUN5133DW1, NSBA143ZDXV6109876543210Figure 2. V CE(sat) vs. I CFigure 3. DC Current GainFigure 4. Output CapacitanceFigure 5. Output Current vs. Input VoltageV in , INPUT VOLTAGE (V)V R , REVERSE BIAS VOLTAGE (V)Figure 6. Input Voltage vs. Output CurrentI C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)10.1I C , COLLECTOR CURRENT (mA)1001010.0011000V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I NC o b , C A P A C I T A N C E (p F )100110I C , C O L L E C T O R C U R R E N T (m A )V i n , I N P U T V O L T A G E (V )0.010.010.1NSBA143ZDP6Figure 7. V CE(sat) vs. I CFigure 8. DC Current GainFigure 9. Output Capacitance Figure 10. Output Current vs. Input VoltageV in, INPUT VOLTAGE (V)V R , REVERSE BIAS VOLTAGE (V)Figure 11. Input Voltage vs. Output CurrentI C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I N5040302010C o b , C A P A C I T A N C E (p F )I C , C O L L E C T O R C U R R E N T (m A )V i n , I N P U T V O L T A G E (V )10.10.0110001101007014231001010.10.010.001100504030201001001010.11010.165432105SC −88/SC70−6/SOT −363CASE 419B −02ISSUE YDATE 11 DEC 2012SCALE 2:1NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.4.DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.5.DATUMS A AND B ARE DETERMINED AT DATUM H.6.DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP .7.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.XXXM G G XXX = Specific Device Code M = Date Code*G = Pb −Free Package GENERICMARKING DIAGRAM*16STYLES ON PAGE 2DIM MIN NOM MAX MILLIMETERS A −−−−−− 1.10A10.00−−−0.10dddb 0.150.200.25C 0.080.150.22D 1.80 2.00 2.20−−−−−−0.0430.000−−−0.0040.0060.0080.0100.0030.0060.0090.0700.0780.086MIN NOM MAX INCHES0.100.004E1 1.15 1.25 1.35e 0.65 BSC L 0.260.360.462.00 2.10 2.200.0450.0490.0530.026 BSC0.0100.0140.0180.0780.0820.086(Note: Microdot may be in either location)*Date Code orientation and/or position may vary depending upon manufacturing location.*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIMENSIONS: MILLIMETERS0.306XRECOMMENDEDSIDE VIEWEND VIEWPLANEDETAIL AE A20.700.90 1.000.0270.0350.039L20.15 BSC 0.006 BSC aaa 0.150.006bbb 0.300.012ccc 0.100.0046X*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “G ”, may or may not be present. Some products may not follow the Generic Marking.MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSSTYLE 1:PIN 1.EMITTER 22.BASE 23.COLLECTOR 14.EMITTER 15.BASE 16.COLLECTOR 2STYLE 3:CANCELLEDSTYLE 2:CANCELLEDSTYLE 4:PIN 1.CATHODE2.CATHODE3.COLLECTOR4.EMITTER5.BASE6.ANODESTYLE 5:PIN 1.ANODE2.ANODE3.COLLECTOR4.EMITTER5.BASE6.CATHODESTYLE 6:PIN 1.ANODE 22.N/C3.CATHODE 14.ANODE 15.N/C6.CATHODE 2STYLE 7:PIN 1.SOURCE 22.DRAIN 23.GATE 14.SOURCE 15.DRAIN 16.GATE 2STYLE 8:CANCELLEDSTYLE 11:PIN 1.CATHODE 22.CATHODE 23.ANODE 14.CATHODE 15.CATHODE 16.ANODE 2STYLE 9:PIN 1.EMITTER 22.EMITTER 13.COLLECTOR 14.BASE 15.BASE 26.COLLECTOR 2STYLE 10:PIN 1.SOURCE 22.SOURCE 13.GATE 14.DRAIN 15.DRAIN 26.GATE 2STYLE 12:PIN 1.ANODE 22.ANODE 23.CATHODE 14.ANODE 15.ANODE 16.CATHODE 2STYLE 13:PIN 1.ANODE2.N/C3.COLLECTOR4.EMITTER5.BASE6.CATHODE STYLE 14:PIN 1.VREF2.GND3.GND4.IOUT5.VEN6.VCCSTYLE 