涟西中学高一数学数列测试题

合集下载

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学一、填空题1. 若\[a_n = 2n - 1\],则数列\[\{a_n\}\]的前5项分别为\[1, 3, 5, 7, 9\]。

2. 若\[b_n = 3^n\],则数列\[\{b_n\}\]的前4项分别为\[3, 9, 27, 81\]。

3. 若\[c_n = \frac{n(n+1)}{2}\],则数列\[\{c_n\}\]的前6项分别为\[1, 3, 6, 10, 15, 21\]。

二、选择题1. 以下是等差数列的是(B)。

A. 1, 2, 4, 7, 11B. 2, 4, 8, 16, 32C. 1, 3, 6, 10, 15D. 3, 8, 15, 24, 352. 若\[a_1=2\],\[a_2=5\],则\[a_3=8\),\[a_4=11\),则\(a_n\)的通项公式是(C)。

A. \(a_n=2n+1\)B. \(a_n=3n-1\)C. \(a_n=3n-1\)D. \(a_n=2n+4\)3. 若对于等差数列\(\{a_n\}\)有\(\frac{{a_5 - a_2}}{7}=3\),则\(d=\)(A)。

A. 1B. 2C. 3D. 4三、解答题1. 求等差数列\(\{a_n\}\)的前5项之和,已知\(a_1=1\),\(a_3=7\)。

(解答略)2. 若等差数列\(\{a_n\}\)的首项为-3,公差为4,求该数列的第n项和。

\({S_n}=\)(解答略)3. 若等差数列\(\{a_n\}\)的首项为2,公差为3,已知\(\frac{{a_m+a_n}}{2}=13\),求\(m\)与\(n\)的值。

(解答略)四、解题思路详解1. 填空题1解析:根据数列通项公式\[a_n = 2n - 1\],带入\[n=1,2,3,4,5\],即可得到\[a_n\]的前5项。

2. 填空题2解析:根据数列通项公式\[b_n=3^n\],带入\[n=1,2,3,4\],即可得到\[b_n\]的前4项。

高一数学数列练习题含答案

高一数学数列练习题含答案

一、选择题:1、等差数列9}{,7,3,}{51第则数列中n n a a a a ==项等于( C ) A 、9 B 、10 C 、11 D 、122、等比数列{}n a 中, ,243,952==a a 则{}n a 的第4项为( A ) A 、81 B 、243 C 、27 D 、1923、已知一等差数列的前三项依次为34,22,++x x x ,那么22是此数列的第( D )项 A 、2 B 、4 C 、6 D 、84、已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( A )A 、15B 、30C 、31D 、645、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B )A 、63B 、45C 、36D 、276、已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( B )A 、2B 、3C 、6D 、97、在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( C ) A 、20 B 、22 C 、24 D 、288、已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( A )A 、140B 、280C 、168D 、569、等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( A )A 、3B 、5C 、7D 、910、在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0(a n ≠0),则2a 1+a 22a 3+a 4等于( D )A 、1B 、12C 、13D 、1411、在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10等于( B )A 、12B 、10C 、8D 、2+log 35 12、设数列{n a }的通项公式是1002+=n na n ,则{n a }中最大项是( B )A.9aB.10aC.9a 和10aD.8a 和9a 二、填空题:13、数列{n a }是等差数列,47a =,则7s =_________4914、已知数列{n a }的前n 项和210n S n n =-+,则其通项n a =211n -+;当n = 5 时n S 最大,且最大值为 2515、已知数列{a n }满足a 1=1,a n +1=a n 1+a n ,则a 5=_______1516、已知数列{}n a 满足123n n a a -=+且11a =,则数列{}n a 的通项公式为__________123n n a +=-三、解答题:17、设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.解:设等差数列{}n a 的公差为,d 等比数列{}n b 的公比为q . d q q b d a d a 42,,31,122342+=∴=+=+= ①又,,21,,2333342b a d a q b q b =+=== d q 214+=∴ ② 则由①,②得242q q =-.22,21,02±==∴≠q q q 将212=q 代入①,得855,8310-=∴-=S d当22=q 时,)22(323110+=T , 当22-=q 时,)22(323110-=T 18、等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n <34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎪⎨⎪⎧b 2S 2=6+d q =64,b 3S 3=9+3d q 2=960.解得⎩⎪⎨⎪⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +2=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32n +1n +2∵2n +32n +1n +2>0∴1S 1+1S 2+…+1S n <34. 19、已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *).(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *,∴T n =3+7×2+11×22+…+(4n -1)×2n -1,2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n.∴2T n -T n =(4n -1)×2n-[3+4(2+22+…+2n -1]=(4n -5)2n+5.故T n =(4n -5)2n+5.20、已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列;(2)若数列{a n }的前n 项和为S n ,求S n . 解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12,∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1①则2S n =1·21+2·22+3·23+…+n ·2n②①-②,得-S n =1+21+22+…+2n -1-n ·2n=1·1-2n1-2-n ·2n =2n -1-n ·2n,∴S n =(n -1)·2n +1.21、设数列{}n a 的前项n 和为n S ,若对于任意的正整数n 都有n a S n n 32-=. (1)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式。

高一数学数列练习题及答案

高一数学数列练习题及答案

高一数学数列练习题及答案一、选择题1. 设数列 {an} 为等差数列,已知 a1 = 3,d = 2,求 a4 的值。

A. 4B. 5C. 6D. 72. 若数列 {bn} 的前 n 项和为 Sn = 2n^2 + 3n,求 b1 的值。

A. 3B. 4C. 5D. 63. 已知数列 {cn} 为等差数列,前 n 项和为 Sn = 3n^2 + n,求通项c3 的值。

A. 4B. 5C. 6D. 74. 数列 {dn} 的通项公式为 an = 2n^3,求第 5 项的值。

A. 200B. 250C. 300D. 3505. 若数列 {en} 的前 n 项和为 Sn = n(5n + 1),求 e1 的值。

A. 0B. 1C. 2D. 3二、填空题1. 设数列 {an} 的前 n 项和为 Sn = 3n^2 + 4n,其中 a1 = 2,则 a2 的值为 ________。

2. 已知等差数列 {bn} 的前 n 项和为 Sn = n^2 + 3n,其中 b2 = 7,则b1 的值为 ________。

3. 若数列 {cn} 的通项公式为 cn = 2n^2 + n,则第 4 项的值为________。

4. 设数列 {dn} 的前 n 项和为 Sn = 4n + 5n^2,则 d1 的值为________。

5. 已知数列 {en} 的前 n 项和为 Sn = 2n(3n + 1),其中 e3 = 28,则e1 的值为 ________。

三、解答题1. 设等差数列 {an} 前 n 项和为 Sn,已知 a1 = 3,an = 7,求 n 的值及 Sn 的表达式。

2. 设等差数列 {bn} 前 n 项和为 Sn,已知 b1 = 1,d = 5,求 n 的值及 Sn 的表达式。

3. 已知等差数列 {cn} 的通项公式为 cn = an - 2n,前 n 项和为 Sn = 3n^2 + 2n,求 a1 的值。

数列测试题及答案解析

数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。

A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。

A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。

答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。

答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。

解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。

2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。

解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。

四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。

证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。

即证明n^2 ≥ (n-1)^2。

展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。

2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。

证明:设等差数列{hn}的首项为h1,公差为d。

根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。

将两项相加得hn + hm = 2h1 + (m + n - 2)d。

由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。

(完整word版)数列综合测试题(高一)

(完整word版)数列综合测试题(高一)

A .16
B . 81
C. 36
D .27
( ).
解析
a1q= 1- a1 a1q3= 9- a1q2 ?
a
1=
1 4

q= 3.

a
4+
a5=
14×
3
3+
1 4
×
3
4=
27.
答案 D
7. (2011 ·辽宁卷 )若等比数列 { an} 满足 anan+1= 16n,则公比为
( ).
A .2
B.4
C.8
数列,又
b3=
a
1 3+
= 1
1, 3
b7=
1 a7+
= 1
1 2
,所以
b11=
2
b7-
b3=
2 3
,所以
1 = 2,解得 a11+ 1 3
a11

1 2.
答案 B
5.设 an=- n2+ 10n+ 11,则数列 { an} 前 n 项的和最大时 n 的值为
A .10
B .11
C. 10 或 11
D. 12
解析 由题意得 (a1+ 2d)2= a1(a1+ 3d),∵ d≠ 0,∴ a1=- 4d,∴ an=- 4d+ (n-1)d,

a
n=
(n

5)
d,∴
a a
1+ 2+
a5+ a6+
a17 =
a18
-4d+ 12d - 3d+ d+ 13d=
8 11.
答案
8 11
13.定义“等和数列”: 在一个数列中, 如果每一项与它后一项的和都为同一个常数, 这个数列叫做等和数列,这个常数叫做该数列的公和.

高一数学必修5《数列》单元测试题

高一数学必修5《数列》单元测试题

高一数学必修5《数列》单元测试题班级:________姓名:________学号:________一、选择题(共40分,每小题4分) 1.数列1,-3,5,-7,9,…的一个通项公式为()A .12-=n a nB .)12()1(--=n a n nC .)21()1(n a n n --=D .)12()1(+-=n a n n2.等差数列9}{,7,3,}{51第则数列中n n a a a a ==项等于( )A .9B .10C .11D .12 3.等比数列{}n a 中, ,243,952==a a 则{}n a 的第4项为( )A .81B .243C .27D .1924.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .215.在公比为整数的等比数列{}n a 中,若,12,64231=+=+a a a a 则该数列的第3项为( )A .56B .512C .524D .5486.已知等差数列{}n a 的公差为正数,且a a 73•=-12,a a 64+=-4,则S 20为( ) A .180B .-180C .90D .-907.设n S 是等差数列{}n a 的前n 项和,若642102S S S ,则,==等于( ) A .12 B .18 C .24 D .428.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 9.数列{}n a 的通项公式n n a n -+=1,则该数列的前9项之和等于( ) A .1 B .2 C .3 D .410.一个项数为偶数的等差数列,其奇数项之和为24,偶数项之和为30,最后一项比第一项大21/2,则最后一项为( )A 、12B 、10C 、8D 、以上都不对 二、填空题(共20分每小题4分)11.在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += 12.在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =______13.设数列{}n a 的前n 项和为n S ,若数列{}n a 满足123a =-,12n n a a +=+,则使n S 取得最小值的n 的值为 .14.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______.15.设{}n a 是公比为正数的等比数列,若11a =,516a =,则数列{}n a前7项和为三、解答题(每小题10分,共40分) 16. 已知数列{}n a 的前n 项和n n S 23+=,求n a .17.已知数列{}n a 的前n 项和2n n S a =+. (1)当1a =时,求{}n a 的通项公式; (2)若数列{}n a 是等比数列,求a 的值。

高中数列测试题及答案

高中数列测试题及答案

高中数列测试题及答案一.选择题(本大题共12小题,每小题5分,共60分)1.已知数列{a n }中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为 ( )A .49B .50C .51D .52 2.21+与21-,两数的等比中项是( )A .1B .1-C .1±D .123.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( )A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,BC b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20D .24 6.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( )(A) 5 (B) 6(C) 7(D)87.已知b a,满足:a =3,b =2,b a +=4,则b a -=( )A .3B .5C .3D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、839.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ).A .4B .8C .15D .3110.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形11.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于( )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-aC .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a12.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为( ).A .4B .5C .7D .8二、填空题(本题共4小题,每小题5分,共20分)13.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为14.△ABC 中,如果A a tan =B b tan =Cctan ,那么△ABC 是 15.数列{}n a 满足12a =,112nn na a --=,则n a = ; 16.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n则157202b b a a ++等于 _三.解答题 (本大题共6个小题,共70分;解答应写出文字说明、证明过程或演算步骤)17.(10)分已知c b a ,,是同一平面内的三个向量,其中a()1,2=.(1)若52=c ,且c //a ,求c的坐标;(2) 若|b |=,25且b a 2+与b a -2垂直,求a 与b的夹角θ.18.(12分)△ABC 中,BC =7,AB =3,且B C sin sin =53. (1)求AC ; (2)求∠A .19.(12分) 已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.20.(12分)在ABC ∆中,c o s,s i n ,c o s ,s i n 2222C C CC ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭m n ,且m 和n 的夹角为3π. (1)求角C ;(2)已知c =27,三角形的面积332s =,求.a b +21.(12分)已知等差数列{a n }的前n 项的和记为S n .如果a 4=-12,a 8=-4. (1)求数列{a n }的通项公式;(2)求S n 的最小值及其相应的n 的值;22.(12分)已知等比数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项, 等差数列{}n b 中,12b =,点1(,)n n P b b +在一次函数2y x =+的图象上.⑴求1a 和2a 的值;⑵求数列{}{},n n a b 的通项n a 和n b ; ⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .高中数列测试题答案一.选择题。