15:PIN 1.ANODE 12.ANODE 23.ANODE 34.CATHODE 35.CATHODE 26.CATHODE 1STYLE 17:PIN 1.BASE 12.EMITTER 13.COLLECTOR 24.BASE 25.EMITTER 26.COLLECTOR 1STYLE 16:PIN 1.BASE 12.EMITTER 23.COLLECTOR 24.BASE 25.EMITTER 16.COLLECTOR 1STYLE 18:PIN 1.VIN12.VCC3.VOUT24.VIN25.GND6.VOUT1STYLE 19: PIN 1.I OUT2.GND3.GND4.V CC5.V EN6.V REF STYLE 20:PIN 1.COLLECTOR2.COLLECTOR3.BASE4.EMITTER5.COLLECTOR6.COLLECTORSTYLE 22:PIN 1.D1 (i)2.GND3.D2 (i)4.D2 (c)5.VBUS6.D1 (c)STYLE 21:PIN 1.ANODE 12.N/C3.ANODE 24.CATHODE 25.N/C6.CATHODE 1STYLE 23:PIN 1. Vn2.CH13.Vp4.N/C5.CH26.N/CSTYLE 24:PIN 1.CATHODE2.ANODE3.CATHODE4.CATHODE5.CATHODE6.CATHODESTYLE 25:PIN 1.BASE 12.CATHODE3.COLLECTOR 24.BASE 25.EMITTER6.COLLECTOR 1STYLE 26:PIN 1.SOURCE 12.GATE 13.DRAIN 24.SOURCE 25.GATE 26.DRAIN 1STYLE 27:PIN 1.BASE 22.BASE 13.COLLECTOR 14.EMITTER 15.EMITTER 26.COLLECTOR 2STYLE 28:PIN 1.DRAIN2.DRAIN3.GATE4.SOURCE5.DRAIN6.DRAINSTYLE 29:PIN 1.ANODE2.ANODE3.COLLECTOR4.EMITTER5.BASE/ANODE6.CATHODESC−88/SC70−6/SOT−363CASE 419B−02ISSUE YDATE 11 DEC 2012STYLE 30:PIN 1.SOURCE 12.DRAIN 23.DRAIN 24.SOURCE 25.GATE 16.DRAIN 1Note: Please refer to datasheet forstyle callout. If style type is not calledout in the datasheet refer to the devicedatasheet pinout or pin assignment.SOT −563, 6 LEADCASE 463A ISSUE HDATE 26 JAN 2021SCALE 4:16MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSSOT −563, 6 LEADCASE 463A ISSUE HDATE 26 JAN 2021XX = Specific Device Code M = Month Code G = Pb −Free PackageXX MG GENERICMARKING DIAGRAM*1*This information is generic. Please refer todevice data sheet for actual part marking.Pb −Free indicator, “G” or microdot “G ”, may or may not be present. Some products maynot follow the Generic Marking.SOT −963CASE 527AD −01ISSUE EDATE 09 FEB 2010SCALE 4:1GENERICMARKING DIAGRAM*X = Specific Device Code M = Month Code*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.DIM MIN NOM MAX MILLIMETERS A 0.340.370.40b 0.100.150.20C 0.070.120.17D 0.95 1.001.05E 0.750.800.85e 0.35 BSC 0.95 1.00 1.05HE ANOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEADTHICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.XM 1STYLE 1:PIN 1.EMITTER 12.BASE 13.COLLECTOR 24.EMITTER 25.BASE 26.COLLECTOR 1STYLE 2:PIN 1.EMITTER 12.EMITTER23.BASE 24.COLLECTOR 25.BASE 16.COLLECTOR 1STYLE 3:PIN 1.CATHODE 12.CATHODE 13.ANODE/ANODE 24.CATHODE 25.CATHODE 26.ANODE/ANODE 1STYLE 4:PIN 1.COLLECTOR2.COLLECTOR3.BASE4.EMITTER5.COLLECTOR6.COLLECTOR STYLE 6:PIN 1.CATHODE2.ANODE3.CATHODE4.CATHODE5.CATHODE6.CATHODE STYLE 5:PIN 1.CATHODE2.CATHODE3.ANODE4.ANODE5.CATHODE6.CATHODE STYLE 7:PIN 1.CATHODE2.ANODE3.CATHODE4.CATHODE5.ANODE6.CATHODE STYLE 8:PIN 1.DRAIN2.DRAIN3.GATE4.SOURCE5.DRAIN6.DRAINSTYLE 9:PIN 1.SOURCE 12.GATE 13.DRAIN 24.SOURCE 25.GATE 26.DRAIN 1STYLE 10:PIN 1.CATHODE 12.N/C3.CATHODE 24.ANODE 25.N/C6.ANODE 1TOP VIEW SIDE VIEWDIMENSIONS: MILLIMETERSRECOMMENDED MOUNTING FOOTPRINTL 0.19 REF L20.050.100.156X MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSPUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORT North American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative ◊。