高一数学数列章节测试题

高一数学数列章节测试题

高一数学章节测试题——数列33已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=(21)n n -2(1)n +2n 2(1)n -选择题答题卡:二、填空题本大题共4小题,每小题5分,共20分.13.设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15.设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16.设{}n a 为公比1>q 的等比数列,若2004a 和2006a 是方程03842=+-x x 的两根,则=+20072006a a _____________.三、解答题本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤 17.已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式. 18.已知{}n a 为等差数列,且36a =-,60a =. Ⅰ求{}n a 的通项公式;Ⅱ若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式. 19.已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .20.已知等差数列{}n a 的前n 项和为22()=-+∈R ,n S pn n q p q ,n ∈+N . Ⅰ求q 的值;Ⅱ若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .Ⅰ求数列{}n b 的通项公式;Ⅱ数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.22.等比数列{}n a 的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>参考答案:一、选择题答题卡:)(4*1N n n ∈-)(22*2N n n n ∈++三、解答题17.解:设等比数列{}n a 的公比为q,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--; 当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:Ⅰ设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.Ⅱ设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19.解:Ⅰ设等差数列{}n a 的首项为1a ,公差为d.由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=Ⅱ12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn +.20.解:Ⅰq p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p pⅡ根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由Ⅰ知.4,1825=∴=-p p 从而.8,10,221===d a a故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121.解:Ⅰ设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或舍去 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. Ⅱ数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解:Ⅰ因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.Ⅱ当2=b 时,由Ⅰ知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………1 3451212341222222n n n n n T +++=+++++……2 )()(21-,得: 12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。

高一数列测试题及答案

高一数列测试题及答案

高一数列测试题及答案一、选择题(每题5分,共30分)1. 数列1, 1/2, 1/3, 1/4, ...的前n项和为S_n,那么S_5等于()A. 2B. 3C. 4D. 52. 已知数列{a_n}是等差数列,且a_1=2,公差d=3,则a_5等于()A. 14B. 15C. 16D. 173. 等比数列{b_n}的前n项和为S_n,若S_3=7,b_1=1,公比q=2,则b_3等于()A. 4B. 8C. 16D. 324. 数列{c_n}满足c_1=1,c_{n+1}=2c_n+1,那么c_3等于()A. 5B. 7C. 9D. 115. 已知数列{d_n}的通项公式为d_n=3n-2,那么d_5等于()A. 13B. 14C. 15D. 166. 数列{e_n}满足e_1=2,e_{n+1}=e_n+2n,那么e_4等于()A. 16B. 18C. 20D. 22二、填空题(每题5分,共20分)7. 等差数列{f_n}的前n项和为S_n,若a_5=10,a_1=2,则公差d等于______。

8. 等比数列{g_n}中,若g_3=8,g_1=2,则公比q等于______。

9. 数列{h_n}满足h_1=3,h_{n+1}=3h_n-2,那么h_4等于______。

10. 数列{i_n}的通项公式为i_n=2^n,那么i_5等于______。

三、解答题(每题10分,共50分)11. 已知数列{j_n}是等差数列,且j_1=5,j_3=11,求数列的通项公式。

12. 等比数列{k_n}中,若k_1=3,k_2k_4=324,求公比q。

13. 数列{l_n}满足l_1=1,l_{n+1}=2l_n+n,求l_5。

14. 数列{m_n}的通项公式为m_n=n^2-n+1,求m_1到m_5的和。

15. 数列{n_n}满足n_1=1,n_{n+1}=n_n+n,求n_4。

答案:一、选择题1. B2. C3. C4. D5. C6. A二、填空题7. 28. 29. 1710. 32三、解答题11. 通项公式为j_n=2n+3。

高一数学数列检测题

高一数学数列检测题

数列检测题一、选择题(每小题5分;共60分)1、数列1;0;1;0;…的一个通项公式为( )A .2n-1B .2)1(1n -+C .2)1(1n --D .2)1(nn -+ 2.若数列{a n }的前n 项和公式为S n =log 3(n+1);则a 5等于( )A .log 56B .log 356 C .log 36 D .log 35 3.数列{a n }中;a n+1=nn a a 31+;a 1=2;则a4=( ) A .516 B .192 C .58 D .78 4.设命题甲:a 2=bc ;命题乙:2lga=lgb+lgc ;那么( )A .甲是乙的充分条件;但不是必要条件B .甲是乙的必要条件;但不是充分条件C .甲是乙的充要条件D .甲不是乙的充分条件;也不是乙的必要条件5.等差数列{a n }的前n 项和为S n ;若a 4=18-a 5;则S 8等于( )A .18B .36C .54D .726.三个互不相等的实数a 、1、b 依次成等差数列;且a 2、1、b 2依次成等比;则b a 11+的值是( )A .2B .-2C .2或-2D .不确定7.等差数列{a n }中;若a 1+a 4+a 7=39;a 3+a 6+a 9=27;则前9项和S 9等于( )A .66B .99C .144D .2978.已知等差数列{a n }满足a 1+a 2+…+a 101=0;则( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .任意实数9.已知等差数列的前n 项和S n =3n +b ;则b 的值为( )A .1B .-1C .0D .任意实数10.已知数列{a n }的通项为a n =26-2n ;若要使此数列的前n 项之和S n 最大;则n 的值为( )A .12B .13C .12或13D .1411.已知a1;a2;a3;a4成等差数列;且a1、a4为方程2x2-5x+2=0的两个根;则a2+a3等于( )A .1B .-1C .25-D .25 12.某企业2001年12月份得产值时这年1月份产值得P 倍;则该企业2001年年度产值得月平均增长率为( )A .1-P P B .111-P C .11P D .111-P二、填空题(每小题4分;公16分)13.数列,...,1617,815,413,211的前n 项和为__________。

高一数学数列练习题含答案

高一数学数列练习题含答案

高一级数学数列练习题一、选择题: 1、等差数列9}{,7,3,}{51第则数列中n n a a a a ==项等于( C )A 、9B 、10C 、11D 、122、等比数列{}n a 中, ,243,952==a a 则{}n a 的第4项为( A )A 、81B 、243C 、27D 、1923、已知一等差数列的前三项依次为34,22,++x x x ,那么22是此数列的第( D )项A 、2B 、4C 、6D 、84、已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( A )A 、15B 、30C 、31D 、645、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B )A 、63B 、45C 、36D 、276、已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( B )A 、2B 、3C 、6D 、97、在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( C )A 、20B 、22C 、24D 、288、已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( A )A 、140B 、280C 、168D 、569、等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( A )A 、3B 、5C 、7D 、910、在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0(a n ≠0),则2a 1+a 22a 3+a 4等于( D ) A 、1 B 、12 C 、13 D 、1411、在各项均为正数的等比数列{a n }中,若a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10等于( B )A 、12B 、10C 、8D 、2+log 3512、设数列{n a }的通项公式是1002+=n n a n ,则{n a }中最大项是( B ) A.9a B.10a C.9a 和10a D.8a 和9a二、填空题:13、数列{n a }是等差数列,47a =,则7s =_________4914、已知数列{n a }的前n 项和210n S n n =-+,则其通项n a =211n -+;当n = 5 时n S 最大,且最大值为 2515、已知数列{a n }满足a 1=1,a n +1=a n 1+a n,则a 5=_______15 16、已知数列{}n a 满足123n n a a -=+且11a =,则数列{}n a 的通项公式为__________123n n a +=-三、解答题:17、设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.解:设等差数列{}n a 的公差为,d 等比数列{}n b 的公比为q .d q q b d a d a 42,,31,122342+=∴=+=+= ①又,,21,,2333342b a d a q b q b =+=== d q 214+=∴ ② 则由①,②得242q q =-将212=q 代入①,得855,8310-=∴-=S d 当22=q 时,)22(323110+=T , 当22-=q 时,)22(323110-=T 18、等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n <34. 解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎪⎨⎪⎧ b 2S 2=?6+d ?q =64,b 3S 3=?9+3d ?q 2=960.解得⎩⎪⎨⎪⎧ d =2,q =8,或⎩⎨⎧ d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2), 1S n =1n ?n +2?=12⎝ ⎛⎭⎪⎫1n -1n +2,∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n ?n +2?=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32?n +1??n +2?∵2n +32?n +1??n +2?>0∴1S 1+1S 2+…+1S n <34.19、已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *).由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *).(2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *,∴T n =3+7×2+11×22+…+(4n -1)×2n -1,2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5. 故T n =(4n -5)2n +5.20、已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列;(2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n2n }是以12为首项,12为公差的等差数列.(2)由(1),得a n2n =12+(n -1)×12,∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1①则2S n =1·21+2·22+3·23+…+n ·2n ②①-②,得-S n =1+21+22+…+2n -1-n ·2n=1·?1-2n ?1-2-n ·2n =2n -1-n ·2n , ∴S n =(n -1)·2n +1.21、设数列{}n a 的前项n 和为n S ,若对于任意的正整数n 都有n a S n n 32-=.(1)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式。