施耐德电气 iC65N 小型断路器, D曲线, 3P, 63A A9F19363 产品参数表

施耐德电气 iC65N 小型断路器, D曲线, 3P, 63A A9F19363 产品参数表

产品参数表规格iC65N 小型断路器, D曲线, 3P, 63AA9F19363主要信息产品系列Acti 9Acti 9产品名称IC65产品类型小型断路器产品短名iC65N 极数3P 产品应用配电保护保护极数量3额定电流 [In]63 A 在…上 30 °C 电网类型AC脱扣器类型热磁式脱扣曲线D分断能力6 kA Icn 在…上 400 V AC 50/60 Hz 每极 符合 GB/T 10963.16 kA Icn 在…上 400 V AC 50/60 Hz 每极 符合 IEC 60898-1使用类别AC类隔离功能适用补充信息电网频率50/60 Hz额定工作电压 [Ue]400 V AC 50/60 Hz 磁脱扣限制10...14 x In 限流等级3额定绝缘电压 [Ui]500 V AC 额定冲击耐受电压 [Uimp]6 kV 触点位置指示有控制类型手柄本地信号指示开/关指示安装类型锁定夹锁紧安装方式DIN 导轨安装宽度 (9mm的倍数)6免责声明:本文档不代表或不用于确定用于特定用户应用产品的适用性或可靠性高度94 mm深度78.5 mm净重375 g机械寿命20000 次电气寿命10000 次接线能力隧道式端子 上接线或下接线 1…35 mm² 单股硬线 不带篐线端子隧道式端子 上接线或下接线 1…25 mm² 软线 (可选)带或者不带篐线端子剥线长度14 mm电源回路:紧固扭矩 3.5 N.m 电源回路:漏电流保护(需)另外拼装环境符合标准GB 10963.1IEC 60898-1产品认证CECCCCCSIP 保护等级IP20 符合 screwed污染等级3过电压类别IV抗湿热性 2 符合 IEC 60068-1相对湿度95 % 在…上 55 °C运行温度-35…70 °C贮存环境温度-40…85 °C包装单位Unit Type of Package 1PCENumber of Units in Package 11Package 1 Height 5.313 cmPackage 1 Width7.324 cmPackage 1 Length9.259 cmPackage 1 Weight366 gUnit Type of Package 2BB1Number of Units in Package 24Package 2 Height8.46 cmPackage 2 Width9.64 cmPackage 2 Length21.88 cmPackage 2 Weight 1.47 kgUnit Type of Package 3CARNumber of Units in Package 336Package 3 Height24.5 cmPackage 3 Width26.5 cmPackage 3 Length30.5 cmPackage 3 Weight14.5 kgGreen Premium 产品China Green Designed Product是REACh法规REACh 声明欧盟ROHS指令符合欧盟ROHS声明Sustainable packaging Yes中国 ROHS 管理办法中国 ROHS 声明自主符合中国 ROHS(中国 ROHS 管控范畴之外的产品)RoHS 豁免信息是环境披露产品环境文件含卤素性能无卤素产品合同保修保修单18 个月推荐的替代产品。