高一数学测试题——数列

高一数学测试题——数列

高一数学测试题——数列一、选择题(本大题共12小题,每小题5分,共60分)1.数列}{n a 的前n 项和为n S ,若)(23*N n a S n n ∈+=,则那个数列一定是 ……………………………………………………………………………( )A .等比数列B .等差数列C .从第二项起是等比数列D .从第二项起是等差数列 2.等差数列}{n a 中,已知前15项的和9015=S ,则8a 等于………( )A .245B .12C .445D .63.等比数列{a n }中,假如817643=⋅⋅⋅a a a a ,则91a a ⋅的值为……( )A .3B .9C .±3D .±94.等差数列{a n }中,4,84111073=-=-+a a a a a .记n n a a a S +++= 21,则S 13等于……………………………………………………………………( )A .168B .156C .152D .785.在等比数列{a n }中,100992019109,),0(a a b a a a a a a +=+≠=+则等于 ……………………………………………………………………………( )A .89a b B .9)(a b C .910a b D .10)(ab 6.数列{}n a 中,372,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则8a =( ) A .-1 B .0 C .12 D .237.设2a =3,2b =6,2c =12,那么数列c b a 、、 ………………………( )A .是等比数列,但不是等差数列B .是等差数列,但不是等比数列C .既是等比数列,又是等差数列D .不是等比数列,也不是等差数列8.已知S n 是等差数列{a n }的前n 项和,若S 6=36,S n =324,S n -6=144(n >6), 则n 等于 …………………………………………………………………( )A .15B .16C .17D .189.设43,)1(112161211=⋅+++++=+n n n S S n n S 且 ,则n 的值为……( ) A .9 B .8 C .7 D .610.取第一象限内的两点P 1(x 1,y 1),P 2(x 2,y 2),使1,x 1,x 2,2依次成 等差数列,1,y 1,y 2,2依次成等比数列,则点P 1、P 2与射线l ∶y=x (x >0) 的位置关系是 ……………………………………………………………( )A .点P 1、P 2都在l 的上方B .点P 1、P 2都在l 上C .点P 1、P 2都在l 的下方D .点P 1在l 的下方,点P 2在l 的上方11.已知公差不为0的等差数列的第m 、n 、k 项依次构成等比数列的连续三项,则等比数列的公比是 ………………………………………………( )A .n m k n --B .m k n k --C .k n m n --D .kn k m -- 12.设数列{a n }是首项为50,公差为2的等差数列;{b n }是首项为10,公差为4的等差数列,以a k 、b k 为相邻两边的矩形内最大圆面积记为S k ,若k ≤21,那么S k 等于 ……………………………………………………………( )A .π2)12(+kB .π2)32(+kC .π2)122(+kD .π2)242(+k二、填空题(本大题共4小题,每小题4分,共16分)13.设{}n a 是正项等比数列,且公比为q ,则18a a +与45a a +的大小关系为 .14.设数列{a n }的前n 项和为=++++-=||||||,1410212a a a n n S n 则.15.已知{a n }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n 其中),3,2,1( =n ,则它的通项公式a n = .16.等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若77,322b a n n T S n n 则++=的值为 .三、解答题(本大题共6小题,共74分) 17.(本小题满分12分)已知数列{a n }的通项公式23+=n a n ,从{a n }中依次取出第2项,第4项,第8项……第2n 项)(*N n ∈,按原先顺序排成一个新数列{b n },求数列{b n }的通项公式及前n 项和公式.18.(本小题满分12分)设22,,4,21121+=-===++n n n n n b b a a b a a .求证:(1)数列{b n +2}是公比为2的等比数列;(2)n a n n 221-=+;(3)4)1(2221-+-=++++n n a a a n n .19.(本小题满分12分)已知)(6)12)(1(321*2222N n n n n n ∈++=++++ ,数列{a n }的通项公式a n =n 2;数列{b n }的首项b 1=3,其前n 项和为S n ,且满足关系式617221+=+++++n S a a a n n n n . (1)求{b n }的通项公式;(2)求证数列}2{n b -是一个等比数列;若它的前n 项和24013>n T ,求n 的范畴.20.(本小题满分12分)已知数列1,2,4,…的前n 项和cn bn an S n ++=23,求n a 及c b a 、、的值.21.(本小题满分13分)容器A 中有12%的食盐水300克,容器B 中有6%的食盐水300克.现约定完成下列工作程序为一次操作:从A 、B 两个容器中同时各取100克溶液,然后将从A 中取出的溶液注入B 中,将B 中取出的溶液注入A 中.(1)通过n 次操作后,A 、B 中的盐水浓度分别为a n %、b n %,求证:a n +b n 为常数;(2)分别求出a n 和b n 的通项公式.22.(本小题满分13分)大楼共n 层,现每层指定1人,其n 人集中到设在第k 层的临时会议室开会,问k 如何确定,能使n 位参会人员上、下楼梯所走的路程总和最小?写出分析过程(假设相邻两层楼梯长相等).数列测试题参考答案及评分意见一、1.A 2.D 3.B 4.B 5.A 6. C 7.B 8.D 9.D 10.C 11. A 12.B二、13. 1845a a a a +>+; 14. 67; 15. n 1; 16.47 三、17.2232+⋅==n n na b …………………………………………………4分 n b b b S n n n 2)222(3221++++=+++= 62231-+⋅=+n n ……12分18.(1)由2242222211=++=+++=++n n n n n n b b b b b b 得, }2{+∴n b 是公比为2的等比数列……………………………………3分(2)由(1)可知22.2222.4211111-=--=∴==+++++-n n n n n n n n a a b b 则 令n=1,2,…n -1,则22,,22,221323212-=--=--=--n n n a a a a a a , 各式相加得)2222(32n n a ++++= n n n n n 222222)1(211-=+--=--++……8分;(3)由(2) 知 )21(2)222(13221n a a a n n +++-+++=++++)1(21)21(4+---=n n n 4)1(22-+-=+n n n …………12分 19.(1))()(21221221n n n n n a a a a a a a a a +++-+++=+++++)21(])2(21[222222n n +++-+++= )17)(12(61)12)(1(61)14)(12(261++=++-++=n n n n n n n n n . 6176)17)(12(+=++∴n S n n n n . 则,22n n S n +=14)1()1(22,2221-=----+=-=≥-n n n n n S S b n n n n 时当,又b 1=3,14-=∴n b n .……………………………………6分;(2)设412222,211----+-====++n n nn n b b b b n n b n c c c 则为常数, }2{n b -∴为等比数列,其公比为161,首项为81, 因此2403115)1611(21611)1611(81>-=--=n n n T ,化简得22161≥∴>-n n …………12分20.提要:先用待定系数法求出65,0,61===c b a ,…………………6分 再用1--n n S S 法求得)(2121*2N n n n a n ∈-=.………………………12分 21.(1)通过n 次操作后,A 中盐水的浓度为300%100%200%11--⨯+⨯=n n n b a a , 得)2(3111--+=n n n b a a ,同理)2(3111--+=n n n b a b . 186120011=+=+==+=+∴+-b a b a b a n n n n 为常数………6分(2)由(1)可知}{),(31,1811n n n n n n n n b a b a b a b a -∴-=-=+--又是首项为600=/-b a ,公比为31的等比数列,因此有 11319,319.)31(6---=+=⋅=-n n n n n n n b a b a 解得…………………13分22.设每层楼梯长为a ,参会人员所走的路程总和为S ,则第k -1层的人需走1个楼梯,第k -2层的人需走2个楼梯,……第1层的人需走k -1个楼梯;同理往上,第k+1层的人需走1个楼梯,第k+2层的人需走2个楼梯,……第n 层的人需走n -k 个楼梯,故)](21012)2()1[(k n k k a S -+++++++-+-=]2)1([]2)1)((2)1([22n n k n k a k n k n k k a +++-=+--+-=.…………8分 当n 为奇数时,会议室应设在第21+=n k 层可满足题意,当n 为偶数时,会议室应设在第2n k =或22+n 层,可满足题意…………13分.。