LN2311

LN2311

4

LN2311
Rev.1.0 —Jun. 5, 2012
5

LN2311
■ 封装形式
SOT-23-3L
Rev.1.0 —Jun. 5, 2012
6

LN2311
SOT-23-3B
Rev.1.0 —Jun. 5, 2012
电气特性ta25unlessotherwisenoted参数符号条件最小典型最大单位关态特性漏源击穿电压bvdssvgs0vid250a30零栅压漏电流idssvds24vvgs0v1栅衬漏电流igssvds0vvgs20v100na开态特性栅极阈值电压vgsthvdsvgsid250a07115漏源通态电阻rdsonvgs10vid42a4552vgs45vid4a5865正向跨导gfsvgs5vid5a10动态参数输入电容cissvds15vvgs0vf10mhz950pf输出电容coss115反向传输电容crss75开关特性开通延迟时间tdonvdd15vid32avgen10vrgen6ohmns上升时间tr关断延迟时间tdoff30下降时间tf12栅极总电荷qgvds15vid4avgs45v95nc栅源电荷qgs栅漏电荷qgd漏源二极管特征参数漏源二极管正向电压vsdvgs0vis108112温度特性热电阻结温环境温度rthja100ln2311rev10jun
LN2311
P 沟道增强型场效应管
■ 产品概述
VDSS -30V ID -4.4A RDS(ON)(mΩ)TYP 52 @ VGS=-10V 65 @ VGS=-4.5V
■ 产品特点
低导通电阻 高可靠性 驱动要求简单 采用 SOT-23-3L/B 封装
■ 封装
SOT-23-3L/B

D13005

D13005

热特性
项目 结到管壳的热阻
符号 Rth(j-c)
最小值 400
700 9 8 5 -
最大值 -
100 50 10 50 0.8 2 1.5
单位 V V V μA μA μA
V V V
-
0.7 μS
-
4
μS
4
-
MHz
最小值 最大值 单位
-
1.67 ℃/W
版本:604A
2/5
特征曲线
D13005
版本:604A
话的方式与公司本部联系。 6. 本说明书如有版本变更不另外告知。
联系方式
吉林华微电子股份有限公司
公司地址:吉林省吉林市深圳街 99 号,邮编:132013 总机:86-432-4678411 传真:(0432)4665812 网址:
市场营销部: 吉林: 地址:吉林省吉林市深圳街 99 号 电话: (0432)4675588 4675688 (0432)4678411-3098\3099 传真: (0432)4671533
绝对最大额定值(Tc=25℃)
项目
符号
集电极—基极直流电压
VCBO
集电极—发射极直流电压
VCEO
发射极—基极直流电压
VEBO
最大集电极直流电流(DC)
IC
最大集电极脉冲电流(pulse) ICP
最大基极直流电流(DC)
IB
最大基极脉冲电流(pulse) IBP
最大集电极耗散功率
PC
最高结温
Tj
贮存温度
发射极—基极击穿电压
V(BR)EBO
集电极—基极反向漏电流 ICBO
集电极—发射极反向漏电流 ICEO