高一数学数列试题答案及解析

高一数学数列试题答案及解析

高一数学数列试题答案及解析1.已知数列中,其前项和满足:(1)试求数列的通项公式;(2)求数列的前项和.【答案】(1),(2)【解析】(1)先利用化简关系式得:再利用叠加得,又,所以.经验证和也满足该式,故(2)因为数列通项是一个等比加一个等差,所以用“分组求和法”求和,即.试题解析:(1)即这个式子相加得,又所以. 经验证和也满足该式,故(2)用分组求和的方法可得【考点】由求,叠加法求,分组求数列和.2.已知数列是等比数列,且则【答案】1【解析】略3.(本小题满分12分)设数列的各项均为正数,它的前项的和为,且,数列满足.其中.(Ⅰ)求数列和的通项公式;(Ⅱ)设,求证:数列的前项的和().【答案】(Ⅰ),(Ⅱ)详见解析【解析】(Ⅰ)在求数列通项时主要借助于公式(Ⅱ)中根据数列的通项公式的特点,对其前n项求和时采用错位相减得方法试题解析:(Ⅰ),①当时,,②①-②得:,即,∵数列的各项均为正数,∴(),又,∴;∵,∴,∴;(Ⅱ)∵,∴,,两式相减得,∴.【考点】1.数列由前n项和求通项;2.错位相减法数列求和4.在等比数列{an }中,如果a6=6,a9=9,那么a3为()A.4B.C.D.2【答案】A【解析】根据等比数列的性质,,代入数据解得.【考点】等比数列的性质5.(本题12分)已知数列的前n项和为满足:.(1)求证:数列是等比数列;(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1)详见解析;(2)【解析】(1)已知,求,利用公式,得到关于数列的递推公式,,,然后列式等于常数,所以是等比数列;(2)第一步,先计算,同时求和,得到的通项公式,第二步,计算,并且根据裂项相消法得到数列的和,和是,第三步,当恒成立,等价于,并且.试题解析:(1)当时,,解得, 1分当时,由得, 2分两式相减,得,即(), 3分则,故数列是以为首项,公比为3的等比数列.(2)由(1)知,,所以,则,由对任意都成立,得,即对任意都成立,又,所以m的值为1,2,3.【考点】1.已知求;2.等比数列的定义;3.裂项相消法求和;4.等差数列;5.数列的最值.6.(14分)已知数列的前n项和为,且,(1)求数列的通项公式;(2)令,且数列的前n项和为,求;(3)若数列满足条件:,又,是否存在实数,使得数列为等差数列?【答案】(1)(2)(3)【解析】(1)中考察的主要是由数列的前n项和求数列通项的问题,求解时主要借助于公式解决,分别求完后要验证看时候能将结果合并到一起;(2)首先将通项整理为的形式,然后采用裂项相消法求和;(3)首项将代入整理出数列的递推公式,由第一项求得第二三两项,找到数列的前三项,前三项成等差得到参数的值,然后验证求得的值满足数列所有项均构成等差数列试题解析:(14分)(1)n=1时,n当n=1时所以(2),(3),即,假设存在这样的实数,满足条件,又,成等差数列,即,解得,此时:,数列是一个等差数列,所以【考点】1.数列求通项公式;2.裂项相消求和;3.等差数列的判定7.已知等差数列中,若则公差=()A.10B.7C.6D.3【答案】D【解析】有等差数列通项公式可得【考点】等差数列通项公式8.数列为单调递增数列,则的取值范围是__________.【答案】【解析】单调递增数列有,,,展开化简得,,,,当n=1时,有最小的取值范围,所以。

高一数学数列测试题.doc

高一数学数列测试题.doc

高一数学数列测试题高一数学组 .12一、 选择题(5分×10=50分)1、4、三个正数a 、b 、c 成等比数列,则lga 、 lgb 、 lgc 是 ( ) A 、等比数列 B 、既是等差又是等比数列 C 、等差数列 D 、既不是等差又不是等比数列2、前100个自然数中,除以7余数为2的所有数的和是( ) A 、765 B 、653 C 、658 D 、6603、如果a,x 1,x 2,b 成等差数列,a,y 1,y 2,b 成等比数列,那么(x 1+x 2)/y 1y 2等于 A 、(a+b)/(a-b) B 、(b-a)/ab C 、ab/(a+b) D 、(a+b)/ab4、在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q= A 、1 B 、-1 C 、-3 D 、35、在等比数列{a n }中,a 1+a n =66,a 2a n -1=128,S n =126,则n 的值为 A 、5 B 、6 C 、7 D 、86、若{ a n }为等比数列,S n 为前n 项的和,S 3=3a 3,则公比q 为 A 、2 B 、-1 或1/2 C 、-1/2 D 、1/2或-1/27、一个项数为偶数的等差数列,其奇数项之和为24,偶数项之和为30,最后一项比第一项大21/2,则最后一项为 ( ) A 、12 B 、10 C 、8 D 、以上都不对8、在等比数列{a n }中,a n >0,a 2a 4+a 3a 5+a 4a 6=25,那么a 3+a 5的值是A 、B 、15C 、10D 、5 9、等比数列前n 项和为S n 有人算得S 1=8,S 2=3=36,S 4=65,后来发现有一个数算错了,错误的是 A 、S 1 B 、S 2 C 、S 3 D 、S 410、数列{a n }是公差不为0的等差数列,且a 7,a 10,a 15是一等比数列{b n }的连续三项,若该等比数列的首项b 1=3则b n 等于 A 、3·(5/3)n-1 B 、3·(3/5)n-1 C 、3·(5/8)n-1 D 、3·(2/3)n-1二、填空题(5分×5=25分) 11、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =12、各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q= 13、已知a,b,a+b 成等差数列,a,b,ab 成等比数列,且0<log m ab<1,则实数m 的取值范是14、已知a n =a n -2+a n -1(n ≥3), a 1=1,a 2=2, b n =1+n na a ,则数列{b n }的前四项依次是 ______________. 15、已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为三、解答题(12分×4+13分+14=75分)16、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。

高一数学数列单元测试题5.doc

高一数学数列单元测试题5.doc

数列单元测试005一、选择题(每题3分,共54分)1、等差数列n a a a a ,,,,321 的公差为d ,则数列n ca ca ca ca ,,,,321 (c 为常数,且0≠c )是( )A .公差为d 的等差数列B .公差为cd 的等差数列C .非等差数列D .以上都不对2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( )A .49B .50C .51D .523、已知,231,231-=+=b a 则b a ,的等差中项为()A .3B .2C .31 D .214、等差数列{}n a 中,12010=S ,那么101a a +的值是( )A .12B .24C .36D .485、2b ac =是c b a 、、成等比数列的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6、设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .41 B .21 C .81D .17、数列3,5,9,17,33,…的通项公式n a 等于() A .n2B .12+nC .12-nD .12+n8、数列{}n a 的通项公式是11++=n n a n ,若前n 项的和为10,则项数n 为( )A .11B .99C .1D .1219、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( )A .2400元B .900元C .300元D .3600元10、数列{}n a 、{}n b 都是等差数列,其中100,75,2510010011=+==b a b a ,那么{}n n b a +前100项的和为()A .0B .100C .10000D .102400 11、若数列{}n a 的前n 项和为2n S n =,则()A .12-=n a nB .12+=n a nC .12--=n a nD .12+-=n a n12、等比数列{}n a 中,===+q a a a a 则,8,63232()A .2B .21 C .2或21D .-2或21-13、等差数列—3,1,5,…的第15项的值是( )A .40B .53C .63D .7614、在等比数列中,32,31,891===q a a n ,则项数n 为( )A .3B .4C .5D .615、已知实数c b a 、、满足122,62,32===cba,那么实数c b a 、、是()A .等差非等比数列B .等比非等差数列C .既是等比又是等差数列D .既非等差又非等比数列16、若c b a 、、成等比数列,则关于x 的方程02=++c bx ax ( )A .必有两个不等实根B .必有两个相等实根C .必无实根D .以上三种情况均有可能17、已知等差数列{}n a 满足011321=+++a a a a ,则有()A .0111>+a aB .0102<+a aC .093=+a aD .66=a18、数列 ,1614,813,412,211前n 项的和为( )A .2212n n n ++B .12212+++-nn nC .2212nn n ++-D . 22121n n n -+-+二、填空题(每题3分,共15分)19、在等差数列{}n a 中,已知2054321=++++a a a a a ,那么3a 等于 厂在1995年底制定生产计划,要使底的总产量在原有基础上翻两番,则年平均增长率为 21、已知等差数列{}n a 的公差0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a ++++的值是22、数列{}n a 中,11,111+==-n n a a a ,则=4a23、已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a三、解答题(第2 4、25两题每题7分,第26题8分,第27题9分,共31分) 24、等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值 25、数列{}n a 中,*11,3,2N n n a a a n n ∈=-=+,求数列{}n a 的通项公式n a26、在等比数列{}n a 的前n 项和中,1a 最小,且128,66121==+-n n a a a a ,前n 项和126=n S ,求n 和公比q27、已知等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=(1)判断{}n a 是何种数列,并给出证明; (2)若2021138,b b b m a a 求=+数列单元测试 (A 卷)答案一、二、19、4 21、1613 22、35 23、12-n三、24、50333132 ,33313232)1(31,32 31,452411152==-∴=-=⋅-+==∴==+=++=+n n a n n a d a d a d d a a a n n 得又25、由⎪⎩⎪⎨⎧-=-=-=-⇒=--+)1(3633123121n a a a a a a n a a n nn n将上面各等式相加,得2)1(32)1(3631-+=⇒-+++=-n n a n a a n n26、因为{}n a 为等比数列,所以64,2,,128661111121==≤⎩⎨⎧==+∴=-n n n n n n a a a a a a a a a a a a 解得且 依题意知1≠q 21261,1261=⇒=--∴=q qqa a S n n 6,6421=∴=-n q n27、(1)设{}n b 的公比为q , q n a a qb n a n aan nn 311log 10(33,31-+=⇒=⋅∴=-所以{}n a 是以q 3log 为公差的等差数列(2)m a a =+138 所以由等差数列性质得m a a a a =+=+138201m a a a b b b m a a a a a 10202120120213310220)(2021==⇒=⨯+=+++∴+++。