场效应晶体管3DJ7

场效应晶体管3DJ7

3DJ7 型硅 N 沟道耗尽型低频场效应晶体管 参数 符号 极 限 参 数 V(BR)DS V ≥20 PCM V(BR)GSS 单 位 mW V D E F 100 ≥30 3DJ7 G H I J 符 号 Tamb VDS IG VGS IDS 主 要 技 术 限 参 数 gfs WS ≥500 ≥ 1000 Ciss Crss Fn dB PF ≥2000 ≥ 3000 ≤6 ≤3 f ≤5 VDS ID f Rg Gp 外形 dB ≥12 ≥15 VDS f KHZ V mA KHZ KΩ V KHz 1 10 3 30 1 10 3 ≥ 4000 ≥ 5000 ≥ 6000 IGSS nA ≤100 VGS(off) V IDSS mA <0.35 0.3~ 1.2 ≤︱-4︱ 1~3.5 3~ 11 11~ 21 20~ 30 30~ 40 VDS VGS VDS ID VDS VGS VDS ID f VDS ID 测试条件 单 位 ℃ V μA V μA V V V μA V V V mA KHZ V mA 25 0 -1 VGS(off)+(1)
对其中的一些测试条件特别说明如下: IDSS IDS VGS VDS VP gm CGS CGD KPS fM BVDS BVGS PDM IDSM TS ———沟道饱和电流(漏源饱和电流) ———漏源电流 ———栅源电压 ———漏源电压 ———夹断电压(峰值电压) ———共源极小信号低频跨导 ———栅源电容 ———栅漏电容 ———共源极功率增益 ———最高振荡频率 ———最大漏源击穿电压 ———最大栅源击穿电压 ———漏极最大允许耗散功率 ———最大漏源电流 ———储藏温度
D~J
1 10 0 10 10 0 -10 10 3 1 10 3

如何有效地检测碳化硅(SiC)二极管

如何有效地检测碳化硅(SiC)二极管

随着宽禁带半导体技术的日益普及,需要在高温和苛刻的电流循环条件下,对二极管操作进行各种耐久性测试,以评佔其性能。

毫无疑问,功率电子器件作为基本元器件,将在未来儿年中持续发展。

而新型碳化硅(SiC)半导体材料更是不负众望,它比传统硅材料导热性更佳、开关速度更高,而且可以使器件尺寸做到更小。

因此,碳化硅开关也成为设计人员的新宠。

碳化硅二极管主要为肖特基二极管。

第一款商用碳化硅肖特基一极管十多年前就已推出。

从那时起,它就开始进入电源系统。

二极管已经升级为碳化硅开关,如JFET、BJT和MOSFET。

U前市场上已经可以提供击穿电压为600-1700 V、且额定电流为1 A-60 A的碳化硅开关。

本文的重点是如何有效地检测Sic MOSFEToTO-247-3图 1MOSEFT-CMF20120D碳化硅二极管最初的一极管非常简单,但随着技术的发展,逐渐出现了升级的JFET、M0SFET和双极晶体管。