高一数学《数列》测试题答案

高一数学《数列》测试题答案

《数列》练习题答案班级 学号 姓名 一、选择题(本大题共8小题,每小题5分,共40分)1.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于(B ) A.3B.2C.1D.2-2.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B ) A .63B .45C .36D .273.等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( C ) A .-1221B .-21.5C .-20.5D .-204.各项均为正数的等比数列{}n a 的前n 项和为S n ,若S 10=2,S 30=14,则S 40等于( B ) A. 80 B . 30 C. 26 D. 165.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =(B ) A.2B.4C.6D.86.等差数列{n a }中,2511=a ,从第10项开始大于1,则d 的取值范围是( D ) A .(+∞,758) B .(758,∞-) C .[253,758) D .(253,758]7.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( A )A. 310 B . 13 C. 18 D. 198.已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的积=30T (B )A.154B.152 C.1521⎪⎭⎫ ⎝⎛ D.153二.填空题(本大题共4小题,每小题5分,共20分)9.设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842=+-x x 的两根,则=+20072006a a __18________.10.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=7.11.等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 13.12.在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,则a +b +c +d =___105__________三.解答题(本大题共4小题,每小题10分,共40分)13.设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的通项公式. (2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,. 又37S =,可知2227q q ++=,即22520q q -+=,解得12122q q ==,. 由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,, 由(1)得3312n n a += 3ln 23ln 2nn b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++故3(1)ln 22n n n T +=. 14.等差数列{}n a 的前n项和为1319n S a S ==+, (Ⅰ)求数列{}n a 的通项n a 与前n 项和n S ; (Ⅱ)设()nn S b n n*=∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列. 解:(Ⅰ)由已知得111339a a d ⎧=⎪⎨+=+⎪⎩,2d ∴=,故21(n n a n S n n =-=.(Ⅱ)由(Ⅰ)得n n Sb n n==假设数列{}n b 中存在三项p q r b b b ,,(p q r ,,互不相等)成等比数列,则2q p r b b b =.2((q p r +=.2()(20q pr q p r ∴-+--=p q r *∈N ,,,2020q pr q p r ⎧-=∴⎨--=⎩,, 22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,.与p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.15.已知数列{}n a ,{}n b 满足12a =,11b =,且11113114413144n n n n n n a a b b a b ----⎧=++⎪⎪⎨⎪=++⎪⎩(2n ≥)(I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .15.(I)解:由题设得11()2(2)n n n n a b a b n --+=++≥,即12n n c c -=+(2n ≥)易知{}n c 是首项为113a b +=,公差为2的等差数列,通项公式为21n c n =+. (II )解:由题设得111()(2)2n n n n a b a b n ---=-≥,令n n n d a b =-,则 11(2)2n n d d n -=≥.易知{}n d 是首项为111a b -=,公比为12的等比数列,通项公式为112n n d -=. 由12112n n n n n a b n a b -+=+⎧⎪⎨-=⎪⎩,解得 1122n n a n =++,求和得21122n n n S n =-+++. 16.已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++. 16.解法1:(I )证:由1nn b q b +=nq ==,∴ 22()n n a a q n +=∈N*. (II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111n n q a a --=,222211n n q a a-=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q qq --⎛⎫⎛⎫=+++++++++ ⎪ ⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=,{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a qq ---+=+=, 34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,.2221221113(1)2n k q q a a a --+∴+++=+++.17.(选做题) 在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. 17.(Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32n n n n S -+=+.(Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涟西中学高一数学数列测试题
2007.5
一、选择题:每题5分,共10题,总分50分
1. 数列 ,9
24,715,58
,1--的一个通项公式是…………………………………………( ) A.12)1(2++-=n n n a n n B.1
2)1(2-+-=n n n a n n C.122)1(2-+-=n n n a n
n D.122)1(2++-=n n n a n n 2. 已知:32=a ,62=b ,122=c
,则b 是c a ,的…………………………………( ) A .等比中项 B.等差中项 C. 是等差中项,也是等比中项 D.都不是
3. 若数列{a n }的前n 项和S n =n 2–2n +3,则数列{a n }的前3项依次为……………………( )
A.–1,1,3
B. 6,1,3
C. 2,1,3
D.2,3,6
4. 已知数列{}n a 的通项公式n a n 373-=,其前n 项和n S 达到最大值时n 的值是…( )
A.26
B.25
C.24
D.23
5. .在等差数列{}n a 中,已知1590S =,那么8a 等于…………………………………( )
A.3
B.4
C.6
D.12
6. 等差数列{}n a 中,已知28||||a a =,公差d<0,则使它的前n 项和n S 取最大值的自然数 是……………………………………………………………………………………………( )
A.4或5
B. 5或6
C. 6或7
D.不存在
7.Rt ABC ∆三个内角,,A B C ∠∠∠成等差数列,且其斜边长为4,则它的面积为
.4A B C 8三个数成等差数列,其平方和为450,两两之积的和为423,则中间一个数为( )
A .±12
B .150
C .150±
D .150
9. .已知等差数列{a n }的公差是2,且a 1+a 2+a 3+…+a 100=100,那么a 4+a 8+a 12+…+a 100=( )
A .25
B .50
C .75
D .100
10.若数列{n a }的前n 项和32
3-=n n a S ,则这个数列的通项公式是( ) A .132-⨯=n n a B .n n a 23⨯= C .33+=n a n D .n n a 32⨯=
二、填空题:每题4分,共6题,总分24分
11.已知等差数列{}n a 中,首项11a =,公差2d =-,则n a = ,-397
是该数列的第______项.
12.已知等差数列{}n a 中,首项13a =,2016a =-,则公差 d =
13.在等差数列84,80,76……中,从第________项起以后每项均为负数.
14、已知等比数列}{n a 中,368,1a a ==,则=n a .
15.等比数列的公比为2,前5项和为1,则其前10项和为_______ .
16.已知数列{}n a 和{}n b 都是等差数列,它们的前n 项和分别记为S n 和T n ,且4332-+=n n T S n
n ,则=10
10b a _____________ . 三、解答题:每题14分,共5题,总分70分.
17. 已知在逐项递增的等差数列{a n }中,a 1+a 4+a 7=15,a 2⋅a 4⋅a 6=45,求其通项a n .
18.设三个实数a ,b ,c 成等比数列,其积为8,又,,1a b c -成等差数列,试求a ,b ,c
(1)已知等差数列 中, ,求 的值.
(2)已知等差数列
中, , 求 .
19. 已知数列{}n a 是等差数列,数列{}n b 满足12n a
n b ⎛⎫= ⎪⎝⎭,且123218b b b ++=, 12318
b b b ∙∙=,求数列{}n a 的通项公式.
19.(12分)数列{n a }是首项为23,公差为整数的等差数列,且第6项为正,第7项为负。

(1)求数列{n a }的公差;
(2)求前n 项和n S 的最大值;
(3)当n S >0时,求n 的最大值。

19、(本小题12分)等比数列}{n a 同时满足下列三个条件:①3361=+a a ;②3252=a a ;
③三个数43,,24232+a a a 依次成等差数列,求数列}{n a 的通项公式及前n 项和n S 。

19(本题满分12分)
设等差数列{}n a 的前n 项和为S n ,55,852==S a ,数列{}n b 满足k S b n n +=。

问是否存在常数k ,使数列{}n b 成等差数列?若存在,求出这样的k 值;若不存在,说明理由。

21、(本小题12分)已知数列}{n a 的首项11=a ,其前n 项的和为n S ,且对于任意的正整
数n ,有n n S a n ,,成等差数列。

(1)求证:数列}2{++n S n 成等比数列;(2)求数列
}{n a 的通项公式。

相关文档
最新文档