碳化硅肖特基二极管优势明显,它具有高开关性能、高效率和高功率密度等特性,而且系统成本较低。

这些二极管具有零反向恢复时间、低正向压降、电流稳定性、高抗浪涌电压能力和正温度系数。

新型-极管适合各种应用中的功率变换器,包括光伏太阳能逆变器、电动车(EV)充电器、电源和汽车应用。

与传统硅材料相比,新型二极管具有更低的漏电流和更高的掺杂浓度。

硅材料具有一个特性,就是随着温度的升高,其直接表征会发生很大变化。

而碳化硅是一种非常坚固且可靠的材料,不过碳化硅仍局限于小尺寸应用。

检测碳化硅二极管本文要检测的碳化硅二极管为罗姆半导体的SCS205KG型号,它是一种SiC肖特基势垒二极管(图2) O其主要特性如下:•反向电压1200 V;• 连续正向电流“ 5 A (+ 150°C时);SymbolCondition*UrwtMaHUxv« It-O.imA 1200V Forward voEuge tf.1.-1.4 V U-5A.T,- l5Ori.aV入 T L 17SXL9Vfltveoc currentUV,- 12O0V,Tj-2ffC$100uA V,- 1200V. T产 1501:40UAV.- I300V.T.-useVA(Pw = lOms 正弦曲线,「= + 25°C; (Pw = lOms 正弦曲线,T 尸 + 150-0 ; (Pw = 10 US 方波,T,= + 25°C):(1). \0](2)(3)图 2:SCS205KG SiC 二极管1极管性能稳固,恢复时间短且切换速度快。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1N6373 - 1N6381 Series (ICTE-5 - ICTE-36, MPTE-5 - MPTE-45) 1500 Watt Peak Power Mosorb™ Zener TransientVoltage Suppressors Unidirectional*Mosorb devices are designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor’s exclusive, cost-effective, highly reliable Surmetic™ axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.Specification Features:•Working Peak Reverse V oltage Range – 5 V to 45 V•Peak Power – 1500 Watts @ 1 ms•ESD Rating of Class 3 (>16 KV) per Human Body Model •Maximum Clamp V oltage @ Peak Pulse Current•Low Leakage < 5 m A Above 10 V•Response Time is Typically < 1 nsMechanical Characteristics:CASE:V oid-free, transfer-molded, thermosetting plasticFINISH:All external surfaces are corrosion resistant and leads are readily solderableMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from the case for 10 secondsPOLARITY:Cathode indicated by polarity bandMOUNTING POSITION:AnyMAXIMUM RATINGSfor Bidirectional DevicesAXIAL LEADCASE 41APLASTICL = Assembly LocationMPTE–xx = ON Device CodeICTE–xx = ON Device Code1N63xx = JEDEC Device CodeYY = YearWW = Work WeekDevice Package ShippingORDERING INFORMATIONMPTE–xx Axial Lead500 Units/Box MPTE–xxRL4Axial Lead1500/T ape & Reel ICTE–xx Axial Lead500 Units/Box ICTE–xxRL4Axial Lead1500/T ape & ReelNOTES:LICTE–xxYYWW1N63xx Axial Lead500 Units/Box1N63xxRL4*Axial Lead1500/T ape & ReelLMPTE–xx1N63xxYYWW1.Nonrepetitive current pulse per Figure 5 and der-ated above T A = 25°C per Figure 2.2.1/2 sine wave (or equivalent square wave), PW =8.3 ms, duty cycle = 4 pulses per minute maxi-mum.*1N6378 Not Available in 1500/Tape & ReelUni–Directional TVSELECTRICAL CHARACTERISTICS (T A = 25°C unlessotherwise noted, V= 3.5 V Max. @ I (Note 3.) = 100 A)ELECTRICAL CHARACTERISTICS (T= 25°C unless otherwise noted, V = 3.5 V Max. @ I (Note 3.) = 100 A)NOTES:3.Square waveform, PW = 8.3 ms, Non–repetitive duty cycle.4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V RWM ), which should be equal to or greater than the dc or continuous peak operating voltage level.5.V BR measured at pulse test current I T at an ambient temperature of 25°C and minimum voltage in V BR is to be controlled.6.Surge current waveform per Figure 5 and derate per Figures 1 and 2.*Not Available in the 1500/Tape & ReelFigure 1. Pulse Rating Curve 1008060402000255075100125150175200P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°T A , AMBIENT TEMPERATURE (°C)Figure 2. Pulse Derating CurveP D , S T E A D Y S T A T E P O W E R D I S S I P A T I O N (W A T T S )T L , LEAD TEMPERATURE (°C)t, TIME (ms)100101t P , PULSE WIDTHP P K, P E A K P O W E R (k W )Figure 3. Capacitance versus Breakdown VoltageFigure 4. Steady State Power Derating Figure 5. Pulse Waveform1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,CV BR , BREAKDOWN VOLTAGE (VOLTS)C , C A P A C I T A N C E (p F )1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,C1.5KE6.8CA through 1.5KE200CAFigure 6. Dynamic Impedance1000500200100D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)I T , T E S T C U R R E N T (A M P S )Figure 7. Typical Derating Factor for Duty CycleD E R A T I N G F A C T O R10.70.50.30.050.10.010.020.030.07D, DUTY CYCLE (%)APPLICATION NOTESRESPONSE TIMEIn most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot. Some input impedance represented by Z in is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.DUTY CYCLE DERATINGThe data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 m s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.TYPICAL PROTECTION CIRCUITVFigure 8. Figure 9.OUTLINE DIMENSIONS1500 Watt MosorbTransient Voltage Suppressors – Axial LeadedMOSORB CASE 41A–04ISSUE DDIMA MIN MAX MIN MAX MILLIMETERS0.3350.3748.509.50INCHES B 0.1890.209 4.80 5.30D 0.0380.0420.96 1.06K 1.000---25.40---P---0.050--- 1.27NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P.4.041A-01 THRU 041A-03 OBSOLETE, NEW STANDARD 041A-04.NotesMosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。

相关文档
最新文档